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Abstract

Although data that can be naturally represented as graphs is widespread in real-
world applications across diverse industries, popular graph ML benchmarks for
node property prediction only cover a surprisingly narrow set of data domains,
and graph neural networks (GNNs) are often evaluated on just a few academic
citation networks. This issue is particularly pressing in light of the recent growing
interest in designing graph foundation models. These models are supposed to
be able to transfer to diverse graph datasets from different domains, and yet the
proposed graph foundation models are often evaluated on a very limited set of
datasets from narrow applications. To alleviate this issue, we introduce Graph-
Land: a benchmark of 14 diverse graph datasets for node property prediction
from a range of different industrial applications. GraphLand allows evaluating
graph ML models on a wide range of graphs with diverse sizes, structural char-
acteristics, and feature sets, all in a unified setting. Further, GraphLand allows
investigating such previously underexplored research questions as how realistic
temporal distributional shifts under transductive and inductive settings influence
graph ML model performance. We evaluate a range of GNNs on GraphLand
datasets and show that they significantly outperform graph-agnostic models in
realistic settings. We also evaluate currently available general-purpose graph
foundation models and find that they fail to produce competitive results on our
proposed datasets.

1 Introduction

Recently, there has been a significant push for data-centric approaches in machine learning. In
particular, high-quality, realistic, reliable, and diverse benchmarks are paramount for proper evaluation
of the performance of machine learning methods. In the field of graph machine learning (GML), there
has recently been a lot of criticism of existing popular benchmark datasets concerning such aspects as
lacking practical relevance [1], low structural diversity that leaves most of the possible graph structure
space not represented [2, 3], low application domain diversity [1], graph structure not being beneficial
for the considered tasks [1, 4-6], potential bugs in the data collection processes leading to incorrect
labels [7] and duplicated graph nodes [8]. While there have recently been efforts to create more
realistic graph benchmarks, they focus on more specific domains (e.g., 3D molecular data) that require
specialized models. At the same time, benchmarks for the standard and most widespread GML setting
of node property prediction in a single large graph have received considerably less attention, and
evaluation of the performance of classic graph neural networks and recent graph foundation models
is still often limited to a few academic citation networks despite this setting and models developed
for it having vast real-world applications in diverse industries.

We believe the historical focus of GNN evaluation on academic citation networks, which represent
only a single (and a rather narrow) application domain, is primarily a consequence of the availability
of open data of this type, rather than its relevance to real-world applications. At the same time,
some of the most classical and simultaneously practically important examples of real-world graphs —
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social networks, web graphs, and road networks — are surprisingly rarely used for GNN evaluation,
perhaps due to the lack of easily accessible high-quality datasets.

Recently, there has been a lot of interest in developing graph foundation models (GFMs) — models
that after large-scale pretraining can be applied to diverse graph datasets without or with minimal
fine-tuning [9, 10]. Proper evaluation of such models thus requires the use of a diverse set of
realistic graph datasets. However, currently the proposed GFMs are frequently evaluated only on
text-attributed graphs (and mostly citation networks), thus overlooking the problem of transferring
to graphs with different node feature sets, which is required for truly general GFMs as graphs in
real-world applications from different domains often come with completely different node feature sets.

It has been argued that due to the unavailability of diverse realistic industrial datasets for researchers
it is worth shifting the evaluation of GML models to synthetic datasets [2, 11]. However, we believe
that it is important to evaluate models on real-world data as much as possible, both to obtain unbiased
estimates of model performance in realistic scenarios and to showcase the potential of GML in
industrial applications. Thus, it is desirable to have open and easily accessible diverse and realistic
graph datasets.

In our work, we aim to alleviate the issue of a lack of realistic GNN benchmarks for node property
prediction by introducing GraphLand: a collection of graphs and associated machine learning tasks
collected from a variety of industrial applications that represent real-world GML usage. GraphLand
significantly extends the set of available datasets for GML model evaluation, providing in a unified
format 14 graph datasets, many of which represent applications or structural properties that have not
been covered by standard GML benchmarks before. The datasets in GraphLand have been collected
both from open data that has been underutilized or not utilized at all in the field of GML, and from
newly released data from services of a large technological company for which the use of GML has
internally proven its usefulness. A key feature of GraphLand is its diversity, with graphs spanning a
wide range of domains, sizes, and structural properties, and having rich node features with different
types, meanings, and distributions.

For datasets in GraphLand, we provide several data splits, including a realistic temporal one, which
allows for investigating practically important questions previously underexplored in GML literature:
how temporal distributional shifts affect the performance of GML models in both transductive and
inductive settings.

We run extensive experiments on GraphLand datasets with a range of GNNs and several openly
available GFMs. We find that GNNs can achieve great results in industrial applications with attention-
based GNNs often performing better than more classic ones. However, their performance can be
strongly affected by temporal distributional shifts and dynamically evolving graph structure, which
highlights the importance of developing models more resilient to such changes. Further, we find that
currently available GFMs perform poorly on our datasets and fail to achieve results competitive with
more classic methods.

We hope that GraphLand will allow more diverse and realistic evaluation of GML models, as well as
encourage research into currently underexplored directions such as designing GML models that are
more resilient to temporal distributional shifts and dynamically evolving graphs, and designing GFMs
that are truly generalizable to graph data from different domains with different node feature sets.

2 Limitations of Popular Graph Machine Learning Benchmarks

By far the most popular datasets used in modern GML literature are the three academic citation
networks cora, citeseer, and pubmed [12—-16]. These datasets became so widespread perhaps
because they were used by the foundational work on modern GNNs by Kipf and Welling [17].
However, these datasets only cover a single and rather narrow application of paper subject prediction
in citation networks. Another popular set of datasets for GML was introduced by Shchur et al.
[18] and includes academic coauthorship networks coauthor-cs and coauthor-physics, and
e-commerce co-purchasing networks amazon-computers and amazon-photo. However, all the
aforementioned datasets together only cover three applications, while GML methods can be used
in a much wider variety of settings. Later, larger-scale graph datasets were introduced in the Open
Graph Benchmark (OGB) [19]. However, out of the five node property prediction datasets, three
are academic citation networks (ogbn-arxiv, ogbn-mag, ogbn-papers100M) and one more is an
e-commerce co-purchasing network (ogbn-products). Thus, OGB does not significantly expand the
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range of real-world applications available for evaluating GML models. Further, all the aforementioned
datasets only provide textual descriptions as node features. However, co-purchasing networks, which
represent a very practically important application of GML, in realistic settings come with rich
product metadata that can be represented as numerical and categorical features. There is currently
a lack of datasets with such metadata available among popular GML benchmarks. Further, all the
aforementioned datasets are homophilous, i.e., edges in them typically connect nodes of the same
class. It has been shown by Huang et al. [20] that even very simple models can provide strong results
in homophilous networks. Thus, it is important for standard GML benchmarks to also include a
wide selection of non-homophilous graphs, i.e., graphs in which edges do not have the tendency to
connect nodes of the same class. For a long time, the only popular source of non-homophilous graph
datasets was the benchmark from Pei et al. [21]. However, it was recently shown by Platonov et al.
[8] that these datasets have numerous problems including duplicated nodes, small size (leading to
noisy evaluation metric estimates), and insufficient class representation (such as the texas dataset
having a class that consists of only a single node). While Platonov et al. [8] introduced several new
non-homophilous graph datasets, they were meant to be used to reliably reevaluate the performance
of different models in absence of homophily, rather than represent realistic GML applications. Thus,
some of these datasets are synthetic (minesweeper), semi-synthetic (roman-empire), or have
limited node features despite the original data source potentially providing more information about
the nodes (tolokers, questions).

