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Figure 1: Physical reliability of Humanoid-X vs. PHUMA. Each column illustrates four failure
modes: joint violation, floating, penetration, and skating. Humanoid-X (Mao et al., 2025) (top row)
often exhibits these issues due to direct video-to-motion conversion, while PHUMA (bottom row)
mitigates those violations through careful data curation and physically grounded retargeting.

ABSTRACT

Motion imitation is a promising approach for humanoid locomotion, enabling
agents to acquire humanlike behaviors. Existing methods typically rely on high-
quality motion capture datasets such as AMASS, but these are scarce and ex-
pensive, limiting scalability and diversity. Recent studies attempt to scale data
collection by converting large-scale internet videos, exemplified by Humanoid-
X. However, they often introduce physical artifacts such as floating, penetra-
tion, and foot skating, which hinder stable imitation. In response, we introduce
PHUMA, a Physically-grounded HUMAnoid locomotion dataset that leverages
human video at scale, while addressing physical artifacts through careful data
curation and physics-constrained retargeting. PHUMA enforces joint limits, en-
sures ground contact, and eliminates foot skating, producing motions that are both
large-scale and physically reliable. We evaluated PHUMA in two sets of condi-
tions: (i) imitation of unseen motion from self-recorded test videos and (ii) path
following with pelvis-only guidance. In both cases, PHUMA-trained policies out-
perform Humanoid-X and AMASS, achieving significant gains in imitating di-
verse motions. Qualitative videos are available at the https://anonymous-robotics-
researcher.github.io/Paper 10482.

1 INTRODUCTION

Humanoid robots are central to the pursuit of general-purpose embodied AI, but their deployment
in real-world first requires locomotion that is both stable and humanlike. While reinforcement
learning (RL) with task-oriented rewards has led to remarkable progress in quadrupedal locomo-
tion (Hwangbo et al., 2019; Lee et al., 2020; Tan et al., 2018), directly applying these strategies to
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Figure 2: Overview of datasets and performance. PHUMA is both large-scale and physically
reliable, which translates into higher success rates in motion imitation and pelvis path following. (a)
Feasible and infeasible human motion sources in each dataset. (b) Physical reliability, with AMASS
retargeted using a standard learning-based inverse kinematics method. (c) Success rate on unseen
motions. (d) Success rate in path-following. Results are reported on the Unitree G1 humanoid.

humanoids often produces gaits that are effective yet non-humanlike (Hansen et al., 2023; Sferrazza
et al., 2024). To address this limitation, motion imitation has emerged as a promising paradigm. In
motion imitation, policies are trained to replicate human movements through a three-stage pipeline:
(1) collecting human motion data, (2) retargeting it to the robot’s morphology, and (3) using RL to
track the retargeted trajectories (Peng et al., 2018; Tessler et al., 2024; He et al., 2024b).

Despite its promise, progress in motion imitation is fundamentally constrained by the scale, diver-
sity, and physical feasibility of human motion data. High-quality motion capture datasets such as
LaFAN1 (Harvey et al., 2020) and AMASS (Mahmood et al., 2019) provide a high proportion of
physically feasible motions, but are limited in scale and diversity, with motions dominated by sim-
ple motions such as reaching and walking. To overcome this scarcity, recent work has sought to
scale data collection by leveraging vast internet videos. Humanoid-X (Mao et al., 2025) exempli-
fies this trend by converting videos to SMPL representations (Loper et al., 2023) using a video-to-
motion model (Kocabas et al., 2020), then retargeting them to humanoid embodiments. However,
this pipeline introduces two types of physical violations. First, the video-to-motion model often mis-
estimates global pelvis translation, producing artifacts such as floating or ground penetration. Sec-
ond, the retargeting stage prioritizes joint alignment over physical plausibility (He et al., 2024b;a),
leading to joint violation and foot skating as illustrated in the top row of Figure 1.

In response, we introduce PHUMA: Physically-grounded HUMAnoid locomotion dataset that
leverages large-scale human video while overcoming physical artifacts through careful data cura-
tion and physics-constrained retargeting. As illustrated in Figure 3(1), we first collect diverse high-
quality human motion data and filter out infeasible motions from Humanoid-X, such as root jitter or
actions requiring external objects like sitting on chairs. This filtering removes approximately 70%
of the original dataset, as shown in Figure 2(a). As shown in Figure 3(2), we then apply Physically
constrained Shape-adaptive Inverse Kinematics (PhySINK), which enforces soft joint limits, ground
contact, and anti-skating constraints to eliminate violations such as joint overextension, floating, and
sliding. As a result, PHUMA provides substantially more physically plausible motions than existing
datasets, 349.9% more than AMASS and 5.5% more than Humanoid-X (Figure 2(a,b)).

We validate the effectiveness of PHUMA in two settings: (i) imitation of unseen motions and (ii)
path following with pelvis-only guidance. Using the MaskedMimic framework Tessler et al. (2024)
for RL training, we tested policies on Unitree G1 and H1-2 humanoids. On 504 self-recorded videos
across 11 motion types, policies trained with PHUMA achieve 1.2x and 2.1x higher success rates
than AMASS and Humanoid-X, respectively (Figure 2(c)). For path following, PHUMA-trained
policies improve overall success rate by 1.4x over AMASS, with 1.6x gains in vertical (e.g., squat,
lunge, jump) and 2.1x gains in horizontal (e.g., walk, run) motion path trajectories(Figure 2(d)). We
will release PHUMA as a public resource to advance future research in humanoid locomotion.
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2 RELATED WORK

PHUMA focuses on constructing a large-scale, physically reliable humanoid locomotion dataset,
requiring two components: (1) collection of diverse human motion data and (2) retargeting of these
motion data to the humanoid robot.

2.1 HUMAN MOTION DATA

Human motion data, typically represented in the SMPL format (Loper et al., 2023; Pavlakos
et al., 2019), is obtained from two main sources: motion capture systems and reconstruction from
video (Gu et al., 2025). Motion capture data (CMU, 2003; Zhang et al., 2022; Al-Hafez et al.,
2023) provides accurate kinematics but is difficult to scale due to its reliance on complex instru-
mentation, such as multi-camera arrays and marker-based suits. Even a relatively large dataset like
LaFAN1 (Harvey et al., 2020) contains only a few hours of motion. AMASS (Mahmood et al., 2019),
the most extensive and widely-used dataset, remains dominated by walking motions in indoor labs.

Recent datasets (Lin et al., 2023; Zhang et al., 2025; Chung et al., 2021; Cai et al., 2022; Tsuchida
et al., 2019) leverage the scalability and diversity of human videos. Humanoid-X (Mao et al., 2025)
is notable for massively scaling up from Internet video data, providing an abundant collection of
data from motion capture and video recovery. However, video-derived motion often exhibits severe
jitter across frames (Kocabas et al., 2020; Wang et al., 2024), and motion from either source is
susceptible to physical artifacts such as interactions with unmodeled objects (e.g., sitting on a chair
that does not exist) (Luo et al., 2023; 2024) and implausible foot-ground contact, including floating
or penetration (Goel et al., 2023; Ye et al., 2023; Yu et al., 2021; Ugrinovic et al., 2024).

To mitigate these issues, recent works have introduced automated data cleaning strategies (Luo et al.,
2024). ASAP (He et al., 2025a) employs a “sim-to-data” cleaning procedure that uses a motion track-
ing policy in a physics simulator to filter out failures. However, this process primarily relies on the
tracking policy rather than the physical validity of the motion, which may be biased by the track-
ing performance of the policy. KungfuBot (Xie et al., 2025) instead adopts physics-based principles
for data cleaning, such as stability criteria, and utilizes contact masks for motion correction. How-
ever, they rely on zero-velocity assumptions and ankle height for contact estimation, which are often
unreliable for video-reconstructed motions.

PHUMA is a large-scale, diverse, and curated motion dataset aggregated from both motion capture
and human video through a physics-aware curation pipeline, which corrects implausible foot-ground
contact and filters out corrupted sequences with severe physical artifacts.

2.2 HUMANOID MOTION RETARGETING

Human motion data, widely used for physics-based character control (Peng et al., 2018; Wagener
et al., 2022; Luo et al., 2021; 2023; Hansen et al., 2025; Tessler et al., 2024; Tirinzoni et al., 2025),
is now also being applied to the field of humanoid robotics (Radosavovic et al., 2024a; Fu et al.,
2024; Cheng et al., 2024; Ji et al., 2024; Chen et al., 2025; Xie et al., 2025; Truong et al., 2025; Li
et al., 2025). For instance, Humanoid Policy ˜ Human Policy (Qiu et al., 2025) leverages egocentric
human video for manipulation, while ASAP (He et al., 2025a) utilizes retargeted human motion
to learn agile locomotion. This relies on motion retargeting, which is critical for adapting human
movements to humanoid robots that, despite their morphological similarities to humans, possess
distinct kinematic and proportional characteristics (Kim et al., 2025; Ho et al., 2010; Zhang et al.,
2023).

