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Abstract

Although data that can be naturally represented as graphs is widespread in real-
world applications across diverse industries, popular graph ML benchmarks for
node property prediction only cover a surprisingly narrow set of data domains,
and graph neural networks (GNN5) are often evaluated on just a few academic
citation networks. This issue is particularly pressing in light of the recent growing
interest in designing graph foundation models. These models are supposed to
be able to transfer to diverse graph datasets from different domains, and yet the
proposed graph foundation models are often evaluated on a very limited set of
datasets from narrow applications. To alleviate this issue, we introduce Graph-
Land: a benchmark of 14 diverse graph datasets for node property prediction
from a range of different industrial applications. GraphLand allows evaluating
graph ML models on a wide range of graphs with diverse sizes, structural char-
acteristics, and feature sets, all in a unified setting. Further, GraphLand allows
investigating such previously underexplored research questions as how realistic
temporal distributional shifts under transductive and inductive settings influence
graph ML model performance. We evaluate a range of GNNs on GraphLand
datasets and show that they significantly outperform graph-agnostic models in
realistic settings. We also evaluate currently available general-purpose graph
foundation models and find that they fail to produce competitive results on our
proposed datasets.

1 Introduction

Recently, there has been a significant push for data-centric approaches in machine learning. In
particular, high-quality, realistic, reliable, and diverse benchmarks are paramount for proper evaluation
of the performance of machine learning methods. In the field of graph machine learning (GML), there
has recently been a lot of criticism of existing popular benchmark datasets concerning such aspects as
lacking practical relevance [1], low structural diversity that leaves most of the possible graph structure
space not represented [2, 3], low application domain diversity [1], graph structure not being beneficial
for the considered tasks [1, 4-6], potential bugs in the data collection processes leading to incorrect
labels [7] and duplicated graph nodes [8]. While there have recently been efforts to create more
realistic graph benchmarks, they focus on more specific domains (e.g., 3D molecular data) that require
specialized models. At the same time, benchmarks for the standard and most widespread GML setting
of node property prediction in a single large graph have received considerably less attention, and
evaluation of the performance of classic graph neural networks and recent graph foundation models
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is still often limited to a few academic citation networks despite this setting and models developed
for it having vast real-world applications in diverse industries.

We believe the historical focus of GNN evaluation on academic citation networks, which represent
only a single (and a rather narrow) application domain, is primarily a consequence of the availability
of open data of this type, rather than its relevance to real-world applications. At the same time,
some of the most classical and simultaneously practically important examples of real-world graphs —
social networks, web graphs, and road networks — are surprisingly rarely used for GNN evaluation,
perhaps due to the lack of easily accessible high-quality datasets.

In our work, we aim to alleviate the issue of a lack of realistic GNN benchmarks for node property
prediction by introducing GraphLand: a collection of graphs and associated machine learning tasks
collected from a variety of industrial applications that represent real-world GML usage. GraphLand
significantly extends the set of available datasets for GML model evaluation, providing in a unified
format 14 graph datasets, many of which represent applications or structural properties that have not
been covered by standard GML benchmarks before. The datasets in GraphLand have been collected
both from open data that has been underutilized or not utilized at all in the field of GML, and from
newly released data from services of a large technological company for which the use of GML has
internally proven its usefulness. A key feature of GraphLand is its diversity, with graphs spanning a
wide range of domains, sizes, and structural properties, and having rich node features with different
types, meanings, and distributions.

For datasets in GraphLand, we provide several data splits, including a realistic temporal one, which
allows for investigating practically important questions previously underexplored in GML literature:
how temporal distributional shifts affect the performance of GML models in both transductive and
inductive settings.

We run extensive experiments on GraphLand datasets with a range of GNNs and several openly
available GFMs. We find that GNNs can achieve great results in industrial applications with attention-
based GNNs often performing better than more classic ones. However, their performance can be
strongly affected by temporal distributional shifts and dynamically evolving graph structure, which
highlights the importance of developing models more resilient to such changes. Further, we find
that currently available GFMs perform poorly on our datasets and fail to achieve results competitive
with more classic methods. For a more detailed discussion of experimental results and additional
comparison with GBDT models supplied with simple neighborhood feature aggregation, see the
extended version of this paper [9].

We hope that GraphLand will allow more diverse and realistic evaluation of GML models, as well as
encourage research into currently underexplored directions such as designing GML models that are
more resilient to temporal distributional shifts and dynamically evolving graphs, and designing GFMs
that are truly generalizable to graph data from different domains with different node feature sets.

2 Text-attributed graphs and generalization of graph foundation models

Most of the datasets frequently used for node property prediction only have textual descriptions as
node attributes. However, graphs representing real-world networks often have rich and diverse node
attributes that go beyond just texts and encompass a variety of numerical and categorical features
with different meanings and distributions. There has recently been a lot of interest in developing
general-purpose GFMs that are expected to generalize to graphs from different domains [10, 11].
A key challenge for such GFMs is being able to adapt to graphs with different node feature sets
which is required for a model truly generalizable to different domains. Yet, the GFMs that have been
proposed in the current literature typically overlook this challenge and are often only evaluated on
text-attributed graphs [12—14]. Textual attributes can be easily projected to a common latent feature
space by applying pretrained text encoders based on Large Language Models, thus allowing a single
GFM to work with different text-attributed graphs. The prevalence of such text-attributed graphs in
GML benchmarks has led to most of current GFM research overlooking the problem of generalization
to different node feature sets, since it is not required to solve tasks from standard benchmarks.
However, this problem is very important for real-world industrial applications of GML in which
graphs often come attributed with a mixture of numerical and categorical node features. GFMs must
therefore be able to work with such features to effectively solve practical tasks. The problem of
devising a single foundation model that can work with arbitrary numerical and categorical features
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Table 1: Characteristics of the proposed GraphLand datasets.
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avg degree 460.92  27.32 8.56  88.28 15.66  11.12 8.56 460.92 288.04 3.75 3.26  80.87  11.12 8.56
median degree 45 13 2 30 4 2 2 45 71 4 3 32 2 2
avg distance 2.45 4.68 3.08 2.79 4.91 4.42 3.08 2.45 3.55  126.75 194.05 2.88 4.42 3.08
diameter 13 14 36 11 19 13 36 13 14 383 553 8 13 36
global clustering 0.27 0.05 0.00 0.23 0.26 0.03 0.00 0.27 0.24 0.00 0.00 0.02 0.03 0.00
avg local clustering 0.70 0.11 0.33 0.53 0.41 0.08 0.33 0.70 0.85 0.00 0.00 0.16 0.08 0.33
degree assortativity ~ —0.35 0.00 —-0.14 —0.08 0.01 0.03 -0.14 -0.35 -0.30 0.70 0.74  —0.09 0.03 —0.14
# classes 21 183 28 2 2 2 2 N/A N/A N/A N/A N/A N/A N/A
unbiased homophily 0.38 0.98 0.55 0.10 0.69 0.28 0.32 N/A N/A N/A N/A N/A N/A N/A
target assortativity N/A N/A N/A N/A N/A N/A N/A 0.12 0.18 0.74 072 —-0.41 0.19 -0.21
# node features 35 56 263 16 37 75 266 41 260 26 26 4 50 267

has received significant attention from the ML for tabular data community, where such features
are standard, and first successful attempts to develop such a model have recently emerged [15-21].
However, these ideas have not yet spread to the GML community (likely because current standard
GML benchmarks do not require working with non-textual node features) despite the significant
benefits of designing a successful GFM that can handle arbitrary node feature sets for practical
applications.

