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Abstract

Accurate text summarization is one of the most001
common and important tasks performed by002
Large Language Models, where the costs of003
human review for an entire document may be004
high, but the costs of errors in summarization005
may be even greater. We propose Detecting006
Errors through Ensembling Prompts (DEEP)007
- an end-to-end large language model frame-008
work for detecting factual errors in text summa-009
rization. Our framework uses a diverse set of010
LLM prompts to identify factual inconsisten-011
cies, treating their outputs as binary features,012
which are then fed into ensembling models. We013
then calibrate the ensembled models to produce014
empirically accurate probabilities that a text is015
factually consistent or free of hallucination. We016
demonstrate that prior models for detecting fac-017
tual errors in summaries perform significantly018
worse without optimizing the thresholds on sub-019
sets of the evaluated dataset. Our framework020
achieves state-of-the-art (SOTA) balanced ac-021
curacy on the AggreFact-XSUM FTSOTA, To-022
fuEval Summary-Level, and HaluEval Summa-023
rization benchmarks in detecting factual errors024
within transformer-generated text summaries.025
It does so without any fine-tuning of the lan-026
guage model or reliance on thresholding tech-027
niques not available in practical settings.1028

1 Introduction029

The advancement of cutting-edge Large Language030

Models (LLMs) like GPT-4, Claude 3, LLaMA-2,031

and Gemini variants introduces a significant chal-032

lenge: despite producing content that is linguis-033

tically coherent, their outputs frequently contain034

misleading or false information, often referred to035

as hallucinations or factual inconsistencies. Hal-036

lucinations in Large Language Models refer to in-037

stances where the model generates usually plau-038

sible but entirely fabricated information. Factual039

inconsistencies, a specific type of hallucination,040

1Code and data are available on GitHub.

occur when generated text contradicts the source 041

material or other well-established facts not explic- 042

itly mentioned in the source. 043

Traditional automatic evaluation methodologies 044

like ROUGE (Lin, 2004), METEOR (Banerjee and 045

Lavie, 2005), and BLEU (Papineni et al., 2002) 046

have been instrumental in assessing Natural Lan- 047

guage Generation tasks. However, numerous stud- 048

ies demonstrate the lack of correlation between ini- 049

tial automatic evaluation models and human judg- 050

ment in tasks such as machine translation (Callison- 051

Burch et al., 2006; Bhattacharyya et al., 2007), 052

image captioning (Cui et al., 2018), and notably, 053

factuality (Fu et al., 2023; Mao et al., 2023). In par- 054

ticular, these models struggle to capture semantic 055

equivalence when there are significant discrepan- 056

cies in length, syntax, and wording between two 057

texts (Guo and Vosoughi, 2023; Stent et al., 2005). 058

Consequently, specialized models (Laban et al., 059

2021; Kryściński et al., 2019; Goyal and Durrett, 060

2021) have been developed to assess textual factual 061

consistency, verifying the truthfulness of a claim 062

or summary based on given ground truth textual 063

content. 064

However, existing models, often fine-tuned vari- 065

ants of RoBERTa (Liu et al., 2019) for assessing 066

factual consistency, exhibit significant limitations. 067

As highlighted in Tang et al. (2023), these mod- 068

els show reduced effectiveness in detecting fac- 069

tual inconsistencies in content produced by recent 070

state-of-the-art text-generating models. Ensemble 071

learning is the practice of merging the outputs of 072

multiple models to produce a more accurate predic- 073

tion (Dietterich, 2000). Forbes et al. (2023) demon- 074

strated that ensembling factual consistency mod- 075

els by calculating their weighted mean surpassed 076

the performance of individual models in detect- 077

ing hallucinations within a small dataset of GPT-3- 078

generated Wikipedia abstractive summaries. 079

In light of these limitations, this study evaluates 080

benchmarks exclusively featuring summaries from 081
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recent transformer-based language models. This ap-082