Overall, it can be seen that the currently popular graph datasets for node property prediction do not
allow evaluating GNNs and other GML models on a wide range of practically impactful industrial
applications.

Text-attributed graphs and generalization of graph foundation models. Most of the datasets fre-
quently used for node property prediction only have textual descriptions as node attributes. However,
graphs representing real-world networks often have rich and diverse node attributes that go beyond
just texts and encompass a variety of numerical and categorical features with different meanings and
distributions. There has recently been a lot of interest in developing general-purpose GFMs that are
expected to generalize to graphs from different domains [9, 10]. A key challenge for such GFMs
is being able to adapt to graphs with different node feature sets which is required for a model truly
generalizable to different domains. Yet, the GFMs that have been proposed in the current literature
typically overlook this challenge and are often only evaluated on text-attributed graphs [22-24].
Textual attributes can be easily projected to a common latent feature space by applying pretrained
text encoders based on Large Language Models, thus allowing a single GFM to work with different
text-attributed graphs. The prevalence of such text-attributed graphs in GML benchmarks has led to
most of current GFM research overlooking the problem of generalization to different node feature
sets, since it is not required to solve tasks from standard benchmarks. However, this problem is very
important for real-world industrial applications of GML in which graphs often come attributed with a
mixture of numerical and categorical node features. GFMs must therefore be able to work with such
features to effectively solve practical tasks. The problem of devising a single foundation model that
can work with arbitrary numerical and categorical features has received significant attention from the
ML for tabular data community, where such features are standard, and first successful attempts to
develop such a model have recently emerged [25-31]. However, these ideas have not yet spread to
the GML community (likely because current standard GML benchmarks do not require working with
non-textual node features) despite the significant benefits of designing a successful GFM that can
handle arbitrary node feature sets for practical applications.

3 GraphLand: A Collection of Diverse Industrial Graph Datasets

GraphLand is a collection of 14 graph datasets with node property prediction tasks (either classifica-
tion or regression). Some of these datasets are newly released for this benchmark, while others are
collected from open data sources that are underutilized or not utilized at all in current GML bench-
marking. In selecting datasets for GraphLand, we aim to fulfill the following desiderata: datasets
should come from diverse fields representing impactful industrial applications of GML, graphs should
exhibit a range of different sizes and structural characteristics, nodes should have rich features, graph
structure should be beneficial for the considered tasks.

Here we briefly describe our datasets, while detailed information is provided in Appendix A. First,
we describe our newly released datasets. web-fraud, web-topics, and web-traffic represent
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Table 1: Experimental results under the RL (random low) data split in the transductive setting. The
best result and those statistically indistinguishable from it are highlighted in . TLE stands for
time limit exceeded (24 hours); RTE stands for runtime error in the official code of GFMs.

(a) Results for classification datasets. Accuracy is reported for multiclass classification datasets and Average
Precision is reported for binary classification datasets.

multiclass classification binary classification

hm-categories pokec-regions web-topics tolokers-2 city-reviews artnet-exp web-fraud

best const. pred. 19.46 £ 0.00 3.77 £0.00 28.36 £0.00 21.82+0.00 12.09£0.00 10.00£0.00 0.66 & 0.00
ResMLP 37.72+£0.18 4.88 £0.01 42.41+£0.02 41.16+1.13  71.32+0.11 35.07+£2.34 8.77+0.18
GCN 61.70 £0.35 34.96 + 0.38 46.45+£0.10 51.32£0.96 77.15£0.28  43.09£0.38 10.02+£0.18
GraphSAGE 56.75 4+ 0.53 37.88 +£0.41 47.414+0.13 42.65+£0.59 12.114+0.23
GAT 67.96 £ 0.33

GT 48.00 + 0.05 76.97+0.21  45.16 & 0.46

OpenGraph (ICL) 9.49 4+ 0.93 1.73+£0.31 RTE 40.49+£0.31  5844+£1.08 15.65+1.23 RTE
AnyGraph (ICL) 15.47 £ 2.36 24.65 + 1.51 6.67£3.88 31.33+£289 6437£1.29 13.14£1.15 0.68£0.03
GCORPE (FT) 19.51 £0.07 TLE TLE 28.67+1.42 67.38+1.23 16.10+£2.79 TLE

(b) Results for regression datasets. R%is reported for all datasets.

hm-prices avazu-ctr city-roads-M city-roads-L twitch-views artnet-views web-traffic
best const. pred.  0.00 £ 0.00  0.00 & 0.00 0.00 £ 0.00 0.00 4 0.00 0.00 4 0.00 0.00 £ 0.00 0.00 4 0.00

ResMLP 62.66 £0.37 24.54+0.36  54.77£0.15 46.47 £0.29 13.35 4+ 0.02 29.71 £ 0.60 72.42 £0.05
GCN 69.76 £0.38 30.47 £0.27 82.07£0.14
GraphSAGE 70.54 £0.21 31.84+0.24 57.51+£0.53 52.43 £0.25 66.87 £0.11 49.79 £0.51 83.50 £ 0.11
GAT 72.93 £0.17 53.36 £ 0.78

GT 71.87£0.65 30.87+0.47  58.05+£0.58 72.19£0.14 54.23 £0.22 84.49 £ 0.07

a part of the Internet (web-graph). artnet-views and artnet-exp represent a social network
of art creators. city-roads-M and city-roads-L represent road networks of two major cities.
city-reviews represents a network of users of a review of places and organizations service. Further,
we describe datasets obtained from open sources that were previously underutilized. hm-categories
and hm-prices represent co-purchasing networks. avazu-ctr represents a network of devices
from which advertisements can be viewed. pokec-regions represents a large social networks.
twitch-views represents a network of content streamers. tolokers-2 represents a network of
crowdsourcing platform workers.