3 GraphLand: a collection of diverse industrial graph datasets

GraphLand is a collection of 14 graph datasets with node property prediction tasks (either classifica-
tion or regression). Some of these datasets are newly released for this benchmark, while others are
collected from open data sources that are underutilized or not utilized at all in current GML bench-
marking. In selecting datasets for GraphLand, we aim to fulfill the following desiderata: datasets
should come from diverse fields representing impactful industrial applications of GML, graphs should
exhibit a range of different sizes and structural characteristics, nodes should have rich features, graph
structure should be beneficial for the considered tasks.

Here we briefly describe our datasets, while detailed information is provided in Appendix A.1.
First, we describe our newly released datasets. web-fraud, web-topics, and web-traffic rep-
resent a part of the Internet (web-graph). artnet-views and artnet-exp represent a social
network of art creators. city-roads-M and city-roads-L represent road networks of two major
cities. city-reviews represents a network of users of a service for reviewing places and organiza-
tions. Further, we describe datasets obtained from open sources that were previously underutilized.
hm-categories and hm-prices represent co-purchasing networks. avazu-ctr represents a net-
work of devices from which advertisements can be viewed. pokec-regions represents a large social
networks. twitch-views represents a network of content streamers. tolokers-2 represents a
network of crowdsourcing platform workers. Overall, our datasets cover a diverse range of industrial
applications. In Table 1, we provide some characteristics of the datasets. As the table shows, our
datasets also exhibit very diverse graph structural properties. A more detailed discussion of the
characteristics from Table 1 is provided in Appendix A.2.

For each dataset, we prepare several different train/val/test data splits. Random-low (RL) and random-
high (RH) are random splits with low and high labeled rates (10%/10%/80% and 50%/25%/25%
train/val/test proportions, respectively). Temporal-high (TH) is a temporal split with high label rate.
Additionally, temporal-high/inductive (THI) setting allows evaluation models under an inductive
settings by presenting different snapshots of dynamically evolving networks for train, val, and test
parts of TH split. More details on our data splits and experimental settings are provided in Appendix B.

4 Experiments

In Table 2 we present our experimental results for the RL split. It can be seen that classic GNNs,
such as GCN [22] and GraphSAGE [23], demonstrate strong results significantly outperforming
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Table 2: Experimental results under the RL (random low) data split in the transductive setting. The
best result and those statistically indistinguishable from it are highlighted in . TLE stands for
time limit exceeded (24 hours); MLE stands for memory limit exceeded (80 GB VRAM); RTE stands
for runtime error in the official code of GFMs.

(a) Results for classification datasets.

multiclass classification (accuracy is reported) binary classification (average precision is reported)

hm-categories pokec-regions web-topics tolokers-2 city-reviews artnet-exp web-fraud

best const. pred. 19.46 £ 0.00 3.77+0.00 28.36 +0.00 21.82+0.00 12.09 £ 0.00 10.00 £ 0.00  0.66 £ 0.00
ResMLP 37.72+0.18 4.88+0.01 42.41+£0.02 41.16+1.13  71.32+0.11 35.07+2.34 877+0.18
GCN 61.70 £ 0.35 34.96 £+ 0.38 46.45+£0.10 51.324+0.96 77.154+£0.28  43.094+0.38 10.02£0.18
GraphSAGE 56.75 £ 0.53 37.88+£0.41 47.41+0.13 42.65+£0.59 12.114+0.23
GAT 67.96 £ 0.33

GT 48.00 £ 0.05 76.97 +0.21 45.16 + 0.46

OpenGraph (ICL) 9.49 +£0.93 1.73 £0.31 RTE 40.49 +0.31 58.44 +1.08 15.65 £1.23 RTE
AnyGraph (ICL) 15.47 £ 2.36 24.65+1.51 6.67+3.88 31.33+289 64.37+1.29 13.14+1.15 0.68£0.03
TS-GNN (ICL) 20.09 +1.29 MLE MLE 38.54+0.94 4346+5.17  20.44+1.05 MLE
GCORPE (FT) 19.51 £0.07 TLE TLE 28.67+1.42  67.38+1.23 16.10 £ 2.79 TLE

(b) Results for regression datasets (R2 is reported).

hm-prices avazu-ctr city-roads-M city-roads-L twitch-views artnet-views web-traffic
best const. pred.  0.00 +0.00  0.00 & 0.00 0.00 £0.00 0.00 £ 0.00 0.00 £ 0.00 0.00 £0.00 0.00 £ 0.00

ResMLP 62.66 +£0.37 24.54+0.36  54.77+£0.15 46.47 £0.29 13.35 4+ 0.02 29.71 + 0.60 72.42 £ 0.05
GCN 69.76 £0.38 30.47 £0.27 82.07+0.14
GraphSAGE 70.54 £0.21 31.84+0.24 57.51+0.53 52.43 £0.25 66.87 £0.11 49.79 £0.51 83.50 £ 0.11
GAT 72.93 £0.17 53.36 £ 0.78

GT 71.87£0.65 30.87+0.47  58.05+£0.58 72.19£0.14 54.23 +£0.22 84.49 £ 0.07

graph-agnostic model ResMLP and demonstrating the potential of GNNs in industrial applications.
Attention-augmented GNNs (GAT [24] and neighborhood-attention Graph Transformer (GT) [25])
also produce strong results and often outperform simpler GNNs, showing the importance of being
able to assign weights to messages from graph neighbors depending on their content in realistic
industrial datasets. Further, we evaluate currently openly available GFMs. Despite a lot of works
proposing different GFMs, we find only four open models that can perform node classification in
graphs with arbitrary node features (OpenGraph [26], AnyGraph [27], TS-GNN [28], GCOPE [29])
and none that can perform node regression. In our experiments, these models produce poor results
on all datasets (following the setups in the original papers, the former three GFMs are evaluated in
in-context learning (ICL) regime, while the latter GFM is finetuned (FT) for the downstream task).
This shows that currently available GFMs are still far from being able to compete with classic GNNs
on realistic datasets with rich node attributes.