A primary challenge is motion mismatch, where the retargeted motion fails to capture the kinematic
pose of the source. Inverse kinematics (IK) methods (Radosavovic et al., 2024b; Zakka, 2025; Ze
et al., 2025) often overlook the differences in body shape, resulting in unnatural motions like in-toed
gaits. Recently, GMR (Araujo et al., 2025) demonstrated that IK can yield highly plausible results
through careful engineering, yet it remains reliant on heuristic scale adjustments and is prone to
artifacts such as foot floating. Shape-adaptive inverse kinematics (SINK) methods, introduced by
H2O (He et al., 2024b), address this by first adapting the source human model to match the body
shape and limb proportions of the target robot. The motion is then aligned to the source by matching
global joint positions (He et al., 2024a; 2025b) or local limb orientations (Cheynel et al., 2023;
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Figure 3: Overview of the PHUMA pipeline. Our four-stage pipeline for motion imitation learning
includes: (1) Motion Curation, where we filter out problematic motions from a diverse dataset; (2)
Motion Retargeting, where the filtered motions are retargeted to the humanoid using PhySINK, in-
corporating a series of losses.; (3) Policy Learning, where a policy is trained to imitate the retargeted
motions; and (4) Inference, where the trained policy is used to control the humanoid, enabling it to
imitate motions from unseen videos processed by a video-to-motion model.

Allshire et al., 2025). While effective at pose matching, SINK approaches are physically under-
constrained, introducing artifacts including joint limit violations and implausible ground interactions
such as floating, penetration, and skating.

Physically constrained shape-adaptive inverse kinematics (PhySINK) directly addresses these physi-
cal artifacts by augmenting the optimization with joint feasibility, grounding, and skating loss terms,
ensuring the retargeted motion maintains fidelity to the source while remaining physically plausible.

3 METHOD

Our goal is to construct PHUMA, a large-scale, physically reliable dataset for humanoid locomotion.
We build upon the Humanoid-X motions (Mao et al., 2025), which are rich in scale but exhibits phys-
ical artifacts. We first apply physics-aware curation to filter out problematic motions (Section 3.1).
Next, to solve artifacts introduced during the retargeting process itself, we employ PhySINK, our
physics-constrained retargeting method that adapts the curated motion to the humanoid while en-
forcing physical plausibility (Section 3.2). Our two-stage pipeline is illustrated in Figure 3.

3.1 PHYSICS-AWARE MOTION CURATION

The goal of our curation pipeline is to refine raw motion data, which often contains artifacts that
make the motion physically implausible for a humanoid. Our process targets key issues such as se-
vere jitter, instabilities from interactions with unmodeled objects, and incorrect foot-ground contact.
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Table 1: Composition of the PHUMA dataset. A summary of the number of clips and duration for
each sub-dataset, categorized by source and scene. PHUMA aggregates these diverse sub-datasets,
resulting over 73 hours of physically-grounded motion clips.

Dataset # Clip # Frame Duration Source Scene

LocoMuJoCo (Al-Hafez et al., 2023) 0.78K 0.93M 0.86h Motion Capture Indoor
GRAB (Taheri et al., 2020) 1.73K 0.20M 1.88h Motion Capture Indoor
EgoBody (Zhang et al., 2022) 2.12K 0.24M 2.19h Motion Capture Indoor
LAFAN1 (Harvey et al., 2020) 2.18K 0.26M 2.40h Motion Capture Indoor
AMASS (Mahmood et al., 2019) 21.73K 2.25M 20.86h Motion Capture Indoor
HAA500 (Chung et al., 2021) 1.76K 0.11M 1.01h Human Video Outdoor
Motion-X Video (Lin et al., 2023) 33.04K 3.45M 31.98h Human Video Outdoor
HuMMan (Cai et al., 2022) 0.50K 0.05M 0.47h Human Video Indoor
AIST (Tsuchida et al., 2019) 1.75K 0.18M 1.66h Human Video Indoor
IDEA400 (Lin et al., 2023) 9.94K 0.98M 9.10h Human Video Indoor
PHUMA Video 0.50K 0.06M 0.56h Human Video Outdoor

PHUMA 76.01K 7.88M 72.96h

Figure 4: Common physical artifacts in motion retargeting. From left to right: Motion Mismatch,
Joint Violation, Floating, Penetration, and Skating.

To mitigate high-frequency jitter, we apply a low-pass Butterworth filter (Appendix A.1.1). We
identify unstable motions, such as sitting on a non-existent chair, by calculating the center-of-mass
(CoM) distance from the base of support. To correct foot-ground contact, a consistent ground plane
in the world frame is essential. Since recovered motions are often defined in a camera’s coordinate
frame, they lack a true ground reference, which causes floating and penetration. We establish a global
ground plane using a majority-voting scheme: each foot vertex contributes to identifying the most
consistent contact height. The entire motion is then shifted to align this plane at a height of zero
(Appendix A.1.2), after which we compute per-region foot contact scores.

With a reliable ground plane established, we segment all sequences into 4-second clips. We then
discard any clip exhibiting: (i) excessive jerk, (ii) a CoM position far outside its support base, or
(iii) insufficient foot-ground contact. This chunk-and-filter process maximizes the retention of vi-
able segments from longer, partially flawed sequences (Appendix A.1.3). Finally, we augment these
curated motions with data from LaFAN1, LocoMuJoCo, and our own video captures.

As detailed in Table 1, the resulting PHUMA dataset is a large-scale collection containing 73.0 hours
of physically plausible motion across 76.0K clips.

3.2 PHYSICS-CONSTRAINED MOTION RETARGETING

Inverse kinematics (IK) methods often fail to preserve motion style, while shape-adaptive inverse
kinematics (SINK) preserves style but introduces artifacts such as joint violations and unrealistic
ground interactions (Figure 4). Our method, physically constrained shape-adaptive inverse kinemat-
ics (PhySINK), overcomes these issues by extending SINK with joint feasibility, grounding, and
anti-skating losses, producing motions that are both stylistically faithful and physically plausible.

Motion Fidelity Loss. We optimize the humanoid joint positions qt and root translation γt over time
t, so that the retargeted motion closely matches the human motion. The LFidelity is defined as:

Lglobal-match =
∑
t

∑
i

∥∥pSMPL-X
i (t)− pHumanoid

i (t)
∥∥
1

(1)
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Table 2: Quantitative comparison and ablation study of retargeting methods. We evaluate per-
formance on two humanoids, G1 and H1-2, showing the progressive impact of adding each of our
proposed physical constraint losses.

Motion Fidelity (%) Joint Feasibility (%) Non-Floating (%) Non-Penetration (%) Non-Skating (%)

(a) G1
IK 27.6 91.7 55.6 47.8 59.7
GMR 56.3 81.8 14.7 100.0 67.7
SINK 94.8 95.9 96.4 14.9 55.4
+ Joint Feasibility Loss 94.9 100.0 96.4 14.8 55.6
+ Grounding Loss 94.9 100.0 99.9 97.2 53.6
+ Skating Loss = PhySINK 94.8 100.0 99.9 96.8 89.7

(b) H1-2
IK 36.3 80.9 57.7 45.2 56.1
SINK 93.9 15.3 42.2 81.4 47.9
+ Joint Feasibility Loss 94.0 99.9 44.4 79.9 50.7
+ Grounding Loss 93.9 99.9 99.8 98.1 49.3
+ Skating Loss = PhySINK 93.9 99.9 99.7 97.7 87.7

Llocal-match =
∑
t

∑
i ̸=j

mij

∥∥∆pSMPL-X
ij (t)−∆pHumanoid

ij (t)
∥∥2
2︸ ︷︷ ︸

position

(2)

+
∑
t

∑
i ̸=j

mij

(
1−

〈
∆pSMPL-X

ij (t), ∆pHumanoid
ij (t)

〉)︸ ︷︷ ︸
orientation

Lsmooth =
∑
t

∥∥q̇t − 2q̇t+1 + q̇t+2

∥∥
1
+

∑
t

∥∥γ̇t − 2γ̇t+1 + γ̇t+2

∥∥
1

(3)

LFidelity = wglobal-matchLglobal-match + wlocal-matchLlocal-match + wsmoothLsmooth (4)

where pSMPL-X
i (t) and pHumanoid

i (t) denote the global 3D position of joint i at time t. ∆pij denotes
the position difference between joints i and j. mij is a binary mask that equals 1 when i and j are
immediate neighbors in the humanoid kinematic tree, and 0 otherwise. We define Motion Fidelity
(%) as the average percentage of frames where the mean per-joint position error is below 10 cm and
the mean per-link orientation error is below 10 degrees.