For each dataset, we prepare several different train/val/test splits. Random-low (RL) and random-
high RH are random splits with low and high labeled rates. Temporal-high TH is a temporal split.
Additionally, temporal-high/inductive (THI) setting allows evaluation models under an inductive
settings by presenting different snapshots of dynamically evolving networks for train, val, and test.
More details on our data splits are provided in Appendix C

4 Experiments

In Table 1 we present our experimental results for the RL split. It can be seen that classic GNNs
(GCN [17] and GraphSAGE[32]) demonstrate strong results significantly outperforming graph-
agnostic model ResMLP and demonstrating the potential of GNNs in industrial applications. Attention
augmented GNNs GAT [33] and neighborhood-attention Graph Transformer (GT) [34] also produce
strong results often outperforming classic GNNs. Further, we evaluate currently openly available
GFMs. Despite a lot of works proposing different GFMs, we find only three open models that can
perform node classification in graphs with arbitrary node features (OpenGraph [35], AnyGraph[36],
GCOPE [37]) and none that can perform node regression. In our experiments, these models produce
poor results and cannot compete with classic GNNS.

We present results for other splits in Appendix D where we show that GNN performance significantly
decreases under temporal distributional shifts and in the inductive setting, suggesting adaptation of
models to these realistic settings is an important direction for future research.

We hope GraphLand will encourage the evaluation of GML methods under more realistic and diverse
settings, the development of GML methods that are more resilient to temporal distributional shifts
and dynamically changing graph structure, and the development of more consistently performing
GFMs that can handle different node feature sets that go beyond just textual descriptions.
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A GraphLand Benchmark Details
A.1 Dataset descriptions

In this section, we provide a more detailed description of the GraphLand datasets. Note that none of
the proposed datasets contain any personal information. For review purposes, our datasets can be
found at this anonymous Kaggle storage, while data format description and our code can be found at
this anonymous repository.

web-fraud, web-topics, and web-traffic These three datasets are web-graphs — they
represent a segment of the Internet. The nodes are websites, and a directed edge connects two nodes
if at least one user followed a link from one website to the other in a selected period of time. We
prepared three datasets with the same graph but different tasks: in web-fraud, the task is to predict
which websites are fraudulent (strongly imbalanced binary classification); in web-topics, the task is
to predict the topic that a website belongs to (multiclass classification); and in web-traffic, the task
is to predict how many users visited a website in a specific period of time (regression). With almost
3 million nodes, this is one of the largest publicly available attributed graphs that is not a citation
network. Nodes in this graph have more than two hundred features, examples of which include the
number of videos on the website (numerical feature), the website’s zone and whether the website is
on a free hosting (categorical features).

artnet-views and artnet—-exp These two datasets represent a social network of art creators.
The nodes are users, and an edge connects two nodes if the users are friends. We prepared two
datasets with the same graph but different tasks: in artnet-views, the task is to predict how many
views a user receives in a specific period of time (regression); and in artnet-exp, the task is to
predict which users create explicit art content (binary classification). The examples of node features
in this graph include user interests (categorical features).

city-roads-Mand city—-roads-L These datasets are obtained from the logs of a navigation
service and represent the road networks of two major cities, with the second one being several times
larger than the first. The nodes are segments of roads, and a directed edge connects two nodes if
the segments are incident to each other and moving from one segment to the other is permitted
by traffic rules. The task is to predict the average travel speed on a road segment at a specific
timestamp (regression). The features include various information about the road segment such as
binary indicators of whether there is a bike dismount sign, whether the road segment ends with a
crosswalk or a toll post, whether the road segment is in poor condition, whether it is restricted for
trucks, and whether it has a mass transit lane (categorical features). The examples of numerical
features are the length of the road and the geographic coordinates of the road endpoints.

city-reviews This dataset is obtained from the logs of a review service in which users can leave
reviews and ratings for places and organizations in two major cities. The nodes are users, and an
edge connects two nodes if the users often leave reviews for the same organizations. The graph is
undirected. The task is fraud detection — to predict which users leave fraudulent reviews (binary
classification). The node features are based on user interactions with the service and their examples
include the share of negative reviews among all reviews the user has left (numerical feature) and the
browser that is used to access the service by the user (categorical feature).

avazu-ctr This dataset is based on open data that has been introduced at the Kaggle competition
organized by Avazu [38]. The data contains information about interactions between devices used
to access the Internet, websites, and advertisements. In our graph, the nodes are devices, and an
edge connects two nodes if the devices often visit the same websites. The graph is undirected. A
smaller version of a similar dataset has been used by Ivanov and Prokhorenkova [39]; however, it
contained only a small subset of devices, while for our dataset we collected data for all the available
devices which makes our graph more than 50 times larger. The task is to predict the advertisement
click-through rate (CTR) observed on devices (regression). Nodes in this graph have more than two
hundred numerical features; however, most of them were anonymized in the original data source.

hm-categories and hm—prices These datasets are based on open data that has been introduced
at the Kaggle competition organized by H&M [40]. The graph represents a co-purchasing network.
The nodes are products, and an edge connects two nodes if the products are often bought by the same
customers. The graph is undirected. We prepared two datasets with the same graph but different
tasks: in hm-categories, the task is to predict the product category (multiclass classification), and
in hm-prices, the task is to predict the product price (regression). The node features in this dataset
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include product metadata such as product color (categorical feature), as well as information obtained
from product purchasing statistics such as what proportion of product purchases occurs on different
weekdays (numerical features).

pokec-regions This dataset is based on the data from Takac and Zabovsky [41]. It represents
the online social network Pokec. The nodes are users, and a directed edge connects two nodes if
one user has marked the other one as a friend. While this graph is quite popular in network analysis
as an example of a classic social network, it is relatively rarely used for machine learning, with the
exception of Lim et al. [42] who use the same graph as us but with different task, node features,
and data split. In our dataset, the task is to predict which region a user is from (extreme multiclass
classification with 183 classes). The node features in our dataset are based on user profile information,
examples of them include the profile completion proportion (numerical feature) and binary indicators
of whether different profile fields are filled (categorical features).

twitch-views This datasetis based on the data from Rozemberczki and Sarkar [43]. It represents
the live-streaming network Twitch. The nodes are users, and an edge connects two nodes if both
users follow each other. The task is to predict how many views a user gets in a specific period of time
(regression). The node features are based on user profile information and examples of them include
user language and affiliate status (categorical features).

tolokers-2 This is a new version of the dataset tolokers from Platonov et al. [8], Likhobaba
et al. [44] with a significantly extended set of node features. It is based on the data from the Toloka
crowdsourcing platform and the graph represents a network of tolokers (workers). The nodes are
tolokers, and an edge connects two nodes if these tolokers have worked on the same task. The graph
is undirected. The task is fraud detection — to predict which tolokers have been banned in one of
the projects (binary classification). The new node features include various performance statistics
of workers, such as the number of approved assignments and the number of skipped assignments
(numerical features), as well as worker’s profile information, such as their education level (categorical
feature).

For all datasets, we provide random stratified RL and RH data splits. Further, we provide temporal
TH data split (with the possibility of using the inductive learning setting THI) for all datasets with
the exception of city-roads-M and city-roads-L datasets (since well-established road network
graphs typically do not evolve over time significantly), as well as city-reviews and web-traffic
datasets (since for them some of the necessary temporal information was not available).