We present the results for the RH, TH, and THI settings combined in a single table in Table 3 (individual
tables for each setting are provided in Appendix D). First, it can be seen that the observations from
the RL setting about benefits of attention-based GNNs and weak performance of GFMs also apply to
these settings. Further, these three settings come with the same data split proportions, allowing us to
compare model performance under the random split, the realistic temporal split, and the inductive
setting. We observe that temporal data splits are significantly more challenging for all models than
random ones (with the exception of the avazu-ctr dataset). This is important as in real-world
applications temporal distributional shifts are common, and not considering them can provide overly
optimistic performance estimates. Further, the considered models perform significantly worse in
the inductive setting than in the transductive setting. These observations highlight the importance
of developing GML methods that are more resilient to temporal distributional shifts and dynamic
changes in the graph structure for industrial applications. In the absence of such methods, frequent
retraining of GNNs on new data is recommended to achieve the best results. Note that GFMs that
only utilize in-context learning to adapt to new graphs do not suffer from the transductive/inductive
mismatch and thus represent a promising direction, but their performance is currently very weak
compared with GNNs on all datasets.

Overall, our main findings are as follows:

* GNNs can provide substantial benefits in industrial applications where graph information is
available, with attention-based GNNs showing particularly strong results.
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Table 3: Experimental results under the RH (random high), TH (temporal high), and THI (temporal high
/ inductive) settings. The best result and those statistically indistinguishable from it are highlighted in
red for RH, violet for TH, and blue for THI.

(a) Results for classification datasets.

multiclass classification (accuracy is reported)  binary classification (average precision is reported)

hm-categories pokec-regions web-topics tolokers-2 artnet-exp web-fraud
RH 19.46 + 0.00 3.77 4 0.00 28.36 £0.00 21.82£0.00 10.00 £ 0.00 0.66 & 0.00
best const. pred. TH 19.57 £ 0.00 2.98 4 0.00 23.28£0.00  8.61 £0.00 7.84 4 0.00 0.15 4 0.00
THI 19.57 £ 0.00 2.98 4+ 0.00 23.28£0.00  8.61 £0.00 7.8440.00 0.15 4 0.00
RH 43.124+0.25 5.09 +0.01 44.554+0.08 45.96 4-0.46 43.55 4+ 0.23 13.52 +0.21
ResMLP TH 32.44 4 0.54 4.18 £0.01 35.49+0.03 21.72£6.69 37.48 £0.51 2.83 +0.26
THI 32.4440.54 4.1840.01 35.49+0.03 21.72£6.69 37.48 +0.51 2.83 £0.26
RH 73.38 £0.42 35.08 & 0.62 48.88+0.09 60.49+0.86 49.80 +0.35 15.58 £0.20
GCN TH 56.91 4 0.55 11.88 £0.31 38.20£0.19 46.72+£1.19 40.64 4 0.40 4.8541.42
THI 47.05 £ 1.69 6.88 +0.51 37.76 £0.06 32.43 £8.03 41.28 £0.28 3.44 4+ 0.33
RH 73.34 £0.68 40.76 +0.21 50.05+£0.03 58.42£0.92 48.49 £ 0.37 20.47 £0.17
GraphSAGE TH 59.62 £ 0.51 16.60 £ 0.28 39.00 £0.09 17.05+7.65 40.50 £ 0.84 16.01 £ 2.22
THI 48.114+2.08 8.04 4 0.26 38.04+0.18 30.86 £9.48 40.53 4+ 0.40 13.88 £1.32
RH 79.19£0.21 46.72 £+ 0.69 50.54 £0.04 63.76 £ 1.30 50.62 £ 0.35 20.43 £0.21
GAT TH 61.28 +0.97 20.43 £ 0.55 39.24£0.23  38.59£6.19 41.8540.63 16.50 £ 1.14
THI 59.34 £ 1.09 13.38 £0.35 38.77+£0.35 24.53 £9.55 41.64 4 0.32 11.98 & 1.54
RH 79.28 £0.31 50.06 £ 0.53 50.58 £0.04 60.32+£1.21 49.32 4 1.00 19.73 £0.34
GT TH 63.31 4 0.45 25.09 £ 0.58 39.19£0.15 34.15+£4.81 40.10 £ 0.60 11.97£1.13
THI 59.54 £ 1.59 17.22 £0.42 38.78 £0.08 22.89 £10.4 40.26 & 0.82 7.844+2.35
RH 11.69 £ 0.84 2.56 & 0.42 RTE 44.62 £ 1.35 23.72 £ 1.86 RTE
OpenGraph (ICL)  TH 5.76 = 1.03 0.80+0.45 RTE 912+ 1.74 16.19 £ 1.36 RTE
THI 5.76 £1.03 0.80 £ 0.45 RTE 9.12+1.74 16.19 +1.36 RTE
RH 15.65 £ 2.82 27.67 £2.48 6.30+£2.82  30.21 £3.32 15.80 £ 1.90 0.67 4 0.02
AnyGraph (ICL) TH 9.47£1.13 9.20 £ 0.67 11.14 £5.16  13.52 +4.74 11.80 £ 1.01 0.16 & 0.01
THI 9.47£1.13 9.20 £ 0.67 11.14 £5.16  13.52 +4.74 11.80 £ 1.01 0.16 & 0.01
RH 15.48 +1.93 MLE MLE 31.83 £ 2.55 13.38 +2.59 MLE
TS-GNN (ICL) TH 18.91+0.32 MLE MLE 12.59 £ 1.97 9.46 £ 1.25 MLE
THI 18.91+0.32 MLE MLE 12.59 £1.97 9.46 £ 1.25 MLE
RH 19.99 +0.12 LIS, TLE 31.79+1.95 23.86 £+ 2.33 LS,
GCOPE (FT) TH 19.14 £ 0.58 TLE TLE 8.46 £ 1.15 20.83 £1.18 TLE
THI 15.69 + 3.44 TLE TLE 10.73 £1.48 19.10 + 0.96 TLE

(b) Results for regression datasets (R2 is reported).

hm-prices avazu-ctr twitch-views artnet-views

RH 0.00 £ 0.00 0.00 £0.00 0.00 £0.00 0.00 £ 0.00

best const. pred. ~TH  —2.8540.00 0.00 £0.00 —22.31£0.00 —9.32 £0.00
THI ~ —2.85£0.00 0.00 £0.00 —22.31£0.00 —9.32 4+ 0.00

