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Abstract1

Although data that can be naturally represented as graphs is widespread in real-2

world applications across diverse industries, popular graph ML benchmarks for3

node property prediction only cover a surprisingly narrow set of data domains,4

and graph neural networks (GNNs) are often evaluated on just a few academic5

citation networks. This issue is particularly pressing in light of the recent growing6

interest in designing graph foundation models. These models are supposed to7

be able to transfer to diverse graph datasets from different domains, and yet the8

proposed graph foundation models are often evaluated on a very limited set of9

datasets from narrow applications. To alleviate this issue, we introduce Graph-10

Land: a benchmark of 14 diverse graph datasets for node property prediction11

from a range of different industrial applications. GraphLand allows evaluating12

graph ML models on a wide range of graphs with diverse sizes, structural char-13

acteristics, and feature sets, all in a unified setting. Further, GraphLand allows14

investigating such previously underexplored research questions as how realistic15

temporal distributional shifts under transductive and inductive settings influence16

graph ML model performance. We evaluate a range of GNNs on GraphLand17

datasets and show that they significantly outperform graph-agnostic models in18

realistic settings. We also evaluate currently available general-purpose graph19

foundation models and find that they fail to produce competitive results on our20

proposed datasets.21

1 Introduction22

Recently, there has been a significant push for data-centric approaches in machine learning. In23

particular, high-quality, realistic, reliable, and diverse benchmarks are paramount for proper evaluation24

of the performance of machine learning methods. In the field of graph machine learning (GML), there25

has recently been a lot of criticism of existing popular benchmark datasets concerning such aspects as26

lacking practical relevance [1], low structural diversity that leaves most of the possible graph structure27

space not represented [2, 3], low application domain diversity [1], graph structure not being beneficial28

for the considered tasks [1, 4–6], potential bugs in the data collection processes leading to incorrect29

labels [7] and duplicated graph nodes [8]. While there have recently been efforts to create more30

realistic graph benchmarks, they focus on more specific domains (e.g., 3D molecular data) that require31

specialized models. At the same time, benchmarks for the standard and most widespread GML setting32

of node property prediction in a single large graph have received considerably less attention, and33

evaluation of the performance of classic graph neural networks and recent graph foundation models34

is still often limited to a few academic citation networks despite this setting and models developed35

for it having vast real-world applications in diverse industries.36

We believe the historical focus of GNN evaluation on academic citation networks, which represent37

only a single (and a rather narrow) application domain, is primarily a consequence of the availability38

of open data of this type, rather than its relevance to real-world applications. At the same time,39

some of the most classical and simultaneously practically important examples of real-world graphs —40
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social networks, web graphs, and road networks — are surprisingly rarely used for GNN evaluation,41

perhaps due to the lack of easily accessible high-quality datasets.42

Recently, there has been a lot of interest in developing graph foundation models (GFMs) — models43

that after large-scale pretraining can be applied to diverse graph datasets without or with minimal44

fine-tuning [9, 10]. Proper evaluation of such models thus requires the use of a diverse set of45

realistic graph datasets. However, currently the proposed GFMs are frequently evaluated only on46

text-attributed graphs (and mostly citation networks), thus overlooking the problem of transferring47

to graphs with different node feature sets, which is required for truly general GFMs as graphs in48

real-world applications from different domains often come with completely different node feature sets.49

It has been argued that due to the unavailability of diverse realistic industrial datasets for researchers50

it is worth shifting the evaluation of GML models to synthetic datasets [2, 11]. However, we believe51

that it is important to evaluate models on real-world data as much as possible, both to obtain unbiased52

estimates of model performance in realistic scenarios and to showcase the potential of GML in53

industrial applications. Thus, it is desirable to have open and easily accessible diverse and realistic54

graph datasets.55

In our work, we aim to alleviate the issue of a lack of realistic GNN benchmarks for node property56

prediction by introducing GraphLand: a collection of graphs and associated machine learning tasks57

collected from a variety of industrial applications that represent real-world GML usage. GraphLand58

significantly extends the set of available datasets for GML model evaluation, providing in a unified59

format 14 graph datasets, many of which represent applications or structural properties that have not60

been covered by standard GML benchmarks before. The datasets in GraphLand have been collected61

both from open data that has been underutilized or not utilized at all in the field of GML, and from62

newly released data from services of a large technological company for which the use of GML has63

internally proven its usefulness. A key feature of GraphLand is its diversity, with graphs spanning a64

wide range of domains, sizes, and structural properties, and having rich node features with different65

types, meanings, and distributions.66

For datasets in GraphLand, we provide several data splits, including a realistic temporal one, which67

allows for investigating practically important questions previously underexplored in GML literature:68

how temporal distributional shifts affect the performance of GML models in both transductive and69

inductive settings.70

We run extensive experiments on GraphLand datasets with a range of GNNs and several openly71

available GFMs. We find that GNNs can achieve great results in industrial applications with attention-72

based GNNs often performing better than more classic ones. However, their performance can be73

strongly affected by temporal distributional shifts and dynamically evolving graph structure, which74

highlights the importance of developing models more resilient to such changes. Further, we find that75

currently available GFMs perform poorly on our datasets and fail to achieve results competitive with76

more classic methods.77

We hope that GraphLand will allow more diverse and realistic evaluation of GML models, as well as78

encourage research into currently underexplored directions such as designing GML models that are79

more resilient to temporal distributional shifts and dynamically evolving graphs, and designing GFMs80

that are truly generalizable to graph data from different domains with different node feature sets.81

2 Limitations of Popular Graph Machine Learning Benchmarks82

By far the most popular datasets used in modern GML literature are the three academic citation83

networks cora, citeseer, and pubmed [12–16]. These datasets became so widespread perhaps84

because they were used by the foundational work on modern GNNs by Kipf and Welling [17].85

However, these datasets only cover a single and rather narrow application of paper subject prediction86

in citation networks. Another popular set of datasets for GML was introduced by Shchur et al.87

[18] and includes academic coauthorship networks coauthor-cs and coauthor-physics, and88

e-commerce co-purchasing networks amazon-computers and amazon-photo. However, all the89

aforementioned datasets together only cover three applications, while GML methods can be used90

in a much wider variety of settings. Later, larger-scale graph datasets were introduced in the Open91

Graph Benchmark (OGB) [19]. However, out of the five node property prediction datasets, three92

are academic citation networks (ogbn-arxiv, ogbn-mag, ogbn-papers100M) and one more is an93

e-commerce co-purchasing network (ogbn-products). Thus, OGB does not significantly expand the94
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range of real-world applications available for evaluating GML models. Further, all the aforementioned95

datasets only provide textual descriptions as node features. However, co-purchasing networks, which96

represent a very practically important application of GML, in realistic settings come with rich97

product metadata that can be represented as numerical and categorical features. There is currently98

a lack of datasets with such metadata available among popular GML benchmarks. Further, all the99

aforementioned datasets are homophilous, i.e., edges in them typically connect nodes of the same100

class. It has been shown by Huang et al. [20] that even very simple models can provide strong results101

in homophilous networks. Thus, it is important for standard GML benchmarks to also include a102

wide selection of non-homophilous graphs, i.e., graphs in which edges do not have the tendency to103

connect nodes of the same class. For a long time, the only popular source of non-homophilous graph104

datasets was the benchmark from Pei et al. [21]. However, it was recently shown by Platonov et al.105