Joint Feasibility Loss. Configurations that violate joint limits can lead to unrealistic motion or
instabilities in a simulator. LJoint Feasibility penalizes joint angles and velocities that approach or exceed
the predefined operational limits of the humanoid:

Lposition-violation =
∑
t

[max(0, qt − 0.98qmax) + max(0, 0.98qmin − qt)] (5)

Lvelocity-violation =
∑
t

[max(0, q̇t − 0.98q̇max) + max(0, 0.98q̇min − q̇t)] (6)

LFeasiblity = Lposition-violation + Lvelocity-violation. (7)

We define Joint Feasibility (%) as the percentage of frames where all joint positions and velocities
remain within 98% of their predefined mechanical limits.

Grounding Loss. The grounding loss corrects for floating or penetration artifacts by enforcing that
the foot regions of the humanoid remain on the ground plane during frames with detected contact:

LGround =
∑

i∈{LH,LT,RH,RT}

∑
t

cit
∥∥pit(z)∥∥22 (8)

where ct is a contact score for foot regions Left Heel (LH), Left Toe (LT), Right Heel (RH), and
Right Toe (RT) at frame t. We define Non-Floating (%) as the percentage of contact frames where
the foot is within 1 cm above the ground, and Non-Penetration (%) as the percentage of contact
frames where the foot is within 1 cm below the ground.

Skating Loss. The skating loss prevents foot sliding by penalizing the horizontal velocity of any
foot region that is in contact with the ground:

LSkate =
∑

i∈{LH,LT,RH,RT}

∑
t

cit
∥∥ṗit(x, y)∥∥2 (9)
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where ct is a contact score for foot regions Left Heel (LH), Left Toe (LT), Right Heel (RH), and
Right Toe (RT) at frame t. We define Non-Skating (%) as the percentage of contact frames where
the foot’s horizontal velocity is below 10 cm/s. The objective for the baseline SINK method consists
solely of the motion fidelity loss.

Our PhySINK objective is a weighted sum of the motion fidelity loss and the physical constraint
terms. By optimizing this augmented objective, PhySINK generates motions that maintain kinematic
similarity to the source while being physically plausible.

LPhySINK = LFidelity + wFeasibilityLFeasibility + wGroundLGround + wSkateLSkate (10)

To evaluate PhySINK, we retarget PHUMA to two Unitree robots, G1 (Unitree Robotics, 2025a)
and H1-2 (Unitree Robotics, 2025b), and compare against a standard IK solver (Zakka, 2025), and
GMR (Araujo et al., 2025), and SINK framework. As shown in Table 2, both the standard IK solver
and GMR struggle with motion fidelity. These methods use simple linear scaling to adjust human
keypoint positions to the robot’s body proportions, which changes the target motion and fails to
preserve the original kinematics. This approach alters the target motion without preserving the orig-
inal human motion’s kinematics. In contrast, SINK first optimizes the human body shape to fit the
humanoid’s proportions, then applies the original joint angles, thereby improving motion fidelity.
Building upon SINK, our proposed losses progressively enhance performance: the joint feasibility
loss raises feasibility to nearly 100%, and the grounding loss reduces floating and penetration to
over 96%. While GMR achieves the best non-penetration performance by optimizing the motion’s
height based on its minimum ground contact point, it suffers from significant floating artifacts. The
full PhySINK model, which incorporates the skating loss, preserves motion fidelity while achieving
strong results across all physical metrics, including nearly 90% non-skating performance. Qualita-
tive comparisons between retargeting methods are shown in Figures 8 and 9.

4 EXPERIMENTS

In this section, we evaluate the effectiveness of PhySINK and PHUMA along three axes, addressing
the following research questions:

RQ1. What does our proposed PhySINK retargeting method compare with established retargeting
approaches (IK, SINK) in terms of motion imitation performance?

RQ2. How effective is PHUMA as a training corpus for motion imitation, compared to prior datasets
utilized for humanoid motion (LaFAN1, AMASS, Humanoid-X)?

RQ3. When using a simplified controller that considers only pelvis tracking rather than full-body
state tracking, does training on PHUMA achieve better path-following performance than training on
existing benchmark datasets across various motion categories?

RQ4. Does training the policy with PHUMA lead to improved Sim-to-Sim transfer performance
compared to AMASS?

4.1 EXPERIMENT SETUP

Training. We employ the MaskedMimic framework (Tessler et al., 2024) for all policy training,
which provides a unified approach for motion tracking with either full body state or partial body
state information (e.g., pelvis-only). The framework trains policies using PPO (Schulman et al.,
2017) to imitate human motion by maximizing reward signals that measure tracking accuracy.

For RQ1 and RQ2, we train full-state motion tracking policies. These policies receive current pro-
prioceptive state (spt ), which includes joint positions, orientations, and velocities, as well as full goal
states (sgt ) representing the target motion trajectories. Given these inputs, the policy outputs joint an-
gle commands (at) that are executed via PD controllers. The reward function is designed to measure
how well the humanoid matches the target motion.

For RQ3, we employ the partial-state protocol from MaskedMimic. This involves first training a full-
state teacher policy on full-body reference motion data, then using knowledge distillation to train a
student policy that mimics the action of the teacher policy while receiving only pelvis position and
rotation as input, enabling pelvis path-following control while maintaining humanlike movement.

7
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All experiments are conducted in the IsaacGym simulator using Unitree G1 (29 DoF) and H1-2 (21
DoF, excluding wrist joints). Detailed hyperparameters are provided in Appendix 12, with complete
observation space and reward function specifications in Table 10 and Appendix B.2, respectively.

Evaluation. To assess the trained policies, we evaluate performance on two distinct datasets. The
first consists of about 7.5K motions (10% of PHUMA) that were held out during training. The
second comprises 504 self-collected video sequences converted to motion sequences using a video-
to-motion model. Processing details for the self-collected videos are provided in Appendix C.1.

For evaluating the full body motion tracking (RQ1, RQ2), we adopt the success rate metric from
prior motion imitation studies (He et al., 2024b; 2025a; Xie et al., 2025), which measures the ratio
of motions successfully imitated within a specified deviation threshold. Unlike prior work that uses
a 0.5m threshold, we employ a stricter 0.15m threshold, as the standard threshold incorrectly classi-
fies scenarios as successful when humanoids remain stationary during jumps or stay upright during
squatting motions. Further discussions related to the threshold selection is detailed in Appendix C.2.

In path following settings (RQ3), we use a similar success rate metric focused on pelvis track-
ing accuracy. Specifically, we measure the ratio of motions where the policy successfully tracks
pelvis trajectories within the same 0.15m threshold throughout the motion sequence. To evaluate
performance across diverse motion types, we organize all evaluations into four motion categories:
stationary (stand, reach), angular (bend, twist, turn, kick), vertical (squat, lunge, jump), and horizon-
tal (walk, run). This categorization allows us to assess how well policies generalize across different
types of human locomotion and movement patterns.

4.2 PHYSINK RETARGETING METHOD EFFECTIVENESS

To evaluate the effectiveness of our proposed PhySINK retargeting method, we compare it against
two established approaches: IK, SINK. We retarget the same source motions from AMASS using all
three methods, then train separate full-state motion tracking policies on each retargeted dataset.

Table 3 demonstrates that PhySINK consistently outperforms both baseline methods across all mo-
tion categories and humanoid embodiments. The results validate that physically constrained retarget-
ing directly translates to better imitation performance, with improvements particularly pronounced
in dynamic motions (vertical and horizontal categories) where physical constraints are most critical.

4.3 PHUMA DATASET EFFECTIVENESS

Having demonstrated PhySINK’s effectiveness, we now compare PHUMA against existing
humanoid datasets. We train full-state policies on four datasets with different characteris-
tics: LaFAN1(small-scale, high-quality), AMASS(medium-scale, moderate-quality), Humanoid-
X(large-scale, lower-quality), and PHUMA(large-scale, high-quality). For AMASS, we apply the
widely-used SINK retargeting method since it provides human motion source data, while LaFAN1
and Humanoid-X are used directly as pre-existing humanoid datasets.

As shown in Table 4, PHUMA trained policies achieve the highest success rates across all motion
categories and both humanoids. The results reveal that neighter scale nor quality alone is suffi-
cient. Humanoid-X, despite its large size, underperforms due to quality issues, while LaFAN1 and
AMASS, though cleaner, lack coverage in several motion types. By combining large scale with high
quality motions, PHUMA delivers consistently superior performance across diverse behaviors.