RH 70.11 4+ 0.48 28.03 £0.22 13.36 +0.01 36.10 £0.17

ResMLP TH 61.64 +£0.79 20.35 + 1.50 11.91 £ 8.00 42.15+0.52
THI 61.64 +0.79 20.35 £ 1.50 11.91 £ 8.00 42.15£0.52

RH 79.76 + 0.76 34.96 £ 0.11 77124 0.11 61.02+0.13

GCN TH 65.20 £ 0.84 37.49+0.26 68.17+0.24 54.44+0.43
THI 64.31 +0.82 34.78 £0.48 63.58 + 0.54 53.73 £0.47

RH 79.89 & 0.46 35.20 £ 0.20 72.02 £ 0.16 56.65 £ 0.50

GraphSAGE TH 67.93+£1.24 38.38 £ 0.39 61.46 + 0.68 51.87£0.48
THI 65.80 + 0.56 36.79 £ 0.55 56.60 + 0.71 53.37+0.30

RH 81.68 +0.41 35.74+0.19 76.06 + 0.30 59.01 £ 0.52

GAT TH 70.83 4+ 0.99 39.21+0.17 66.32 £ 0.59 52.30 £0.34
THI 69.74 + 1.50 37.18 +1.02 61.41+1.30 52.44 +0.59

RH 80.90 £ 0.42 34.38 £0.31 75.57 £0.15 58.97 £0.25

GT TH 69.70 £ 0.84 38.27+£0.27 65.83 +0.24 51.67 £ 0.54
THI 67.33 £ 2.05 36.49 +0.83 60.67 + 1.02 52.26 +0.48

* GML methods can be very strongly affected by temporal distributional shifts and dynamically
evolving graphs, so the design of GML methods capable of better handling such settings is an
important research direction.

* The currently available general-purpose graph foundation models achieve very weak results on
our datasets. Thus, the problem of creating truly general GFMs is far from being solved yet. We
hope our benchmark can serve as a reliable testbed for future research in this direction, and first
such successful use cases have already appeared [30, 31].

We hope GraphLand will encourage the evaluation of GML methods under more realistic and diverse
settings, the development of GML methods that are more resilient to temporal distributional shifts
and dynamically changing graph structure, and the development of better performing GFMs that can
handle different node feature sets that go beyond just textual descriptions.
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A GraphLand benchmark details
A.1 Dataset descriptions

In this section, we provide a more detailed description of the GraphLand datasets. Note that none
of the proposed datasets contain any personal information. For the datasets based on data newly
collected for our benchmark, the public release of the data was approved by a legal team. GraphLand
datasets are available at Zenodo and Kaggle. Our source code and instructions on how to reproduce
our experimental results are available in our GitHub repository.

web-fraud, web-topics, and web-traffic These three datasets are web-graphs — they
represent a segment of the Internet. The nodes are websites, and a directed edge connects two nodes
if at least one user followed a link from one website to the other in a selected period of time. We
prepared three datasets with the same graph but different tasks: in web-fraud, the task is to predict
which websites are fraudulent (strongly imbalanced binary classification); in web-topics, the task is
to predict the topic that a website belongs to (multiclass classification); and in web-traffic, the task
is to predict how many users visited a website in a specific period of time (regression). With almost
3 million nodes, this is one of the largest publicly available attributed graphs that is not a citation
network. Nodes in this graph have more than two hundred features, examples of which include the
number of videos on the website (numerical feature), the website’s zone, and whether the website is
on a free hosting (categorical features). Data for these datasets was obtained from the Yandex search
engine.

artnet-views and artnet-exp These two datasets represent a social network of art creators.
The nodes are users, and an undirected edge connects two nodes if the users are friends. We prepared
two datasets with the same graph but different tasks: in artnet-views, the task is to predict how
many views a user receives in a specific period of time (regression); and in artnet-exp, the task is
to predict which users create explicit art content (binary classification). Examples of node features
include user interests (categorical features). Data for these datasets was obtained from the generative
Al art creation platform Shedevrum.

city-roads—-Mand city—-roads—-L These datasets are obtained from the logs of a navigation
service and represent the road networks of two major cities, with the second one being several times
larger than the first. The nodes are segments of roads, and a directed edge connects two nodes if
the segments are incident to each other and moving from one segment to the other is permitted
by traffic rules. The task is to predict the average travel speed on a road segment at a specific
timestamp (regression). The features include various information about the road segment such as
binary indicators of whether there is a bike dismount sign, whether the road segment ends with a
crosswalk or a toll post, whether the road segment is in poor condition, whether it is restricted for
trucks, and whether it has a mass transit lane (categorical features). Numerical features include the
length of the road segment and the geographic coordinates of the road endpoints. Data for these
datasets was obtained from the Yandex Maps service.

city-reviews This dataset is obtained from the logs of a review service in which users can leave
reviews and ratings for places and organizations in two major cities. The nodes are users, and an
undirected edge connects two nodes if the users often leave reviews for the same organizations. The
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task is fraud detection — to predict which users leave fraudulent reviews (binary classification). The
node features are based on user interactions with the service and their examples include the share of
negative reviews among all reviews left by a user (numerical feature) and the browser that is used
to access the service by the user (categorical feature). Data for this dataset was obtained from the
Yandex Maps service.

avazu—ctr This dataset is based on open data that has been introduced at the Kaggle competition
organized by Avazu [32]. The data contains information about interactions between devices used to
access the Internet, websites, and advertisements. In our graph, the nodes are devices, and an edge
connects two nodes if the devices often visit the same websites. The graph is undirected. A smaller
version of a similar dataset has been used by Ivanov and Prokhorenkova [33]; however, it contained
only a small subset of devices, while for our dataset we collected data for all the available devices,
making our graph more than 50 times larger. The task is to predict the advertisement click-through
rate (CTR) observed on devices (regression). Nodes in this graph have more than two hundred
numerical features; however, most of them were anonymized in the original data source.

hm-categories and hm—prices These datasets are based on open data that has been introduced
at the Kaggle competition organized by H&M [34]. The graph represents a co-purchasing network.
The nodes are products, and an edge connects two nodes if the products are often bought by the same
customers. The graph is undirected. We prepared two datasets with the same graph but different
tasks: in hm-categories, the task is to predict the product category (multiclass classification), and
in hm-prices, the task is to predict the product price (regression). The node features in this dataset
include product metadata such as product color (categorical feature), as well as information obtained
from product purchasing statistics such as what proportion of product purchases occurs on different
weekdays (numerical features).

pokec-regions This dataset is based on the data from Takac and Zabovsky [35]. It represents
the online social network Pokec. The nodes are users, and a directed edge connects two nodes if
one user has marked the other one as a friend. While this graph is quite popular in network analysis
as an example of a classic social network, it is relatively rarely used for machine learning, with the
exception of Lim et al. [36] who use the same graph as we do but with different task, node features,
and data split. In our dataset, the task is to predict which region a user is from (extreme multiclass
classification with 183 classes). The node features in our dataset are based on user profile information,
examples of them include the profile completion proportion (numerical feature) and binary indicators
of whether different profile fields are filled (categorical features).

twitch-views This dataset is based on the data from Rozemberczki and Sarkar [37]. It represents
the live-streaming network Twitch. The nodes are users, and an undirected edge connects two nodes
if both users follow each other. The task is to predict how many views a user receives in a specific
period of time (regression). The node features are based on user profile information and examples of
them include user language and affiliate status (categorical features).

tolokers-2 This is a new version of the dataset tolokers from Platonov et al. [8], Likhobaba
et al. [38] with a significantly extended set of node features. It is based on the data from the Toloka
crowdsourcing platform and the graph represents a network of tolokers (workers). The nodes are
tolokers, and an edge connects two nodes if these tolokers have worked on the same task. The graph
is undirected. The task is fraud detection — to predict which tolokers have been banned in one of
the projects (binary classification). The new node features include various performance statistics
of workers, such as the number of approved assignments and the number of skipped assignments
(numerical features), as well as workers’ profile information, such as their education level (categorical
feature).