[8] that these datasets have numerous problems including duplicated nodes, small size (leading to106

noisy evaluation metric estimates), and insufficient class representation (such as the texas dataset107

having a class that consists of only a single node). While Platonov et al. [8] introduced several new108

non-homophilous graph datasets, they were meant to be used to reliably reevaluate the performance109

of different models in absence of homophily, rather than represent realistic GML applications. Thus,110

some of these datasets are synthetic (minesweeper), semi-synthetic (roman-empire), or have111

limited node features despite the original data source potentially providing more information about112

the nodes (tolokers, questions).113

Overall, it can be seen that the currently popular graph datasets for node property prediction do not114

allow evaluating GNNs and other GML models on a wide range of practically impactful industrial115

applications.116

Text-attributed graphs and generalization of graph foundation models. Most of the datasets fre-117

quently used for node property prediction only have textual descriptions as node attributes. However,118

graphs representing real-world networks often have rich and diverse node attributes that go beyond119

just texts and encompass a variety of numerical and categorical features with different meanings and120

distributions. There has recently been a lot of interest in developing general-purpose GFMs that are121

expected to generalize to graphs from different domains [9, 10]. A key challenge for such GFMs122

is being able to adapt to graphs with different node feature sets which is required for a model truly123

generalizable to different domains. Yet, the GFMs that have been proposed in the current literature124

typically overlook this challenge and are often only evaluated on text-attributed graphs [22–24].125

Textual attributes can be easily projected to a common latent feature space by applying pretrained126

text encoders based on Large Language Models, thus allowing a single GFM to work with different127

text-attributed graphs. The prevalence of such text-attributed graphs in GML benchmarks has led to128

most of current GFM research overlooking the problem of generalization to different node feature129

sets, since it is not required to solve tasks from standard benchmarks. However, this problem is very130

important for real-world industrial applications of GML in which graphs often come attributed with a131

mixture of numerical and categorical node features. GFMs must therefore be able to work with such132

features to effectively solve practical tasks. The problem of devising a single foundation model that133

can work with arbitrary numerical and categorical features has received significant attention from the134

ML for tabular data community, where such features are standard, and first successful attempts to135

develop such a model have recently emerged [25–31]. However, these ideas have not yet spread to136

the GML community (likely because current standard GML benchmarks do not require working with137

non-textual node features) despite the significant benefits of designing a successful GFM that can138

handle arbitrary node feature sets for practical applications.139

3 GraphLand: A Collection of Diverse Industrial Graph Datasets140

GraphLand is a collection of 14 graph datasets with node property prediction tasks (either classifica-141

tion or regression). Some of these datasets are newly released for this benchmark, while others are142

collected from open data sources that are underutilized or not utilized at all in current GML bench-143

marking. In selecting datasets for GraphLand, we aim to fulfill the following desiderata: datasets144

should come from diverse fields representing impactful industrial applications of GML, graphs should145

exhibit a range of different sizes and structural characteristics, nodes should have rich features, graph146

structure should be beneficial for the considered tasks.147

Here we briefly describe our datasets, while detailed information is provided in Appendix A. First,148

we describe our newly released datasets. web-fraud, web-topics, and web-traffic represent149
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Table 1: Experimental results under the RL (random low) data split in the transductive setting. The
best result and those statistically indistinguishable from it are highlighted in orange. TLE stands for
time limit exceeded (24 hours); RTE stands for runtime error in the official code of GFMs.

(a) Results for classification datasets. Accuracy is reported for multiclass classification datasets and Average
Precision is reported for binary classification datasets.

multiclass classification binary classification

hm-categories pokec-regions web-topics tolokers-2 city-reviews artnet-exp web-fraud

best const. pred. 19.46± 0.00 3.77± 0.00 28.36± 0.00 21.82± 0.00 12.09± 0.00 10.00± 0.00 0.66± 0.00
ResMLP 37.72± 0.18 4.88± 0.01 42.41± 0.02 41.16± 1.13 71.32± 0.11 35.07± 2.34 8.77± 0.18

GCN 61.70± 0.35 34.96± 0.38 46.45± 0.10 51.32± 0.96 77.15± 0.28 43.09± 0.38 10.02± 0.18
GraphSAGE 56.75± 0.53 37.88± 0.41 47.41± 0.13 53.73± 0.53 77.82± 0.13 42.65± 0.59 12.11± 0.23
GAT 67.96± 0.33 46.17± 0.32 48.25± 0.05 53.78± 1.34 77.67± 0.13 46.62± 0.32 13.32± 0.29
GT 69.23± 0.50 46.47± 0.16 48.00± 0.05 54.50± 1.20 76.97± 0.21 45.16± 0.46 12.74± 0.42

OpenGraph (ICL) 9.49± 0.93 1.73± 0.31 RTE 40.49± 0.31 58.44± 1.08 15.65± 1.23 RTE
AnyGraph (ICL) 15.47± 2.36 24.65± 1.51 6.67± 3.88 31.33± 2.89 64.37± 1.29 13.14± 1.15 0.68± 0.03
GCOPE (FT) 19.51± 0.07 TLE TLE 28.67± 1.42 67.38± 1.23 16.10± 2.79 TLE

(b) Results for regression datasets. R2 is reported for all datasets.

hm-prices avazu-ctr city-roads-M city-roads-L twitch-views artnet-views web-traffic

best const. pred. 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00
ResMLP 62.66± 0.37 24.54± 0.36 54.77± 0.15 46.47± 0.29 13.35± 0.02 29.71± 0.60 72.42± 0.05

GCN 69.76± 0.38 30.47± 0.27 59.05± 0.16 53.26± 0.14 75.55± 0.05 55.99± 0.26 82.07± 0.14
GraphSAGE 70.54± 0.21 31.84± 0.24 57.51± 0.53 52.43± 0.25 66.87± 0.11 49.79± 0.51 83.50± 0.11
GAT 73.17± 0.50 33.20± 0.20 59.11± 0.20 53.43± 0.20 72.93± 0.17 53.36± 0.78 84.68± 0.06
GT 71.87± 0.65 30.87± 0.47 58.05± 0.58 53.38± 0.12 72.19± 0.14 54.23± 0.22 84.49± 0.07

a part of the Internet (web-graph). artnet-views and artnet-exp represent a social network150

of art creators. city-roads-M and city-roads-L represent road networks of two major cities.151

city-reviews represents a network of users of a review of places and organizations service. Further,152

we describe datasets obtained from open sources that were previously underutilized. hm-categories153

and hm-prices represent co-purchasing networks. avazu-ctr represents a network of devices154

from which advertisements can be viewed. pokec-regions represents a large social networks.155

twitch-views represents a network of content streamers. tolokers-2 represents a network of156

crowdsourcing platform workers.157

For each dataset, we prepare several different train/val/test splits. Random-low (RL) and random-158

high RH are random splits with low and high labeled rates. Temporal-high TH is a temporal split.159