4.4 PELVIS-ONLY PATH FOLLOWING CONTROL PERFORMANCE

We evaluate whether training on PHUMA enables better pelvis path-following control compared
to the AMASS dataset. Using MaskedMimic’s partially-constrained protocol, we train two student
policies: one distilled from an AMASS-trained teacher and another from a PHUMA-trained teacher.
Both students receive only pelvis position and rotation as input.

As shown in Table 5, policies trained on PHUMA consistently outperform those trained on baseline
datasets across all motion categories and humanoids. This improvement is particularly pronounced
for vertical and horizontal motions, where AMASS shows significant limitations due to its compo-
sition of predominantly simpler motions like reaching and turning (Figure ??). More specifically,
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Table 3: Motion tracking performance across retargeting approaches. We evaluate the motion
tracking success rate of policies trained on AMASS data retargeted by three different methods
(IK, SINK, and PhySINK). Performance is assessed across various motion categories using two
humanoid robots, G1 and H1-2, and two test sets: PHUMA Test and Unseen Video.

PHUMA Test Unseen Video

Retarget Total Stationary Angular Vertical Horizontal Total Stationary Angular Vertical Horizontal

(a) G1
IK 52.8 75.3 43.9 24.3 44.2 54.0 80.3 54.6 32.7 43.3
SINK 76.2 88.5 72.1 56.8 66.8 70.2 90.7 75.0 62.7 44.1
PhySINK 79.5 89.9 76.1 61.1 69.5 72.8 93.3 78.2 65.5 47.3
(b) H1-2
IK 45.3 70.9 35.7 15.2 35.0 54.2 78.0 60.7 30.1 28.6
SINK 54.4 74.9 45.9 17.2 49.6 64.3 87.3 59.7 46.0 63.9
PhySINK 64.3 83.6 57.0 27.7 55.9 72.4 99.2 66.3 57.4 63.1

Table 4: Motion tracking performance across datasets. Success rates of policies trained on
LaFAN1, AMASS, Humanoid-X, and PHUMA, evaluated across motion categories on humanoid
robots G1 and H1-2 using two test sets: PHUMA Test and Unseen Video.

PHUMA Test Unseen Video

Dataset Hours Total Stationary Angular Vertical Horizontal Total Stationary Angular Vertical Horizontal

(a) G1
LaFAN1 2.4 46.1 66.1 36.2 24.0 42.5 28.4 46.9 28.4 19.6 10.5
AMASS 20.9 76.2 88.5 72.1 56.8 66.8 70.2 90.7 75.0 62.7 44.1
Humanoid-X 231.4 50.6 78.4 43.0 26.0 31.8 39.1 78.0 39.6 23.0 6.5
PHUMA 73.0 92.7 95.6 91.7 86.0 85.6 82.9 96.7 88.0 71.8 67.1
(b) H1-2
LaFAN1 2.4 62.0 79.3 54.7 26.6 58.9 70.8 92.4 66.7 56.4 68.2
AMASS 20.9 54.4 74.9 45.9 17.2 49.6 64.3 87.3 59.7 46.0 63.9
Humanoid-X 231.4 49.7 74.6 40.4 17.0 37.3 60.5 88.3 60.0 48.7 39.7
PHUMA 73.0 82.7 91.5 79.5 68.1 68.4 78.6 97.5 76.8 74.5 63.8

AMASS

PHUMA (Ours)

Figure 5: Path following on running motion. We visualize the robot’s trajectory in a running mo-
tion. The target pelvis path is visualized with a green line. Top row presents results from a policy
trained on AMASS, while bottom row presents results from a policy trained on PHUMA.

despite AMASS containing numerous walking motions, a substantial performance gap remains in
horizontal motions due to the absence of more dynamic movements such as running, as illustrated in
Figure 2(d). This limitation is clearly demonstrated in Figure 5, where AMASS-trained policies fre-
quently fail during running motions while PHUMA-trained policies maintain robust performance.
These results confirm that PHUMA enables more diverse and dynamic humanoid control compared
to AMASS, validating the practical value of PHUMA for complex control.
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Table 5: Pelvis path following peformance across motion dataset. We evaluate the success rate
of pelvis path-following control for policies trained on the AMASS and PHUMA datasets across
various pelvis trajectories from the PHUMA Test and Unseen Video.

PHUMA Test Unseen Video

Dataset Total Stationary Angular Vertical Horizontal Total Stationary Angular Vertical Horizontal

(a) G1
AMASS 60.5 85.6 60.1 51.4 66.5 54.8 83.6 66.5 33.0 27.5
PHUMA 84.5 94.6 86.1 83.7 90.2 74.6 98.3 83.3 54.3 57.1
(a) H1-2
AMASS 60.4 84.0 62.8 43.6 78.7 72.3 96.6 77.3 52.1 72.5
PHUMA 73.9 91.2 76.5 66.9 84.8 78.1 96.6 77.8 60.6 78.0

Table 6: Sim-to-Sim transfer performance across motion dataset. We evaluate the zero-shot mo-
tion tracking success rate of policies trained on PHUMA and AMASS when transferred from the
source simulator (Isaac Gym) to the target simulator (MuJoCo). The results are demonstrated on the
G1 humanoid to assess robustness against domain shifts in physics engines.

PHUMA Test Unseen Video

Dataset Total Stationary Angular Vertical Horizontal Total Stationary Angular Vertical Horizontal

AMASS 62.1 81.4 54.2 38.8 64.3 64.3 86.2 68.5 54.3 37.4
PHUMA 75.0 87.6 69.3 61.6 76.3 70.0 87.9 78.8 59.6 38.5

4.5 SIM-TO-SIM TRANSFER PERFORMANCE

To validate the environmental robustness of the learned policies, we conduct a Sim-to-Sim transfer
experiment. We adopt the training protocol from Kungfubot2 (Han et al., 2025), which has demon-
strated strong sim-to-real transfer, while replacing the policy architecture with an MLP. Using this
setup, we train motion tracking policies in Isaac Gym on both PHUMA and AMASS, and directly
deploy them into the MuJoCo simulator without any fine-tuning. Following the evaluation metrics
defined in Kungfubot2 (Han et al., 2025), Table 6 shows that the PHUMA-trained policy consistently
outperforms the AMASS baseline across all motion categories in the target simulator. This demon-
strates that PHUMA’s superior data quality and scale contribute to improved robustness against
cross-simulator domain shifts. Detailed performance analysis of both teacher and student policies in
the training simulator (Isaac Gym) is provided in Appendix C.3.

5 CONCLUSION

We introduced PHUMA, a large-scale, physically plausible humanoid locomotion dataset that over-
comes the limitations of existing motion imitation pipelines. Unlike prior video-driven datasets
prone to artifacts such as floating, ground penetration, and joint violations, PHUMA combines large-
scale human video with careful filtering and our physics-constrained retargeting method, PhySINK,
to produce motions that are both diverse and physically reliable. Policies trained on PHUMA consis-
tently outperform those trained on AMASS and Humanoid-X in motion imitation and pelvis-guided
path following on Unitree G1 and H1-2 humanoids, demonstrating that progress in humanoid loco-
motion requires not only scale but also physically reliable data.

Looking forward, future work includes sim-to-real transfer, enabling policies trained with
PHUMA to produce physically reliable motions on real humanoid robots, and vision-based control,
where video observations replace privileged state inputs to better align with real-world perception.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we provide comprehensive implementation details and
experimental specifications. The complete hyperparameter settings for PPO training are detailed in
Appendix 12. Our physics-aware curation process and PhySINK retargeting method are described
in detail in Sections 3.1 and 3.2, respectively, with algorithmic specifications provided in the ap-
pendix. The PHUMA dataset composition and statistics are thoroughly documented in Section 3.1
and Appendix A.2. All evaluation metrics, including our modified success rate threshold and motion
category definitions, are explicitly defined in Section 4.1. Implementation details for baseline meth-
ods (IK, SINK) follow established protocols as referenced in the main text. The self-collected video
processing pipeline is described in Appendix C.1. We plan to release our code, dataset, and trained
models upon publication to facilitate further research in this area.
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Yanjie Ze, Zixuan Chen, JoÃĢo Pedro AraÃšjo, Zi-ang Cao, Xue Bin Peng, Jiajun Wu, and C Karen
Liu. Twist: Teleoperated whole-body imitation system. arXiv preprint arXiv:2505.02833, 2025.

Jiaxu Zhang, Junwu Weng, Di Kang, Fang Zhao, Shaoli Huang, Xuefei Zhe, Linchao Bao, Ying
Shan, Jue Wang, and Zhigang Tu. Skinned motion retargeting with residual perception of motion
semantics & geometry. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 13864–13872, 2023.