Some graphs in our benchmark are undirected, and some are directed (see individual dataset descrip-
tions above). All our undirected graphs consist of a single connected component, and all our directed
graphs consist of a single weakly connected component.

For all datasets, we provide random stratified RL and RH data splits. Further, we provide temporal
TH data split (with the possibility of using the inductive learning setting THI) for all datasets with
the exception of city-roads-M and city-roads-L datasets (since well-established road network
graphs typically do not evolve over time significantly), as well as city-reviews and web-traffic
datasets (since for them some of the necessary temporal information was not available).
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A.2 Dataset properties

A key characteristic of our benchmark is its diversity. As described above, our graphs come from
different domains and have different prediction tasks. Their edges are also constructed in different
ways (based on user interactions, activity similarity, physical connections, etc.). However, the
proposed datasets also differ in many other ways. Some properties of our graphs are presented in
Table 1 (see below for the details on how the provided characteristics are defined). First, note that the
sizes of our datasets range from 11K to 3M nodes. The smaller graphs can be suitable for compute-
intensive models, while the larger graphs can provide a moderate scaling challenge. The average and
median degrees of our graphs also vary significantly and our benchmark has both sparse and relatively
dense graphs, including graphs with the average degree in the order of hundreds which is larger
than the average degrees of most datasets used in current GML research (such graphs may highlight
the importance of attention-based GNNs with their soft edge selection mechanisms). The average
distance between two nodes in our graphs varies from 2.45 for hm-categories and hm-prices to
194 for city-roads-L; and graph diameter (maximum distance) varies from 8 for twitch-views
to 553 for city-roads-L. Further, we report the values of clustering coefficients, which show how
typical closed node triplets are for the graph. In the literature, there are two definitions of clustering
coefficients [39]: the global clustering coefficient and the average local clustering coefficient. We
have both graphs where the clustering coefficients are high and graphs where they are almost zero, as
well as graphs where global and local clustering coefficients significantly disagree (which is possible
for graphs with imbalanced degree distributions). The degree assortativity coefficient is defined as
the Pearson correlation coefficient of degrees among pairs of linked nodes. For most of our graphs,
the degree assortativity is either negative or close to zero, which means that nodes do not tend to
connect to other nodes with similar degrees, while city-roads-M and city-roads-L datasets are
the exceptions — for them the degree assortativity is positive and large.

Further, let us discuss the graph-label relationships in our datasets. To measure the similarity of labels
of connected nodes for regression datasets, we use target assortativity — the Pearson correlation
coefficient of target values between pairs of connected nodes. For instance, for the city-roads-M
and city-roads-L datasets, the target assortativity is positive and quite large, which shows that
nodes tend to connect to other nodes with similar target values (which is expected for the task of
speed prediction in road networks), while for the twitch-views and web-traffic datasets, the
target assortativity is negative. For classification datasets, the similarity of neighbors’ labels is
usually called homophily: in homophilous datasets, nodes tend to connect to nodes of the same
class. How to properly measure homophily has recently attracted some research. It has been noted
by Lim et al. [36] and Platonov et al. [40] that homophily measures typically used in the literature —
such as the proportion of edges connecting nodes of the same class — are not appropriate for
comparing homophily levels between graphs with different numbers of classes and their size balance.
Platonov et al. [40] proposed a set of properties that a homophily measure appropriate for use in
such comparisons should satisfy and Mironov and Prokhorenkova [41] constructed the first known
homophily measure that satisfies all these properties — unbiased homophily. Thus, in our work,
we use unbiased homophily to measure the homophily levels of our datasets. Unbiased homophily
(with o = 0, see Mironov and Prokhorenkova [41] for more details) takes values in [—1, 1] with
1 indicating perfect homophily, —1 indicating perfect heterophily, and 0 indicating no preference
between homophilous and heterophilous edges (such graphs are typically referred to as heterophilous
in the literature, although a more appropriate term would be non-homophilous). Note that the values
of unbiased homophily should not be compared to values of other homophily measures used in
the literature; the unbiased homophily levels for some popular graph node classification datasets
are provided by Mironov and Prokhorenkova [41]. Unbiased homophily indicates that among our
datasets pokec-regions and city-reviews are homophilous, while the remaining datasets are
non-homophilous. Thus, our benchmark significantly expands the set of available non-homophilous
graph datasets.

Finally, our datasets have diverse sets of node features consisting of numerical and categorical features
with different meanings and distributions. All our datasets except twitch-views and tolokers-2
have at least several dozen node features, while some have several hundred node features.

Overall, our datasets are diverse in domain, scale, structural properties, graph-label relations, and
node attributes. Coming from real-world GML applications, they may serve as a valuable tool for the
research and development of GML methods for the industry.
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Computing dataset characteristics. Further, we describe the characteristics that are used in Table 1.
Note that, while some graphs in our benchmark are directed, we transformed all the graphs to be
undirected before computing all the considered graph characteristics, since some of the characteristics
are not defined for directed graphs.

Average degree and median degree are the average and median numbers of neighbors a node has,
respectively. Since all our graphs are connected (when treated as undirected graphs), for any two
nodes there is a path between them. Average distance is the average length of the shortest paths
between all pairs of nodes, while diameter is the maximum length of the shortest paths between
all pairs of nodes. For our largest graphs — the ones used for the pokec-regions, web-traffic,
web-fraud, and web-topics datasets — we approximate the average distance with the average
over distances for 100K randomly sampled node pairs. Global clustering coefficient is computed
as three times the number of triangles divided by the number of pairs of adjacent edges (i.e., it
is the fraction of closed triplets of nodes among all connected triplets). Average local clustering
coefficient first computes the local clustering of each node, which is the fraction of connected pairs
of its neighbors, and then averages the obtained values among all nodes. Degree assortativity is the
Pearson correlation coefficient between the degrees of connected nodes. Further, target assortativity
for regression datasets is the Pearson correlation coefficient between target values of connected nodes.
For computing unbiased homophily, we follow Mironov and Prokhorenkova [41] and use the simplest
version of this measure with the o parameter set to 0.