A.2 Dataset properties

A key characteristic of our benchmark is its diversity. As described above, our graphs come from
different domains and have different prediction tasks. Their edges are also constructed in different
ways (based on user interactions, activity similarity, physical connections, etc.). However, the
proposed datasets also differ in many other ways. Some properties of our graphs are presented in
Table 2 (see below for the details on how the provided characteristics are defined). First, note that the
sizes of our datasets range from 11K to 3M nodes. The smaller graphs can be suitable for compute-
intensive models, while the larger graphs can provide a moderate scaling challenge. The average and
median degrees of our graphs also vary significantly and our benchmark has both sparse and relatively
dense graphs, including graphs with the average degree in the order of hundreds which is larger
than the average degrees of most datasets used in current GML research (such graphs may highlight
the importance of attention-based GNNs with their soft edge selection mechanisms). The average
distance between two nodes in our graphs varies from 2.45 for hm-categories and hm-prices to
194 for city-roads-L; and graph diameter (maximum distance) varies from 8 for twitch-views
to 553 for city-roads-L. Further, we report the values of clustering coefficients which show how
typical closed node triplets are for the graph. In the literature, there are two definitions of clustering
coefficients [45]: the global clustering coefficient and the average local clustering coefficient. We
have both graphs where the clustering coefficients are high and graphs where they are almost zero, as
well as graphs where global and local clustering coefficients significantly disagree (which is possible
for graphs with imbalanced degree distributions). The degree assortativity coefficient is defined as
the Pearson correlation coefficient of degrees among pairs of linked nodes. For most of our graphs,
the degree assortativity is either negative or close to zero, which means that nodes do not tend to
connect to other nodes with similar degrees, while city-roads-M and city-roads-L datasets are
the exceptions — for them the degree assortativity is positive and large.
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Table 2: Characteristics of the proposed GraphLand datasets.
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# nodes 46.5K 1.6M 29M 11.8K 1488K 50.4K 29M 46.5K 76.3K 57.1K 142.3K 168.1K 50.4K 2.9M
# edges 10.7M  22.3M  124M 519.0K 1.2M 280.3K 12.4M 10.7M 11.0M 107.1K 231.6K 6.8M 280.3K 12.4M
avg degree 460.92  27.32 8.56  88.28 15.66  11.12 8.56 460.92 288.04 3.75 326 80.87  11.12 8.56
median degree 45 13 2 30 4 2 2 45 71 4 3 32 2 2
avg distance 2.45 4.68 3.08 2.79 4.91 4.42 3.08 2.45 3.55  126.75 194.05 2.88 4.42 3.08
diameter 13 14 36 11 19 13 36 13 14 383 553 8 13 36
global clustering 0.27 0.05 0.00 0.23 0.26 0.03 0.00 0.27 0.24 0.00 0.00 0.02 0.03 0.00
avg local clustering 0.70 0.11 0.33 0.53 0.41 0.08 0.33 0.70 0.85 0.00 0.00 0.16 0.08 0.33
degree assortativity ~ —0.35 0.00 —-0.14 —0.08 0.01 0.03 -0.14 -0.35 -0.30 0.70 0.74  —0.09 0.03 —0.14
# classes 21 183 28 2 2 2 2 N/A N/A N/A N/A N/A N/A N/A
unbiased homophily 0.38 0.98 0.55 0.10 0.69 0.28 0.32 N/A N/A N/A N/A N/A N/A N/A
target assortativity N/A N/A N/A N/A N/A N/A N/A 0.12 0.18 0.74 072 —-0.41 0.19 -0.21
# node features 35 56 263 16 37 75 266 41 260 26 26 4 50 267

Further, let us discuss the graph-label relationships in our datasets. To measure the similarity of labels
of connected nodes for regression datasets, we use target assortativity — the Pearson correlation
coefficient of target values between pairs of connected nodes. For instance, for the city-roads-M
and city-roads-L datasets, the target assortativity is positive and quite large, which shows that
nodes tend to connect to other nodes with similar target values (which is expected for the task of
speed prediction in road networks), while for the twitch-views and web-traffic datasets, the
target assortativity is negative. For classification datasets, the similarity of neighbors’ labels is
usually called homophily: in homophilous datasets, nodes tend to connect to nodes of the same
class. How to properly measure homophily has recently attracted some research. It has been noted
by Lim et al. [42] and Platonov et al. [46] that homophily measures typically used in the literature —
such as the proportion of edges connecting nodes of the same class — are not appropriate for
comparing homophily levels between graphs with different numbers of classes and their size balance.
Platonov et al. [46] proposed a set of properties that a homophily measure appropriate for use in
such comparisons should satisfy and Mironov and Prokhorenkova [47] constructed the first known
homophily measure that satisfies all these properties — unbiased homophily. Thus, in our work,
we use unbiased homophily to measure the homophily levels of our datasets. Unbiased homophily
(with oo = 0, see Mironov and Prokhorenkova [47] for more details) takes values in [—1, 1] with
1 indicating perfect homophily, —1 indicating perfect heterophily, and 0 indicating no preference
between homophilous and heterophilous edges (such graphs are typically referred to as heterophilous
in the literature, although a more appropriate term would be non-homophilous). Note that the values
of unbiased homophily should not be compared to values of other homophily measures used in the
literature; the unbiased homophily levels for some popular graph node classification datasets are
provided in Mironov and Prokhorenkova [47]. Unbiased homophily indicates that among our datasets
pokec-regions and city-reviews are homophilous, while the other ones are non-homophilous.
Thus, our benchmark significantly expands the set of available non-homophilous graph datasets.

Finally, our datasets have diverse sets of node features consisting of numerical and categorical features
with different meanings and distributions. All our datasets except twitch-views and tolokers-2
have at least several dozen node features, while some have several hundred node features.

Overall, our datasets are diverse in domain, scale, structural properties, graph-label relations, and
node attributes. Coming from real-world GML applications, they may serve as a valuable tool for the
research and development of GML methods for the industry.

Computing dataset characteristics. Further, we describe the characteristics that are used in Table 2.
Note that, while some graphs in our benchmark are directed, we transformed all the graphs to be
undirected before computing all the considered graph characteristics, since some of the characteristics
are not defined for directed graphs.

Average degree and median degree are the average and median numbers of neighbors a node has,
respectively. Since all our graphs are connected (when treated as undirected graphs), for any two nodes
there is a path between them. Average distance is the average length of the shortest paths between all
pairs of nodes, while diameter is the maximum length of the shortest paths between all pairs of nodes.
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For our largest graphs — the ones used for the pokec-regions, web-traffic, web-fraud, and
web-topics datasets — we approximate average distance with an average over distances for 100K
randomly sampled node pairs. Global clustering coefficient is computed as the tripled number of
triangles divided by the number of pairs of adjacent edges (i.e., it is the fraction of closed triplets
of nodes among all connected triplets). Average local clustering coefficient first computes the local
clustering of each node, which is the fraction of connected pairs of its neighbors, and then averages
the obtained values among all nodes. Degree assortativity is the Pearson correlation coefficient
between the degrees of connected nodes. Further, farget assortativity for regression datasets is the
Pearson correlation coefficient between target values of connected nodes. For computing unbiased
homophily, we follow Mironov and Prokhorenkova [47] and use the simplest version of this measure
with the o parameter set to 0.