proach more accurately reflects actual usage scenar-083

ios, where users commonly need to validate texts084

generated by newer LLMs rather than texts from085

older text generation models. We assess factual086

consistency using the AggreFact-XSUM FTSOTA,087

TofuEval Summary-Level, and HaluEval Summa-088

rization (Tang et al., 2023, 2024; Li et al., 2023)089

benchmarks, consisting of transformer-generated090

abstractive summaries featuring hallucinations that091

existing models struggle to identify.092

Existing factual consistency encoder models out-093

put numerical scores, requiring thresholding to map094

the scores to binary labels. However, Tang et al.095

(2023) demonstrates that the optimal threshold for096

factual consistency models varies depending on the097

recentness of the summarization model within the098

AggreFact dataset. Previous studies that report the099

performance of these factual consistency models100

have fine-tuned each model’s threshold using the101

development subset of the same dataset under eval-102

uation (Laban et al., 2021; Fabbri et al., 2022; Tang103

et al., 2023, 2024).104

This approach is problematic and unrealistic, as105

it assumes access to labeled data from the target106

dataset, which may not be available in real-world107

scenarios. In this study, we benchmark five popu-108

lar state-of-the-art factual consistency models and109

demonstrate a substantial decline in performance110

when thresholds are learned from different datasets111

or set to their default midpoint.112

We extend the findings of Tang et al. (2023) and113

discover that the optimal threshold for each fac-114

tual consistency model varies widely across differ-115

ent datasets, even when evaluating text generated116

solely from recent summarization models. Figure117

1 reveals that, even when considering only datasets118

with summaries from recent transformer models,119

the optimal linear threshold for maximizing bal-120

anced accuracy differs widely for each factual con-121

sistency model, covering a broad range of their pos-122

sible output scores.2 Moreover, Figure 2 demon-123

strates that optimizing thresholds on non-test data124

or setting them to the midpoint of each model’s125

score range significantly reduces balanced accuracy126

compared to test-set optimization. The reliance127

of these models on dataset-specific thresholds, as128

demonstrated by our findings, limits their practical129

utility in evaluating factual consistency across a130

2QuestEval, SummaC-Conv, and AlignScore (with mode
nli_sp) generate scores from 0 to 1. SummaC-ZS scores
range from -1 to 1. QAFactEval scores range from 0 to 5.

diverse range of text without further fine-tuning or 131

adjustments. 132

Figure 1: Optimal thresholds of factual consistency
models when set to maximize balanced accuracy on
each test dataset.

Previous efforts to use LLMs for identifying fac- 133

tual inconsistencies include Wang et al. (2023), 134

who prompted ChatGPT to return numerical fac- 135

tuality scores for summarization, and Luo et al. 136

(2023), who used ChatGPT to produce binary fac- 137

tuality judgments. However, Tang et al. (2023) 138

showed that these existing prompts had shown poor 139

performance on detecting factual consistencies over 140

the AggreFact FTSOTA benchmark of transformer- 141

generated summaries. 142

Existing LLM solutions are frequently overcon- 143

fident in their assessments of a text’s factual con- 144

sistency. Tang et al. (2024) showed that their 145

summary-level binary factual consistency prompts, 146

when used with GPT-4, frequently failed to identify 147

sentences with factual errors, resulting in False Pos- 148

itive Rates of 69% and 46% on the MediaSum and 149

MeetingBank subsets of the TofuEval Summary- 150

Level dataset, respectively. This issue of overcon- 151

fidence is not unique to their approach but rather 152

a general problem that neural networks, including 153

LLMs, tend to be overconfident in their predictions 154

(Guo et al., 2017; Minderer et al., 2021; Jiang et al., 155

2021; Xiong et al., 2023).3 156

Confidence elicitation, an increasingly popular 157

method, involves prompting the LLM to output 158

its uncertainty along with its prediction (Lin et al., 159

2022; Xiong et al., 2023; Tian et al., 2023). Despite 160

3Binary prompts, by their very nature, force models to
reduce nuance and uncertainty into a single decision, con-
tributing to the overconfidence observed in their responses.
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Figure 2: Factual consistency models’ performance
varies significantly based on threshold optimization
strategy. The bars show balanced accuracy for factual
consistency models under three threshold optimization
strategies: optimizing the thresholds on the test dataset
("Optimizing on Test"), setting thresholds to the mid-
point of each model’s score range ("Optimizing at Cen-
ter"), or optimizing on all datasets except the test set
("Optimizing on Train"), which reflects a realistic sce-
nario of applying the model to unseen data. Numbers
above bars quantify the decrease in balanced accuracy
when thresholds are optimized on non-test data com-
pared to the test dataset itself, underscoring the difficulty
of effectively applying these models to unseen data in
practice.