Siwei Zhang, Qianli Ma, Yan Zhang, Zhiyin Qian, Taein Kwon, Marc Pollefeys, Federica Bogo, and
Siyu Tang. Egobody: Human body shape and motion of interacting people from head-mounted
devices. In European conference on computer vision, pp. 180–200. Springer, 2022.

Yuhong Zhang, Jing Lin, Ailing Zeng, Guanlin Wu, Shunlin Lu, Yurong Fu, Yuanhao Cai, Ruimao
Zhang, Haoqian Wang, and Lei Zhang. Motion-x++: A large-scale multimodal 3d whole-body
human motion dataset. arXiv preprint arXiv:2501.05098, 2025.

14

https://openreview.net/forum?id=9sOR0nYLtz
https://www.unitree.com/g1
https://www.unitree.com/h1
https://openreview.net/forum?id=LCPoXt0pzm
https://github.com/kevinzakka/mink
https://github.com/kevinzakka/mink


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX

A Details of PHUMA Dataset 16

A.1 Data Preprocessing 16

A.1.1 Low-Pass Noise Filtering for Motion Data 16

A.1.2 Extracting Ground Contact Information 16

A.1.3 Filtering Motion Data by Physical Information 17

A.2 Dataset Composition and Statistics 18

A.3 Qualitative Comparison of Retargeting Methods 18

B Details of Motion Imitation Learning 22

B.1 Observation Space Compositions 22

B.2 Reward Function 22

B.3 PPO Hyperparameter 22

C Experiment Details 24

C.1 Self-Collected Video Dataset 24

C.2 Success Rate Threshold Analysis 24

C.3 Cross-Simulator Generalization Analysis 24

D.1 Ablation Studies of Dataset 25

D.1 Mocap only and Video only data performance 25

D.2 Physics-based Filtering 25

D.2.1 Data Distribution Based on Physics-based Filtering 26

D.2.2 PhySINK’s Robustness to Noisy Motion Sources 26

D.2.3 Effect of Physics-based Filtering on Imitation Performance 26

D.3 Impact of Motion Retargeting Quality on Policy Performance 26

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A DETAILS OF PHUMA DATASET

A.1 DATA PREPROCESSING

Before applying inverse kinematics, it is essential to ensure that the human motion data is clean and
robust, as this data serves as the target for the humanoid robot to follow. Raw motion data often
contains noise from sensor errors, tracking inaccuracies, or estimation artifacts that can negatively
impact the retargeting process. To address these issues, we implement the following preprocessing
to filter and clean the motion data.

A.1.1 LOW-PASS NOISE FILTERING FOR MOTION DATA

All motion sequences were resampled to 30 Hz. We smooth all motion channels with a zero-phase,
4th-order Butterworth low-pass filter. For root translation the cutoff is 3 Hz; for global orientation
and body pose it is 6 Hz.

A.1.2 EXTRACTING GROUND CONTACT INFORMATION

We identify a subset of SMPL-X foot vertices that are most indicative of ground interaction. Specif-
ically, we select the 22 vertically lowest vertices from each foot region (left heel, left toe, right heel,
right toe) in the SMPL-X default pose, totaling 88 vertices. These vertices are illustrated in Figure 6.
The vertex indices corresponding to these ground-contact points are provided in Table 7.

Figure 6: SMPL-X Foot Vertices for Ground-Contact Detection. This figure illustrates the se-
lected foot vertices on the SMPL-X model used to detect ground contact. Green and orange points
denote the left heel and left toe, while blue and pink represent the right heel and right toe, respec-
tively. The remaining foot vertices are shown in light-gray. The clusters of colored points correspond
to the specific parts of the foot that are used to check for contact with the ground, making the process
more accurate and robust than using a single point.

Table 7: SMPL-X foot vertex indices used for ground–contact detection.

Region Vertex indices

Left heel 8888, 8889, 8891, 8909, 8910, 8911, 8913, 8914, 8915, 8916, 8917,
8918, 8919, 8920, 8921, 8922, 8923, 8924, 8925, 8929, 8930, 8934

Left toe 5773, 5781, 5782, 5791, 5793, 5805, 5808, 5816, 5817, 5830, 5831,
5859, 5860, 5906, 5907, 5908, 5909, 5912, 5914, 5915, 5916, 5917

Right heel 8676, 8677, 8679, 8697, 8698, 8699, 8701, 8702, 8703, 8704, 8705,
8706, 8707, 8708, 8709, 8710, 8711, 8712, 8713, 8714, 8715, 8716

Right toe 8467, 8475, 8476, 8485, 8487, 8499, 8502, 8510, 8511, 8524, 8525,
8553, 8554, 8600, 8601, 8602, 8603, 8606, 8608, 8609, 8610, 8611
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Table 8: Physics-aware data filtering metrics and thresholds.

Metric Threshold

Root jerk < 50 m/s3
Foot contact score > 0.6
Minimum pelvis height > 0.6 m
Maximum pelvis height < 1.5 m
Pelvis distance to base of support < 6 cm
Spine1 distance to base of support < 11 cm

To correctly place a motion, it is necessary to establish a single, consistent ground plane. Simple
heuristics often fail; defining the ground by the lowest foot position in the sequence can cause float-
ing, while per-frame adjustments introduce jitter. Our method solves this using a majority vote to
find the ground height that maximizes the duration of foot contact. In this scheme, each vertex on
the feet votes for a potential ground level. The height that gathers the most votes across the entire
sequence is selected, as this plane consistently has the most foot vertices near it. The entire motion
is then shifted to place this new ground at height zero.

Specifically, we first generate candidate ground coordinates. For each frame t, we find the minimum
vertical position among these 88 points and record it as a candidate coordinate for the ground plane,
gt. Second, we evaluate each candidate gt by counting the total number of foot vertices, across all
frames, that fall within its δ = 2.5 cm tolerance band. We select the candidate g⋆ with the highest
count as the optimal ground plane and translate the entire sequence vertically to place g⋆ at the
origin.

A.1.3 FILTERING MOTION DATA BY PHYSICAL INFORMATION

We evaluate each segmented motion sub-clips based on the metrics summarized in Table 8. Motion
sub-clips failing to satisfy these thresholds are discarded.

Root jerk represents rapid changes in root acceleration, indicative of abrupt or unnatural motions.
High root jerk segments are excluded to ensure smooth and physically plausible trajectories.

Foot contact score measures the consistency and sufficiency of foot-ground interactions based on
graded ground-contact signals defined by vertex proximity to the ground. Specifically, given a sub-
clip with T frames, the foot contact score is computed as:

Foot contact score =
1

T

T∑
t=1

max
(
clht , cltt , c

rh
t , crtt

)
, (11)

where clht , cltt , crht , and crtt represent the graded ground-contact ratio at frame t for the left heel, left
toe, right heel, and right toe, respectively. A low foot contact score indicates significant penetration
or floating, both of which are undesirable artifacts. Note that motions involving airborne phases,
such as jumps, can easily satisfy this criterion as long as contact before and after the airborne phase
is consistent.

Pelvis height criteria exclude segments where the humanoid is unnaturally positioned. Specifi-
cally, the minimum height criterion filters out motions that involve the humanoid being excessively
crouched or lying on the ground, while the maximum height criterion eliminates segments exhibiting
unnatural floating.

Distance to the base of support criteria ensure stable and physically plausible balance. Since the
SMPL-X model’s center of mass typically lies between the pelvis and spine1 joints, deviations of
these joints’ horizontal-plane projections from the base of support indicate imbalance or instability
infeasible for humanoids. The base of support is defined as the convex hull formed by the horizontal-
plane projections of the left foot, right foot, left ankle, and right ankle joints.
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(a) (b)

Figure 7: Comparison of Motion Distributions. (a) Comparison between MoCap and Video
sources in PHUMA. (b) Comparison with other existing datasets.

A.2 DATASET COMPOSITION AND STATISTICS

This section presents the detailed motion statistics of PHUMA. As we collect the motion data from
diverse sources, from MoCap data to video, PHUMAresults in a well-balanced motion distribu-
tion that avoids domination by specific motion types. Figure 7b demonstrates that PHUMA exhibits
significantly more balanced motion coverage compared to existing datasets. While LaFAN1 and
AMASS show uneven distributions with some motion types having very limited motions, lacking
certain motion categories entirely (such as reach, bend, and squat motions), or being heavily domi-
nated by specific motions (reach, turn, and walk), PHUMA provides more balanced coverage across
all motion categories with substantially more examples per motion type.