B Data Splits and Experimental Settings

In GML literature, there are two most popular settings for node property prediction regarding the
relative sizes of train, validation, and test sets: one with a high label rate and one with a low label
rate. In the high label rate setting, the train set encompasses 50% of all graph nodes or more. This
setting is common in heterophilous benchmarks, e.g., it is used by datasets from Pei et al. [21]
and Platonov et al. [8], and it is also used by most datasets from OGB [19]. In the low label rate
setting, much smaller train set sizes are used (typically, no more than 10% of all graph nodes). This
setting is commonly used with the classic cora, citeseer, pubmed citation networks, and it is also
used by the ogbn-products dataset from OGB. Both of these settings can appear in real-world
GML usage scenarios, depending on the resources available for data labeling. It is important to
provide predetermined splits to ensure experiments in different works are run in the same setting
and their results are comparable, but it is also important to accommodate different needs of different
research projects. Thus, for datasets in our benchmark we provide fixed splits for both settings. We
refer to these splits as the RL (random low) and RH (random high) splits. Specifically, the RL split
randomly divides nodes into train/validation/test sets with 10%/10%/80% proportions, while the RH
split randomly divides nodes into train/validation/test sets with 50%/25%/25% proportions.

The RL and RH data splits are random, as is common in current GML benchmarks. However, in
real-world applications, data splits are often temporal, i.e., the labeled objects are the ones that
appeared in the network earlier, while the ones that appeared later are not labeled and belong to the
test set. Despite their prevalence in applications, temporal splits are very rarely used in current GML
node property prediction benchmarks. To the best of our knowledge, the only such datasets with
temporal splits available are citation networks from OGB, which represent only a single application.
At the same time, temporal data splits may significantly affect the prediction problem and the model
performance, as they often result in distributional shifts between train, validation, and test data. While
some types of distributional shifts have been previously explored in the GML literature, e.g., shifts
in node features [48] and shifts in graph structure [49], realistic temporal distributional shifts often
combine shifts in several aspects of data simultaneously (e.g., shifts in the distributions of node
features, labels, and graph structural characteristics), and the effect of such realistic shifts on GML
model performance is currently under-explored. To close this gap, we provide a temporal split for
most datasets in our benchmark. We refer to this split as the TH (temporal high) split; it divides nodes
into train/validation/test sets with 50%/25%/25% proportions, i.e., exactly the same proportions as
in the RH split, which allows comparing model results between the RH and TH splits to see how the
complexity of the task changes when temporal distributional shifts are introduced.

Further, many real-world networks are not static, but evolve over time. Thus, in many applications,
not only are there no labels available for nodes that appear in the network later, but the nodes
themselves (with their attributes and incident edges) are not available at training time. This setting is
known in GML as the inductive setting. In contrast to the transductive setting in which the whole
graph is available at training time (including the nodes for which predictions should be made), in
the inductive setting validation and test nodes are not available at training time. Despite temporally
evolving graphs being common in practical applications, most standard node property prediction
datasets only provide the transductive setting. While it is well-known that GNNs, in contrast to some
other GML methods like shallow node embeddings, can work not only in the transductive but also
in the inductive setting [32], it is not well-explored how the lack of complete graph information
at training time in the inductive setting affects GNN performance. Moreover, when the inductive
setting is used for GNN evaluation in the current literature, the validation and train nodes are typically
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chosen randomly, which is not realistic, since in real-world applications the inductive setting is
almost always induced by the temporal evolution of the graph. To fill this gap, for all datasets in
our benchmark for which temporal information is available, we additionally provide the inductive
experimental setting. We refer to this setting as THI (temporal high / inductive); it has the exact same
data split as the transductive TH setting, but provides three snapshots of the graph: one for training,
one for validation, and one for testing. This allows investigating how model performance changes
between the transductive and the inductive setting. To the best of our knowledge, our work is the first
to compare GNN performance between random and temporal data splits in the transductive setting
under the same split ratios, and between transductive and inductive settings under the same temporal
data split. This comparison allows us to investigate how much these differences can affect GNN
performance.

C Experimental Setup Details
C.1 Models

A graph-agnostic baseline. As a simple baseline, we use ResMLP — an MLP with skip-
connections [50] and layer normalization [51]. This model does not have any information about the
graph structure and operates on nodes as independent samples — we call such models graph-agnostic.
It has been shown that such MLP-like models with skip-connections can serve as very strong baselines
for industrial data with mixed numerical and categorical features [52].

Graph neural networks. We consider several representative GNN architectures. First, we use
GCN [17] and GraphSAGE [32] as simple classical GNN models. For GraphSAGE, we use the
version with the mean aggregation function, and we do not use the neighbor sampling technique
proposed in the original paper, instead training the model on the full graph, like all other GNN’s
in our experiments. Further, we use two GNNs with attention-based neighborhood aggregation
functions: GAT [33] and Graph Transformer (GT) [34]. Note that GT is a local graph transformer,
i.e., each node only attends to its neighbors in the graph (in contrast to global graph transformers,
in which each node attends to all other nodes in the graph, and which are thus not instances of the
standard message-passing neural networks (MPNNs) framework of Gilmer et al. [53]). Following
Platonov et al. [8], we equip all the considered GNNs with skip-connections and layer normalization,
which we found important for their strong performance on our datasets. We also add a two-layer
MLP with the GELU activation function [54] after every neighborhood aggregation block in GNNs.
Our graph models are implemented in the same codebase as our ResMLP — we simply swap each
residual block of ResMLP with a residual neighborhood aggregation block of the selected GNN
architecture. Therefore, comparing the performance of ResMLP and GNNs allows us to see if graph
information is helpful for the task. Indeed, in our experiments, GNNs significantly outperform
graph-agnostic ResMLP on all our datasets, confirming the usefulness of the provided graph structure
for the considered tasks.