B Data splits and experimental settings

In GML literature, there are two most popular settings for node property prediction regarding the
relative sizes of train, validation, and test sets: one with a high label rate and one with a low label
rate. In the high label rate setting, the train set encompasses 50% of all graph nodes or more. This
setting is common in heterophilous benchmarks, e.g., it is used by datasets from Pei et al. [42]
and Platonov et al. [8], and it is also used by most datasets from OGB [43]. In the low label rate
setting, much smaller train set sizes are used (typically, no more than 10% of all graph nodes). This
setting is commonly used with the classic cora, citeseer, pubmed citation networks, and it is also
used by the ogbn-products dataset from OGB. Both of these settings can appear in real-world
GML usage scenarios, depending on the resources available for data labeling. It is important to
provide predetermined splits to ensure experiments in different works are run in the same setting
and their results are comparable, but it is also important to accommodate different needs of different
research projects. Thus, for datasets in our benchmark we provide fixed splits for both settings. We
refer to these splits as the RL (random low) and RH (random high) splits. Specifically, the RL split
randomly divides nodes into train/validation/test sets with 10%/10%/80% proportions, while the RH
split randomly divides nodes into train/validation/test sets with 50%/25%/25% proportions.

The RL and RH data splits are random, as is common in current GML benchmarks. However, in
real-world applications, data splits are often temporal, i.e., the labeled objects are the ones that
appeared in the network earlier, while the ones that appeared later are not labeled and belong to the
test set. Despite their prevalence in applications, temporal splits are very rarely used in current GML
node property prediction benchmarks. To the best of our knowledge, the only such datasets with
temporal splits available are citation networks from OGB, which represent only a single application.
At the same time, temporal data splits may significantly affect the prediction problem and the model
performance, as they often result in distributional shifts between train, validation, and test data. While
some types of distributional shifts have been previously explored in the GML literature, e.g., shifts
in node features [44] and shifts in graph structure [45], realistic temporal distributional shifts often
combine shifts in several aspects of data simultaneously (e.g., shifts in the distributions of node
features, labels, and graph structural characteristics), and the effect of such realistic shifts on GML
model performance is currently under-explored. To close this gap, we provide a temporal split for
most datasets in our benchmark. We refer to this split as the TH (temporal high) split; it divides nodes
into train/validation/test sets with 50%/25%/25% proportions, i.e., exactly the same proportions as
in the RH split, which allows comparing model results between the RH and TH splits to see how the
complexity of the task changes when temporal distributional shifts are introduced.

Further, many real-world networks are not static, but evolve over time. Thus, in many applications,
not only are there no labels available for nodes that appear in the network later, but the nodes
themselves (with their attributes and incident edges) are not available at training time. This setting is
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known in GML as the inductive setting. In contrast to the transductive setting in which the whole
graph is available at training time (including the nodes for which predictions should be made), in
the inductive setting validation and test nodes are not available at training time. Despite temporally
evolving graphs being common in practical applications, most standard node property prediction
datasets only provide the transductive setting. While it is well-known that GNNs, in contrast to some
other GML methods like shallow node embeddings, can work not only in the transductive but also
in the inductive setting [23], it is not well-explored how the lack of complete graph information
at training time in the inductive setting affects GNN performance. Moreover, when the inductive
setting is used for GNN evaluation in the current literature, the validation and train nodes are typically
chosen randomly, which is not realistic, since in real-world applications the inductive setting is
almost always induced by the temporal evolution of the graph. To fill this gap, for all datasets in
our benchmark for which temporal information is available, we additionally provide the inductive
experimental setting. We refer to this setting as THI (temporal high / inductive); it has the exact same
data split as the transductive TH setting, but provides three snapshots of the graph: one for training,
one for validation, and one for testing. This allows investigating how model performance changes
between the transductive and the inductive setting. To the best of our knowledge, our work is the first
to compare GNN performance between random and temporal data splits in the transductive setting
under the same split ratios, and between transductive and inductive settings under the same temporal
data split. This comparison allows us to investigate how much these differences can affect GNN
performance.

C Experimental setup details
C.1 Models

A graph-agnostic baseline. As a simple baseline, we use ResMLP — an MLP with skip-
connections [46] and layer normalization [47]. This model does not have any information about the
graph structure and operates on nodes as independent samples — we call such models graph-agnostic.
It has been shown that such MLP-like models with skip-connections can serve as very strong baselines
for industrial data with mixed numerical and categorical features [48].

Graph neural networks. We consider several representative GNN architectures. First, we use
GCN [22] and GraphSAGE [23] as simple classical GNN models. For GraphSAGE, we use the
version with the mean aggregation function, and we do not use the neighbor sampling technique
proposed in the original paper, instead training the model on the full graph, like all other GNNs
in our experiments. Further, we use two GNNs with attention-based neighborhood aggregation
functions: GAT [24] and Graph Transformer (GT) [25]. Note that GT is a local graph transformer,
i.e., each node only attends to its neighbors in the graph (in contrast to global graph transformers,
in which each node attends to all other nodes in the graph, and which are thus not instances of the
standard message-passing neural networks (MPNN5s) framework of Gilmer et al. [49]). Following
Platonov et al. [8], we equip all the considered GNNs with skip-connections and layer normalization,
which we found important for their strong performance on our datasets. We also add a two-layer
MLP with the GELU activation function [50] after every neighborhood aggregation block in GNNs.
Our graph models are implemented in the same codebase as our ResMLP — we simply swap each
residual block of ResMLP with a residual neighborhood aggregation block of the selected GNN
architecture. Therefore, comparing the performance of ResMLP and GNNs allows us to see if graph
information is helpful for the task. Indeed, in our experiments, GNNs significantly outperform
graph-agnostic ResMLP on all our datasets, confirming the usefulness of the provided graph structure
for the considered tasks.

Graph foundation models. Most currently available GFMs do not support node property prediction
tasks in graphs with arbitrary node features. Of those that do, we were able to find only two models
with open weights: OpenGraph [26] and AnyGraph [27]. Both OpenGraph and AnyGraph exploit the
Transformer architecture and are pretrained with a link prediction objective on a mixture of different
graph datasets. These methods differ in what data they can operate on. Specifically, OpenGraph
only uses relational information and constructs node representations based on SVD factors of the
adjacency matrix, while AnyGraph also uses the available node feature information and combines
SVD factors for both the feature matrix and the adjacency matrix. Both these models were designed
to be adapted to new node classification datasets without fine-tuning, using an in-context learning
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(ICL) setting instead. Specifically, they can perform link prediction in arbitrary graphs, and they
cast any node classification task as a link prediction task where links to virtual nodes representing
classes are predicted for unlabeled nodes. Further, we were able to reproduce the pretraining for
one more GFM — GCOPE [29] (weights for this model are not publicly available, but training code
is). GCOPE also applies a projection to node features (e.g., based on SVD or attention mechanism),
but exploits additional virtual nodes as graph coordinators to simultaneously process different graph
datasets at the pretraining stage. The authors use GraphCL [51] or SiImGRACE [52] as the pretraining
objective. In contrast to OpenGraph and AnyGraph, GCOPE uses fine-tuning for adaptation to new
node classification datasets. However, neither of the three models supports node regression. Further,
we found that these GFMs cannot scale to large datasets.

