

PHUMA: PHYSICALLY-GROUNDED HUMANOID LOCOMOTION DATASET

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

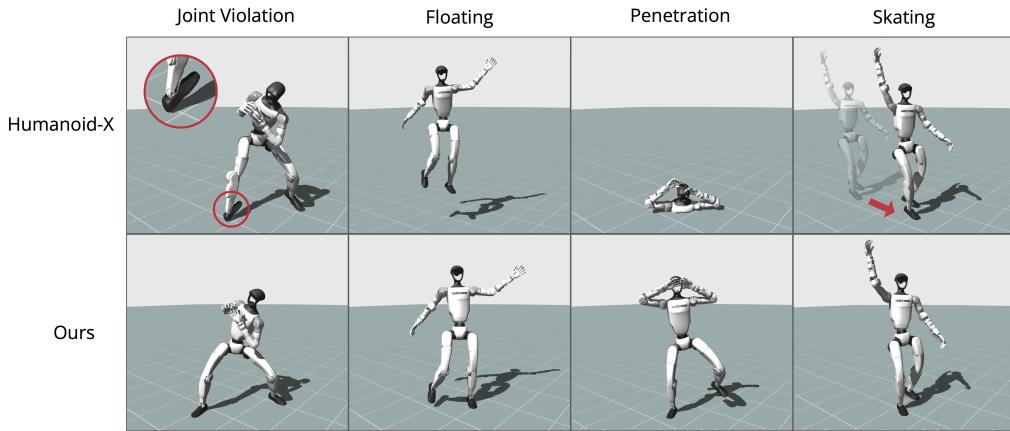


Figure 1: **Physical reliability of Humanoid-X vs. PHUMA.** Each column illustrates four failure modes: joint violation, floating, penetration, and skating. Humanoid-X (Mao et al., 2025) (top row) often exhibits these issues due to direct video-to-motion conversion, while PHUMA (bottom row) mitigates those violations through careful data curation and physically grounded retargeting.

ABSTRACT

Motion imitation is a promising approach for humanoid locomotion, enabling agents to acquire humanlike behaviors. Existing methods typically rely on high-quality motion capture datasets such as AMASS, but these are scarce and expensive, limiting scalability and diversity. Recent studies attempt to scale data collection by converting large-scale internet videos, exemplified by Humanoid-X. However, they often introduce physical artifacts such as floating, penetration, and foot skating, which hinder stable imitation. In response, we introduce **PHUMA**, a Physically-grounded HUMANoid locomotion dataset that leverages human video at scale, while addressing physical artifacts through careful data curation and physics-constrained retargeting. PHUMA enforces joint limits, ensures ground contact, and eliminates foot skating, producing motions that are both large-scale and physically reliable. We evaluated PHUMA in two sets of conditions: (i) imitation of unseen motion from self-recorded test videos and (ii) path following with pelvis-only guidance. In both cases, PHUMA-trained policies outperform Humanoid-X and AMASS, achieving significant gains in imitating diverse motions. Qualitative videos are available at the https://anonymous-robotics-researcher.github.io/Paper_10482.

1 INTRODUCTION

Humanoid robots are central to the pursuit of general-purpose embodied AI, but their deployment in real-world first requires locomotion that is both stable and humanlike. While reinforcement learning (RL) with task-oriented rewards has led to remarkable progress in quadrupedal locomotion (Hwangbo et al., 2019; Lee et al., 2020; Tan et al., 2018), directly applying these strategies to

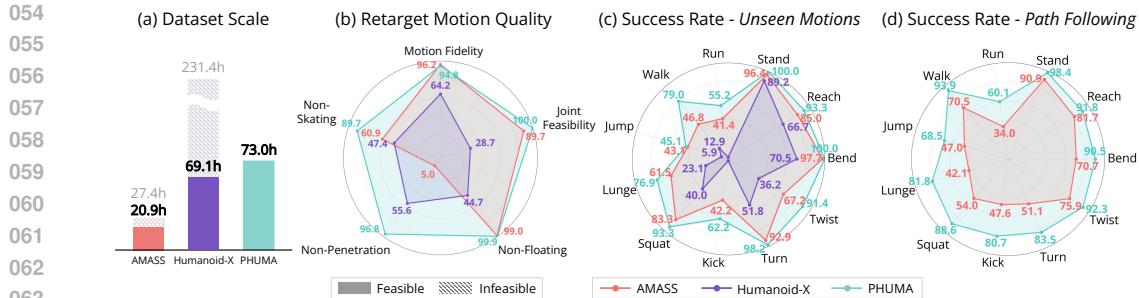


Figure 2: Overview of datasets and performance. PHUMA is both large-scale and physically reliable, which translates into higher success rates in motion imitation and pelvis path following. (a) Feasible and infeasible human motion sources in each dataset. (b) Physical reliability, with AMASS retargeted using a standard learning-based inverse kinematics method. (c) Success rate on unseen motions. (d) Success rate in path-following. Results are reported on the Unitree G1 humanoid.

humanoids often produces gaits that are effective yet non-humanlike (Hansen et al., 2023; Sferrazza et al., 2024). To address this limitation, motion imitation has emerged as a promising paradigm. In motion imitation, policies are trained to replicate human movements through a three-stage pipeline: (1) collecting human motion data, (2) retargeting it to the robot’s morphology, and (3) using RL to track the retargeted trajectories (Peng et al., 2018; Tessler et al., 2024; He et al., 2024b).

Despite its promise, progress in motion imitation is fundamentally constrained by the scale, diversity, and physical feasibility of human motion data. High-quality motion capture datasets such as LaFAN1 (Harvey et al., 2020) and AMASS (Mahmood et al., 2019) provide a high proportion of physically feasible motions, but are limited in scale and diversity, with motions dominated by simple motions such as reaching and walking. To overcome this scarcity, recent work has sought to scale data collection by leveraging vast internet videos. Humanoid-X (Mao et al., 2025) exemplifies this trend by converting videos to SMPL representations (Loper et al., 2023) using a video-to-motion model (Kocabas et al., 2020), then retargeting them to humanoid embodiments. However, this pipeline introduces two types of physical violations. First, the video-to-motion model often misestimates global pelvis translation, producing artifacts such as floating or ground penetration. Second, the retargeting stage prioritizes joint alignment over physical plausibility (He et al., 2024b;a), leading to joint violation and foot skating as illustrated in the top row of Figure 1.

In response, we introduce **PHUMA**: Physically-grounded HUMAnoid locomotion dataset that leverages large-scale human video while overcoming physical artifacts through careful data curation and physics-constrained retargeting. As illustrated in Figure 3(1), we first collect diverse high-quality human motion data and filter out infeasible motions from Humanoid-X, such as root jitter or actions requiring external objects like sitting on chairs. This filtering removes approximately 70% of the original dataset, as shown in Figure 2(a). As shown in Figure 3(2), we then apply Physically **constrained** Shape-adaptive Inverse Kinematics (PhySINK), which enforces soft joint limits, ground contact, and anti-skating constraints to eliminate violations such as joint overextension, floating, and sliding. As a result, PHUMA provides substantially more physically plausible motions than existing datasets, 349.9% more than AMASS and 5.5% more than Humanoid-X (Figure 2(a,b)).

We validate the effectiveness of PHUMA in two settings: (i) imitation of unseen motions and (ii) path following with pelvis-only guidance. Using the MaskedMimic framework Tessler et al. (2024) for RL training, we tested policies on Unitree G1 and H1-2 humanoids. On 504 self-recorded videos across 11 motion types, policies trained with PHUMA achieve 1.2x and 2.1x higher success rates than AMASS and Humanoid-X, respectively (Figure 2(c)). For path following, PHUMA-trained policies improve overall success rate by 1.4x over AMASS, with 1.6x gains in vertical (e.g., squat, lunge, jump) and 2.1x gains in horizontal (e.g., walk, run) motion path trajectories (Figure 2(d)). We will release PHUMA as a public resource to advance future research in humanoid locomotion.

108

2 RELATED WORK

109
110 PHUMA focuses on constructing a large-scale, physically reliable humanoid **locomotion** dataset,
111 requiring two components: (1) collection of diverse human motion data and (2) retargeting of these
112 motion data to the humanoid robot.
113114

2.1 HUMAN MOTION DATA

115
116 Human motion data, typically represented in the SMPL format (Loper et al., 2023; Pavlakos
117 et al., 2019), is obtained from two main sources: motion capture systems and reconstruction from
118 video (Gu et al., 2025). Motion capture data (CMU, 2003; Zhang et al., 2022; Al-Hafez et al.,
119 2023) provides accurate kinematics but is difficult to scale due to its reliance on complex instru-
120 mentation, such as multi-camera arrays and marker-based suits. Even a relatively large dataset like
121 LaFAN1 (Harvey et al., 2020) contains only a few hours of motion. AMASS (Mahmood et al., 2019),
122 the most extensive and widely-used dataset, remains dominated by walking motions in indoor labs.
123124 Recent datasets (Lin et al., 2023; Zhang et al., 2025; Chung et al., 2021; Cai et al., 2022; Tsuchida
125 et al., 2019) leverage the scalability and diversity of human videos. Humanoid-X (Mao et al., 2025)
126 is notable for massively scaling up from Internet video data, providing an abundant collection of
127 data from motion capture and video recovery. However, video-derived motion often exhibits severe
128 jitter across frames (Kocabas et al., 2020; Wang et al., 2024), and motion from either source is
129 susceptible to physical artifacts such as interactions with unmodeled objects (e.g., sitting on a chair
130 that does not exist) (Luo et al., 2023; 2024) and implausible foot-ground contact, including floating
131 or penetration (Goel et al., 2023; Ye et al., 2023; Yu et al., 2021; Ugrinovic et al., 2024).
132133 To mitigate these issues, recent works have introduced automated data cleaning strategies (Luo et al.,
134 2024). ASAP (He et al., 2025a) employs a “sim-to-data” cleaning procedure that uses a motion track-
135 ing policy in a physics simulator to filter out failures. However, this process primarily relies on the
136 tracking policy rather than the physical validity of the motion, which may be biased by the track-
137 ing performance of the policy. KungfuBot (Xie et al., 2025) instead adopts physics-based principles
138 for data cleaning, such as stability criteria, and utilizes contact masks for motion correction. How-
139 ever, they rely on zero-velocity assumptions and ankle height for contact estimation, which are often
140 unreliable for video-reconstructed motions.
141142 PHUMA is a large-scale, diverse, and curated motion dataset aggregated from both motion capture
143 and human video through a physics-aware curation pipeline, which corrects implausible foot-ground
144 contact and filters out corrupted sequences with severe physical artifacts.
145146

2.2 HUMANOID MOTION RETARGETING

147 Human motion data, widely used for physics-based character control (Peng et al., 2018; Wagener
148 et al., 2022; Luo et al., 2021; 2023; Hansen et al., 2025; Tessler et al., 2024; Tirinzoni et al., 2025),
149 is now also being applied to the field of humanoid robotics (Radosavovic et al., 2024a; Fu et al.,
150 2024; Cheng et al., 2024; Ji et al., 2024; Chen et al., 2025; Xie et al., 2025; Truong et al., 2025; Li
151 et al., 2025). For instance, **Humanoid Policy** ~ **Human Policy** (Qiu et al., 2025) leverages egocentric
152 human video for manipulation, while **ASAP** (He et al., 2025a) utilizes retargeted human motion
153 to learn agile locomotion. This relies on motion retargeting, which is critical for adapting human
154 movements to humanoid robots that, despite their morphological similarities to humans, possess
155 distinct kinematic and proportional characteristics (Kim et al., 2025; Ho et al., 2010; Zhang et al.,
156 2023).
157158 A primary challenge is motion mismatch, where the retargeted motion fails to capture the kinematic
159 pose of the source. Inverse kinematics (IK) methods (Radosavovic et al., 2024b; Zakka, 2025; Ze
160 et al., 2025) often overlook the differences in body shape, resulting in unnatural motions like in-toed
161 gaits. Recently, **GMR** (Araujo et al., 2025) demonstrated that IK can yield highly plausible results
162 through careful engineering, yet it remains reliant on heuristic scale adjustments and is prone to
163 artifacts such as foot floating. Shape-adaptive inverse kinematics (SINK) methods, introduced by
164 **H2O** (He et al., 2024b), address this by first adapting the source human model to match the body
165 shape and limb proportions of the target robot. The motion is then aligned to the source by matching
166 global joint positions (He et al., 2024a; 2025b) or local limb orientations (Cheynel et al., 2023;
167