Additionally, temporal-high/inductive (THI) setting allows evaluation models under an inductive160

settings by presenting different snapshots of dynamically evolving networks for train, val, and test.161

More details on our data splits are provided in Appendix C162

4 Experiments163

In Table 1 we present our experimental results for the RL split. It can be seen that classic GNNs164

(GCN [17] and GraphSAGE[32]) demonstrate strong results significantly outperforming graph-165

agnostic model ResMLP and demonstrating the potential of GNNs in industrial applications. Attention166

augmented GNNs GAT [33] and neighborhood-attention Graph Transformer (GT) [34] also produce167

strong results often outperforming classic GNNs. Further, we evaluate currently openly available168

GFMs. Despite a lot of works proposing different GFMs, we find only three open models that can169

perform node classification in graphs with arbitrary node features (OpenGraph [35], AnyGraph[36],170

GCOPE [37]) and none that can perform node regression. In our experiments, these models produce171

poor results and cannot compete with classic GNNs.172

We present results for other splits in Appendix D where we show that GNN performance significantly173

decreases under temporal distributional shifts and in the inductive setting, suggesting adaptation of174

models to these realistic settings is an important direction for future research.175

We hope GraphLand will encourage the evaluation of GML methods under more realistic and diverse176

settings, the development of GML methods that are more resilient to temporal distributional shifts177

and dynamically changing graph structure, and the development of more consistently performing178

GFMs that can handle different node feature sets that go beyond just textual descriptions.179
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A GraphLand Benchmark Details354

A.1 Dataset descriptions355

In this section, we provide a more detailed description of the GraphLand datasets. Note that none of356

the proposed datasets contain any personal information. For review purposes, our datasets can be357

found at this anonymous Kaggle storage, while data format description and our code can be found at358

this anonymous repository.359

web-fraud, web-topics, and web-traffic These three datasets are web-graphs — they360

represent a segment of the Internet. The nodes are websites, and a directed edge connects two nodes361

if at least one user followed a link from one website to the other in a selected period of time. We362

prepared three datasets with the same graph but different tasks: in web-fraud, the task is to predict363

which websites are fraudulent (strongly imbalanced binary classification); in web-topics, the task is364

to predict the topic that a website belongs to (multiclass classification); and in web-traffic, the task365

is to predict how many users visited a website in a specific period of time (regression). With almost366

3 million nodes, this is one of the largest publicly available attributed graphs that is not a citation367

network. Nodes in this graph have more than two hundred features, examples of which include the368

number of videos on the website (numerical feature), the website’s zone and whether the website is369

on a free hosting (categorical features).370

artnet-views and artnet-exp These two datasets represent a social network of art creators.371

The nodes are users, and an edge connects two nodes if the users are friends. We prepared two372

datasets with the same graph but different tasks: in artnet-views, the task is to predict how many373

views a user receives in a specific period of time (regression); and in artnet-exp, the task is to374

predict which users create explicit art content (binary classification). The examples of node features375

in this graph include user interests (categorical features).376

city-roads-M and city-roads-L These datasets are obtained from the logs of a navigation377

service and represent the road networks of two major cities, with the second one being several times378

larger than the first. The nodes are segments of roads, and a directed edge connects two nodes if379

the segments are incident to each other and moving from one segment to the other is permitted380

by traffic rules. The task is to predict the average travel speed on a road segment at a specific381

timestamp (regression). The features include various information about the road segment such as382

binary indicators of whether there is a bike dismount sign, whether the road segment ends with a383

crosswalk or a toll post, whether the road segment is in poor condition, whether it is restricted for384

trucks, and whether it has a mass transit lane (categorical features). The examples of numerical385

features are the length of the road and the geographic coordinates of the road endpoints.386

city-reviews This dataset is obtained from the logs of a review service in which users can leave387

reviews and ratings for places and organizations in two major cities. The nodes are users, and an388

edge connects two nodes if the users often leave reviews for the same organizations. The graph is389

undirected. The task is fraud detection — to predict which users leave fraudulent reviews (binary390

classification). The node features are based on user interactions with the service and their examples391

include the share of negative reviews among all reviews the user has left (numerical feature) and the392

browser that is used to access the service by the user (categorical feature).393

avazu-ctr This dataset is based on open data that has been introduced at the Kaggle competition394

organized by Avazu [38]. The data contains information about interactions between devices used395

to access the Internet, websites, and advertisements. In our graph, the nodes are devices, and an396

edge connects two nodes if the devices often visit the same websites. The graph is undirected. A397

smaller version of a similar dataset has been used by Ivanov and Prokhorenkova [39]; however, it398

contained only a small subset of devices, while for our dataset we collected data for all the available399

devices which makes our graph more than 50 times larger. The task is to predict the advertisement400

click-through rate (CTR) observed on devices (regression). Nodes in this graph have more than two401

hundred numerical features; however, most of them were anonymized in the original data source.402

hm-categories and hm-prices These datasets are based on open data that has been introduced403

at the Kaggle competition organized by H&M [40]. The graph represents a co-purchasing network.404

The nodes are products, and an edge connects two nodes if the products are often bought by the same405

customers. The graph is undirected. We prepared two datasets with the same graph but different406

tasks: in hm-categories, the task is to predict the product category (multiclass classification), and407

in hm-prices, the task is to predict the product price (regression). The node features in this dataset408
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include product metadata such as product color (categorical feature), as well as information obtained409

from product purchasing statistics such as what proportion of product purchases occurs on different410

weekdays (numerical features).411

pokec-regions This dataset is based on the data from Takac and Zabovsky [41]. It represents412

the online social network Pokec. The nodes are users, and a directed edge connects two nodes if413

one user has marked the other one as a friend. While this graph is quite popular in network analysis414

as an example of a classic social network, it is relatively rarely used for machine learning, with the415

exception of Lim et al. [42] who use the same graph as us but with different task, node features,416

and data split. In our dataset, the task is to predict which region a user is from (extreme multiclass417

classification with 183 classes). The node features in our dataset are based on user profile information,418

examples of them include the profile completion proportion (numerical feature) and binary indicators419

of whether different profile fields are filled (categorical features).420

twitch-views This dataset is based on the data from Rozemberczki and Sarkar [43]. It represents421

the live-streaming network Twitch. The nodes are users, and an edge connects two nodes if both422

users follow each other. The task is to predict how many views a user gets in a specific period of time423

(regression). The node features are based on user profile information and examples of them include424

user language and affiliate status (categorical features).425

tolokers-2 This is a new version of the dataset tolokers from Platonov et al. [8], Likhobaba426

et al. [44] with a significantly extended set of node features. It is based on the data from the Toloka427

crowdsourcing platform and the graph represents a network of tolokers (workers). The nodes are428

tolokers, and an edge connects two nodes if these tolokers have worked on the same task. The graph429

is undirected. The task is fraud detection — to predict which tolokers have been banned in one of430

the projects (binary classification). The new node features include various performance statistics431

of workers, such as the number of approved assignments and the number of skipped assignments432