This improved diversity and scale directly translate to better imitation performance. Table 4 demon-
strates that a policy trained on PHUMA achieves superior overall performance on unseen motions
compared to policies trained on other datasets. The results also show consistent performance im-
provements across all individual motion categories. The results confirm that the enhanced dataset
composition benefits generalization across all diverse movement types, indicating that the balanced
motion distribution of PHUMA leads to more robust imitation policies.

A.3 QUALITATIVE COMPARISON OF RETARGETING METHODS

To provide an intuitive comparison of different retargeting approaches, we present qualitative results
in Figure 8. Using a walking motion as an example, we demonstrate the distinct characteristics and
limitations of each method.

Traditional inverse kinematics (IK) prioritizes matching end-effector positions, such as hands and
feet, from rigidly scaled human motions. However, this approach produces unnatural locomotion
patterns where the humanoid appears to walk on a tightrope rather than exhibiting a natural human-
like gait. This occurs because the fixed scaling cannot account for the proportional differences be-
tween human and robot morphologies.

Learning-based inverse kinematics (SINK) generates more natural-looking walking motions com-
pared to traditional IK by optimizing body proportions. However, SINK suffers from physical viola-
tions that compromise motion realism. Common issues include foot penetration through the ground
surface and fixed ankle angles that result from the lack of explicit contact constraints during the
retargeting process.
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Table 9: Imitation Performance: GMR vs. PhySINK Retargeting on Unitree G1. We evaluate
the imitation performance of the MaskedMimic policy trained using datasets retargeted with GMR
and PhySINK on the Unitree G1.

PHUMA Test Unseen Video

Dataset Total Stationary Angular Vertical Horizontal Total Stationary Angular Vertical Horizontal

GMR 84.0 92.1 77.8 77.1 89.1 75.2 99.1 77.8 61.7 52.7
PhySINK 89.9 94.2 87.6 84.2 91.8 81.7 97.4 86.7 61.7 71.4

In contrast, our proposed PhySINK method achieves both natural movement patterns and physical
plausibility. The resulting motions maintain appropriate ankle angles while ensuring proper ground
contact, demonstrating that PhySINK successfully balances motion naturalness with physical con-
straints. This improvement stems from the incorporation of explicit physical constraint terms in the
optimization objective.

We also compare the motion retargeting results of GMR (Araujo et al., 2025), an optimization-
based Inverse Kinematics approach, and PhySINK. The fundamental difference lies in how each
method generates the intermediate target motion—transforming the source human motion to fit the
humanoid’s kinematic structure. GMR adapts the target motion using a heuristic scaling approach.
It first estimates the source subject’s height from the first component of the SMPL shape parameters
(β). It then computes a scaling ratio between this estimated height and a pre-defined reference height
(e.g., 1.8m). This ratio is applied as a multiplier to a set of manually tuned scaling factors for each
limb. Mathematically, if the reference height is Href and the subject’s estimated height is Hsrc,
the scaling ratio is r = Hsrc/Href . For a given limb (e.g., wrist) with a relative position vector
vrel from the pelvis and a manual scale factor slimb, the scaled relative target becomes v′

target =
slimb × r× vrel. The global target position is then reconstructed by adding this vector to the scaled
global root position. In contrast, PhySINK adapts the target motion by optimizing the human shape
itself to fit the humanoid. Instead of relying on scalar heuristics, PhySINK optimizes the SMPL
shape parameters (β) to minimize the discrepancy between the human’s keypoint positions and the
humanoid’s keypoints in a shared T-pose. These optimized shape parameters are then applied to the
original motion sequence, preserving the original joint angles while naturally adjusting limb lengths
to match the robot. Following target generation, the methods differ in execution: GMR utilizes a
standard IK solver to track the scaled keypoints, whereas PhySINK finds optimal joint angles by
minimizing the physics-informed losses described in the method section.

While GMR performs well for average-sized humans, its linear scaling heuristic fails to generalize
across diverse human shapes. As shown in Figure 9, GMR struggles with significant height devia-
tions. For example, for short humans, GMR generates undersized targets that force the robot into a
crouched state (over-bent knees) even during standing motions. And for tall humans, GMR gener-
ates oversized targets beyond the robot’s reach, causing the robot to walk with unnaturally locked
knees and often leading to floating artifacts where feet lose contact with the ground. In contrast,
PhySINK’s approach—applying the original human motion’s joint angles with an optimized, robot-
matched shape—fully reflects the original motion’s kinematics. This allows PhySINK to faithfully
reproduce the intended motion and natural joint movements (e.g., natural knee flexion) regardless of
the source subject’s height or limb proportions, ensuring robust generalization.

To validate that GMR affects the training of motion tracking policy, we apply GMR to retarget
the same motion sources used in PHUMA, excluding LaFAN1 (Harvey et al., 2020) and LocoMu-
JoCo (Al-Hafez et al., 2023), which are already pre-retargeted. We then train a MaskedMimic policy
using the GMR-retargeted dataset, following the same training procedure described in the experi-
ment section. As shown in Table 9, the policy trained with PhySINK-retargeted data achieves better
imitation performance on both and Unseen Video benchmarks compared to the GMR-retargeted
counterpart. This performance gap can be attributed to PhySINK’s superior retargeting quality, as
demonstrated in Table2.
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Figure 8: Qualitative Comparison of Retargeting Methods. This figure provides a visual compar-
ison of human motion retargeted to a humanoid robot using the IK, SINK, and PhySINK methods.
The top row shows the original human motion from the SMPL model, while the rows below show
the resulting motions for each retargeting method.
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Figure 9: Qualitative Comparison of Motion Retargeting: GMR vs. PhySINK. Comparison
showing the limitations of GMR when handling extreme human heights. The top row illustrates
retargeting from a short subject, where GMR causes excessive motion compression and crouching.
The bottom row illustrates retargeting from a tall subject, where GMR generates infeasible targets,
resulting in artifacts like joint locking (e.g., rigid knees) and loss of ground contact. PhySINK main-
tains kinematic feasibility in both cases.
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B DETAILS OF MOTION IMITATION LEARNING

B.1 OBSERVATION SPACE COMPOSITIONS

This section provides detailed information about the observation space composition used in our
experimental setup, as summarized in Table 10. The observation space consists of two main compo-
nents: proprioceptive states and goal states.

Proprioceptive States. The proprioceptive information includes root height, body positions, body
rotations, body velocities, and body angular velocities. The Unitree G1 and H1-2 robots have 33 and
25 bodies, respectively. For body positions, the root body is excluded from the position measure-
ments.

Goal States. The goal states comprise both relative and absolute body positions and rotations. The
relative component represents the difference between the future 15 timesteps of reference motion
states and the current proprioceptive state. The absolute component represents states relative to the
reference motion’s root position, providing a root-relative coordinate frame for the target motion.

Table 10: Observation Space Dimensions

Dimension

State G1 H1-2

(a) Proprioceptive State

Root height 1 1
Body position 32× 3 24× 3
Body rotation 33× 6 25× 6
Body velocity 33× 3 25× 3
Body angular velocity 33× 3 25× 3

(b) Goal State

Relative body position 33× 15× 3 25× 15× 3
Absolute body position 33× 15× 3 25× 15× 3
Relative body rotation 33× 15× 6 25× 15× 6
Absolute body rotation 33× 15× 6 25× 15× 6
Time 33× 15× 1 25× 15× 1

Total dim 9898 7498

B.2 REWARD FUNCTION

The reward function used for training the tracking policy consists of multiple components, as de-
tailed in Table 11. The overall reward structure comprises two main categories: motion tracking task
rewards and regularization rewards.

Motion Tracking Rewards. These components encourage the policy to match the reference mo-
tion by providing higher rewards when the robot’s proprioceptive states closely resemble the target
motion states.

Regularization Rewards. To promote smooth and stable motion execution, we include regulariza-
tion terms that penalize undesirable behaviors. Specifically, we augment the standard MaskedMimic
reward formulation with action rate penalties that discourage large changes between consecutive
actions, helping to ensure smooth joint movements and prevent abrupt motion transitions.