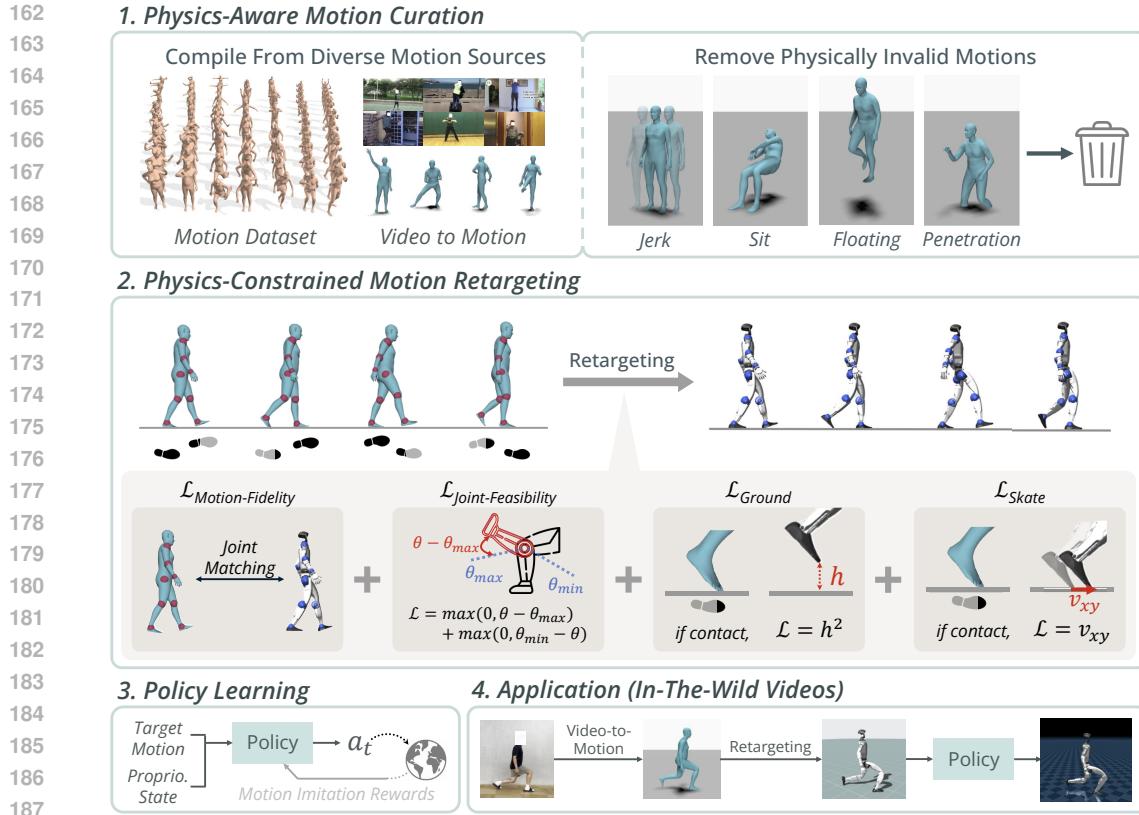


Figure 3: **Overview of the PHUMA pipeline.** Our four-stage pipeline for motion imitation learning includes: (1) Motion Curation, where we filter out problematic motions from a diverse dataset; (2) Motion Retargeting, where the filtered motions are retargeted to the humanoid using PhySINK, incorporating a series of losses.; (3) Policy Learning, where a policy is trained to imitate the retargeted motions; and (4) Inference, where the trained policy is used to control the humanoid, enabling it to imitate motions from unseen videos processed by a video-to-motion model.

Allshire et al., 2025). While effective at pose matching, SINK approaches are physically under-constrained, introducing artifacts including joint limit violations and implausible ground interactions such as floating, penetration, and skating.

Physically **constrained** shape-adaptive inverse kinematics (PhySINK) directly addresses these physical artifacts by augmenting the optimization with joint feasibility, grounding, and skating loss terms, ensuring the retargeted motion maintains fidelity to the source while remaining physically plausible.

3 METHOD

Our goal is to construct PHUMA, a large-scale, physically reliable dataset for humanoid locomotion. We build upon the Humanoid-X motions (Mao et al., 2025), which are rich in scale but exhibits physical artifacts. We first apply physics-aware curation to filter out problematic motions (Section 3.1). Next, to solve artifacts introduced during the retargeting process itself, we employ PhySINK, our physics-constrained retargeting method that adapts the curated motion to the humanoid while enforcing physical plausibility (Section 3.2). Our two-stage pipeline is illustrated in Figure 3.

3.1 PHYSICS-AWARE MOTION CURATION

The goal of our curation pipeline is to refine raw motion data, which often contains artifacts that make the motion physically implausible for a humanoid. Our process targets key issues such as severe jitter, instabilities from interactions with unmodeled objects, and incorrect foot-ground contact.

Table 1: **Composition of the PHUMA dataset.** A summary of the number of clips and duration for each sub-dataset, categorized by source and scene. PHUMA aggregates these diverse sub-datasets, resulting over 73 hours of physically-grounded motion clips.

Dataset	# Clip	# Frame	Duration	Source	Scene
LocoMuJoCo (Al-Hafez et al., 2023)	0.78K	0.93M	0.86h	Motion Capture	Indoor
GRAB (Taheri et al., 2020)	1.73K	0.20M	1.88h	Motion Capture	Indoor
EgoBody (Zhang et al., 2022)	2.12K	0.24M	2.19h	Motion Capture	Indoor
LaFAN1 (Harvey et al., 2020)	2.18K	0.26M	2.40h	Motion Capture	Indoor
AMASS (Mahmood et al., 2019)	21.73K	2.25M	20.86h	Motion Capture	Indoor
HAA500 (Chung et al., 2021)	1.76K	0.11M	1.01h	Human Video	Outdoor
Motion-X Video (Lin et al., 2023)	33.04K	3.45M	31.98h	Human Video	Outdoor
HuMMan (Cai et al., 2022)	0.50K	0.05M	0.47h	Human Video	Indoor
AIST (Tsuchida et al., 2019)	1.75K	0.18M	1.66h	Human Video	Indoor
IDEA400 (Lin et al., 2023)	9.94K	0.98M	9.10h	Human Video	Indoor
PHUMA Video	0.50K	0.06M	0.56h	Human Video	Outdoor
PHUMA	76.01K	7.88M	72.96h		

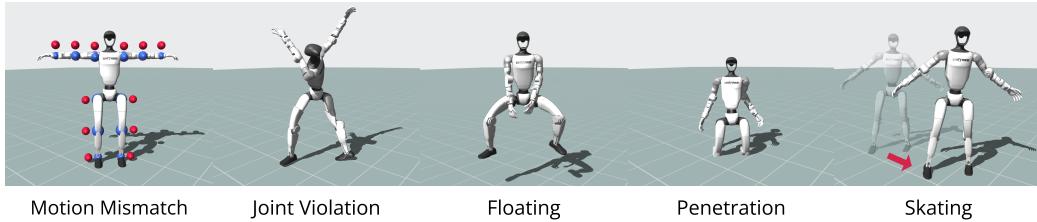


Figure 4: **Common physical artifacts in motion retargeting.** From left to right: Motion Mismatch, Joint Violation, Floating, Penetration, and Skating.

To mitigate high-frequency jitter, we apply a low-pass Butterworth filter (Appendix A.1.1). We identify unstable motions, such as sitting on a non-existent chair, by calculating the center-of-mass (CoM) distance from the base of support. To correct foot-ground contact, a consistent ground plane in the world frame is essential. Since recovered motions are often defined in a camera’s coordinate frame, they lack a true ground reference, which causes floating and penetration. We establish a global ground plane using a majority-voting scheme: each foot vertex contributes to identifying the most consistent contact height. The entire motion is then shifted to align this plane at a height of zero (Appendix A.1.2), after which we compute per-region foot contact scores.

With a reliable ground plane established, we segment all sequences into 4-second clips. We then discard any clip exhibiting: (i) excessive jerk, (ii) a CoM position far outside its support base, or (iii) insufficient foot-ground contact. This chunk-and-filter process maximizes the retention of viable segments from longer, partially flawed sequences (Appendix A.1.3). Finally, we augment these curated motions with data from LaFAN1, LocoMuJoCo, and our own video captures.

As detailed in Table 1, the resulting PHUMA dataset is a large-scale collection containing 73.0 hours of physically plausible motion across 76.0K clips.

3.2 PHYSICS-CONSTRAINED MOTION RETARGETING

Inverse kinematics (**IK**) methods often fail to preserve motion style, while shape-adaptive inverse kinematics (**SINK**) preserves style but introduces artifacts such as joint violations and unrealistic ground interactions (Figure 4). Our method, physically constrained shape-adaptive inverse kinematics (PhySINK), overcomes these issues by extending SINK with joint feasibility, grounding, and anti-skating losses, producing motions that are both stylistically faithful and physically plausible.

Motion Fidelity Loss. We optimize the humanoid joint positions q_t and root translation γ_t over time t , so that the retargeted motion closely matches the human motion. The $\mathcal{L}_{\text{Fidelity}}$ is defined as:

$$\mathcal{L}_{\text{global-match}} = \sum_t \sum_i \|p_i^{\text{SMPL-X}}(t) - p_i^{\text{Humanoid}}(t)\|_1 \quad (1)$$

Table 2: **Quantitative comparison and ablation study of retargeting methods.** We evaluate performance on two humanoids, G1 and H1-2, showing the progressive impact of adding each of our proposed physical constraint losses.

	Motion Fidelity (%)	Joint Feasibility (%)	Non-Floating (%)	Non-Penetration (%)	Non-Skating (%)
(a) G1					
IK	27.6	91.7	55.6	47.8	59.7
GMR	56.3	81.8	14.7	100.0	67.7
SINK	94.8	95.9	96.4	14.9	55.4
+ Joint Feasibility Loss	94.9	100.0	96.4	14.8	55.6
+ Grounding Loss	94.9	100.0	99.9	97.2	53.6
+ Skating Loss = PhySINK	94.8	100.0	99.9	96.8	89.7
(b) H1-2					
IK	36.3	80.9	57.7	45.2	56.1
SINK	93.9	15.3	42.2	81.4	47.9
+ Joint Feasibility Loss	94.0	99.9	44.4	79.9	50.7
+ Grounding Loss	93.9	99.9	99.8	98.1	49.3
+ Skating Loss = PhySINK	93.9	99.9	99.7	97.7	87.7

$$\mathcal{L}_{\text{local-match}} = \sum_t \sum_{i \neq j} m_{ij} \underbrace{\|\Delta p_{ij}^{\text{SMPL-X}}(t) - \Delta p_{ij}^{\text{Humanoid}}(t)\|_2^2}_{\text{position}} \quad (2)$$

$$+ \sum_t \sum_{i \neq j} m_{ij} \underbrace{\left(1 - \langle \Delta p_{ij}^{\text{SMPL-X}}(t), \Delta p_{ij}^{\text{Humanoid}}(t) \rangle\right)}_{\text{orientation}}$$

$$\mathcal{L}_{\text{smooth}} = \sum_t \|\dot{q}_t - 2\dot{q}_{t+1} + \dot{q}_{t+2}\|_1 + \sum_t \|\dot{\gamma}_t - 2\dot{\gamma}_{t+1} + \dot{\gamma}_{t+2}\|_1 \quad (3)$$

$$\mathcal{L}_{\text{Fidelity}} = w_{\text{global-match}} \mathcal{L}_{\text{global-match}} + w_{\text{local-match}} \mathcal{L}_{\text{local-match}} + w_{\text{smooth}} \mathcal{L}_{\text{smooth}} \quad (4)$$

where $p_i^{\text{SMPL-X}}(t)$ and $p_i^{\text{Humanoid}}(t)$ denote the global 3D position of joint i at time t . Δp_{ij} denotes the position difference between joints i and j . m_{ij} is a binary mask that equals 1 when i and j are immediate neighbors in the humanoid kinematic tree, and 0 otherwise. We define *Motion Fidelity (%)* as the average percentage of frames where the mean per-joint position error is below 10 cm and the mean per-link orientation error is below 10 degrees.

Joint Feasibility Loss. Configurations that violate joint limits can lead to unrealistic motion or instabilities in a simulator. $\mathcal{L}_{\text{Joint Feasibility}}$ penalizes joint angles and velocities that approach or exceed the predefined operational limits of the humanoid:

$$\mathcal{L}_{\text{position-violation}} = \sum_t [\max(0, q_t - 0.98q_{\max}) + \max(0, 0.98q_{\min} - q_t)] \quad (5)$$

$$\mathcal{L}_{\text{velocity-violation}} = \sum_t [\max(0, \dot{q}_t - 0.98\dot{q}_{\max}) + \max(0, 0.98\dot{q}_{\min} - \dot{q}_t)] \quad (6)$$

$$\mathcal{L}_{\text{Feasibility}} = \mathcal{L}_{\text{position-violation}} + \mathcal{L}_{\text{velocity-violation}}. \quad (7)$$

We define *Joint Feasibility (%)* as the percentage of frames where all joint positions and velocities remain within 98% of their predefined mechanical limits.

Grounding Loss. The grounding loss corrects for floating or penetration artifacts by enforcing that the foot regions of the humanoid remain on the ground plane during frames with detected contact:

$$\mathcal{L}_{\text{Ground}} = \sum_{i \in \{\text{LH,LT,RH,RT}\}} \sum_t c_t^i \|p_t^i(z)\|_2^2 \quad (8)$$

where c_t is a contact score for foot regions Left Heel (LH), Left Toe (LT), Right Heel (RH), and Right Toe (RT) at frame t . We define *Non-Floating (%)* as the percentage of contact frames where the foot is within 1 cm above the ground, and *Non-Penetration (%)* as the percentage of contact frames where the foot is within 1 cm below the ground.

Skating Loss. The skating loss prevents foot sliding by penalizing the horizontal velocity of any foot region that is in contact with the ground:

$$\mathcal{L}_{\text{Skate}} = \sum_{i \in \{\text{LH,LT,RH,RT}\}} \sum_t c_t^i \|\dot{p}_t^i(x, y)\|_2 \quad (9)$$

324 where c_t is a contact score for foot regions Left Heel (LH), Left Toe (LT), Right Heel (RH), and
 325 Right Toe (RT) at frame t . We define *Non-Skating (%)* as the percentage of contact frames where
 326 the foot’s horizontal velocity is below 10 cm/s. The objective for the baseline SINK method consists
 327 solely of the motion fidelity loss.