(numerical features), as well as worker’s profile information, such as their education level (categorical433

feature).434

For all datasets, we provide random stratified RL and RH data splits. Further, we provide temporal435

TH data split (with the possibility of using the inductive learning setting THI) for all datasets with436

the exception of city-roads-M and city-roads-L datasets (since well-established road network437

graphs typically do not evolve over time significantly), as well as city-reviews and web-traffic438

datasets (since for them some of the necessary temporal information was not available).439

A.2 Dataset properties440

A key characteristic of our benchmark is its diversity. As described above, our graphs come from441

different domains and have different prediction tasks. Their edges are also constructed in different442

ways (based on user interactions, activity similarity, physical connections, etc.). However, the443

proposed datasets also differ in many other ways. Some properties of our graphs are presented in444

Table 2 (see below for the details on how the provided characteristics are defined). First, note that the445

sizes of our datasets range from 11K to 3M nodes. The smaller graphs can be suitable for compute-446

intensive models, while the larger graphs can provide a moderate scaling challenge. The average and447

median degrees of our graphs also vary significantly and our benchmark has both sparse and relatively448

dense graphs, including graphs with the average degree in the order of hundreds which is larger449

than the average degrees of most datasets used in current GML research (such graphs may highlight450

the importance of attention-based GNNs with their soft edge selection mechanisms). The average451

distance between two nodes in our graphs varies from 2.45 for hm-categories and hm-prices to452

194 for city-roads-L; and graph diameter (maximum distance) varies from 8 for twitch-views453

to 553 for city-roads-L. Further, we report the values of clustering coefficients which show how454

typical closed node triplets are for the graph. In the literature, there are two definitions of clustering455

coefficients [45]: the global clustering coefficient and the average local clustering coefficient. We456

have both graphs where the clustering coefficients are high and graphs where they are almost zero, as457

well as graphs where global and local clustering coefficients significantly disagree (which is possible458

for graphs with imbalanced degree distributions). The degree assortativity coefficient is defined as459

the Pearson correlation coefficient of degrees among pairs of linked nodes. For most of our graphs,460

the degree assortativity is either negative or close to zero, which means that nodes do not tend to461

connect to other nodes with similar degrees, while city-roads-M and city-roads-L datasets are462

the exceptions — for them the degree assortativity is positive and large.463
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Table 2: Characteristics of the proposed GraphLand datasets.
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# nodes 46.5K 1.6M 2.9M 11.8K 148.8K 50.4K 2.9M 46.5K 76.3K 57.1K 142.3K 168.1K 50.4K 2.9M
# edges 10.7M 22.3M 12.4M 519.0K 1.2M 280.3K 12.4M 10.7M 11.0M 107.1K 231.6K 6.8M 280.3K 12.4M
avg degree 460.92 27.32 8.56 88.28 15.66 11.12 8.56 460.92 288.04 3.75 3.26 80.87 11.12 8.56
median degree 45 13 2 30 4 2 2 45 71 4 3 32 2 2
avg distance 2.45 4.68 3.08 2.79 4.91 4.42 3.08 2.45 3.55 126.75 194.05 2.88 4.42 3.08
diameter 13 14 36 11 19 13 36 13 14 383 553 8 13 36
global clustering 0.27 0.05 0.00 0.23 0.26 0.03 0.00 0.27 0.24 0.00 0.00 0.02 0.03 0.00
avg local clustering 0.70 0.11 0.33 0.53 0.41 0.08 0.33 0.70 0.85 0.00 0.00 0.16 0.08 0.33
degree assortativity −0.35 0.00 −0.14 −0.08 0.01 0.03 −0.14 −0.35 −0.30 0.70 0.74 −0.09 0.03 −0.14

# classes 21 183 28 2 2 2 2 N/A N/A N/A N/A N/A N/A N/A
unbiased homophily 0.38 0.98 0.55 0.10 0.69 0.28 0.32 N/A N/A N/A N/A N/A N/A N/A
target assortativity N/A N/A N/A N/A N/A N/A N/A 0.12 0.18 0.74 0.72 −0.41 0.19 −0.21

# node features 35 56 263 16 37 75 266 41 260 26 26 4 50 267

Further, let us discuss the graph-label relationships in our datasets. To measure the similarity of labels464

of connected nodes for regression datasets, we use target assortativity — the Pearson correlation465

coefficient of target values between pairs of connected nodes. For instance, for the city-roads-M466

and city-roads-L datasets, the target assortativity is positive and quite large, which shows that467

nodes tend to connect to other nodes with similar target values (which is expected for the task of468

speed prediction in road networks), while for the twitch-views and web-traffic datasets, the469

target assortativity is negative. For classification datasets, the similarity of neighbors’ labels is470

usually called homophily: in homophilous datasets, nodes tend to connect to nodes of the same471

class. How to properly measure homophily has recently attracted some research. It has been noted472

by Lim et al. [42] and Platonov et al. [46] that homophily measures typically used in the literature —473

such as the proportion of edges connecting nodes of the same class — are not appropriate for474

comparing homophily levels between graphs with different numbers of classes and their size balance.475

Platonov et al. [46] proposed a set of properties that a homophily measure appropriate for use in476

such comparisons should satisfy and Mironov and Prokhorenkova [47] constructed the first known477

homophily measure that satisfies all these properties — unbiased homophily. Thus, in our work,478

we use unbiased homophily to measure the homophily levels of our datasets. Unbiased homophily479

(with α = 0, see Mironov and Prokhorenkova [47] for more details) takes values in [−1, 1] with480

1 indicating perfect homophily, −1 indicating perfect heterophily, and 0 indicating no preference481

between homophilous and heterophilous edges (such graphs are typically referred to as heterophilous482

in the literature, although a more appropriate term would be non-homophilous). Note that the values483

of unbiased homophily should not be compared to values of other homophily measures used in the484

literature; the unbiased homophily levels for some popular graph node classification datasets are485

provided in Mironov and Prokhorenkova [47]. Unbiased homophily indicates that among our datasets486

pokec-regions and city-reviews are homophilous, while the other ones are non-homophilous.487

Thus, our benchmark significantly expands the set of available non-homophilous graph datasets.488

Finally, our datasets have diverse sets of node features consisting of numerical and categorical features489

with different meanings and distributions. All our datasets except twitch-views and tolokers-2490

have at least several dozen node features, while some have several hundred node features.491

Overall, our datasets are diverse in domain, scale, structural properties, graph-label relations, and492

node attributes. Coming from real-world GML applications, they may serve as a valuable tool for the493

research and development of GML methods for the industry.494

Computing dataset characteristics. Further, we describe the characteristics that are used in Table 2.495