C.2 Experimental setup and hyperparameter selection details

Some of the graphs in our benchmark are directed. For our experiments, we converted directed
graphs to undirected ones (by replacing each directed edge with an undirected one and then removing
duplicated edges). We leave the investigation of different ways to consider edge directions to further
research.

We train all models 10 times with different random seeds to compute the mean and standard deviation
of model performance, except for our largest datasets pokec-regions, web-traffic, web-fraud,
web-topics, for which we train all models 5 times. We train all our GNNss in a full-batch setting,
i.e., we do not use any subgraph sampling techniques and train the models on the full graph. Our
ResMLP baseline is implemented in the same codebase as our GNNs and thus is also trained in the
full-batch setting. All the experiments were run on an NVIDIA Tesla A100 80GB GPU.

Hyperparameter choice is extremely important for the performance of GNNs. Thus, we conducted
hyperparameter search on the validation set for all models. Specifically, we found that the learning rate
and dropout probability [53] are the most important hyperparameters for our GNN implementations
on our datasets. Thus, we ran grid search selecting the learning rate from {3 x 1075,1 x 1074, 3 x
107%,1 x 1073, 3 x 103} and dropout probability from {0,0.1,0.2} (note that the highest learning
rate of 3 x 1073 often resulted in NaN issues; however, we still included it in our hyperparameter
search, as in our preliminary experiments we found it to be beneficial for some of our dataset/model
combinations). In our preliminary experiments we found that the performance of our GNNss is quite
stable for a wide variety of reasonable architecture hyperparameter values (we found the use of
skip-connections and layer normalization to be important for this stability). Hence, for our final
experiments, we kept these hyperparameters fixed. We set these values as follows: the number of
graph neighborhood aggregation blocks to 3 and the hidden dimension to 512. The only exceptions
to this hidden dimension size were made for our largest datasets: to avoid GPU out-of-memory
issues, we decreased the hidden dimension to 400 for pokec-regions and to 200 for web-traffic,
web-fraud, and web-topics. For GNNs with attention-based graph neighborhood aggregation
(GAT and GT), the number of attention heads was set to 4. We used the Adam optimizer [54] in all
our GNN experiments. We trained each model for 1000 steps and then selected the best step based
on the performance on the validation set.

When applying deep learning models to data with numerical features, the preprocessing of these
features is critically important. In our experiments, we considered two possible numerical feature
transformation techniques: standard scaling and quantile transformation to standard normal distribu-
tion. We included them in the hyperparameter search for ResMLP and GNNs. For categorical features,
we used one-hot encoding for all models. For regression datasets, neural models might perform
better if the target variable is transformed. Therefore, in our experiments on regression datasets with
ResMLP and GNNs, we considered the options of using the original targets or preprocessing targets
with standard scaling, including these two options in the hyperparameter search.

Our GNNs are implemented using PyTorch [55] and DGL [56].

D Additional experimental results

We provide experimental results for the RH setting in Table 4, for the TH setting in Table 5, and for the
THI setting in Table 6. In all tables with results, for each dataset, we highlight with color the best
result as well as those results for which the mean differs from the best one by no more than the sum
of the two results’ standard deviations.
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Table 4: Experimental results under the RH (random high) data split in the transductive setting. The
best result and those statistically indistinguishable from it are highlighted in red. TLE stands for time
limit exceeded (24 hours); MLE stands for memory limit exceeded (80 GB VRAM); RTE stands for
runtime error in the official code of GFMs.

(a) Results for classification datasets.

multiclass classification (accuracy is reported) binary classification (average precision is reported)

hm-categories pokec-regions web-topics tolokers-2 city-reviews artnet-exp web-fraud

best const. pred. 19.46 £ 0.00 3.77+0.00 28.36 +0.00 21.82+0.00 12.09 £ 0.00 10.00 £ 0.00  0.66 £ 0.00
ResMLP 43.12+0.25 5.09 4+ 0.01 44.55+£0.08 45964046  75.21+0.08 43.55+0.23 13.52+0.21
GCN 73.38 £ 0.42 35.08 &+ 0.62 48.88+£0.09 60.494+0.86 81.054+0.10  49.80+0.35 15.58 £0.20
GraphSAGE 73.34 £ 0.68 40.76 £0.21 50.05+0.03 5842£0.92 80.75+0.06 48.49+0.37 20.47+0.17
GAT 79.194+0.21 46.72 £ 0.69 50.544+0.04 63.76 +1.30 81.10+0.11 50.624+0.35 20.43 £0.21
GT 79.28 +0.31 50.06 & 0.53 50.58 4+ 0.04 60.32+1.21 80.50+0.14  49.32+1.00 19.73+0.34
OpenGraph (ICL) 11.69 £ 0.84 2.56 +0.42 RTE 44.62+1.35 62.96+0.84 23.72+1.86 RTE

AnyGraph (ICL) 15.65 £ 2.82 27.67 +2.48 6.30+2.82 30.21+3.32 65.04+141 15.80£1.90 0.67+£0.02
TS-GNN (ICL) 15.48 £1.93 MLE MLE 31.83+2.55 11.84 £1.98 13.38 £ 2.59 MLE

GCORPE (FT) 19.99 £0.12 TLE TLE 31.79+1.95  69.74+0.36  23.86 £2.33 TLE

(b) Results for regression datasets (R2 is reported).

hm-prices avazu-ctr city-roads-M city-roads-L twitch-views artnet-views web-traffic

best const. pred.  0.00 £ 0.00  0.00 & 0.00 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00 0.00 £0.00 0.00 £ 0.00

ResMLP 70.11+0.48 28.03+0.22 62.434+0.32 53.09 £0.17 13.36 +0.01 36.10 £ 0.17 73.88 £0.05
GCN 79.76 £0.76 34.96+£0.11  69.95£0.11 64.65 £ 0.27 77124 0.11 61.024+0.13 83.49+0.14
GraphSAGE 79.89 £0.46 35.20+0.20 70.20 £0.59 65.77 £0.43 72.02 £0.16 56.65 % 0.50 85.19 £0.11
GAT 81.68+0.41 35.74+0.19 70.53 4+ 0.40 66.03 £ 0.24 76.06 £ 0.30 59.01 £ 0.52 85.70 + 0.08
GT 80.90 £0.42 34.38+0.31  67.45£0.82 64.02 £ 0.59 75.57 £0.15 58.97 £ 0.25 85.54 £0.23

E Limitations and broader impact

The aim of our benchmark is to introduce a diverse set of graph datasets for node property prediction
that covers a wide range of domains and graph structural properties, including those not encountered in
commonly used datasets for GML model evaluation. However, data that can be naturally represented
as graphs is so widespread across different domains that no benchmark can cover them all. Thus, our
collection of 14 datasets still only covers a small part of the wide range of situations where modeling
data as a graph can be useful. But we hope that it will encourage the GML research community to use
more diverse sets of datasets and focus on practically relevant applications where graph-structured
data appears.