328 Our PhySINK objective is a weighted sum of the motion fidelity loss and the physical constraint
 329 terms. By optimizing this augmented objective, PhySINK generates motions that maintain kinematic
 330 similarity to the source while being physically plausible.

$$\mathcal{L}_{\text{PhySINK}} = \mathcal{L}_{\text{Fidelity}} + w_{\text{Feasibility}} \mathcal{L}_{\text{Feasibility}} + w_{\text{Ground}} \mathcal{L}_{\text{Ground}} + w_{\text{Skate}} \mathcal{L}_{\text{Skate}} \quad (10)$$

333 To evaluate PhySINK, we retarget PHUMA to two Unitree robots, G1 (Unitree Robotics, 2025a)
 334 and H1-2 (Unitree Robotics, 2025b), and compare against a standard IK solver (Zakka, 2025), and
 335 GMR (Araujo et al., 2025), and SINK framework. As shown in Table 2, both the standard IK solver
 336 and GMR struggle with motion fidelity. These methods use simple linear scaling to adjust human
 337 keypoint positions to the robot’s body proportions, which changes the target motion and fails to
 338 preserve the original kinematics. This approach alters the target motion without preserving the orig-
 339 inal human motion’s kinematics. In contrast, SINK first optimizes the human body shape to fit the
 340 humanoid’s proportions, then applies the original joint angles, thereby improving motion fidelity.
 341 Building upon SINK, our proposed losses progressively enhance performance: the joint feasibility
 342 loss raises feasibility to nearly 100%, and the grounding loss reduces floating and penetration to
 343 over 96%. While GMR achieves the best non-penetration performance by optimizing the motion’s
 344 height based on its minimum ground contact point, it suffers from significant floating artifacts. The
 345 full PhySINK model, which incorporates the skating loss, preserves motion fidelity while achieving
 346 strong results across all physical metrics, including nearly 90% non-skating performance. Qualita-
 347 tive comparisons between retargeting methods are shown in Figures 8 and 9.

348 4 EXPERIMENTS

350 In this section, we evaluate the effectiveness of PhySINK and PHUMA along three axes, addressing
 351 the following research questions:

353 **RQ1.** What does our proposed PhySINK retargeting method compare with established retargeting
 354 approaches (IK, SINK) in terms of motion imitation performance?

355 **RQ2.** How effective is PHUMA as a training corpus for motion imitation, compared to prior datasets
 356 utilized for humanoid motion (LaFAN1, AMASS, Humanoid-X)?

358 **RQ3.** When using a simplified controller that considers only pelvis tracking rather than full-body
 359 state tracking, does training on PHUMA achieve better path-following performance than training on
 360 existing benchmark datasets across various motion categories?

361 **RQ4. Does training the policy with PHUMA lead to improved Sim-to-Sim transfer performance
 362 compared to AMASS?**

364 4.1 EXPERIMENT SETUP

366 **Training.** We employ the MaskedMimic framework (Tessler et al., 2024) for all policy training,
 367 which provides a unified approach for motion tracking with either full body state or partial body
 368 state information (e.g., pelvis-only). The framework trains policies using PPO (Schulman et al.,
 369 2017) to imitate human motion by maximizing reward signals that measure tracking accuracy.

370 For RQ1 and RQ2, we train full-state motion tracking policies. These policies receive current pro-
 371 prioceptive state (s_t^p), which includes joint positions, orientations, and velocities, as well as full goal
 372 states (s_t^g) representing the target motion trajectories. Given these inputs, the policy outputs joint an-
 373 gle commands (a_t) that are executed via PD controllers. The reward function is designed to measure
 374 how well the humanoid matches the target motion.

375 For RQ3, we employ the partial-state protocol from MaskedMimic. This involves first training a full-
 376 state teacher policy on full-body reference motion data, then using knowledge distillation to train a
 377 student policy that mimics the action of the teacher policy while receiving only pelvis position and
 rotation as input, enabling pelvis path-following control while maintaining humanlike movement.

378 All experiments are conducted in the IsaacGym simulator using Unitree G1 (29 DoF) and H1-2 (21
 379 DoF, excluding wrist joints). Detailed hyperparameters are provided in Appendix 12, with complete
 380 observation space and reward function specifications in Table 10 and Appendix B.2, respectively.
 381

Evaluation. To assess the trained policies, we evaluate performance on two distinct datasets. The
 382 first consists of about 7.5K motions (10% of PHUMA) that were held out during training. The
 383 second comprises 504 self-collected video sequences converted to motion sequences using a video-
 384 to-motion model. Processing details for the self-collected videos are provided in Appendix C.1.
 385

386 For evaluating the full body motion tracking (RQ1, RQ2), we adopt the success rate metric from
 387 prior motion imitation studies (He et al., 2024b; 2025a; Xie et al., 2025), which measures the ratio
 388 of motions successfully imitated within a specified deviation threshold. Unlike prior work that uses
 389 a 0.5m threshold, we employ a stricter 0.15m threshold, as the standard threshold incorrectly classi-
 390 fies scenarios as successful when humanoids remain stationary during jumps or stay upright during
 391 squatting motions. Further discussions related to the threshold selection is detailed in Appendix C.2.
 392

393 In path following settings (RQ3), we use a similar success rate metric focused on pelvis track-
 394 ing accuracy. Specifically, we measure the ratio of motions where the policy successfully tracks
 395 pelvis trajectories within the same 0.15m threshold throughout the motion sequence. To evaluate
 396 performance across diverse motion types, we organize all evaluations into four motion categories:
 397 stationary (stand, reach), angular (bend, twist, turn, kick), vertical (squat, lunge, jump), and horizontal
 398 (walk, run). This categorization allows us to assess how well policies generalize across different
 399 types of human locomotion and movement patterns.
 400

4.2 PHYSINK RETARGETING METHOD EFFECTIVENESS

401 To evaluate the effectiveness of our proposed PhySINK retargeting method, we compare it against
 402 two established approaches: IK, SINK. We retarget the same source motions from AMASS using all
 403 three methods, then train separate full-state motion tracking policies on each retargeted dataset.
 404

405 Table 3 demonstrates that PhySINK consistently outperforms both baseline methods across all motion
 406 categories and humanoid embodiments. The results validate that physically **constrained** retargeting
 407 directly translates to better imitation performance, with improvements particularly pronounced
 408 in dynamic motions (vertical and horizontal categories) where physical constraints are most critical.
 409

4.3 PHUMA DATASET EFFECTIVENESS

411 Having demonstrated PhySINK’s effectiveness, we now compare PHUMA against existing
 412 humanoid datasets. We train full-state policies on four datasets with different characteris-
 413 tics: LaFAN1(small-scale, high-quality), AMASS(medium-scale, moderate-quality), Humanoid-
 414 X(large-scale, lower-quality), and PHUMA(large-scale, high-quality). For AMASS, we apply the
 415 widely-used SINK retargeting method since it provides human motion source data, while LaFAN1
 416 and Humanoid-X are used directly as pre-existing humanoid datasets.
 417

418 As shown in Table 4, PHUMA trained policies achieve the highest success rates across all motion
 419 categories and both humanoids. The results reveal that neither scale nor quality alone is suffi-
 420 cient. Humanoid-X, despite its large size, underperforms due to quality issues, while LaFAN1 and
 421 AMASS, though cleaner, lack coverage in several motion types. By combining large scale with high
 422 quality motions, PHUMA delivers consistently superior performance across diverse behaviors.
 423

4.4 PELVIS-ONLY PATH FOLLOWING CONTROL PERFORMANCE

425 We evaluate whether training on PHUMA enables better pelvis path-following control compared
 426 to the AMASS dataset. Using MaskedMimic’s partially-constrained protocol, we train two student
 427 policies: one distilled from an AMASS-trained teacher and another from a PHUMA-trained teacher.
 428 Both students receive only pelvis position and rotation as input.
 429

430 As shown in Table 5, policies trained on PHUMA consistently outperform those trained on baseline
 431 datasets across all motion categories and humanoids. This improvement is particularly pronounced
 432 for vertical and horizontal motions, where AMASS shows significant limitations due to its compo-
 433 sition of predominantly simpler motions like reaching and turning (Figure ??). More specifically,
 434

Table 3: **Motion tracking performance across retargeting approaches.** We evaluate the motion tracking success rate of policies trained on AMASS data retargeted by three different methods (IK, SINK, and PhySINK). Performance is assessed across various motion categories using two humanoid robots, G1 and H1-2, and two test sets: PHUMA Test and Unseen Video.

Retarget	PHUMA Test					Unseen Video				
	Total	Stationary	Angular	Vertical	Horizontal	Total	Stationary	Angular	Vertical	Horizontal
(a) G1										
IK	52.8	75.3	43.9	24.3	44.2	54.0	80.3	54.6	32.7	43.3
SINK	76.2	88.5	72.1	56.8	66.8	70.2	90.7	75.0	62.7	44.1
PhySINK	79.5	89.9	76.1	61.1	69.5	72.8	93.3	78.2	65.5	47.3
(b) H1-2										
IK	45.3	70.9	35.7	15.2	35.0	54.2	78.0	60.7	30.1	28.6
SINK	54.4	74.9	45.9	17.2	49.6	64.3	87.3	59.7	46.0	63.9
PhySINK	64.3	83.6	57.0	27.7	55.9	72.4	99.2	66.3	57.4	63.1

Table 4: **Motion tracking performance across datasets.** Success rates of policies trained on LaFAN1, AMASS, Humanoid-X, and PHUMA, evaluated across motion categories on humanoid robots G1 and H1-2 using two test sets: PHUMA Test and Unseen Video.

Dataset	Hours	PHUMA Test					Unseen Video				
		Total	Stationary	Angular	Vertical	Horizontal	Total	Stationary	Angular	Vertical	Horizontal
(a) G1											
LaFAN1	2.4	46.1	66.1	36.2	24.0	42.5	28.4	46.9	28.4	19.6	10.5
AMASS	20.9	76.2	88.5	72.1	56.8	66.8	70.2	90.7	75.0	62.7	44.1
Humanoid-X	231.4	50.6	78.4	43.0	26.0	31.8	39.1	78.0	39.6	23.0	6.5
PHUMA	73.0	92.7	95.6	91.7	86.0	85.6	82.9	96.7	88.0	71.8	67.1
(b) H1-2											
LaFAN1	2.4	62.0	79.3	54.7	26.6	58.9	70.8	92.4	66.7	56.4	68.2
AMASS	20.9	54.4	74.9	45.9	17.2	49.6	64.3	87.3	59.7	46.0	63.9
Humanoid-X	231.4	49.7	74.6	40.4	17.0	37.3	60.5	88.3	60.0	48.7	39.7
PHUMA	73.0	82.7	91.5	79.5	68.1	68.4	78.6	97.5	76.8	74.5	63.8

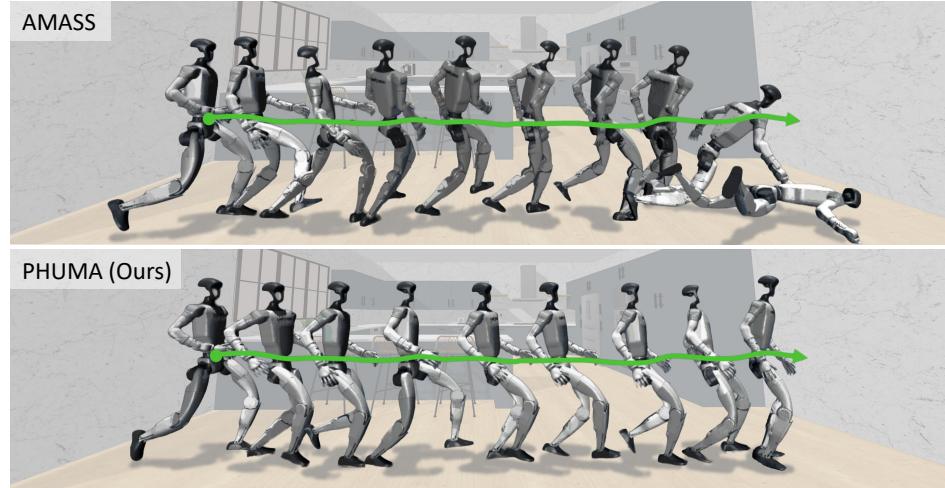


Figure 5: **Path following on running motion.** We visualize the robot’s trajectory in a running motion. The target pelvis path is visualized with a green line. Top row presents results from a policy trained on AMASS, while bottom row presents results from a policy trained on PHUMA.

despite AMASS containing numerous walking motions, a substantial performance gap remains in horizontal motions due to the absence of more dynamic movements such as running, as illustrated in Figure 2(d). This limitation is clearly demonstrated in Figure 5, where AMASS-trained policies frequently fail during running motions while PHUMA-trained policies maintain robust performance. These results confirm that PHUMA enables more diverse and dynamic humanoid control compared to AMASS, validating the practical value of PHUMA for complex control.

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Table 5: Pelvis path following performance across motion dataset. We evaluate the success rate of pelvis path-following control for policies trained on the AMASS and PHUMA datasets across various pelvis trajectories from the PHUMA Test and Unseen Video.

Dataset	PHUMA Test					Unseen Video				
	Total	Stationary	Angular	Vertical	Horizontal	Total	Stationary	Angular	Vertical	Horizontal
(a) G1										
AMASS	60.5	85.6	60.1	51.4	66.5	54.8	83.6	66.5	33.0	27.5
PHUMA	84.5	94.6	86.1	83.7	90.2	74.6	98.3	83.3	54.3	57.1
(a) H1-2										
AMASS	60.4	84.0	62.8	43.6	78.7	72.3	96.6	77.3	52.1	72.5
PHUMA	73.9	91.2	76.5	66.9	84.8	78.1	96.6	77.8	60.6	78.0

Table 6: **Sim-to-Sim transfer performance across motion dataset.** We evaluate the zero-shot motion tracking success rate of policies trained on PHUMA and AMASS when transferred from the source simulator (Isaac Gym) to the target simulator (MuJoCo). The results are demonstrated on the G1 humanoid to assess robustness against domain shifts in physics engines.