Note that, while some graphs in our benchmark are directed, we transformed all the graphs to be496

undirected before computing all the considered graph characteristics, since some of the characteristics497

are not defined for directed graphs.498

Average degree and median degree are the average and median numbers of neighbors a node has,499

respectively. Since all our graphs are connected (when treated as undirected graphs), for any two nodes500

there is a path between them. Average distance is the average length of the shortest paths between all501

pairs of nodes, while diameter is the maximum length of the shortest paths between all pairs of nodes.502
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For our largest graphs — the ones used for the pokec-regions, web-traffic, web-fraud, and503

web-topics datasets — we approximate average distance with an average over distances for 100K504

randomly sampled node pairs. Global clustering coefficient is computed as the tripled number of505

triangles divided by the number of pairs of adjacent edges (i.e., it is the fraction of closed triplets506

of nodes among all connected triplets). Average local clustering coefficient first computes the local507

clustering of each node, which is the fraction of connected pairs of its neighbors, and then averages508

the obtained values among all nodes. Degree assortativity is the Pearson correlation coefficient509

between the degrees of connected nodes. Further, target assortativity for regression datasets is the510

Pearson correlation coefficient between target values of connected nodes. For computing unbiased511

homophily, we follow Mironov and Prokhorenkova [47] and use the simplest version of this measure512

with the α parameter set to 0.513

B Data Splits and Experimental Settings514

In GML literature, there are two most popular settings for node property prediction regarding the515

relative sizes of train, validation, and test sets: one with a high label rate and one with a low label516

rate. In the high label rate setting, the train set encompasses 50% of all graph nodes or more. This517

setting is common in heterophilous benchmarks, e.g., it is used by datasets from Pei et al. [21]518

and Platonov et al. [8], and it is also used by most datasets from OGB [19]. In the low label rate519

setting, much smaller train set sizes are used (typically, no more than 10% of all graph nodes). This520

setting is commonly used with the classic cora, citeseer, pubmed citation networks, and it is also521

used by the ogbn-products dataset from OGB. Both of these settings can appear in real-world522

GML usage scenarios, depending on the resources available for data labeling. It is important to523

provide predetermined splits to ensure experiments in different works are run in the same setting524

and their results are comparable, but it is also important to accommodate different needs of different525

research projects. Thus, for datasets in our benchmark we provide fixed splits for both settings. We526

refer to these splits as the RL (random low) and RH (random high) splits. Specifically, the RL split527

randomly divides nodes into train/validation/test sets with 10%/10%/80% proportions, while the RH528

split randomly divides nodes into train/validation/test sets with 50%/25%/25% proportions.529

The RL and RH data splits are random, as is common in current GML benchmarks. However, in530

real-world applications, data splits are often temporal, i.e., the labeled objects are the ones that531

appeared in the network earlier, while the ones that appeared later are not labeled and belong to the532

test set. Despite their prevalence in applications, temporal splits are very rarely used in current GML533

node property prediction benchmarks. To the best of our knowledge, the only such datasets with534

temporal splits available are citation networks from OGB, which represent only a single application.535

At the same time, temporal data splits may significantly affect the prediction problem and the model536

performance, as they often result in distributional shifts between train, validation, and test data. While537

some types of distributional shifts have been previously explored in the GML literature, e.g., shifts538

in node features [48] and shifts in graph structure [49], realistic temporal distributional shifts often539

combine shifts in several aspects of data simultaneously (e.g., shifts in the distributions of node540

features, labels, and graph structural characteristics), and the effect of such realistic shifts on GML541

model performance is currently under-explored. To close this gap, we provide a temporal split for542

most datasets in our benchmark. We refer to this split as the TH (temporal high) split; it divides nodes543

into train/validation/test sets with 50%/25%/25% proportions, i.e., exactly the same proportions as544

in the RH split, which allows comparing model results between the RH and TH splits to see how the545

complexity of the task changes when temporal distributional shifts are introduced.546

Further, many real-world networks are not static, but evolve over time. Thus, in many applications,547

not only are there no labels available for nodes that appear in the network later, but the nodes548

themselves (with their attributes and incident edges) are not available at training time. This setting is549

known in GML as the inductive setting. In contrast to the transductive setting in which the whole550

graph is available at training time (including the nodes for which predictions should be made), in551

the inductive setting validation and test nodes are not available at training time. Despite temporally552

evolving graphs being common in practical applications, most standard node property prediction553

datasets only provide the transductive setting. While it is well-known that GNNs, in contrast to some554

other GML methods like shallow node embeddings, can work not only in the transductive but also555

in the inductive setting [32], it is not well-explored how the lack of complete graph information556

at training time in the inductive setting affects GNN performance. Moreover, when the inductive557

setting is used for GNN evaluation in the current literature, the validation and train nodes are typically558
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chosen randomly, which is not realistic, since in real-world applications the inductive setting is559

almost always induced by the temporal evolution of the graph. To fill this gap, for all datasets in560

our benchmark for which temporal information is available, we additionally provide the inductive561

experimental setting. We refer to this setting as THI (temporal high / inductive); it has the exact same562

data split as the transductive TH setting, but provides three snapshots of the graph: one for training,563

one for validation, and one for testing. This allows investigating how model performance changes564

between the transductive and the inductive setting. To the best of our knowledge, our work is the first565

to compare GNN performance between random and temporal data splits in the transductive setting566

under the same split ratios, and between transductive and inductive settings under the same temporal567

data split. This comparison allows us to investigate how much these differences can affect GNN568

performance.569

C Experimental Setup Details570

C.1 Models571

A graph-agnostic baseline. As a simple baseline, we use ResMLP — an MLP with skip-572

connections [50] and layer normalization [51]. This model does not have any information about the573

graph structure and operates on nodes as independent samples — we call such models graph-agnostic.574

It has been shown that such MLP-like models with skip-connections can serve as very strong baselines575

for industrial data with mixed numerical and categorical features [52].576

Graph neural networks. We consider several representative GNN architectures. First, we use577

GCN [17] and GraphSAGE [32] as simple classical GNN models. For GraphSAGE, we use the578

version with the mean aggregation function, and we do not use the neighbor sampling technique579

proposed in the original paper, instead training the model on the full graph, like all other GNNs580

in our experiments. Further, we use two GNNs with attention-based neighborhood aggregation581

functions: GAT [33] and Graph Transformer (GT) [34]. Note that GT is a local graph transformer,582

i.e., each node only attends to its neighbors in the graph (in contrast to global graph transformers,583

in which each node attends to all other nodes in the graph, and which are thus not instances of the584

standard message-passing neural networks (MPNNs) framework of Gilmer et al. [53]). Following585

Platonov et al. [8], we equip all the considered GNNs with skip-connections and layer normalization,586

which we found important for their strong performance on our datasets. We also add a two-layer587

MLP with the GELU activation function [54] after every neighborhood aggregation block in GNNs.588

Our graph models are implemented in the same codebase as our ResMLP — we simply swap each589

residual block of ResMLP with a residual neighborhood aggregation block of the selected GNN590

architecture. Therefore, comparing the performance of ResMLP and GNNs allows us to see if graph591

information is helpful for the task. Indeed, in our experiments, GNNs significantly outperform592

graph-agnostic ResMLP on all our datasets, confirming the usefulness of the provided graph structure593

for the considered tasks.594

Graph foundation models. Most currently available GFMs do not support node property prediction595

tasks in graphs with arbitrary node features. Of those that do, we were able to find only two models596

with open weights: OpenGraph [35] and AnyGraph [36]. Both OpenGraph and AnyGraph exploit the597