Our benchmark includes datasets with realistic tasks such as fraud detection and user engagement
prediction. Poorly performing machine learning models used for these tasks in real-world services
can negatively affect the users of these services. For example, type I errors of fraud detection systems,
i.e., wrongly predicting that an innocent person is fraudulent, have an undesirable negative impact.
Thus, particular care should be taken to minimize the probability of such errors. We believe that
the release of high-quality and properly anonymized datasets for these tasks such as the ones in our
benchmark will encourage the community to develop better models, since the community will be able
to use these datasets as a realistic and reliable testbed to investigate which methods lead to reductions
in undesirable model errors.
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Table 5: Experimental results under the TH (temporal high) data split in the transductive setting. The
best result and those statistically indistinguishable from it are highlighted in violet. TLE stands for
time limit exceeded (24 hours); MLE stands for memory limit exceeded (80 GB VRAM); RTE stands
for runtime error in the official code of GFMs.

(a) Results for classification datasets.

multiclass classification (accuracy is reported) binary classification (average precision is reported)

hm-categories pokec-regions web-topics tolokers-2 artnet-exp web-fraud
best const. pred. 19.57 £ 0.00 2.98 +0.00 23.28+£0.00  8.614+0.00 7.84+£0.00 0.15 4 0.00
ResMLP 32.44 £+ 0.54 4.18+£0.01 35.494+0.03 21.724+6.69 37.48+£0.51 2.83 +0.26
GCN 56.91 & 0.55 11.88 +£0.31 38.20+£0.19 46.72+1.19 40.64 4+ 0.40 4.85 +1.42
GraphSAGE 59.62 &+ 0.51 16.60 £0.28 39.00+£0.09 17.05+£7.65 40.5040.84 16.01 £ 2.22
GAT 61.28 +0.97 20.43 £+ 0.55 39.244+0.23 38.59+6.19 41.85+0.63 16.50 +1.14
GT 63.31 4+ 0.45 25.09 £ 0.58 39.194+0.15 34.15+4.81 40.10£0.60 11.97 £1.13
OpenGraph (ICL) 5.76 £1.03 0.80 +0.45 RTE 9.12+1.74 16.19+1.36 RTE
AnyGraph (ICL) 9.47+1.13 9.20 £ 0.67 11.14+5.16 13.52+4.74 11.80£1.01 0.16 £0.01
TS-GNN (ICL) 18.91 £0.32 MLE MLE 1259 £1.97  9.46 £1.25 MLE
GCOPE (FT) 19.14 £ 0.58 TLE TLE 8.46+1.15 20.83+1.18 TLE

(b) Results for regression datasets (R2 is reported).

hm-prices avazu-ctr twitch-views artnet-views
best const. pred.  —2.85 4 0.00 0.00 £0.00 —22.31£0.00 —9.32 £0.00
ResMLP 61.64 £0.79 20.35 £ 1.50 11.91 £ 8.00 42.15 £ 0.52
GCN 65.20 £ 0.84 37.49 £0.26 68.17 +0.24 54.44 £0.43
GraphSAGE 67.93+£1.24 38.38 £ 0.39 61.46 £ 0.68 51.87£0.48
GAT 70.83 £ 0.99 39.21+£0.17 66.32 + 0.59 52.30 £0.34
GT 69.70 £ 0.84 38.27 £0.27 65.83 £0.24 51.67 £0.54

Table 6: Experimental results under the THI (temporal high / inductive) setting. The best result and
those statistically indistinguishable from it are highlighted in blue. TLE stands for time limit exceeded
(24 hours); MLE stands for memory limit exceeded (80 GB VRAM); RTE stands for runtime error in
the official code of GFMs.

(a) Results for classification datasets.

multiclass classification (accuracy is reported) binary classification (average precision is reported)

hm-categories pokec-regions web-topics tolokers-2 artnet-exp web-fraud
best const. pred. 19.57 £ 0.00 2.98 +0.00 23.28 +0.00 8.61 4+ 0.00 7.84 4+ 0.00 0.15+0.00
ResMLP 32.44 4+ 0.54 4.18 £ 0.01 35.494+0.03 21.724+6.69 37.48+0.51 2.83 £0.26
GCN 47.05 £ 1.69 6.88 +0.51 37.76+£0.06 32.43+£8.03 41.28+£0.28 3.444+0.33
GraphSAGE 48.11 +£2.08 8.04 + 0.26 38.04+0.18 30.86 £9.48 40.53 £0.40 13.88 £1.32
GAT 59.34 4+ 1.09 13.38 £0.35 38.77+0.35 24.53+9.55 41.64+£0.32 11.98 +£1.54
GT 59.54 £+ 1.59 17.22 £0.42 38.78 £0.08 22.89 £10.40 40.26 +0.82 7.84 £2.35
OpenGraph (ICL) 5.76 £1.03 0.80 £0.45 RTE 9.12+1.74 16.19+1.36 RTE
AnyGraph (ICL) 9.47£1.13 9.20 + 0.67 11.14 £5.16 13.524+4.74 11.80+1.01 0.16 £0.01
TS-GNN (ICL) 18.91 £ 0.32 MLE MLE 12.59+£1.97 946 +£1.25 MLE
GCOPE (FT) 15.69 £ 3.44 TLE TLE 10.73 £1.48 19.10 4+ 0.96 TLE

(b) Results for regression datasets (R? is reported).
g P

hm-prices avazu-ctr twitch-views artnet-views
best const. pred.  —2.85 4 0.00 0.00£0.00 —22.31+0.00 —9.32£0.00
ResMLP 61.64+0.79 20.35 £ 1.50 11.91 £8.00 42.15+£0.52
GCN 64.31 £0.82 34.78 £0.48 63.58 £0.54 53.73 £0.47
GraphSAGE 65.80 £ 0.56 36.79 £ 0.55 56.60 £ 0.71 53.37£0.30
GAT 69.74 + 1.50 37.18 +£1.02 61.41+1.30 52.44 +0.59
GT 67.33 £2.05 36.49 £ 0.83 60.67 £ 1.02 52.26 £0.48
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