Dataset	PHUMA Test					Unseen Video				
	Total	Stationary	Angular	Vertical	Horizontal	Total	Stationary	Angular	Vertical	Horizontal
AMASS	62.1	81.4	54.2	38.8	64.3	64.3	86.2	68.5	54.3	37.4
PHUMA	75.0	87.6	69.3	61.6	76.3	70.0	87.9	78.8	59.6	38.5

4.5 SIM-TO-SIM TRANSFER PERFORMANCE

To validate the environmental robustness of the learned policies, we conduct a Sim-to-Sim transfer experiment. We adopt the training protocol from Kungfubot2 (Han et al., 2025), which has demonstrated strong sim-to-real transfer, while replacing the policy architecture with an MLP. Using this setup, we train motion tracking policies in Isaac Gym on both PHUMA and AMASS, and directly deploy them into the MuJoCo simulator without any fine-tuning. Following the evaluation metrics defined in Kungfubot2 (Han et al., 2025), Table 6 shows that the PHUMA-trained policy consistently outperforms the AMASS baseline across all motion categories in the target simulator. This demonstrates that PHUMA’s superior data quality and scale contribute to improved robustness against cross-simulator domain shifts. Detailed performance analysis of both teacher and student policies in the training simulator (Isaac Gym) is provided in Appendix C.3.

5 CONCLUSION

We introduced PHUMA, a large-scale, physically *plausible* humanoid locomotion dataset that overcomes the limitations of existing motion imitation pipelines. Unlike prior video-driven datasets prone to artifacts such as floating, ground penetration, and joint violations, PHUMA combines large-scale human video with careful filtering and our physics-constrained retargeting method, PhySINK, to produce motions that are both diverse and physically reliable. Policies trained on PHUMA consistently outperform those trained on AMASS and Humanoid-X in motion imitation and pelvis-guided path following on Unitree G1 and H1-2 humanoids, demonstrating that progress in humanoid locomotion requires not only scale but also physically reliable data.

Looking forward, future work includes sim-to-real transfer, enabling policies trained with PHUMA to produce physically reliable motions on real humanoid robots, and vision-based control, where video observations replace privileged state inputs to better align with real-world perception.

540 REPRODUCIBILITY STATEMENT
541

542 To ensure the reproducibility of our results, we provide comprehensive implementation details and
543 experimental specifications. The complete hyperparameter settings for PPO training are detailed in
544 Appendix 12. Our physics-aware curation process and PhySINK retargeting method are described
545 in detail in Sections 3.1 and 3.2, respectively, with algorithmic specifications provided in the ap-
546 pendix. The PHUMA dataset composition and statistics are thoroughly documented in Section 3.1
547 and Appendix A.2. All evaluation metrics, including our modified success rate threshold and motion
548 category definitions, are explicitly defined in Section 4.1. Implementation details for baseline meth-
549 ods (IK, SINK) follow established protocols as referenced in the main text. The self-collected video
550 processing pipeline is described in Appendix C.1. We plan to release our code, dataset, and trained
551 models upon publication to facilitate further research in this area.

552 REFERENCES
553

554 Carnegie mellon university graphics lab motion capture database. <http://mocap.cs.cmu.edu>, 2003.
555 The data was captured with funding from NSF EIA-0196217. Acknowledgment of the database
556 is appreciated in any published work.

557 Firas Al-Hafez, Guoping Zhao, Jan Peters, and Davide Tateo. Locomujoco: A comprehensive imi-
558 tation learning benchmark for locomotion. *arXiv preprint arXiv:2311.02496*, 2023.

559 Arthur Allshire, Hongsuk Choi, Junyi Zhang, David McAllister, Anthony Zhang, Chung Min Kim,
560 Trevor Darrell, Pieter Abbeel, Jitendra Malik, and Angjoo Kanazawa. Visual imitation enables
561 contextual humanoid control. *arXiv preprint arXiv:2505.03729*, 2025.

562 Joao Pedro Araujo, Yanjie Ze, Pei Xu, Jiajun Wu, and C Karen Liu. Retargeting matters: General
563 motion retargeting for humanoid motion tracking. *arXiv preprint arXiv:2510.02252*, 2025.

564 Zhongang Cai, Daxuan Ren, Ailing Zeng, Zhengyu Lin, Tao Yu, Wenjia Wang, Xiangyu Fan, Yang
565 Gao, Yifan Yu, Liang Pan, et al. Humman: Multi-modal 4d human dataset for versatile sensing
566 and modeling. In *European Conference on Computer Vision*, pp. 557–577. Springer, 2022.

567 Zixuan Chen, Mazeyu Ji, Xuxin Cheng, Xuanbin Peng, Xue Bin Peng, and Xiaolong Wang. Gmt:
568 General motion tracking for humanoid whole-body control. *arXiv preprint arXiv:2506.14770*,
569 2025.

570 Xuxin Cheng, Yandong Ji, Junming Chen, Ruihan Yang, Ge Yang, and Xiaolong Wang. Expressive
571 whole-body control for humanoid robots. *arXiv preprint arXiv:2402.16796*, 2024.

572 Théo Cheynel, Thomas Rossi, Baptiste Bellot-Gurlet, Damien Rohmer, and Marie-Paule Cani.
573 Sparse motion semantics for contact-aware retargeting. In *ACM SIGGRAPH Conference on Mo-
574 tion, Interaction and Games (MIG)*, 2023.

575 Jihoon Chung, Cheng-hsin Wuu, Hsuan-ru Yang, Yu-Wing Tai, and Chi-Keung Tang. Haa500:
576 Human-centric atomic action dataset with curated videos. In *Proceedings of the IEEE/CVF inter-
577 national conference on computer vision*, pp. 13465–13474, 2021.

578 Zipeng Fu, Qingqing Zhao, Qi Wu, Gordon Wetzstein, and Chelsea Finn. Humanplus: Humanoid
579 shadowing and imitation from humans. *arXiv preprint arXiv:2406.10454*, 2024.

580 Shubham Goel, Georgios Pavlakos, Jathushan Rajasegaran, Angjoo Kanazawa, and Jitendra Malik.
581 Humans in 4d: Reconstructing and tracking humans with transformers. In *Proceedings of the
582 IEEE/CVF International Conference on Computer Vision*, pp. 14783–14794, 2023.

583 Zhaoyuan Gu, Junheng Li, Wenlan Shen, Wenhao Yu, Zhaoming Xie, Stephen McCrory, Xianyi
584 Cheng, Abdulaziz Shamsah, Robert Griffin, C Karen Liu, et al. Humanoid locomotion and ma-
585 nipulation: Current progress and challenges in control, planning, and learning. *arXiv preprint
586 arXiv:2501.02116*, 2025.

587 Jinrui Han, Weiji Xie, Jiakun Zheng, Jiyuan Shi, Weinan Zhang, Ting Xiao, and Chenjia Bai.
588 Kungfubot2: Learning versatile motion skills for humanoid whole-body control. *arXiv preprint
589 arXiv:2509.16638*, 2025.

594 Nicklas Hansen, Hao Su, and Xiaolong Wang. Td-mpc2: Scalable, robust world models for contin-
 595 uous control. *arXiv preprint arXiv:2310.16828*, 2023.
 596

597 Nicklas Hansen, Jyothir S V, Vlad Sobal, Yann LeCun, Xiaolong Wang, and Hao Su. Hierarchical
 598 world models as visual whole-body humanoid controllers. In *The Thirteenth International Confer-
 599 ence on Learning Representations*, 2025. URL <https://openreview.net/forum?id=7wuJMVK639>.
 600

601 Félix G Harvey, Mike Yurick, Derek Nowrouzezahrai, and Christopher Pal. Robust motion in-
 602 betweening. *ACM Transactions on Graphics (TOG)*, 39(4):60–1, 2020.
 603

604 Tairan He, Zhengyi Luo, Xialin He, Wenli Xiao, Chong Zhang, Weinan Zhang, Kris Kitani, Changliu
 605 Liu, and Guanya Shi. Omnih2o: Universal and dexterous human-to-humanoid whole-body tele-
 606 operation and learning. *arXiv preprint arXiv:2406.08858*, 2024a.
 607

608 Tairan He, Zhengyi Luo, Wenli Xiao, Chong Zhang, Kris Kitani, Changliu Liu, and Guanya Shi.
 609 Learning human-to-humanoid real-time whole-body teleoperation. In *2024 IEEE/RSJ Interna-
 610 tional Conference on Intelligent Robots and Systems (IROS)*, pp. 8944–8951. IEEE, 2024b.
 611

612 Tairan He, Jiawei Gao, Wenli Xiao, Yuanhang Zhang, Zi Wang, Jiashun Wang, Zhengyi Luo, Guanqi
 613 He, Nikhil Sobanbabu, Chaoyi Pan, Zeji Yi, Guannan Qu, Kris Kitani, Jessica Hodgins, Linxi
 614 “Jim” Fan, Yuke Zhu, Changliu Liu, and Guanya Shi. Asap: Aligning simulation and real-world
 615 physics for learning agile humanoid whole-body skills. In *Robotics: Science and Systems (RSS)*,
 June 2025a.
 616

617 Tairan He, Wenli Xiao, Toru Lin, Zhengyi Luo, Zhenjia Xu, Zhenyu Jiang, Jan Kautz, Changliu Liu,
 618 Guanya Shi, Xiaolong Wang, et al. Hover: Versatile neural whole-body controller for humanoid
 619 robots. In *2025 IEEE International Conference on Robotics and Automation (ICRA)*, pp. 9989–
 620 9996. IEEE, 2025b.
 621

622 Edmond SL Ho, Taku Komura, and Chiew-Lan Tai. Spatial relationship preserving character motion
 623 adaptation. In *ACM SIGGRAPH 2010 papers*, pp. 1–8. 2010.
 624

625 Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios Tsounis, Vladlen
 626 Koltun, and Marco Hutter. Learning agile and dynamic motor skills for legged robots. *Science
 627 Robotics*, 4(26):eaau5872, 2019.
 628

629 Mazeyu Ji, Xuanbin Peng, Fangchen Liu, Jialong Li, Ge Yang, Xuxin Cheng, and Xiaolong Wang.
 Exbody2: Advanced expressive humanoid whole-body control. *arXiv preprint arXiv:2412.13196*,
 2024.
 630

631 Chung Min Kim, Brent Yi, Hongsuk Choi, Yi Ma, Ken Goldberg, and Angjoo Kanazawa. Pyroki:
 632 A modular toolkit for robot kinematic optimization. *arXiv preprint arXiv:2505.03728*, 2025.
 633

634 Muhammed Kocabas, Nikos Athanasiou, and Michael J Black. Vibe: Video inference for human
 635 body pose and shape estimation. In *Proceedings of the IEEE/CVF conference on computer vision
 and pattern recognition*, pp. 5253–5263, 2020.
 636

637 Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hutter. Learning
 638 quadrupedal locomotion over challenging terrain. *Science robotics*, 5(47):eabc5986, 2020.
 639

640 Yixuan Li, Yutang Lin, Jieming Cui, Tengyu Liu, Wei Liang, Yixin Zhu, and Siyuan Huang.
 Clone: Closed-loop whole-body humanoid teleoperation for long-horizon tasks. *arXiv preprint
 641 arXiv:2506.08931*, 2025.
 642

643 Jing Lin, Ailing Zeng, Shunlin Lu, Yuanhao Cai, Ruimao Zhang, Haoqian Wang, and Lei Zhang.
 Motion-x: A large-scale 3d expressive whole-body human motion dataset. *Advances in Neural
 644 Information Processing Systems*, 36:25268–25280, 2023.
 645

646 Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J Black. Smpl:
 647 A skinned multi-person linear model. In *Seminal Graphics Papers: Pushing the Boundaries,
 Volume 2*, pp. 851–866. 2023.

648 Zhengyi Luo, Ryo Hachiuma, Ye Yuan, and Kris Kitani. Dynamics-regulated kinematic policy
 649 for egocentric pose estimation. *Advances in Neural Information Processing Systems*, 34:25019–
 650 25032, 2021.

651

652 Zhengyi Luo, Jinkun Cao, Kris Kitani, Weipeng Xu, et al. Perpetual humanoid control for real-
 653 time simulated avatars. In *Proceedings of the IEEE/CVF International Conference on Computer
 654 Vision*, pp. 10895–10904, 2023.

655 Zhengyi Luo, Jinkun Cao, Josh Merel, Alexander Winkler, Jing Huang, Kris M. Kitani, and Weipeng
 656 Xu. Universal humanoid motion representations for physics-based control. In *The Twelfth Interna-
 657 tional Conference on Learning Representations*, 2024. URL [https://openreview.net/
 658 forum?id=0rOd8Px002](https://openreview.net/forum?id=0rOd8Px002).

659

660 Naureen Mahmood, Nima Ghorbani, Nikolaus F Troje, Gerard Pons-Moll, and Michael J Black.
 661 Amass: Archive of motion capture as surface shapes. In *Proceedings of the IEEE/CVF interna-
 662 tional conference on computer vision*, pp. 5442–5451, 2019.

663 Jiageng Mao, Siheng Zhao, Siqi Song, Tianheng Shi, Junjie Ye, Mingtong Zhang, Haoran Geng,
 664 Jitendra Malik, Vitor Campagnolo Guzilini, and Yue Wang. Universal humanoid robot pose
 665 learning from internet human videos. In *ICRA 2025 Workshop: Human-Centered Robot Learning
 666 in the Era of Big Data and Large Models*, 2025. URL [https://openreview.net/forum?id=2pBjMDj6uJ](https://openreview.net/forum?

 667 id=2pBjMDj6uJ).

668 Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani, Timo Bolkart, Ahmed AA Osman, Dimitrios
 669 Tzionas, and Michael J Black. Expressive body capture: 3d hands, face, and body from a single
 670 image. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 671 pp. 10975–10985, 2019.