Transformer architecture and are pretrained with a link prediction objective on a mixture of different598

graph datasets. These methods differ in what data they can operate on. Specifically, OpenGraph599

only uses relational information and constructs node representations based on SVD factors of the600

adjacency matrix, while AnyGraph also uses the available node feature information and combines601

SVD factors for both the feature matrix and the adjacency matrix. Both these models were designed602

to be adapted to new node classification datasets without fine-tuning, using an in-context learning603

(ICL) setting instead. Specifically, they can perform link prediction in arbitrary graphs, and they604

cast any node classification task as a link prediction task where links to virtual nodes representing605

classes are predicted for unlabeled nodes. Further, we were able to reproduce the pretraining for606

one more GFM — GCOPE [37] (weights for this model are not publicly available, but training code607

is). GCOPE also applies a projection to node features (e.g., based on SVD or attention mechanism),608

but exploits additional virtual nodes as graph coordinators to simultaneously process different graph609

datasets at the pretraining stage. The authors use GraphCL [55] or SimGRACE [56] as the pretraining610

objective. In contrast to OpenGraph and AnyGraph, GCOPE uses fine-tuning for adaptation to new611
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node classification datasets. However, neither of the three models supports node regression. Further,612

we found that these GFMs cannot scale to large datasets.613

C.2 Experimental setup and hyperparameter selection details614

Some of the graphs in our benchmark are directed. For our experiments, we converted directed615

graphs to undirected ones (by replacing each directed edge with an undirected one and then removing616

duplicated edges). We leave investigation of different ways to consider edge directions to further617

research.618

We train all models 10 times with different random seeds to compute the mean and standard deviation619

of model performance, except for our largest datasets pokec-regions, web-traffic, web-fraud,620

web-topics, for which we train all models 5 times.621

We train all our GNNs in a full-batch setting, i.e., we do not use any subgraph sampling techniques622

and train the models on the full graph. Our ResMLP baseline is implemented in the same codebase623

as our GNNs and thus is also trained in the full-batch setting.624

Hyperparameter choice is extremely important for the performance of GNNs. Thus, we conducted625

hyperparameter search on the validation set for all models. Specifically, we found that the learning rate626

and dropout probability [57] are the most important hyperparameters for our GNN implementations627

on our datasets. Thus, we ran grid search selecting the learning rate from {3× 10−5, 1× 10−4, 3×628

10−4, 1× 10−3, 3× 10−3} and dropout probability from {0, 0.1, 0.2} (note that the highest learning629

rate of 3 × 10−3 often resulted in NaN issues, however, we still included it in our hyperparameter630

search, as in our preliminary experiments we found it to be beneficial for some of our dataset/model631

combinations). In our preliminary experiments we found that the performance of our GNNs is quite632

stable for a wide variety of reasonable architecture hyperparameter values (we found the use of633

skip-connections and layer normalization to be important for this stability). Hence, for our final634

experiments, we kept these hyperparameters fixed. We set these values as follows: the number of635

graph neighborhood aggregation blocks to 3 and the hidden dimension to 512. The only exceptions636

to this hidden dimension size were made for our largest datasets: to avoid GPU out-of-memory637

issues, we decreased the hidden dimension to 400 for pokec-regions and to 200 for web-traffic,638

web-fraud, and web-topics. For GNNs with attention-based graph neighborhood aggregation639

(GAT and GT), the number of attention heads was set to 4. We used the Adam optimizer [58] in all640

our GNN experiments. We trained each model for 1000 steps and then selected the best step based641

on the performance on the validation set.642

When applying deep learning models to data with numerical features, the preprocessing of these643

features is critically important. In our experiments, we considered two possible numerical feature644

transformation techniques: standard scaling and quantile transformation to standard normal distribu-645

tion. We included them in the hyperparameter search for ResMLP and GNNs. In contrast, GBDT646

models do not need specialized preprocessing for numerical features and are not affected by their647

monotonic transformations. For categorical features, we used one-hot encoding for all models except648

for LightGBM and CatBoost, which support the use of categorical features directly and have their649

specialized strategies for working with them (XGBoost also offers such a feature, but it is currently650

marked as experimental, and we were not able to make it work). For regression datasets, neural651

models might perform better if the target variable is transformed. Therefore, in our experiments on652

regression datasets with ResMLP and GNNs, we considered the options of using the original targets653

or preprocessing targets with standard scaling, including these two options in the hyperparameter654

search.655

Our GNNs are implemented using PyTorch [59] and DGL [60].656

D Additional Experimental Results657

In the main text, we report our experimental results for the RL setting. In this section, we present658

results for other settings. In Table 3 we report combined results for the RH, TH, and THI settings for659

those datasets that have temporal data split. Additionally, in Tables 4, 5, 6 we separately report results660

for the RH, TH, and THI settings, respectively. In all tables with results, for each dataset, we highlight661

with color the best result as well as those results for which the mean differs from the best one by no662

more than the sum of the two results’ standard deviations.663
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Table 3: Experimental results under the RH (random high), TH (temporal high), and THI (temporal high
/ inductive) settings. The best result and those statistically indistinguishable from it are highlighted in
red for RH, violet for TH, and blue for THI.

(a) Results for classification datasets. Accuracy is reported for multiclass classification datasets and Average
Precision is reported for binary classification datasets.

multiclass classification binary classification

hm-categories pokec-regions web-topics tolokers-2 artnet-exp web-fraud

RH 19.46± 0.00 3.77± 0.00 28.36± 0.00 21.82± 0.00 10.00± 0.00 0.66± 0.00
best const. pred. TH 19.57± 0.00 2.98± 0.00 23.28± 0.00 8.61± 0.00 7.84± 0.00 0.15± 0.00

THI 19.57± 0.00 2.98± 0.00 23.28± 0.00 8.61± 0.00 7.84± 0.00 0.15± 0.00

RH 43.12± 0.25 5.09± 0.01 44.55± 0.08 45.96± 0.46 43.55± 0.23 13.52± 0.21
ResMLP TH 32.44± 0.54 4.18± 0.01 35.49± 0.03 21.72± 6.69 37.48± 0.51 2.83± 0.26

THI 32.44± 0.54 4.18± 0.01 35.49± 0.03 21.72± 6.69 37.48± 0.51 2.83± 0.26

RH 73.38± 0.42 35.08± 0.62 48.88± 0.09 60.49± 0.86 49.80± 0.35 15.58± 0.20
GCN TH 56.91± 0.55 11.88± 0.31 38.20± 0.19 46.72± 1.19 40.64± 0.40 4.85± 1.42

THI 47.05± 1.69 6.88± 0.51 37.76± 0.06 32.43± 8.03 41.28± 0.28 3.44± 0.33

RH 73.34± 0.68 40.76± 0.21 50.05± 0.03 58.42± 0.92 48.49± 0.37 20.47± 0.17
GraphSAGE TH 59.62± 0.51 16.60± 0.28 39.00± 0.09 17.05± 7.65 40.50± 0.84 16.01± 2.22