Graph foundation models. Most currently available GFMs do not support node property prediction
tasks in graphs with arbitrary node features. Of those that do, we were able to find only two models
with open weights: OpenGraph [35] and AnyGraph [36]. Both OpenGraph and AnyGraph exploit the
Transformer architecture and are pretrained with a link prediction objective on a mixture of different
graph datasets. These methods differ in what data they can operate on. Specifically, OpenGraph
only uses relational information and constructs node representations based on SVD factors of the
adjacency matrix, while AnyGraph also uses the available node feature information and combines
SVD factors for both the feature matrix and the adjacency matrix. Both these models were designed
to be adapted to new node classification datasets without fine-tuning, using an in-context learning
(ICL) setting instead. Specifically, they can perform link prediction in arbitrary graphs, and they
cast any node classification task as a link prediction task where links to virtual nodes representing
classes are predicted for unlabeled nodes. Further, we were able to reproduce the pretraining for
one more GFM — GCOPE [37] (weights for this model are not publicly available, but training code
is). GCOPE also applies a projection to node features (e.g., based on SVD or attention mechanism),
but exploits additional virtual nodes as graph coordinators to simultaneously process different graph
datasets at the pretraining stage. The authors use GraphCL [55] or SimGRACE [56] as the pretraining
objective. In contrast to OpenGraph and AnyGraph, GCOPE uses fine-tuning for adaptation to new
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node classification datasets. However, neither of the three models supports node regression. Further,
we found that these GFMs cannot scale to large datasets.

C.2 Experimental setup and hyperparameter selection details

Some of the graphs in our benchmark are directed. For our experiments, we converted directed
graphs to undirected ones (by replacing each directed edge with an undirected one and then removing
duplicated edges). We leave investigation of different ways to consider edge directions to further
research.

We train all models 10 times with different random seeds to compute the mean and standard deviation
of model performance, except for our largest datasets pokec-regions, web-traffic, web-fraud,
web-topics, for which we train all models 5 times.

We train all our GNNSs in a full-batch setting, i.e., we do not use any subgraph sampling techniques
and train the models on the full graph. Our ResMLP baseline is implemented in the same codebase
as our GNNs and thus is also trained in the full-batch setting.

Hyperparameter choice is extremely important for the performance of GNNs. Thus, we conducted
hyperparameter search on the validation set for all models. Specifically, we found that the learning rate
and dropout probability [57] are the most important hyperparameters for our GNN implementations
on our datasets. Thus, we ran grid search selecting the learning rate from {3 x 1075, 1 x 1074, 3 x
1074,1 x 1073, 3 x 103} and dropout probability from {0, 0.1, 0.2} (note that the highest learning
rate of 3 x 1072 often resulted in NaN issues, however, we still included it in our hyperparameter
search, as in our preliminary experiments we found it to be beneficial for some of our dataset/model
combinations). In our preliminary experiments we found that the performance of our GNNss is quite
stable for a wide variety of reasonable architecture hyperparameter values (we found the use of
skip-connections and layer normalization to be important for this stability). Hence, for our final
experiments, we kept these hyperparameters fixed. We set these values as follows: the number of
graph neighborhood aggregation blocks to 3 and the hidden dimension to 512. The only exceptions
to this hidden dimension size were made for our largest datasets: to avoid GPU out-of-memory
issues, we decreased the hidden dimension to 400 for pokec-regions and to 200 for web-traffic,
web-fraud, and web-topics. For GNNs with attention-based graph neighborhood aggregation
(GAT and GT), the number of attention heads was set to 4. We used the Adam optimizer [58] in all
our GNN experiments. We trained each model for 1000 steps and then selected the best step based
on the performance on the validation set.

When applying deep learning models to data with numerical features, the preprocessing of these
features is critically important. In our experiments, we considered two possible numerical feature
transformation techniques: standard scaling and quantile transformation to standard normal distribu-
tion. We included them in the hyperparameter search for ResMLP and GNNs. In contrast, GBDT
models do not need specialized preprocessing for numerical features and are not affected by their
monotonic transformations. For categorical features, we used one-hot encoding for all models except
for LightGBM and CatBoost, which support the use of categorical features directly and have their
specialized strategies for working with them (XGBoost also offers such a feature, but it is currently
marked as experimental, and we were not able to make it work). For regression datasets, neural
models might perform better if the target variable is transformed. Therefore, in our experiments on
regression datasets with ResMLP and GNNs, we considered the options of using the original targets
or preprocessing targets with standard scaling, including these two options in the hyperparameter
search.

Our GNNs are implemented using PyTorch [59] and DGL [60].

D Additional Experimental Results

In the main text, we report our experimental results for the RL setting. In this section, we present
results for other settings. In Table 3 we report combined results for the RH, TH, and THI settings for
those datasets that have temporal data split. Additionally, in Tables 4, 5, 6 we separately report results
for the RH, TH, and THI settings, respectively. In all tables with results, for each dataset, we highlight
with color the best result as well as those results for which the mean differs from the best one by no
more than the sum of the two results’ standard deviations.
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Table 3: Experimental results under the RH (random high), TH (temporal high), and THI (temporal high
/ inductive) settings. The best result and those statistically indistinguishable from it are highlighted in
red for RH, violet for TH, and blue for THI.

(a) Results for classification datasets. Accuracy is reported for multiclass classification datasets and Average
Precision is reported for binary classification datasets.

multiclass classification binary classification

hm-categories pokec-regions web-topics tolokers-2 artnet-exp web-fraud

RH  19.46 + 0.00 377£000  28.36+0.00 21.82+0.00 10.00+0.00 0.6 0.00
bestconst. pred.  TH  19.57 £ 0.00 298+£0.00 23284000 8.61+000 7.84+0.00 0.15%0.00
THI 1957 % 0.00 208£0.00 23284000 8.61+0.00 7.84£0.00 0.15%0.00
RH  43.12+0.25 500£001  44.55£0.08 45.96+0.46 43.55+0.23 13.52+0.21
ResMLP TH  32.44+0.54 4184001  35.49£0.03 21.72+£6.69 37.48+£051 2.83+0.26
THI 3244 %054 418£0.01 3549003 21.72+6.60 3748+051 2.83+0.26
RH  73.38+£042  35.08+0.62 43.883+0.09 60.49+0.86 49.80+035 15.58+0.20
GCN TH  56.91%0.55 1188031  3820£0.19 4672119 40.64£0.40 4.85+1.42
THI  47.05+ 1.69 6.88+£0.51  37.76+0.06 32.43+8.03 41.28+028 3.44+0.33
RH  73.34+£0.68  40.76+£0.21  50.05+0.03 58424092 484940.37 20.47+0.17
GraphSAGE TH  59.62+0.51 16.60£0.28  39.00£0.09 17.05+7.65 40.50£0.84 16.01 £ 2.22
THI  48.11+2.08 8.044£0.26  38.04+0.18 30.86+£948 40.53+£0.40 13.88+ 1.32
RH  79.19+0.21 46.72£0.69  50.54+0.04 63.76+1.30 50.62+0.35 20.43+0.21
GAT TH  61.28+£0.97  2043+0.55 3024023 3859619 41.85=0.63 16.50=1.14
THI  59.34 % 1.09 13384035 38.77+0.35 24.53+£9.55 41.64+£0.32 11.98+ 1.54
RH  79.28+0.31 50.06£0.53  50.58+0.04 60324121 49.32+1.00 19.73%0.34
GT TH 63314045  25.00+£0.58 3919015 3415481 4010060 11.97+1.13
THI  59.54 % 1.59 17224042  38.78+£0.08 22.89+104 40.26+£0.82 7.84+235
RH  11.69=0.84 2.56 % 0.42 RTE 44.62£1.35 23.72+ 1.86 RTE
OpenGraph (ICL) TH  5.76+1.03 0.80 % 0.45 RTE 9.124+1.74 16.19+1.36 RTE
THI  5.76=1.03 0.80 £ 0.45 RTE 9.12+1.74 16.19+1.36 RTE
RH  15.65+2.82  27.67+248 6304282 30.21+3.32 1580£1.90 0.67=0.02
AnyGraph (ICL) ~ TH 947+ 113 9.2040.67 11.14+516 13.52+£4.74 11.80+1.01 0.16+0.01
THI ~ 9.47+1.13 9.20£0.67 11.14+516 13.52£474 11.80£1.01 0.16+0.01
RH  10.99 +0.12 TLE TLE 31.79+1.95 23.86+2.33 TLE
GCOPE (FT) TH  19.14%0.58 TLE TLE 846+ 1.15 20.83+1.18 TLE
THI  15.69 = 3.44 TLE TLE 10.73+1.48 19.10%0.96 TLE