672

673 Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel Van de Panne. Deepmimic: Example-
 674 guided deep reinforcement learning of physics-based character skills. *ACM Transactions On
 675 Graphics (TOG)*, 37(4):1–14, 2018.

676

677 Ri-Zhao Qiu, Shiqi Yang, Xuxin Cheng, Chaitanya Chawla, Jialong Li, Tairan He, Ge Yan, David J.
 678 Yoon, Ryan Hoque, Lars Paulsen, Ge Yang, Jian Zhang, Sha Yi, Guanya Shi, and Xiaolong Wang.
 679 Humanoid policy ~ human policy. In *9th Annual Conference on Robot Learning*, 2025. URL
<https://openreview.net/forum?id=Tx54fkQ3Cq>.

680

681 Ilija Radosavovic, Sarthak Kamat, Trevor Darrell, and Jitendra Malik. Learning humanoid locomo-
 682 tion over challenging terrain. *arXiv preprint arXiv:2410.03654*, 2024a.

683

684 Ilija Radosavovic, Bike Zhang, Baifeng Shi, Jathushan Rajasegaran, Sarthak Kamat, Trevor Darrell,
 685 Koushil Sreenath, and Jitendra Malik. Humanoid locomotion as next token prediction. *Advances
 686 in neural information processing systems*, 37:79307–79324, 2024b.

687

688 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 689 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

690

691 Carmelo Sferrazza, Dun-Ming Huang, Xingyu Lin, Youngwoon Lee, and Pieter Abbeel. Humanoid-
 692 bench: Simulated humanoid benchmark for whole-body locomotion and manipulation. *arXiv
 693 preprint arXiv:2403.10506*, 2024.

694

695 Omid Taheri, Nima Ghorbani, Michael J Black, and Dimitrios Tzionas. Grab: A dataset of whole-
 696 body human grasping of objects. In *European conference on computer vision*, pp. 581–600.
 697 Springer, 2020.

698

699 Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner, Steven Bohez, and
 700 Vincent Vanhoucke. Sim-to-real: Learning agile locomotion for quadruped robots. *arXiv preprint
 701 arXiv:1804.10332*, 2018.

702

703 Chen Tessler, Yunrong Guo, Ofir Nabati, Gal Chechik, and Xue Bin Peng. Maskedmimic: Uni-
 704 fied physics-based character control through masked motion inpainting. *ACM Transactions on
 705 Graphics (TOG)*, 43(6):1–21, 2024.

702 Andrea Tirinzoni, Ahmed Touati, Jesse Farebrother, Mateusz Guzek, Anssi Kanervisto, Yingchen
 703 Xu, Alessandro Lazaric, and Matteo Pirotta. Zero-shot whole-body humanoid control via behav-
 704 ior foundation models. In *The Thirteenth International Conference on Learning Representa-
 705 tions*, 2025. URL <https://openreview.net/forum?id=9s0R0nYltz>.

706 Takara E Truong, Qiayuan Liao, Xiaoyu Huang, Guy Tevet, C Karen Liu, and Koushil Sreenath.
 707 Beyondmimic: From motion tracking to versatile humanoid control via guided diffusion. *arXiv*
 708 *preprint arXiv:2508.08241*, 2025.

709

710 Shuhei Tsuchida, Satoru Fukayama, Masahiro Hamasaki, and Masataka Goto. Aist dance video
 711 database: Multi-genre, multi-dancer, and multi-camera database for dance information processing.
 712 In *ISMIR*, volume 1, pp. 6, 2019.

713 Nicolas Ugrinovic, Boxiao Pan, Georgios Pavlakos, Despoina Paschalidou, Bokui Shen, Jordi
 714 Sanchez-Riera, Francesc Moreno-Noguer, and Leonidas Guibas. Multiphys: Multi-person
 715 physics-aware 3d motion estimation. In *Proceedings of the IEEE/CVF Conference on Computer
 716 Vision and Pattern Recognition*, pp. 2331–2340, 2024.

717

718 Unitree Robotics. Unitree g1 humanoid robot. <https://www.unitree.com/g1>, 2025a. Ac-
 719 cessed: 2025-09-25.

720 Unitree Robotics. Unitree h1-2 humanoid robot. <https://www.unitree.com/h1>, 2025b.
 721 Accessed: 2025-09-25.

722

723 Nolan Wagener, Andrey Kolobov, Felipe Vieira Frujeri, Ricky Loynd, Ching-An Cheng, and
 724 Matthew Hausknecht. Mocapact: A multi-task dataset for simulated humanoid control. *Advances
 725 in Neural Information Processing Systems*, 35:35418–35431, 2022.

726 Yufu Wang, Ziyun Wang, Lingjie Liu, and Kostas Daniilidis. Tram: Global trajectory and motion of
 727 3d humans from in-the-wild videos. In *European Conference on Computer Vision*, pp. 467–487.
 728 Springer, 2024.

729

730 Weiji Xie, Jinrui Han, Jiakun Zheng, Huanyu Li, Xinzhe Liu, Jiyuan Shi, Weinan Zhang, Chen-
 731 jia Bai, and Xuelong Li. Kungfubot: Physics-based humanoid whole-body control for learning
 732 highly-dynamic skills. In *The Thirty-ninth Annual Conference on Neural Information Processing
 733 Systems*, 2025. URL <https://openreview.net/forum?id=LCPOxt0pzm>.

734 Vickie Ye, Georgios Pavlakos, Jitendra Malik, and Angjoo Kanazawa. Decoupling human and cam-
 735 era motion from videos in the wild. In *Proceedings of the IEEE/CVF conference on computer
 736 vision and pattern recognition*, pp. 21222–21232, 2023.

737

738 Ri Yu, Hwangpil Park, and Jehee Lee. Human dynamics from monocular video with dynamic
 739 camera movements. *ACM Transactions on Graphics (TOG)*, 40(6):1–14, 2021.

740

741 Kevin Zakka. Mink: Python inverse kinematics based on MuJoCo, May 2025. URL <https://github.com/kevinzakka/mink>.

742

743 Yanjie Ze, Zixuan Chen, JoĂśo Pedro AraĂšjo, Zi-ang Cao, Xue Bin Peng, Jiajun Wu, and C Karen
 744 Liu. Twist: Teleoperated whole-body imitation system. *arXiv preprint arXiv:2505.02833*, 2025.

745

746 Jiaxu Zhang, Junwu Weng, Di Kang, Fang Zhao, Shaoli Huang, Xuefei Zhe, Linchao Bao, Ying
 747 Shan, Jue Wang, and Zhigang Tu. Skinned motion retargeting with residual perception of motion
 748 semantics & geometry. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
 749 Pattern Recognition*, pp. 13864–13872, 2023.

750

751 Siwei Zhang, Qianli Ma, Yan Zhang, Zhiyin Qian, Taein Kwon, Marc Pollefeys, Federica Bogo, and
 752 Siyu Tang. Egobody: Human body shape and motion of interacting people from head-mounted
 753 devices. In *European conference on computer vision*, pp. 180–200. Springer, 2022.

754

755 Yuhong Zhang, Jing Lin, Ailing Zeng, Guanlin Wu, Shunlin Lu, Yurong Fu, Yuanhao Cai, Ruimao
 Zhang, Haoqian Wang, and Lei Zhang. Motion-x++: A large-scale multimodal 3d whole-body
 human motion dataset. *arXiv preprint arXiv:2501.05098*, 2025.

756 **APPENDIX**
757

759	A Details of PHUMA Dataset	16
760		
761	A.1 Data Preprocessing	16
762	A.1.1 Low-Pass Noise Filtering for Motion Data	16
763	A.1.2 Extracting Ground Contact Information	16
764	A.1.3 Filtering Motion Data by Physical Information	17
765		
766	A.2 Dataset Composition and Statistics	18
767		
768	A.3 Qualitative Comparison of Retargeting Methods	18
769		
770	B Details of Motion Imitation Learning	22
771		
772	B.1 Observation Space Compositions	22
773		
774	B.2 Reward Function	22
775		
776	B.3 PPO Hyperparameter	22
777		
778	C Experiment Details	24
779		
780	C.1 Self-Collected Video Dataset	24
781		
782	C.2 Success Rate Threshold Analysis	24
783		
784	C.3 Cross-Simulator Generalization Analysis	24
785		
786	D.1 Ablation Studies of Dataset	25
787		
788	D.1 Mocap only and Video only data performance	25
789		
790	D.2 Physics-based Filtering	25
791		
792	D.2.1 Data Distribution Based on Physics-based Filtering	26
793		
794	D.2.2 PhySINK’s Robustness to Noisy Motion Sources	26
795		
796	D.2.3 Effect of Physics-based Filtering on Imitation Performance	26
797		
798	D.3 Impact of Motion Retargeting Quality on Policy Performance	26
799		
800		
801		
802		
803		
804		
805		
806		
807		
808		
809		

810 A DETAILS OF PHUMA DATASET
811812 A.1 DATA PREPROCESSING
813814 Before applying inverse kinematics, it is essential to ensure that the human motion data is clean and
815 robust, as this data serves as the target for the humanoid robot to follow. Raw motion data often
816 contains noise from sensor errors, tracking inaccuracies, or estimation artifacts that can negatively
817 impact the retargeting process. To address these issues, we implement the following preprocessing
818 to filter and clean the motion data.819 A.1.1 LOW-PASS NOISE FILTERING FOR MOTION DATA
820821 All motion sequences were resampled to 30 Hz. We smooth all motion channels with a zero-phase,
822 4th-order Butterworth low-pass filter. For root translation the cutoff is 3 Hz; for global orientation
823 and body pose it is 6 Hz.825 A.1.2 EXTRACTING GROUND CONTACT INFORMATION
826827 We identify a subset of SMPL-X foot vertices that are most indicative of ground interaction. Specifically,
828 we select the 22 vertically lowest vertices from each foot region (left heel, left toe, right heel,
829 right toe) in the SMPL-X default pose, totaling 88 vertices. These vertices are illustrated in Figure 6.
830 The vertex indices corresponding to these ground-contact points are provided in Table 7.846 Figure 6: SMPL-X Foot Vertices for Ground-Contact Detection. This figure illustrates the selected
847 foot vertices on the SMPL-X model used to detect ground contact. Green and orange points
848 denote the left heel and left toe, while blue and pink represent the right heel and right toe,
849 respectively. The remaining foot vertices are shown in light-gray. The clusters of colored points correspond
850 to the specific parts of the foot that are used to check for contact with the ground, making the process
851 more accurate and robust than using a single point.852 Table 7: SMPL-X foot vertex indices used for ground-contact detection.
853

855 Region	856 Vertex indices
856 Left heel	8888, 8889, 8891, 8909, 8910, 8911, 8913, 8914, 8915, 8916, 8917, 8918, 8919, 8920, 8921, 8922, 8923, 8924, 8925, 8929, 8930, 8934
858 Left toe	5773, 5781, 5782, 5791, 5793, 5805, 5808, 5816, 5817, 5830, 5831, 5859, 5860, 5906, 5907, 5908, 5909, 5912, 5914, 5915, 5916, 5917
860 Right heel	8676, 8677, 8679, 8697, 8698, 8699, 8701, 8702, 8703, 8704, 8705, 8706, 8707, 8708, 8709, 8710, 8711, 8712, 8713, 8714, 8715, 8716
862 Right toe	8467, 8475, 8476, 8485, 8487, 8499, 8502, 8510, 8511, 8524, 8525, 8553, 8554, 8600, 8601, 8602, 8603, 8606, 8608, 8609, 8610, 8611

864
865
866
867
868
869
870
871
872
873
874
875
Table 8: Physics-aware data filtering metrics and thresholds.

Metric	Threshold
Root jerk	< 50 m/s ³
Foot contact score	> 0.6
Minimum pelvis height	> 0.6 m
Maximum pelvis height	< 1.5 m
Pelvis distance to base of support	< 6 cm
Spine1 distance to base of support	< 11 cm

876 To correctly place a motion, it is necessary to establish a single, consistent ground plane. Simple
877 heuristics often fail; defining the ground by the lowest foot position in the sequence can cause float-
878 ing, while per-frame adjustments introduce jitter. Our method solves this using a majority vote to
879 find the ground height that maximizes the duration of foot contact. In this scheme, each vertex on
880 the feet votes for a potential ground level. The height that gathers the most votes across the entire
881 sequence is selected, as this plane consistently has the most foot vertices near it. The entire motion
882 is then shifted to place this new ground at height zero.

883 Specifically, we first generate candidate ground coordinates. For each frame t , we find the minimum
884 vertical position among these 88 points and record it as a candidate coordinate for the ground plane,
885 g_t . Second, we evaluate each candidate g_t by counting the total number of foot vertices, across all
886 frames, that fall within its $\delta = 2.5$ cm tolerance band. We select the candidate g^* with the highest
887 count as the optimal ground plane and translate the entire sequence vertically to place g^* at the
888 origin.

889 890 A.1.3 FILTERING MOTION DATA BY PHYSICAL INFORMATION 891

892 We evaluate each segmented motion sub-clips based on the metrics summarized in Table 8. Motion
893 sub-clips failing to satisfy these thresholds are discarded.

894 **Root jerk** represents rapid changes in root acceleration, indicative of abrupt or unnatural motions.
895 High root jerk segments are excluded to ensure smooth and physically plausible trajectories.

896 **Foot contact score** measures the consistency and sufficiency of foot-ground interactions based on
897 graded ground-contact signals defined by vertex proximity to the ground. Specifically, given a sub-
898 clip with T frames, the foot contact score is computed as:

$$900 \quad 901 \quad \text{Foot contact score} = \frac{1}{T} \sum_{t=1}^T \max(c_t^{lh}, c_t^{lt}, c_t^{rh}, c_t^{rt}), \quad (11) \\ 902 \quad 903$$

904 where c_t^{lh} , c_t^{lt} , c_t^{rh} , and c_t^{rt} represent the graded ground-contact ratio at frame t for the left heel, left
905 toe, right heel, and right toe, respectively. A low foot contact score indicates significant penetration
906 or floating, both of which are undesirable artifacts. Note that motions involving airborne phases,
907 such as jumps, can easily satisfy this criterion as long as contact before and after the airborne phase
908 is consistent.