THI 48.11± 2.08 8.04± 0.26 38.04± 0.18 30.86± 9.48 40.53± 0.40 13.88± 1.32

RH 79.19± 0.21 46.72± 0.69 50.54± 0.04 63.76± 1.30 50.62± 0.35 20.43± 0.21
GAT TH 61.28± 0.97 20.43± 0.55 39.24± 0.23 38.59± 6.19 41.85± 0.63 16.50± 1.14

THI 59.34± 1.09 13.38± 0.35 38.77± 0.35 24.53± 9.55 41.64± 0.32 11.98± 1.54

RH 79.28± 0.31 50.06± 0.53 50.58± 0.04 60.32± 1.21 49.32± 1.00 19.73± 0.34
GT TH 63.31± 0.45 25.09± 0.58 39.19± 0.15 34.15± 4.81 40.10± 0.60 11.97± 1.13

THI 59.54± 1.59 17.22± 0.42 38.78± 0.08 22.89± 10.4 40.26± 0.82 7.84± 2.35

RH 11.69± 0.84 2.56± 0.42 RTE 44.62± 1.35 23.72± 1.86 RTE
OpenGraph (ICL) TH 5.76± 1.03 0.80± 0.45 RTE 9.12± 1.74 16.19± 1.36 RTE

THI 5.76± 1.03 0.80± 0.45 RTE 9.12± 1.74 16.19± 1.36 RTE
RH 15.65± 2.82 27.67± 2.48 6.30± 2.82 30.21± 3.32 15.80± 1.90 0.67± 0.02

AnyGraph (ICL) TH 9.47± 1.13 9.20± 0.67 11.14± 5.16 13.52± 4.74 11.80± 1.01 0.16± 0.01
THI 9.47± 1.13 9.20± 0.67 11.14± 5.16 13.52± 4.74 11.80± 1.01 0.16± 0.01

RH 19.99± 0.12 TLE TLE 31.79± 1.95 23.86± 2.33 TLE
GCOPE (FT) TH 19.14± 0.58 TLE TLE 8.46± 1.15 20.83± 1.18 TLE

THI 15.69± 3.44 TLE TLE 10.73± 1.48 19.10± 0.96 TLE

(b) Results for regression datasets. R2 is reported for all datasets.

hm-prices avazu-ctr twitch-views artnet-views

RH 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00
best const. pred. TH −2.85± 0.00 0.00± 0.00 −22.31± 0.00 −9.32± 0.00

THI −2.85± 0.00 0.00± 0.00 −22.31± 0.00 −9.32± 0.00

RH 70.11± 0.48 28.03± 0.22 13.36± 0.01 36.10± 0.17
ResMLP TH 61.64± 0.79 20.35± 1.50 11.91± 8.00 42.15± 0.52

THI 61.64± 0.79 20.35± 1.50 11.91± 8.00 42.15± 0.52

RH 79.76± 0.76 34.96± 0.11 77.12± 0.11 61.02± 0.13
GCN TH 65.20± 0.84 37.49± 0.26 68.17± 0.24 54.44± 0.43

THI 64.31± 0.82 34.78± 0.48 63.58± 0.54 53.73± 0.47

RH 79.89± 0.46 35.20± 0.20 72.02± 0.16 56.65± 0.50
GraphSAGE TH 67.93± 1.24 38.38± 0.39 61.46± 0.68 51.87± 0.48

THI 65.80± 0.56 36.79± 0.55 56.60± 0.71 53.37± 0.30

RH 81.68± 0.41 35.74± 0.19 76.06± 0.30 59.01± 0.52
GAT TH 70.83± 0.99 39.21± 0.17 66.32± 0.59 52.30± 0.34

THI 69.74± 1.50 37.18± 1.02 61.41± 1.30 52.44± 0.59

RH 80.90± 0.42 34.38± 0.31 75.57± 0.15 58.97± 0.25
GT TH 69.70± 0.84 38.27± 0.27 65.83± 0.24 51.67± 0.54

THI 67.33± 2.05 36.49± 0.83 60.67± 1.02 52.26± 0.48

First, we notice that the observations from the results for the low label rate RL setting about the664

usefulness of graph structure, strong performance of classic and attention-based GNNs, and weak665

performance of GFMs also apply to high label rate settings. Next, we observe that temporal data666

splits are significantly more challenging for all models than random ones (with the exception of the667

avazu-ctr dataset). This is important as in real-world applications temporal distributional shifts are668

common, and not considering them can provide overly optimistic performance estimates. Further, the669

considered models perform significantly worse in the inductive setting than in the transductive one.670

These observations highlight the importance of developing GML methods that are more resilient to671

temporal distributional shifts and dynamic changes in the graph structure for industrial applications.672

In the absence of such methods, frequent retraining of GNNs on new data is recommended to achieve673

the best results. Note that GFMs that only utilize in-context learning to adapt to new graphs do not674

suffer from the transductive/inductive mismatch and thus represent a promising direction, but their675

performance is currently very weak compared with GNNs on all datasets.676

15



GraphLand: Evaluating Graph Machine Learning Models on Diverse Industrial Data

Table 4: Experimental results under the RH (random high) data split in the transductive setting. The
best result and those statistically indistinguishable from it are highlighted in red. TLE stands for time
limit exceeded (24 hours); RTE stands for runtime error in the official code of GFMs.

(a) Results for classification datasets. Accuracy is reported for multiclass classification datasets and Average
Precision is reported for binary classification datasets.

multiclass classification binary classification

hm-categories pokec-regions web-topics tolokers-2 city-reviews artnet-exp web-fraud

best const. pred. 19.46± 0.00 3.77± 0.00 28.36± 0.00 21.82± 0.00 12.09± 0.00 10.00± 0.00 0.66± 0.00
ResMLP 43.12± 0.25 5.09± 0.01 44.55± 0.08 45.96± 0.46 75.21± 0.08 43.55± 0.23 13.52± 0.21

GCN 73.38± 0.42 35.08± 0.62 48.88± 0.09 60.49± 0.86 81.05± 0.10 49.80± 0.35 15.58± 0.20
GraphSAGE 73.34± 0.68 40.76± 0.21 50.05± 0.03 58.42± 0.92 80.75± 0.06 48.49± 0.37 20.47± 0.17
GAT 79.19± 0.21 46.72± 0.69 50.54± 0.04 63.76± 1.30 81.10± 0.11 50.62± 0.35 20.43± 0.21
GT 79.28± 0.31 50.06± 0.53 50.58± 0.04 60.32± 1.21 80.50± 0.14 49.32± 1.00 19.73± 0.34

OpenGraph (ICL) 11.69± 0.84 2.56± 0.42 RTE 44.62± 1.35 62.96± 0.84 23.72± 1.86 RTE
AnyGraph (ICL) 15.65± 2.82 27.67± 2.48 6.30± 2.82 30.21± 3.32 65.04± 1.41 15.80± 1.90 0.67± 0.02
GCOPE (FT) 19.99± 0.12 TLE TLE 31.79± 1.95 69.74± 0.36 23.86± 2.33 TLE

(b) Results for regression datasets. R2 is reported for all datasets.