(b) Results for regression datasets. R? is reported for all datasets.

hm-prices avazu-ctr twitch-views artnet-views
RH 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00
best const. pred. TH —2.85+0.00 0.00£0.00 —22.31£0.00 —9.32 £ 0.00

THI  —2.85£0.00 0.00 £0.00 —22.31£0.00 —9.32 £0.00

RH 70.11 £+ 0.48 28.03 +0.22 13.36 = 0.01 36.10 £0.17

ResMLP TH 61.64 +£0.79 20.35 + 1.50 11.91 £+ 8.00 42.15+0.52
THI 61.64 £0.79 20.35 + 1.50 11.91 £ 8.00 42.15 £ 0.52

RH 79.76 £ 0.76 34.96 £0.11 77124+ 0.11 61.02+0.13

GCN TH 65.20 £ 0.84 37.49 £ 0.26 68.17 £ 0.24 54.44 +0.43
THI 64.31 £0.82 34.78 £ 0.48 63.58 + 0.54 53.73+£0.47

RH 79.89 + 0.46 35.20 £ 0.20 72.02+0.16 56.65 + 0.50

GraphSAGE TH 67.93 +1.24 38.38 £ 0.39 61.46 £ 0.68 51.87 £0.48
THI 65.80 £ 0.56 36.79 £ 0.55 56.60 £ 0.71 53.37 £0.30

RH 81.68 +0.41 35.74 £0.19 76.06 £ 0.30 59.01 £0.52

GAT TH 70.83 4+ 0.99 39.21 +£0.17 66.32 + 0.59 52.30 £0.34
THI 69.74 + 1.50 37.18 £1.02 61.41+1.30 52.44 £ 0.59

RH 80.90 + 0.42 34.38 £0.31 75.57 £ 0.15 58.97 £0.25

GT TH 69.70 + 0.84 38.27 £ 0.27 65.83 £ 0.24 51.67 £0.54
THI 67.33 £2.05 36.49 £ 0.83 60.67 £ 1.02 52.26 £ 0.48

First, we notice that the observations from the results for the low label rate RL setting about the
usefulness of graph structure, strong performance of classic and attention-based GNNs, and weak
performance of GFMs also apply to high label rate settings. Next, we observe that temporal data
splits are significantly more challenging for all models than random ones (with the exception of the
avazu-ctr dataset). This is important as in real-world applications temporal distributional shifts are
common, and not considering them can provide overly optimistic performance estimates. Further, the
considered models perform significantly worse in the inductive setting than in the transductive one.
These observations highlight the importance of developing GML methods that are more resilient to
temporal distributional shifts and dynamic changes in the graph structure for industrial applications.
In the absence of such methods, frequent retraining of GNNs on new data is recommended to achieve
the best results. Note that GFMs that only utilize in-context learning to adapt to new graphs do not
suffer from the transductive/inductive mismatch and thus represent a promising direction, but their
performance is currently very weak compared with GNNs on all datasets.

15



677

678
679
680
681
682
683
684
685

686
687
688
689
690
691
692
693
694

GraphLand: Evaluating Graph Machine Learning Models on Diverse Industrial Data

Table 4: Experimental results under the RH (random high) data split in the transductive setting. The
best result and those statistically indistinguishable from it are highlighted in red. TLE stands for time
limit exceeded (24 hours); RTE stands for runtime error in the official code of GFMs.

(a) Results for classification datasets. Accuracy is reported for multiclass classification datasets and Average
Precision is reported for binary classification datasets.

multiclass classification binary classification

hm-categories pokec-regions web-topics tolokers-2 city-reviews artnet-exp web-fraud

best const. pred. 19.46 £ 0.00 3.77 £0.00 28.36 £0.00 21.824+0.00  12.09 £ 0.00 10.00 £ 0.00  0.66 £ 0.00
ResMLP 43.12+£0.25 5.09 £0.01 44.55+£0.08 45.96 £ 0.46 75.214+0.08  43.554+0.23 13.52+0.21
GCN 73.38 +£0.42 35.08 +0.62 48.88+£0.09 60.49+0.86 81.05+£0.10 49.80+£0.35 15.584+0.20
GraphSAGE 73.34 £ 0.68 40.76 £0.21 50.054+0.03 58.424+0.92 80.75+0.06  48.4940.37 20.47£0.17
GAT 79.19 4+ 0.21 46.72 + 0.69 50.544+0.04 63.76 £1.30  81.10+0.11 50.624+0.35 20.43 £0.21
GT 79.28 +0.31 50.06 4+ 0.53 50.58 £0.04 60.32+1.21 80.50 £0.14  49.32+1.00 19.734+0.34
OpenGraph (ICL) 11.69 £ 0.84 2.56 +0.42 RTE 44.62+1.35 6296+£0.84 23.72+1.86 RTE

AnyGraph (ICL) 15.65 £ 2.82 27.67+2.48 6.30+2.82 30.214+3.32 65.04+1.41 15.80+1.90 0.67+£0.02
GCORPE (FT) 19.99 £0.12 TLE TLE 31.79+£1.95 69.74+£0.36  23.86 +2.33 TLE

(b) Results for regression datasets. R%is reported for all datasets.

hm-prices avazu-ctr city-roads-M city-roads-L twitch-views artnet-views web-traffic
best const. pred.  0.00 £ 0.00  0.00 & 0.00 0.00 £ 0.00 0.00 4 0.00 0.00 4 0.00 0.00 £ 0.00 0.00 4 0.00