909 **Pelvis height** criteria exclude segments where the humanoid is unnaturally positioned. Specifically,
910 the minimum height criterion filters out motions that involve the humanoid being excessively
911 crouched or lying on the ground, while the maximum height criterion eliminates segments exhibiting
912 unnatural floating.

913 **Distance to the base of support** criteria ensure stable and physically plausible balance. Since the
914 SMPL-X model’s center of mass typically lies between the pelvis and spine1 joints, deviations of
915 these joints’ horizontal-plane projections from the base of support indicate imbalance or instability
916 infeasible for humanoids. The base of support is defined as the convex hull formed by the horizontal-
917 plane projections of the left foot, right foot, left ankle, and right ankle joints.

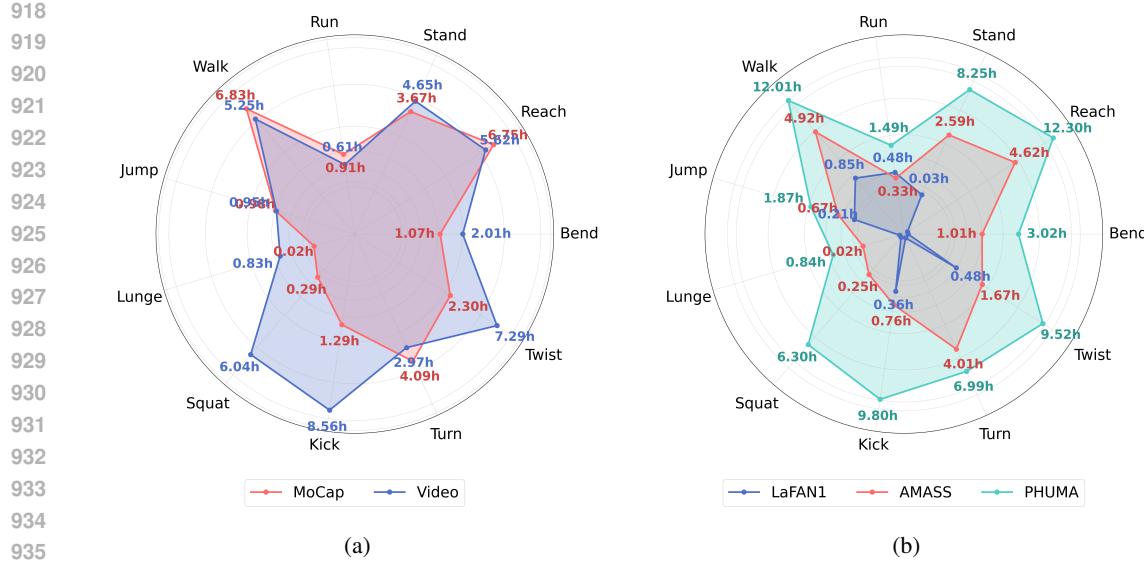


Figure 7: **Comparison of Motion Distributions.** (a) Comparison between MoCap and Video sources in PHUMA. (b) Comparison with other existing datasets.

A.2 DATASET COMPOSITION AND STATISTICS

This section presents the detailed motion statistics of PHUMA. As we collect the motion data from diverse sources, from MoCap data to video, PHUMA results in a well-balanced motion distribution that avoids domination by specific motion types. Figure 7b demonstrates that PHUMA exhibits significantly more balanced motion coverage compared to existing datasets. While LaFAN1 and AMASS show uneven distributions with some motion types having very limited motions, lacking certain motion categories entirely (such as reach, bend, and squat motions), or being heavily dominated by specific motions (reach, turn, and walk), PHUMA provides more balanced coverage across all motion categories with substantially more examples per motion type.

This improved diversity and scale directly translate to better imitation performance. Table 4 demonstrates that a policy trained on PHUMA achieves superior overall performance on unseen motions compared to policies trained on other datasets. The results also show consistent performance improvements across all individual motion categories. The results confirm that the enhanced dataset composition benefits generalization across all diverse movement types, indicating that the balanced motion distribution of PHUMA leads to more robust imitation policies.

A.3 QUALITATIVE COMPARISON OF RETARGETING METHODS

To provide an intuitive comparison of different retargeting approaches, we present qualitative results in Figure 8. Using a walking motion as an example, we demonstrate the distinct characteristics and limitations of each method.

Traditional inverse kinematics (IK) prioritizes matching end-effector positions, such as hands and feet, from rigidly scaled human motions. However, this approach produces unnatural locomotion patterns where the humanoid appears to walk on a tightrope rather than exhibiting a natural human-like gait. This occurs because the fixed scaling cannot account for the proportional differences between human and robot morphologies.

Learning-based inverse kinematics (SINK) generates more natural-looking walking motions compared to traditional IK by optimizing body proportions. However, SINK suffers from physical violations that compromise motion realism. Common issues include foot penetration through the ground surface and fixed ankle angles that result from the lack of explicit contact constraints during the retargeting process.

972
 973 **Table 9: Imitation Performance: GMR vs. PhySINK Retargeting on Unitree G1.** We evaluate
 974 the imitation performance of the MaskedMimic policy trained using datasets retargeted with GMR
 975 and PhySINK on the Unitree G1.

976 977 Dataset	PHUMA Test					Unseen Video				
	Total	Stationary	Angular	Vertical	Horizontal	Total	Stationary	Angular	Vertical	Horizontal
GMR	84.0	92.1	77.8	77.1	89.1	75.2	99.1	77.8	61.7	52.7
PhySINK	89.9	94.2	87.6	84.2	91.8	81.7	97.4	86.7	61.7	71.4

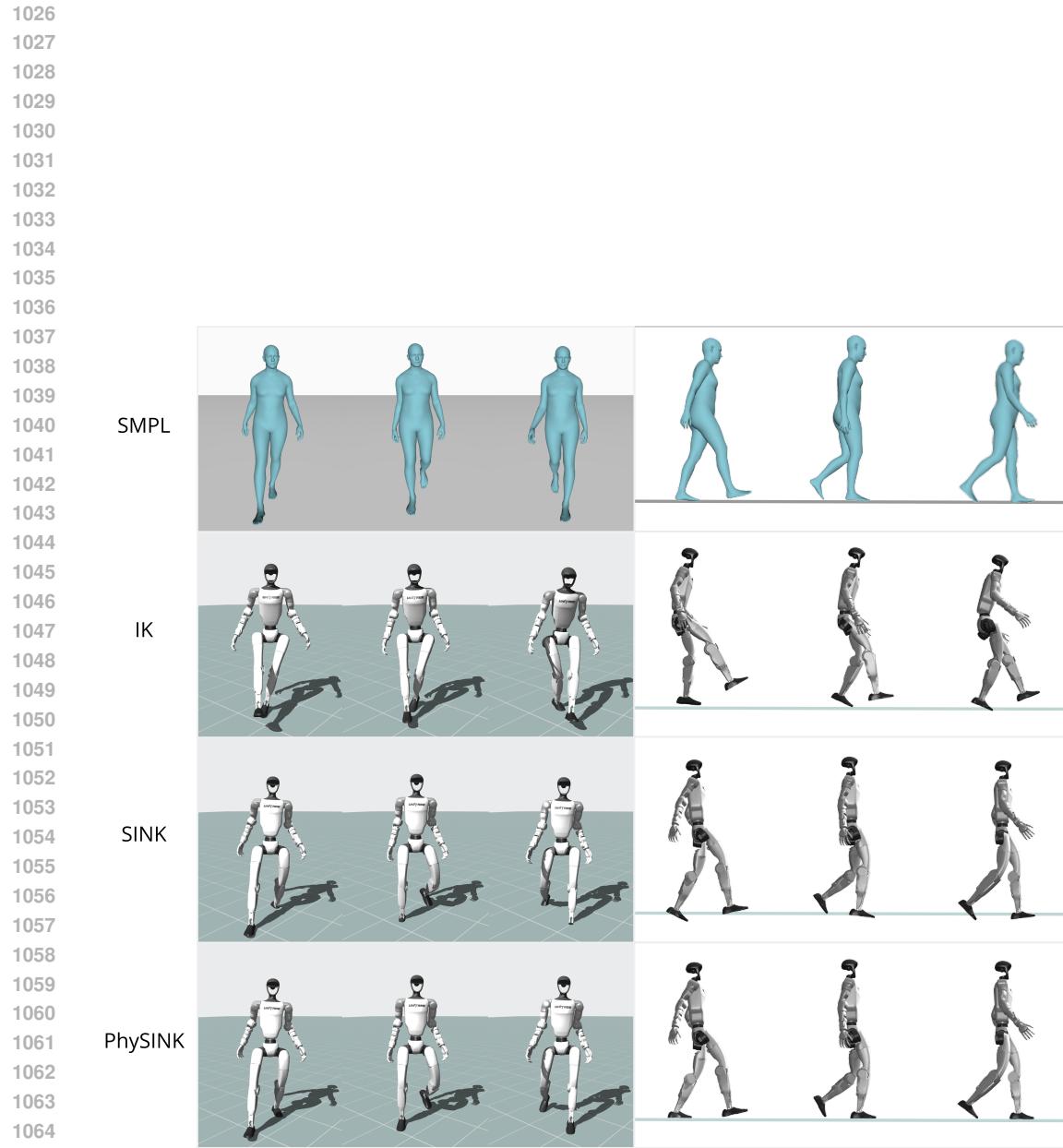
980
 981 In contrast, our proposed PhySINK method achieves both natural movement patterns and physical
 982 plausibility. The resulting motions maintain appropriate ankle angles while ensuring proper ground
 983 contact, demonstrating that PhySINK successfully balances motion naturalness with physical
 984 constraints. This improvement stems from the incorporation of explicit physical constraint terms in the
 985 optimization objective.

986
 987 We also compare the motion retargeting results of GMR (Araujo et al., 2025), an optimization-
 988 based Inverse Kinematics approach, and PhySINK. The fundamental difference lies in how each
 989 method generates the intermediate target motion—transforming the source human motion to fit the
 990 humanoid’s kinematic structure. GMR adapts the target motion using a heuristic scaling approach.
 991 It first estimates the source subject’s height from the first component of the SMPL shape parameters
 992 (β). It then computes a scaling ratio between this estimated height and a pre-defined reference height
 993 (e.g., 1.8m). This ratio is applied as a multiplier to a set of manually tuned scaling factors for each
 994 limb. Mathematically, if the reference height is H_{ref} and the subject’s estimated height is H_{src} ,
 995 the scaling ratio is $r = H_{src}/H_{ref}$. For a given limb (e.g., wrist) with a relative position vector
 996 \mathbf{v}_{rel} from the pelvis and a manual scale factor s_{limb} , the scaled relative target becomes $\mathbf{v}'_{target} =$
 997 $s_{limb} \times r \times \mathbf{v}_{rel}$. The global target position is then reconstructed by adding this vector to the scaled
 998 global root position. In contrast, PhySINK adapts the target motion by optimizing the human shape
 999 itself to fit the humanoid. Instead of relying on scalar heuristics, PhySINK optimizes the SMPL
 1000 shape parameters (β) to minimize the discrepancy between the human’s keypoint positions and the
 1001 humanoid’s keypoints in a shared T-pose. These optimized shape parameters are then applied to the
 1002 original motion sequence, preserving the original joint angles while naturally adjusting limb lengths
 1003 to match the robot. Following target generation, the methods differ in execution: GMR utilizes a
 1004 standard IK solver to track the scaled keypoints, whereas PhySINK finds optimal joint angles by
 1005 minimizing the physics-informed losses described in the method section.

1006 While GMR performs well for average-sized humans, its linear scaling heuristic fails to generalize
 1007 across diverse human shapes. As shown in Figure 9, GMR struggles with significant height devia-
 1008 tions. For example, for short humans, GMR generates undersized targets that force the robot into a
 1009 crouched state (over-bent knees) even during standing motions. And for tall humans, GMR gen-
 1010 erates oversized targets beyond the robot’s reach, causing the robot to walk with unnaturally locked
 1011 knees and often leading to floating artifacts where feet lose contact with the ground. In contrast,
 1012 PhySINK’s approach—applying the original human motion’s joint angles with an optimized, robot-
 1013 matched shape—fully reflects the original motion’s kinematics. This allows PhySINK to faithfully
 1014 reproduce the intended motion and natural joint movements (e.g., natural knee flexion) regardless of
 1015 the source subject’s height or limb proportions, ensuring robust generalization.

1016 To validate that GMR affects the training of motion tracking policy, we apply GMR to retarget
 1017 the same motion sources used in PHUMA, excluding LaFAN1 (Harvey et al., 2020) and LocoMu-
 1018 JoCo (Al-Hafez et al., 2023), which are already pre-retargeted. We then train a MaskedMimic policy
 1019 using the GMR-retargeted dataset, following the same training procedure described in the experi-
 1020 ment section. As shown in Table 9, the policy trained with PhySINK-retargeted data achieves better
 1021 imitation performance on both and Unseen Video benchmarks compared to the GMR-retargeted
 1022 counterpart. This performance gap can be attributed to PhySINK’s superior retargeting quality, as
 1023 demonstrated in Table 2.

1024
 1025



1066 **Figure 8: Qualitative Comparison of Retargeting Methods.** This figure provides a visual compari-
 1067 son of human motion retargeted to a humanoid robot using the IK, SINK, and PhySINK methods.
 1068 The top row shows the original human motion from the SMPL model, while the rows below show
 1069 the resulting motions for each retargeting method.