B.3 PPO HYPERPARAMETER

The detailed hyperparameter configuration used for PPO training is provided in Table 12.
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Table 11: Reward function terms for training

Term Expression Weight

(a) Task

Global body position exp(−100 · ∥pt − p̂t∥22) 0.5
Root height exp(−100 · (hroot

t − ĥroot
t )2) 0.2

Global body rotation exp(−10 · ∥θt ⊖ θ̂t∥22) 0.3
Global body velocity exp(−0.5 · ∥vt − v̂t∥22) 0.1
Global body angular velocity exp(−0.1 · ∥ωt − ω̂t∥22) 0.1

(b) Regularization

Power consumption ∥F ⊙ q̇∥1 -1e-05
Action rate ∥at − at−1∥22 -0.2

Table 12: PPO Hyperparameter Values for Model Training

Hyperparameter Value
Optimizer Adam
Num envs 8192
Mini Batches 32
Learning epochs 1
Entropy coefficient 0.0
Value loss coefficient 0.5
Clip param 0.2
Max grad norm 50.0
Init noise std -2.9
Actor learning rate 2e-5
Critic learning rate 1e-4
GAE decay factor(λ) 0.95
GAE discount factor(γ) 0.99

Actor Transformer dimension 512
Actor layers 4
Actor heads 4
Critic MLP size [1024, 1024, 1024, 1024]
Activation ReLU
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C EXPERIMENT DETAILS

C.1 SELF-COLLECTED VIDEO DATASET

To ensure fair evaluation of imitation performance on unseen motions, we create a custom evaluation
dataset using self-collected video recordings. This dataset contains motions uniformly distributed
across the 11 motion types shown in Figure 7b, providing balanced coverage for comprehensive
performance assessment.

The dataset creation process follows three main steps: (1) recording videos of human performers
executing each motion type, (2) converting videos into SMPL human motion parameters using a
video-to-motion model, and (3) retargeting the human motions to humanoid robot motions using
our PhySINK method.

First, we record videos covering all 11 motion categories, collecting a uniform distribution for each
type. We then apply the TRAM video-to-motion model (Wang et al., 2024) to extract SMPL motion
parameters from the recorded videos. Finally, we process these SMPL motions with PhySINK re-
targeting to generate physically plausible humanoid motions. Example results from this dataset are
illustrated in Figure 10.

This self-collected evaluation set ensures that our performance assessments are conducted on com-
pletely unseen motions that were not influenced by any training data sources, providing an unbiased
evaluation of generalization capabilities.

Figure 10: Overview of the Self-collected Data Pipeline. This figure illustrates the three main steps
of our data collection pipeline: (left) a self-recorded video of a human motion, (center) the motion
extracted using a video-to-motion model, and (right) the final motion retargeted to a humanoid robot.

C.2 SUCCESS RATE THRESHOLD ANALYSIS

To demonstrate the limitations of the conventional success rate threshold, we evaluate imitation
performance using both the standard 0.5m threshold and our proposed stricter 0.15m threshold. This
comparison reveals the true quality differences between policies trained on different datasets.

Tables 13 and 14 present the results for both threshold settings. Under the loose 0.5m threshold,
policies trained on different datasets show relatively similar success rates, with differences appear-
ing modest. However, when evaluated with the stricter 0.15m threshold, performance differences
become substantially more pronounced.

These results confirm that PHUMA-trained policies achieve more precise motion tracking, produc-
ing imitations that remain accurate even under stringent evaluation criteria. The threshold analysis
validates our choice to adopt the 0.15m threshold as a more meaningful measure of imitation quality.

C.3 CROSS-SIMULATOR GENERALIZATION ANALYSIS

To evaluate whether cross-simulator transfer, we trained the KungfuBot(Han et al., 2025) policy in
Isaac Gym using an MLP architecture, which has demonstrated strong sim-to-real transfer capa-
bilities. We compared two training configurations: one using AMASS with SINK retargeting and
another using PHUMA. For both configurations, we followed the standard KungfuBot (Han et al.,
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Table 13: Performance Comparison based on Success Threshold in PHUMA Test

Success Threshold=0.15m Success Threshold=0.5m

Dataset Hours Total Stationary Angular Vertical Horizontal Total Stationary Angular Vertical Horizontal

(a) G1
LaFAN1 2.4 46.1 66.1 36.2 24.0 42.5 74.8 87.8 69.2 47.1 72.6
AMASS 20.9 76.2 88.5 72.1 56.8 66.8 90.2 95.0 87.9 81.1 83.7
Humanoid-X 231.4 50.6 78.4 43.0 26.0 31.8 78.4 91.3 72.9 59.5 65.9
PHUMA 73.0 92.7 95.6 91.7 86.0 85.6 97.1 98.7 96.5 94.4 92.5
(b) H1-2
LaFAN1 2.4 62.0 79.3 54.7 26.6 58.9 70.8 92.4 66.7 56.4 68.2
AMASS 20.9 54.4 74.9 45.9 17.2 49.6 70.4 86.3 62.6 41.4 65.9
Humanoid-X 231.4 49.7 74.6 40.4 17.0 37.3 54.8 78.5 45.2 22.1 43.2
PHUMA 73.0 82.7 91.5 79.5 68.1 68.4 92.0 96.6 89.7 85.6 79.4

Table 14: Performance Comparison based on Success Threshold in Unseen Video

Success Threshold=0.15m Success Threshold=0.5m

Dataset Hours Total Stationary Angular Vertical Horizontal Total Stationary Angular Vertical Horizontal

(a) G1
LaFAN1 2.4 28.4 46.9 28.4 19.6 10.5 78.2 85.5 70.8 76.3 80.8
AMASS 20.9 70.2 90.7 75.0 62.7 44.1 92.3 99.2 92.1 82.1 88.0
Humanoid-X 231.4 39.1 78.0 39.6 23.0 6.5 84.1 98.3 79.9 76.0 76.2
PHUMA 73.0 82.9 96.7 88.0 71.8 67.1 93.7 100.0 96.8 85.9 84.7
(b) H1-2
LaFAN1 2.4 70.8 92.4 66.7 56.4 68.2 85.5 97.5 79.0 77.5 90.0
AMASS 20.9 64.3 87.3 59.7 46.0 63.9 80.4 93.3 69.9 72.8 89.0
Humanoid-X 231.4 60.5 88.3 60.0 48.7 39.7 68.7 93.3 65.1 60.2 50.5
PHUMA 73.0 78.6 97.5 76.8 74.5 63.8 89.9 99.2 89.4 84.6 83.9

2025) teacher-student training pipeline and evaluation metrics. Tables 15 and 16 present the teacher
and student policy performance in the training simulator (Isaac Gym). The results show that poli-
cies trained with PHUMAachieve superior imitation performance, demonstrating that PHUMA’s
benefits extend to other motion imitation algorithms. Importantly, this performance advantage also
transfers to the evaluation simulator. Table 6 shows the zero-shot performance in MuJoCo, where the
PHUMA-trained policy maintains its superiority across motion categories, indicating robust cross-
simulator generalization.

D ABLATION STUDIES OF DATASET

D.1 MOCAP ONLY AND VIDEO ONLY DATA PERFORMANCE

To analyze the influence of the human motion source on the downstream motion tracking policy, we
divide the PHUMA dataset into two distinct subsets: motions derived from motion capture (Mocap)
and motions derived from video-to-motion estimation (Video-Sourced).

We leverage these subsets to train the MaskedMimic policy using identical hyperparameters in Sec-
tion B. As demonstrated in Table 18, the policy trained with video-sourced PHUMA consistently
yielded superior imitation performance across all motion categories compared to the policy trained
with the mocap-sourced subset.

We attribute this result primarily to the significantly larger and broader motion distribution of the
video-sourced data. As illustrated in Figure 7a, the video-sourced dataset covers a much broader
range of motion types and contains nearly two times more data than the mocap-sourced dataset.
Furthermore, as shown in Table 17, the PhySINK retargeting method ensures competitive motion
quality for both subsets. Because the retargeting quality is similar, the dominant factor leading to the
higher imitation performance is the larger size and greater diversity of the video-sourced dataset.

D.2 PHYSICS-BASED FILTERING

This section provides ablation studies on the physics-based filtering criteria used in data curation
(Table 8) and the physics-constrained losses used in PhySINK.
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Table 15: Imitation Performance of the Kungfubot Teacher Policy in Isaac Gym. We evaluate
the imitation performance of Kungfubot teacher policy with unseen motions on the Unitree G1.

PHUMA Test Unseen Video

Dataset Total Stationary Angular Vertical Horizontal Total Stationary Angular Vertical Horizontal

AMASS 77.8 90.8 71.2 58.3 84.7 83.5 100.0 83.3 74.5 72.5
PHUMA 91.0 96.4 88.3 87.6 90.5 87.1 99.1 89.2 77.7 76.9

Table 16: Imitation Performance of the Kungfubot Student Policy in Isaac Gym. We evaluate
the imitation performance of Kungfubot teacher policy with unseen motions on the Unitree G1.

PHUMA Test Unseen Video

Dataset Total Stationary Angular Vertical Horizontal Total Stationary Angular Vertical Horizontal

AMASS 66.6 86.7 58.8 41.8 68.4 67.7 97.4 68.0 59.6 37.4
PHUMA 82.9 93.5 78.5 74.2 81.7 73.8 97.4 76.9 63.8 47.3

Table 17: Performance Evaluation of PHUMA based on Data Source (MoCap vs. Video). We
present a quantitative comparison evaluating the performance achieved using PHUMA data derived
from motion capture (MoCap) versus video, concluding that both sources offer competitive results.