hm-prices avazu-ctr city-roads-M city-roads-L twitch-views artnet-views web-traffic

best const. pred. 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00
ResMLP 70.11± 0.48 28.03± 0.22 62.43± 0.32 53.09± 0.17 13.36± 0.01 36.10± 0.17 73.88± 0.05

GCN 79.76± 0.76 34.96± 0.11 69.95± 0.11 64.65± 0.27 77.12± 0.11 61.02± 0.13 83.49± 0.14
GraphSAGE 79.89± 0.46 35.20± 0.20 70.20± 0.59 65.77± 0.43 72.02± 0.16 56.65± 0.50 85.19± 0.11
GAT 81.68± 0.41 35.74± 0.19 70.53± 0.40 66.03± 0.24 76.06± 0.30 59.01± 0.52 85.70± 0.08
GT 80.90± 0.42 34.38± 0.31 67.45± 0.82 64.02± 0.59 75.57± 0.15 58.97± 0.25 85.54± 0.23

E Limitations and Broader Impact677

The aim of our benchmark is to introduce a diverse set of graph datasets for node property prediction678

that covers a wide range of domains and graph structural properties, including those not encountered in679

commonly used datasets for GML model evaluation. However, data that can be naturally represented680

as graphs is so widespread across different domains that no benchmark can cover them all. Thus, our681

collection of 14 datasets still only covers a small part of the wide range of situations where modeling682

data as a graph can be useful. But we hope that it will encourage the GML research community to use683

more diverse sets of datasets and focus on practically relevant applications where graph-structured684

data appears.685

Our benchmark includes datasets with realistic tasks such as fraud detection and user engagement686

prediction. Poorly performing machine learning models used for these tasks in real-world services687

can negatively affect the users of these services. For example, type I errors of fraud detection systems,688

i.e., wrongly predicting that an innocent person is fraudulent, have an undesirable negative impact.689

Thus, particular care should be taken to minimize the probability of such errors. We believe that690

the release of high-quality and properly anonymized datasets for these tasks such as the ones in our691

benchmark will encourage the community to develop better models, since the community will be able692

to use these datasets as a realistic and reliable testbed to investigate which methods lead to reductions693

in undesirable model errors.694
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Table 5: Experimental results under the TH (temporal high) data split in the transductive setting. The
best result and those statistically indistinguishable from it are highlighted in violet. TLE stands for
time limit exceeded (24 hours); RTE stands for runtime error in the official code of GFMs.

(a) Results for classification datasets. Accuracy is reported for multiclass classification datasets and Average
Precision is reported for binary classification datasets.

multiclass classification binary classification

hm-categories pokec-regions web-topics tolokers-2 artnet-exp web-fraud

best const. pred. 19.57± 0.00 2.98± 0.00 23.28± 0.00 8.61± 0.00 7.84± 0.00 0.15± 0.00
ResMLP 32.44± 0.54 4.18± 0.01 35.49± 0.03 21.72± 6.69 37.48± 0.51 2.83± 0.26

GCN 56.91± 0.55 11.88± 0.31 38.20± 0.19 46.72± 1.19 40.64± 0.40 4.85± 1.42
GraphSAGE 59.62± 0.51 16.60± 0.28 39.00± 0.09 17.05± 7.65 40.50± 0.84 16.01± 2.22
GAT 61.28± 0.97 20.43± 0.55 39.24± 0.23 38.59± 6.19 41.85± 0.63 16.50± 1.14
GT 63.31± 0.45 25.09± 0.58 39.19± 0.15 34.15± 4.81 40.10± 0.60 11.97± 1.13

OpenGraph (ICL) 5.76± 1.03 0.80± 0.45 RTE 9.12± 1.74 16.19± 1.36 RTE
AnyGraph (ICL) 9.47± 1.13 9.20± 0.67 11.14± 5.16 13.52± 4.74 11.80± 1.01 0.16± 0.01
GCOPE (FT) 19.14± 0.58 TLE TLE 8.46± 1.15 20.83± 1.18 TLE

(b) Results for regression datasets. R2 is reported for all datasets.

hm-prices avazu-ctr twitch-views artnet-views

best const. pred. −2.85± 0.00 0.00± 0.00 −22.31± 0.00 −9.32± 0.00
ResMLP 61.64± 0.79 20.35± 1.50 11.91± 8.00 42.15± 0.52

GCN 65.20± 0.84 37.49± 0.26 68.17± 0.24 54.44± 0.43
GraphSAGE 67.93± 1.24 38.38± 0.39 61.46± 0.68 51.87± 0.48
GAT 70.83± 0.99 39.21± 0.17 66.32± 0.59 52.30± 0.34
GT 69.70± 0.84 38.27± 0.27 65.83± 0.24 51.67± 0.54

Table 6: Experimental results under the THI (temporal high / inductive) setting. The best result and
those statistically indistinguishable from it are highlighted in blue. TLE stands for time limit exceeded
(24 hours); RTE stands for runtime error in the official code of GFMs.

(a) Results for classification datasets. Accuracy is reported for multiclass classification datasets and Average
Precision is reported for binary classification datasets.

multiclass classification binary classification

hm-categories pokec-regions web-topics tolokers-2 artnet-exp web-fraud

best const. pred. 19.57± 0.00 2.98± 0.00 23.28± 0.00 8.61± 0.00 7.84± 0.00 0.15± 0.00
ResMLP 32.44± 0.54 4.18± 0.01 35.49± 0.03 21.72± 6.69 37.48± 0.51 2.83± 0.26

GCN 47.05± 1.69 6.88± 0.51 37.76± 0.06 32.43± 8.03 41.28± 0.28 3.44± 0.33
GraphSAGE 48.11± 2.08 8.04± 0.26 38.04± 0.18 30.86± 9.48 40.53± 0.40 13.88± 1.32
GAT 59.34± 1.09 13.38± 0.35 38.77± 0.35 24.53± 9.55 41.64± 0.32 11.98± 1.54
GT 59.54± 1.59 17.22± 0.42 38.78± 0.08 22.89± 10.40 40.26± 0.82 7.84± 2.35

OpenGraph (ICL) 5.76± 1.03 0.80± 0.45 RTE 9.12± 1.74 16.19± 1.36 RTE
AnyGraph (ICL) 9.47± 1.13 9.20± 0.67 11.14± 5.16 13.52± 4.74 11.80± 1.01 0.16± 0.01
GCOPE (FT) 15.69± 3.44 TLE TLE 10.73± 1.48 19.10± 0.96 TLE

(b) Results for regression datasets. R2 is reported for all datasets.

hm-prices avazu-ctr twitch-views artnet-views

best const. pred. −2.85± 0.00 0.00± 0.00 −22.31± 0.00 −9.32± 0.00
ResMLP 61.64± 0.79 20.35± 1.50 11.91± 8.00 42.15± 0.52

GCN 64.31± 0.82 34.78± 0.48 63.58± 0.54 53.73± 0.47
GraphSAGE 65.80± 0.56 36.79± 0.55 56.60± 0.71 53.37± 0.30
GAT 69.74± 1.50 37.18± 1.02 61.41± 1.30 52.44± 0.59
GT 67.33± 2.05 36.49± 0.83 60.67± 1.02 52.26± 0.48
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