1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079

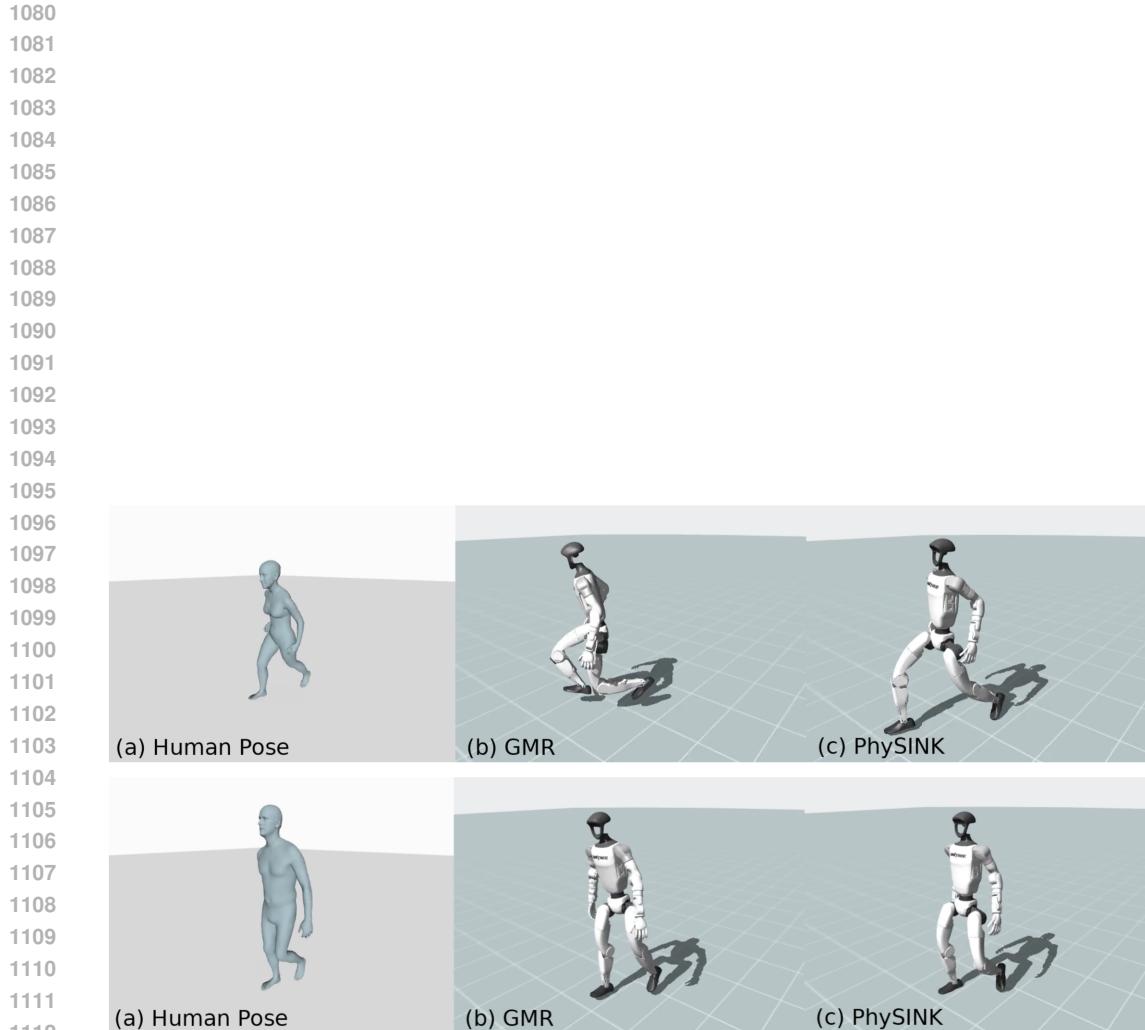


Figure 9: **Qualitative Comparison of Motion Retargeting: GMR vs. PhySINK.** Comparison showing the limitations of GMR when handling extreme human heights. The top row illustrates retargeting from a short subject, where GMR causes excessive motion compression and crouching. The bottom row illustrates retargeting from a tall subject, where GMR generates infeasible targets, resulting in artifacts like joint locking (e.g., rigid knees) and loss of ground contact. PhySINK maintains kinematic feasibility in both cases.

1134 **B DETAILS OF MOTION IMITATION LEARNING**
11351136 **B.1 OBSERVATION SPACE COMPOSITIONS**
11371138 This section provides detailed information about the observation space composition used in our
1139 experimental setup, as summarized in Table 10. The observation space consists of two main compo-
1140 nents: proprioceptive states and goal states.
11411142 **Proprioceptive States.** The proprioceptive information includes root height, body positions, body
1143 rotations, body velocities, and body angular velocities. The Unitree G1 and H1-2 robots have 33 and
1144 25 bodies, respectively. For body positions, the root body is excluded from the position measure-
1145 ments.
11461147 **Goal States.** The goal states comprise both relative and absolute body positions and rotations. The
1148 relative component represents the difference between the future 15 timesteps of reference motion
1149 states and the current proprioceptive state. The absolute component represents states relative to the
1150 reference motion’s root position, providing a root-relative coordinate frame for the target motion.
11511152 **Table 10: Observation Space Dimensions**
1153

1154 State	1153 Dimension	
	1155 G1	1156 H1-2
1157 (a) Proprioceptive State		
1158 Root height	1	1
1159 Body position	32×3	24×3
1160 Body rotation	33×6	25×6
1161 Body velocity	33×3	25×3
1162 Body angular velocity	33×3	25×3
1163 (b) Goal State		
1164 Relative body position	$33 \times 15 \times 3$	$25 \times 15 \times 3$
1165 Absolute body position	$33 \times 15 \times 3$	$25 \times 15 \times 3$
1166 Relative body rotation	$33 \times 15 \times 6$	$25 \times 15 \times 6$
1167 Absolute body rotation	$33 \times 15 \times 6$	$25 \times 15 \times 6$
1168 Time	$33 \times 15 \times 1$	$25 \times 15 \times 1$
1169 Total dim	9898	7498

1170 **B.2 REWARD FUNCTION**
11711172 The reward function used for training the tracking policy consists of multiple components, as de-
1173 tailed in Table 11. The overall reward structure comprises two main categories: motion tracking task
1174 rewards and regularization rewards.
11751176 **Motion Tracking Rewards.** These components encourage the policy to match the reference mo-
1177 tion by providing higher rewards when the robot’s proprioceptive states closely resemble the target
1178 motion states.
11791180 **Regularization Rewards.** To promote smooth and stable motion execution, we include regulariza-
1181 tion terms that penalize undesirable behaviors. Specifically, we augment the standard MaskedMimic
1182 reward formulation with action rate penalties that discourage large changes between consecutive
1183 actions, helping to ensure smooth joint movements and prevent abrupt motion transitions.
11841185 **B.3 PPO HYPERPARAMETER**
1186

1187 The detailed hyperparameter configuration used for PPO training is provided in Table 12.

Table 11: Reward function terms for training

Term	Expression	Weight
(a) Task		
Global body position	$\exp(-100 \cdot \ p_t - \hat{p}_t\ _2^2)$	0.5
Root height	$\exp(-100 \cdot (h_t^{\text{root}} - \hat{h}_t^{\text{root}})^2)$	0.2
Global body rotation	$\exp(-10 \cdot \ \theta_t \ominus \hat{\theta}_t\ _2^2)$	0.3
Global body velocity	$\exp(-0.5 \cdot \ v_t - \hat{v}_t\ _2^2)$	0.1
Global body angular velocity	$\exp(-0.1 \cdot \ \omega_t - \hat{\omega}_t\ _2^2)$	0.1
(b) Regularization		
Power consumption	$\ F \odot \dot{q}\ _1$	-1e-05
Action rate	$\ a_t - a_{t-1}\ _2^2$	-0.2

Table 12: PPO Hyperparameter Values for Model Training

Hyperparameter	Value
Optimizer	Adam
Num envs	8192
Mini Batches	32
Learning epochs	1
Entropy coefficient	0.0
Value loss coefficient	0.5
Clip param	0.2
Max grad norm	50.0
Init noise std	-2.9
Actor learning rate	2e-5
Critic learning rate	1e-4
GAE decay factor(λ)	0.95
GAE discount factor(γ)	0.99
Actor Transformer dimension	512
Actor layers	4
Actor heads	4
Critic MLP size	[1024, 1024, 1024, 1024]
Activation	ReLU

1242 **C EXPERIMENT DETAILS**
12431244 **C.1 SELF-COLLECTED VIDEO DATASET**
12451246 To ensure fair evaluation of imitation performance on unseen motions, we create a custom evaluation
1247 dataset using self-collected video recordings. This dataset contains motions uniformly distributed
1248 across the 11 motion types shown in Figure 7b, providing balanced coverage for comprehensive
1249 performance assessment.1250 The dataset creation process follows three main steps: (1) recording videos of human performers
1251 executing each motion type, (2) converting videos into SMPL human motion parameters using a
1252 video-to-motion model, and (3) retargeting the human motions to humanoid robot motions using
1253 our PhySINK method.1254 First, we record videos covering all 11 motion categories, collecting a uniform distribution for each
1255 type. We then apply the TRAM video-to-motion model (Wang et al., 2024) to extract SMPL motion
1256 parameters from the recorded videos. Finally, we process these SMPL motions with PhySINK re-
1257 targeting to generate physically plausible humanoid motions. Example results from this dataset are
1258 illustrated in Figure 10.1259 This self-collected evaluation set ensures that our performance assessments are conducted on com-
1260 pletely unseen motions that were not influenced by any training data sources, providing an unbiased
1261 evaluation of generalization capabilities.1272 **Figure 10: Overview of the Self-collected Data Pipeline.** This figure illustrates the three main steps
1273 of our data collection pipeline: (left) a self-recorded video of a human motion, (center) the motion
1274 extracted using a video-to-motion model, and (right) the final motion retargeted to a humanoid robot.
1275
12761277 **C.2 SUCCESS RATE THRESHOLD ANALYSIS**
12781279 To demonstrate the limitations of the conventional success rate threshold, we evaluate imitation
1280 performance using both the standard 0.5m threshold and our proposed stricter 0.15m threshold. This
1281 comparison reveals the true quality differences between policies trained on different datasets.1282 Tables 13 and 14 present the results for both threshold settings. Under the loose 0.5m threshold,
1283 policies trained on different datasets show relatively similar success rates, with differences appear-
1284 ing modest. However, when evaluated with the stricter 0.15m threshold, performance differences
1285 become substantially more pronounced.1286 These results confirm that PHUMA-trained policies achieve more precise motion tracking, produc-
1287 ing imitations that remain accurate even under stringent evaluation criteria. The threshold analysis
1288 validates our choice to adopt the 0.15m threshold as a more meaningful measure of imitation quality.
1289
12901291 **C.3 CROSS-SIMULATOR GENERALIZATION ANALYSIS**
12921293 To evaluate whether cross-simulator transfer, we trained the KungfuBot(Han et al., 2025) policy in
1294 Isaac Gym using an MLP architecture, which has demonstrated strong sim-to-real transfer capa-
1295 bilities. We compared two training configurations: one using AMASS with SINK retargeting and
another using PHUMA. For both configurations, we followed the standard KungfuBot (Han et al.,

Table 13: Performance Comparison based on Success Threshold in PHUMA Test

Dataset	Hours	Success Threshold=0.15m					Success Threshold=0.5m				
		Total	Stationary	Angular	Vertical	Horizontal	Total	Stationary	Angular	Vertical	Horizontal
(a) G1											
LaFAN1	2.4	46.1	66.1	36.2	24.0	42.5	74.8	87.8	69.2	47.1	72.6
AMASS	20.9	76.2	88.5	72.1	56.8	66.8	90.2	95.0	87.9	81.1	83.7
Humanoid-X	231.4	50.6	78.4	43.0	26.0	31.8	78.4	91.3	72.9	59.5	65.9
PHUMA	73.0	92.7	95.6	91.7	86.0	85.6	97.1	98.7	96.5	94.4	92.5
(b) H1-2											
LaFAN1	2.4	62.0	79.3	54.7	26.6	58.9	70.8	92.4	66.7	56.4	68.2
AMASS	20.9	54.4	74.9	45.9	17.2	49.6	70.4	86.3	62.6	41.4	65.9
Humanoid-X	231.4	49.7	74.6	40.4	17.0	37.3	54.8	78.5	45.2	22.1	43.2
PHUMA	73.0	82.7	91.5	79.5	68.1	68.4	92.0	96.6	89.7	85.6	79.4

Table 14: Performance Comparison based on Success Threshold in Unseen Video

Dataset	Hours	Success Threshold=0.15m					Success Threshold=0.5m				
		Total	Stationary	Angular	Vertical	Horizontal	Total	Stationary	Angular	Vertical	Horizontal
(a) G1											
LaFAN1	2.4	28.4	46.9	28.4	19.6	10.5	78.2	85.5	70.8	76.3	80.8
AMASS	20.9	70.2	90.7	75.0	62.7	44.1	92.3	99.2	92.1	82.1	88.0
Humanoid-X	231.4	39.1	78.0	39.6	23.0	6.5	84.1	98.3	79.9	76.0	76.2
PHUMA	73.0	82.9	96.7	88.0	71.8	67.1	93.7	100.0	96.8	85.9	84.7
(b) H1-2											
LaFAN1	2.4	70.8	92.4	66.7	56.4	68.2	85.5	97.5	79.0	77.5	90.0
AMASS	20.9	64.3	87.3	59.7	46.0	63.9	80.4	93.3	69.9	72.8	89.0
Humanoid-X	231.4	60.5	88.3	60.0	48.7	39.7	68.7	93.3	65.1	60.2	50.5
PHUMA	73.0	78.6	97.5	76.8	74.5	63.8	89.9	99.2	89.4	84.6	83.9

2025) teacher-student training pipeline and evaluation metrics. Tables 15 and 16 present the teacher and student policy performance in the training simulator (Isaac Gym). The results show that policies trained with PHUMA achieve superior imitation performance, demonstrating that PHUMA’s benefits extend to other motion imitation algorithms. Importantly, this performance advantage also transfers to the evaluation simulator. Table 6 shows the zero-shot performance in MuJoCo, where the PHUMA-trained policy maintains its superiority across motion categories, indicating robust cross-simulator generalization.