Motion Fidelity (%) Joint Feasibility (%) Non-Floating (%) Non-Penetration (%) Non-Skating (%)

MoCap 96.7 100.0 99.9 94.3 92.1
Video 93.8 100.0 99.9 98.0 88.3

D.2.1 DATA DISTRIBUTION BASED ON PHYSICS-BASED FILTERING

Figure 11 shows the filtering statistics when sequentially applying the physics-based criteria from
Table 8 to Humanoid-X (Mao et al., 2025). The filters are applied in the following order: (1) root
jerk filter (jerk < 50m/s3), (2) contact filter (foot contact score > 0.6), (3) height filter (minimum
pelvis height > 0.6m and maximum pelvis height < 1.5m), and (4) base of support (BoS) filter
(pelvis distance to BoS < 6cm and spine1 distance to BoS < 11cm). After applying all filters
sequentially, 27.1% of the original Humanoid-X dataset remains, representing motions that satisfy
physical plausibility constraints.

D.2.2 PHYSINK’S ROBUSTNESS TO NOISY MOTION SOURCES

To evaluate how robustly PhySINK handles noisy human motion inputs, we retarget Humanoid-X
motion sources with varying levels of filtering: (1) raw Humanoid-X (no filtering), (2) Humanoid-
X + jerk filtering, (3) Humanoid-X + foot contact filtering, (4) Humanoid-X + height filtering, (5)
Humanoid-X + BoS filtering, and (6) Humanoid-X + all filters. We then apply PhySINK to each
variant. Note that we exclude pre-retargeted datasets (LaFAN1 and LocoMuJoCo) from this analy-
sis to isolate the effect of filtering on Humanoid-X. As shown in Table 19, PhySINK demonstrates
robust retargeting performance across motion sources with varying noise levels, successfully han-
dling physical implausibilities present in the raw data.

D.2.3 EFFECT OF PHYSICS-BASED FILTERING ON IMITATION PERFORMANCE

To evaluate how physics-based filtering affects motion tracking performance, we train MaskedMimic
policies using the datasets described in Section D.2.2, following the same training protocol de-
scribed in the experiment section. As shown in Table 20, policies trained on datasets with at least
one physics-based filter achieve better imitation performance compared to those trained on unfiltered
data. Furthermore, applying all filters to Humanoid-X yields the best performance, demonstrating
the importance of physics-based motion curation for learning high-quality imitation policies.

D.3 IMPACT OF MOTION RETARGETING QUALITY ON POLICY PERFORMANCE

To investigate how physical artifacts in retargeted motion data affect policy learning, we train
MaskedMimic policies on datasets generated using six retargeting methods with varying artifact
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Table 18: Imitation Performance of PHUMA based on Data Source (MoCap vs. Video). We
evaluate the imitation performance of MaskedMimic policy trained with PHUMA data derived from
motion capture (MoCap) versus video on the Unitree G1.

PHUMA Test Unseen Video

Dataset Total Stationary Angular Vertical Horizontal Total Stationary Angular Vertical Horizontal

MoCap 75.2 88.2 68.4 49.0 86.9 73.0 96.6 73.9 56.4 58.2
Video 85.7 92.9 81.8 75.5 89.5 76.2 100.0 76.4 59.6 62.6

Figure 11: Dataset Statistics After Physics-based Filtering. Distribution of motion sequences after
applying physics-based filtering to the combined Humanoid-X, LaFAN1, and LocoMuJoCo datasets.

Table 19: PhySINK Retargeting Robustness to Noisy Motion Sources. This figure presents an
experiment to evaluate how robustly the PhySINK method retargets various noisy Humanoid-X mo-
tion sources. The six distinct motion source groups used for retargeting are compared: (1) Original
Humanoid-X, and Humanoid-X motion sources sequentially refined by applying (2) Jerk filtering,
(3) Foot Contact filtering, (4) Height filtering, (5) BoS filtering, and (6) All filtering (PHUMA).

Motion Source Hours Motion Fidelity (%) Joint Feasibility (%) Non-Floating (%) Non-Penetration (%) Non-Skating (%)

Humanoid-X 237.2 70.6 100.0 98.7 92.2 90.1
Jerk Filter 141.1 76.9 100.0 99.7 96.5 92.0
Foot Contact Filter 123.1 77.1 100.0 99.8 96.8 90.6
Height Filter 135.7 87.0 100.0 99.4 94.7 89.8
BoS Filter 110.3 90.7 100.0 99.4 94.9 90.0
All Filter 62.2 94.8 100.0 99.9 96.7 89.7

levels (Table 2). The methods are: (1) IK, which produces significant artifacts in motion fidelity,
joint limits, grounding, and skating; (2) GMR, which reduces motion fidelity loss, grounding issues,
and skating compared to IK; (3) SINK, which improves motion fidelity and joint limit violations;
(4) SINK + Joint Feasibility Loss, which further reduces joint limit violations; (5) SINK + Joint
Feasibility + Grounding Loss, which addresses all artifact types except skating; and (6) PhySINK,
which minimizes all physical artifacts. To isolate the effect of retargeting quality, we exclude the
LaFAN1 and LocoMuJoCo datasets from this analysis, as they were pre-retargeted and would not
allow for fair comparison across methods.

In Table 21, our results show that SINK-based methods, which first optimize the humanoid body
shape before applying it to the original motion, consistently outperform IK-based methods that rely
on heuristic scaling to bridge human-humanoid discrepancies. Notably, GMR achieves better perfor-
mance than IK despite having similar joint limit issues, while the SINK variants further outperform
GMR in tracking performance. However, across the SINK variants themselves (SINK, SINK + Joint
Feasibility Loss, SINK + Joint Feasibility + Grounding Loss), we observe comparable performance
despite their similar levels of motion fidelity, joint feasibility, and grounding quality—the main dif-
ferences among these variants being penetration and skating artifacts.

These results indicate that motion fidelity is the most critical factor affecting motion tracking per-
formance. The substantial performance improvement of GMR over IK—achieved primarily through
motion fidelity gains rather than joint feasibility improvements—demonstrates that preserving mo-
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Table 20: Imitation Performance on Diverse Motion Sources. We evaluate the imitation perfor-
mance of MaskedMimic policies trained on datasets with varying noise levels (described in Sec-
tion D.2.2) using the Unitree G1 robot.

PHUMA Test Unseen Video

Motion Source Total Stationary Angular Vertical Horizontal Total Stationary Angular Vertical Horizontal

Humanoid-X 85.7 92.6 82.2 75.5 89.5 75.4 96.6 81.3 58.5 52.7
Jerk Filter 87.1 93.1 83.2 80.4 90.9 78.8 100.0 76.8 64.9 70.3
Foot Contact Filter 88.2 93.9 84.9 81.8 90.5 78.6 95.7 82.3 61.7 65.9
Height Filter 86.9 93.0 83.2 81.6 88.9 77.2 94.8 79.8 59.6 67.0
BoS Filter 86.8 92.7 83.6 79.1 89.8 77.0 96.6 79.8 61.7 61.5
ALL Filter 89.9 94.2 87.6 84.2 91.8 81.7 97.4 86.7 61.7 71.4

Table 21: Ablation Studies of Imitation Performance on Retargeting Loss. We evaluate the im-
itation performance of MaskedMimic policies trained with and without the physical constraint loss
(Table 2) using the Unitree G1 robot.

PHUMA Test Unseen Video

Dataset Total Stationary Angular Vertical Horizontal Total Stationary Angular Vertical Horizontal

IK 70.5 85.9 63.3 47.6 77.3 68.5 96.6 72.4 43.6 49.5
GMR 84.0 92.1 77.8 77.1 89.1 75.2 99.1 77.8 61.7 52.7
SINK 89.1 94.0 86.0 84.9 90.7 79.0 100.0 81.8 62.8 62.6
+ Joint Feasibility Loss 87.0 92.1 83.6 79.8 90.9 78.6 94.8 84.7 56.4 67.0
+ Grounding Loss 90.0 93.5 87.9 85.6 92.0 80.4 98.3 86.2 60.6 64.8
+ Skating Loss 89.9 94.2 87.6 84.2 91.8 81.7 97.4 86.7 61.7 71.4

tion fidelity during retargeting has a greater impact on policy learning than other artifact types. How-
ever, once motion fidelity reaches a certain threshold (as in the SINK variants), further reductions in
other artifact types yield diminishing returns for policy learning.
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