ResMLP 70.11£0.48 28.03+0.22  62.43 £0.32 53.09 £0.17 13.36 4 0.01 36.10£0.17 73.88 £ 0.05
GCN 79.76 £0.76 34.96+£0.11  69.95£0.11 64.65 £ 0.27 77.124+0.11 61.02+0.13 83.49+0.14
GraphSAGE 79.89£0.46 35.20+0.20 70.20 £ 0.59 65.77 £0.43 72.02£0.16 56.65 % 0.50 85.19 £0.11
GAT 81.68+0.41 35.74+0.19 70.534+0.40 66.03 £ 0.24 76.06 £ 0.30 59.01 +0.52 85.70 + 0.08
GT 80.90 £0.42 34.38+0.31  67.45£0.82 64.02 £ 0.59 75.57 £0.15 58.97 £ 0.25 85.54 £ 0.23

E Limitations and Broader Impact

The aim of our benchmark is to introduce a diverse set of graph datasets for node property prediction
that covers a wide range of domains and graph structural properties, including those not encountered in
commonly used datasets for GML model evaluation. However, data that can be naturally represented
as graphs is so widespread across different domains that no benchmark can cover them all. Thus, our
collection of 14 datasets still only covers a small part of the wide range of situations where modeling
data as a graph can be useful. But we hope that it will encourage the GML research community to use
more diverse sets of datasets and focus on practically relevant applications where graph-structured
data appears.

Our benchmark includes datasets with realistic tasks such as fraud detection and user engagement
prediction. Poorly performing machine learning models used for these tasks in real-world services
can negatively affect the users of these services. For example, type I errors of fraud detection systems,
i.e., wrongly predicting that an innocent person is fraudulent, have an undesirable negative impact.
Thus, particular care should be taken to minimize the probability of such errors. We believe that
the release of high-quality and properly anonymized datasets for these tasks such as the ones in our
benchmark will encourage the community to develop better models, since the community will be able
to use these datasets as a realistic and reliable testbed to investigate which methods lead to reductions
in undesirable model errors.
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Table 5: Experimental results under the TH (temporal high) data split in the transductive setting. The
best result and those statistically indistinguishable from it are highlighted in violet. TLE stands for
time limit exceeded (24 hours); RTE stands for runtime error in the official code of GFMs.

(a) Results for classification datasets. Accuracy is reported for multiclass classification datasets and Average
Precision is reported for binary classification datasets.

multiclass classification binary classification

hm-categories pokec-regions web-topics tolokers-2 artnet-exp web-fraud

best const. pred. 19.57 £ 0.00 2.98 +0.00 23.284+0.00 8.61+£0.00 7.84£0.00 0.15+0.00
ResMLP 32.44 4+ 0.54 4.18 £0.01 35.494+0.03 21.724+6.69 37.48+0.51 2.83£0.26
GCN 56.91 4+ 0.55 11.88 £0.31 38.20+£0.19 46.72+£1.19 40.64+0.40 4.85+£1.42
GraphSAGE 59.62 +0.51 16.60 £0.28 39.00+£0.09 17.05+7.65 40.50+£0.84 16.01 £2.22
GAT 61.28 £0.97 20.43 £ 0.55 39.244+0.23 38.59£6.19 41.85+0.63 16.50£1.14
GT 63.31 4+ 0.45 25.09 £ 0.58 39.194+0.15 34.15£4.81 40.10+£0.60 11.97£1.13
OpenGraph (ICL) 5.76 £1.03 0.80 £ 0.45 RTE 9.12+1.74 16.19+1.36 RTE

AnyGraph (ICL) 947 £1.13 9.20 £0.67 11.14+£5.16 13.524+4.74 11.80£1.01 0.16 £0.01
GCOPE (FT) 19.14 £ 0.58 TLE TLE 846 £1.15 20.83+1.18 TLE

(b) Results for regression datasets. R2 is reported for all datasets.
g p

hm-prices avazu-ctr twitch-views artnet-views
best const. pred.  —2.85 4 0.00 0.00 £0.00 —22.31£0.00 —9.32 £0.00
ResMLP 61.64+0.79 20.35+1.50 11.91 £8.00 42.15+£0.52
GCN 65.20 £ 0.84 37.49 £0.26 68.17 +0.24 54.44 £0.43
GraphSAGE 67.93 £1.24 38.38 £ 0.39 61.46 £ 0.68 51.87 £0.48
GAT 70.83 £ 0.99 39.21+£0.17 66.32 = 0.59 52.30 £0.34
GT 69.70 £ 0.84 38.27 £0.27 65.83 £ 0.24 51.67 £0.54

Table 6: Experimental results under the THI (temporal high / inductive) setting. The best result and
those statistically indistinguishable from it are highlighted in blue. TLE stands for time limit exceeded
(24 hours); RTE stands for runtime error in the official code of GFMs.

(a) Results for classification datasets. Accuracy is reported for multiclass classification datasets and Average
Precision is reported for binary classification datasets.

multiclass classification binary classification

hm-categories pokec-regions web-topics tolokers-2 artnet-exp web-fraud

best const. pred. 19.57 £ 0.00 2.98 £0.00 23.28 +0.00 8.61 & 0.00 7.84+0.00 0.1540.00
ResMLP 32.44 £0.54 4.18 £0.01 35494+0.03 21.72+£6.69 3748+0.51 2.834+0.26
GCN 47.05 +1.69 6.88 £ 0.51 3776 +£0.06 3243 £8.03 41.28£0.28 3.444+0.33
GraphSAGE 48.11 +£2.08 8.04 £0.26 38.04 £0.18 30.86 £9.48 40.53 £0.40 13.88 +1.32
GAT 59.34 £1.09 13.38 £0.35 38.77+£0.35 24.53+£9.55 41.64+0.32 11.98+1.54
GT 59.54 £ 1.59 17.22 £0.42 38.78 £0.08 22.89 £10.40 40.26 £0.82  7.844+2.35
OpenGraph (ICL) 5.76 £1.03 0.80 £0.45 RTE 9.12+1.74 16.19+1.36 RTE

AnyGraph (ICL) 9.47+1.13 9.20 £0.67 11.14£5.16  13.52+4.74 11.804+1.01 0.16£0.01
GCOPE (FT) 15.69 + 3.44 TLE TLE 10.73+1.48 19.10 £+ 0.96 TLE

(b) Results for regression datasets. R%is reported for all datasets.

hm-prices avazu-ctr twitch-views artnet-views
best const. pred. —2.85£0.00 0.00+£0.00 —22.31+0.00 -9.32£0.00
ResMLP 61.64 +=0.79 20.35 £ 1.50 11.91 £8.00 42.15+0.52
GCN 64.31 +0.82 34.78 £ 0.48 63.58 £ 0.54 53.73+£0.47
GraphSAGE 65.80 &+ 0.56 36.79 £ 0.55 56.60 £ 0.71 53.37+0.30
GAT 69.74 +1.50 37.18 £1.02 61.41+1.30 52.44 +0.59
GT 67.33 £ 2.05 36.49 £+ 0.83 60.67 + 1.02 52.26 +0.48
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