D ABLATION STUDIES OF DATASET

D.1 MOCAP ONLY AND VIDEO ONLY DATA PERFORMANCE

To analyze the influence of the human motion source on the downstream motion tracking policy, we divide the PHUMA dataset into two distinct subsets: motions derived from motion capture (Mocap) and motions derived from video-to-motion estimation (Video-Sourced).

We leverage these subsets to train the MaskedMimic policy using identical hyperparameters in Section B. As demonstrated in Table 18, the policy trained with video-sourced PHUMA consistently yielded superior imitation performance across all motion categories compared to the policy trained with the mocap-sourced subset.

We attribute this result primarily to the significantly larger and broader motion distribution of the video-sourced data. As illustrated in Figure 7a, the video-sourced dataset covers a much broader range of motion types and contains nearly two times more data than the mocap-sourced dataset. Furthermore, as shown in Table 17, the PhySINK retargeting method ensures competitive motion quality for both subsets. Because the retargeting quality is similar, the dominant factor leading to the higher imitation performance is the larger size and greater diversity of the video-sourced dataset.

D.2 PHYSICS-BASED FILTERING

This section provides ablation studies on the physics-based filtering criteria used in data curation (Table 8) and the physics-constrained losses used in PhySINK.

1350
1351 Table 15: **Imitation Performance of the Kungfubot Teacher Policy in Isaac Gym.** We evaluate
1352 the imitation performance of Kungfubot teacher policy with unseen motions on the Unitree G1.
1353

Dataset	PHUMA Test					Unseen Video				
	Total	Stationary	Angular	Vertical	Horizontal	Total	Stationary	Angular	Vertical	Horizontal
AMASS	77.8	90.8	71.2	58.3	84.7	83.5	100.0	83.3	74.5	72.5
PHUMA	91.0	96.4	88.3	87.6	90.5	87.1	99.1	89.2	77.7	76.9

1354
1355 Table 16: **Imitation Performance of the Kungfubot Student Policy in Isaac Gym.** We evaluate
1356 the imitation performance of Kungfubot teacher policy with unseen motions on the Unitree G1.
1357

Dataset	PHUMA Test					Unseen Video				
	Total	Stationary	Angular	Vertical	Horizontal	Total	Stationary	Angular	Vertical	Horizontal
AMASS	66.6	86.7	58.8	41.8	68.4	67.7	97.4	68.0	59.6	37.4
PHUMA	82.9	93.5	78.5	74.2	81.7	73.8	97.4	76.9	63.8	47.3

1358 Table 17: **Performance Evaluation of PHUMA based on Data Source (MoCap vs. Video).** We
1359 present a quantitative comparison evaluating the performance achieved using PHUMA data derived
1360 from motion capture (MoCap) versus video, concluding that both sources offer competitive results.
1361

	Motion Fidelity (%)	Joint Feasibility (%)	Non-Floating (%)	Non-Penetration (%)	Non-Skating (%)
MoCap	96.7	100.0	99.9	94.3	92.1
Video	93.8	100.0	99.9	98.0	88.3

D.2.1 DATA DISTRIBUTION BASED ON PHYSICS-BASED FILTERING

1372
1373 Figure 11 shows the filtering statistics when sequentially applying the physics-based criteria from
1374 Table 8 to Humanoid-X (Mao et al., 2025). The filters are applied in the following order: (1) root
1375 jerk filter ($\text{jerk} < 50\text{m/s}^3$), (2) contact filter (foot contact score > 0.6), (3) height filter (minimum
1376 pelvis height $> 0.6\text{m}$ and maximum pelvis height $< 1.5\text{m}$), and (4) base of support (BoS) filter
1377 (pelvis distance to BoS $< 6\text{cm}$ and spine1 distance to BoS $< 11\text{cm}$). After applying all filters
1378 sequentially, 27.1% of the original Humanoid-X dataset remains, representing motions that satisfy
1379 physical plausibility constraints.
1380

D.2.2 PHYSINK’S ROBUSTNESS TO NOISY MOTION SOURCES

1381
1382 To evaluate how robustly PhySINK handles noisy human motion inputs, we retarget Humanoid-X
1383 motion sources with varying levels of filtering: (1) raw Humanoid-X (no filtering), (2) Humanoid-X
1384 + jerk filtering, (3) Humanoid-X + foot contact filtering, (4) Humanoid-X + height filtering, (5)
1385 Humanoid-X + BoS filtering, and (6) Humanoid-X + all filters. We then apply PhySINK to each
1386 variant. Note that we exclude pre-retargeted datasets (LaFAN1 and LocoMuJoCo) from this analysis
1387 to isolate the effect of filtering on Humanoid-X. As shown in Table 19, PhySINK demonstrates
1388 robust retargeting performance across motion sources with varying noise levels, successfully han-
1389 dling physical implausibilities present in the raw data.
1390

D.2.3 EFFECT OF PHYSICS-BASED FILTERING ON IMITATION PERFORMANCE

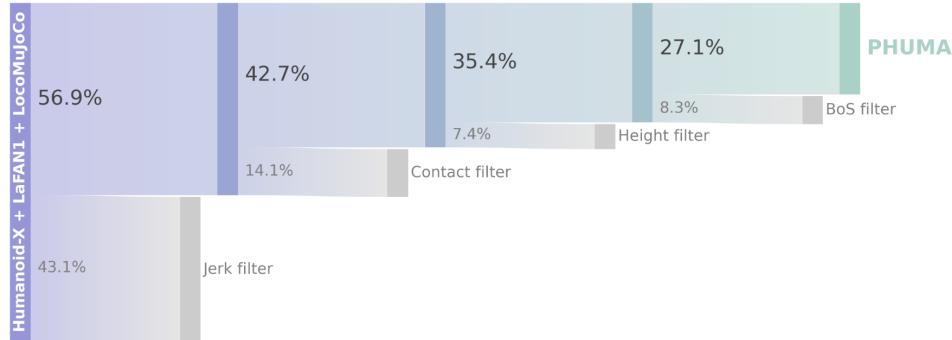
1391
1392 To evaluate how physics-based filtering affects motion tracking performance, we train MaskedMimic
1393 policies using the datasets described in Section D.2.2, following the same training protocol de-
1394 scribed in the experiment section. As shown in Table 20, policies trained on datasets with at least
1395 one physics-based filter achieve better imitation performance compared to those trained on unfiltered
1396 data. Furthermore, applying all filters to Humanoid-X yields the best performance, demonstrating
1397 the importance of physics-based motion curation for learning high-quality imitation policies.
1398

D.3 IMPACT OF MOTION RETARGETING QUALITY ON POLICY PERFORMANCE

1399
1400 To investigate how physical artifacts in retargeted motion data affect policy learning, we train
1401 MaskedMimic policies on datasets generated using six retargeting methods with varying artifact
1402

1404
 1405 **Table 18: Imitation Performance of PHUMA based on Data Source (MoCap vs. Video).** We
 1406 evaluate the imitation performance of MaskedMimic policy trained with PHUMA data derived from
 1407 motion capture (MoCap) versus video on the Unitree G1.

Dataset	PHUMA Test					Unseen Video				
	Total	Stationary	Angular	Vertical	Horizontal	Total	Stationary	Angular	Vertical	Horizontal
MoCap	75.2	88.2	68.4	49.0	86.9	73.0	96.6	73.9	56.4	58.2
Video	85.7	92.9	81.8	75.5	89.5	76.2	100.0	76.4	59.6	62.6



1424
 1425 **Figure 11: Dataset Statistics After Physics-based Filtering.** Distribution of motion sequences after
 1426 applying physics-based filtering to the combined Humanoid-X, LaFAN1, and LocoMuJoCo datasets.

1427
 1428 **Table 19: PhySINK Retargeting Robustness to Noisy Motion Sources.** This figure presents an
 1429 experiment to evaluate how robustly the PhySINK method retargets various noisy Humanoid-X mo-
 1430 tion sources. The six distinct motion source groups used for retargeting are compared: (1) Original
 1431 Humanoid-X, and Humanoid-X motion sources sequentially refined by applying (2) Jerk filtering,
 1432 (3) Foot Contact filtering, (4) Height filtering, (5) BoS filtering, and (6) All filtering (PHUMA).

Motion Source	Hours	Motion Fidelity (%)	Joint Feasibility (%)	Non-Floating (%)	Non-Penetration (%)	Non-Skating (%)
Humanoid-X	237.2	70.6	100.0	98.7	92.2	90.1
Jerk Filter	141.1	76.9	100.0	99.7	96.5	92.0
Foot Contact Filter	123.1	77.1	100.0	99.8	96.8	90.6
Height Filter	135.7	87.0	100.0	99.4	94.7	89.8
BoS Filter	110.3	90.7	100.0	99.4	94.9	90.0
All Filter	62.2	94.8	100.0	99.9	96.7	89.7

1440 levels (Table 2). The methods are: (1) **IK**, which produces significant artifacts in motion fidelity,
 1441 joint limits, grounding, and skating; (2) **GMR**, which reduces motion fidelity loss, grounding issues,
 1442 and skating compared to IK; (3) **SINK**, which improves motion fidelity and joint limit violations;
 1443 (4) **SINK + Joint Feasibility Loss**, which further reduces joint limit violations; (5) **SINK + Joint**
 1444 **Feasibility + Grounding Loss**, which addresses all artifact types except skating; and (6) **PhySINK**,
 1445 which minimizes all physical artifacts. To isolate the effect of retargeting quality, we exclude the
 1446 LaFAN1 and LocoMuJoCo datasets from this analysis, as they were pre-retargeted and would not
 1447 allow for fair comparison across methods.

1448 In Table 21, our results show that SINK-based methods, which first optimize the humanoid body
 1449 shape before applying it to the original motion, consistently outperform IK-based methods that rely
 1450 on heuristic scaling to bridge human-humanoid discrepancies. Notably, GMR achieves better per-
 1451 formance than IK despite having similar joint limit issues, while the SINK variants further outperform
 1452 GMR in tracking performance. However, across the SINK variants themselves (SINK, SINK + Joint
 1453 Feasibility Loss, SINK + Joint Feasibility + Grounding Loss), we observe comparable performance
 1454 despite their similar levels of motion fidelity, joint feasibility, and grounding quality—the main dif-
 1455 ferences among these variants being penetration and skating artifacts.

1456 These results indicate that motion fidelity is the most critical factor affecting motion tracking per-
 1457 formance. The substantial performance improvement of GMR over IK—achieved primarily through
 motion fidelity gains rather than joint feasibility improvements—demonstrates that preserving mo-

1458
 1459 **Table 20: Imitation Performance on Diverse Motion Sources.** We evaluate the imitation performance
 1460 of MaskedMimic policies trained on datasets with varying noise levels (described in Section
 1461 D.2.2) using the Unitree G1 robot.

1462

Motion Source	PHUMA Test					Unseen Video				
	Total	Stationary	Angular	Vertical	Horizontal	Total	Stationary	Angular	Vertical	Horizontal
Humanoid-X	85.7	92.6	82.2	75.5	89.5	75.4	96.6	81.3	58.5	52.7
Jerk Filter	87.1	93.1	83.2	80.4	90.9	78.8	100.0	76.8	64.9	70.3
Foot Contact Filter	88.2	93.9	84.9	81.8	90.5	78.6	95.7	82.3	61.7	65.9
Height Filter	86.9	93.0	83.2	81.6	88.9	77.2	94.8	79.8	59.6	67.0
BoS Filter	86.8	92.7	83.6	79.1	89.8	77.0	96.6	79.8	61.7	61.5
ALL Filter	89.9	94.2	87.6	84.2	91.8	81.7	97.4	86.7	61.7	71.4

1468

1469 **Table 21: Ablation Studies of Imitation Performance on Retargeting Loss.** We evaluate the imitation
 1470 performance of MaskedMimic policies trained with and without the physical constraint loss
 1471 (Table 2) using the Unitree G1 robot.

1472

Dataset	PHUMA Test					Unseen Video				
	Total	Stationary	Angular	Vertical	Horizontal	Total	Stationary	Angular	Vertical	Horizontal
IK	70.5	85.9	63.3	47.6	77.3	68.5	96.6	72.4	43.6	49.5
GMR	84.0	92.1	77.8	77.1	89.1	75.2	99.1	77.8	61.7	52.7
SINK	89.1	94.0	86.0	84.9	90.7	79.0	100.0	81.8	62.8	62.6
+ Joint Feasibility Loss	87.0	92.1	83.6	79.8	90.9	78.6	94.8	84.7	56.4	67.0
+ Grounding Loss	90.0	93.5	87.9	85.6	92.0	80.4	98.3	86.2	60.6	64.8
+ Skating Loss	89.9	94.2	87.6	84.2	91.8	81.7	97.4	86.7	61.7	71.4

1479

1480

1481 tion fidelity during retargeting has a greater impact on policy learning than other artifact types. How-
 1482 ever, once motion fidelity reaches a certain threshold (as in the SINK variants), further reductions in
 1483 other artifact types yield diminishing returns for policy learning.

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511