its potential, no confidence elicitation approach has161

yet consistently yielded accurate confidence esti-162

mates across diverse LLMs and tasks, limiting its163

current practical utility. Calibration, the process of164

adjusting model-predicted probabilities to match165

their empirical accuracies, has remained the lead-166

ing solution to correct model overconfidence (Guo167

et al., 2017).168

We propose a novel approach - crafting a di-169

verse set of LLM prompts that each output a binary170

score, indicating each prompt’s belief of whether171

the summaries contain any factual errors. These bi-172

nary features are then fed into ensembling models,173

which integrate the multiple perspectives of each174

prompt to produce a single probability. Finally, we175

calibrate the ensemble models to obtain empirically176

accurate probabilities that a given summary is fac-177

tually consistent or free of hallucination.4 The full 178

pipeline of our framework can be seen in Figure 3. 179

The primary contributions of our work can be 180

outlined as follows: 1: We demonstrate that prior 181

methods for detecting factual errors in summariza- 182

tions perform significantly worse without the com- 183

mon practice of an optimized threshold on sub- 184

sets of the dataset under test. 2: We introduce a 185

large and diverse set of prompts, each employing 186

unique methods and evaluation protocols to detect 187

hallucinations and factual inconsistencies in gen- 188

erated summaries. 3: Our end-to-end framework 189

achieves state-of-the-art balanced accuracy on the 190

AggreFact-XSUM FTSOTA, TofuEval Summary- 191

Level, and HaluEval Summarization benchmarks 192

in detecting factual errors in transformer-generated 193

text summaries, all without fine-tuning the lan- 194

guage model or relying on impractical thresholding 195

techniques. 196

2 Datasets 197

The AggreFact FTSOTA benchmark (Tang et al., 198

2023) tests a model’s ability to identify factual 199

inconsistencies in summaries produced by fine- 200

tuned transformer-based summarization models. 201

The dataset combines nine existing annotated fac- 202

tuality datasets, converting all factual consistency 203

scores to binary. AggreFact is categorized based 204

on the development timeline of the underlying sum- 205

marization models into FTSOTA, EXFORMER, 206

and OLD categories, and is divided into AggreFact 207

CNN/DM and AggreFact-XSUM subsets. We 208

benchmark AggreFact-XSUM FTSOTA and ex- 209

clude its CNN/DM counterpart due to its insuf- 210

ficient number of factual inconsistencies and its 211

more extractive summary style, compared to the 212

more abstractive style of current SOTA LLMs. 213

HaluEval (Li et al., 2023), a comprehensive 214

benchmark for assessing hallucination in LLMs, 215

uses a ChatGPT-based two-step sampling-then- 216

filtering framework to create the dataset. We focus 217

on the summarization subset of HaluEval, which 218

pairs each of the 10,000 sampled document con- 219

texts with two summaries: one with hallucination 220

and one without. 221

4We craft prompts that aim to detect either factual incon-
sistencies or hallucinations, allowing the ensembling model
to determine the importance of each prompt for the datasets it
is trained on. This approach enables us to sidestep the subtle
distinction between factual inconsistencies and hallucinations,
and instead let the ensembling model decide what prompts are
most relevant for the training data.
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Figure 3: Diagram of our end-to-end framework.

TofuEval (Tang et al., 2024) is a topic-focused di-222

alogue summarization benchmark containing 1.5K223

LLM-generated summaries from the MediaSum224

(Zhu et al., 2021) and MeetingBank (Hu et al.,225

2023) datasets. TofuEval uses a two-stage annota-226

tion process, where two expert linguists indepen-227

dently assess the binary relevance, completeness,228

and factual consistency of each sentence in the sum-229

maries. We focus solely on the factual consistency230

annotations of main topic summaries, merging sum-231

marization sentences into one paragraph deemed232

consistent if all summarization sentences are indi-233

vidually marked as consistent.5 We thus refer to234

this concatenation interchangeably as "TofuEval235

Summary-Level" or simply "TofuEval Summary".236

We use the provided test subsets of each dataset,237

except for HaluEval Summarization, which lacks a238

train-test split. For HaluEval Summarization, we239

use a balanced random sample of 3,000 summaries240

as our test set.241

3 Methodology242

3.1 Ensembling Methods243

We train and evaluate 16 ensembling methods.244

When applicable, parameters for all relevant meth-245

ods are determined using a grid search over the246

parameter feature space. Below is a listing of these247

methods:248

• Linear Models: LogisticRegression, LDA249

5Tang et al. (2024) separated summaries into Main and
Marginal, with the majority of sentences categorized as Main.
We focus on the Main summaries because the Marginal dataset
in TofuEval is insufficiently small for reliable analysis.

• Tree-Based Methods: RandomForest, Gra- 250

dientBoosting, AdaBoost, DecisionTree, Cat- 251

Boost, XGB, LGBM 252

• Ensemble Voting: MajorityLabelVoter, 253

WeightedMajorityLabelVoter 254

• Label Aggregation Models: LabelModel, 255

Dawid-Skene6 256

• Other Methods: Support Vector Machines, 257

Nearest Neighbors, Naive Bayes (Bern- 258

boulliNB) 259

3.2 Metrics Used 260

Following Tang et al. (2023) and Laban et al. 261

(2021), we use balanced accuracy to assess each 262

model’s proficiency in detecting factual errors. Bal- 263

anced accuracy helps provide a less biased evalua- 264

tion by balancing the importance of sensitivity and 265

specificity, ensuring that the predominance of the 266

majority class does not skew the results. 267

We measure the reliability of predicted proba- 268

bilities for factual consistency using Expected Cal- 269

ibration Error (ECE). Expected Calibration Error 270

(ECE) is calculated by partitioning predictions into 271

n bins based on their confidence levels, computing 272

6The LabelModel, as delineated in Ratner et al. (2017),
is particularly effective in learning the conditional probabili-
ties of labeling functions, adeptly reweighting their outputs in
semi-supervised contexts. The LabelModel represents an evo-
lution in semi-supervised learning, encompassing techniques
such as those in FlyingSquid (Fu et al., 2020), Dawid-Skene
(Dawid and Skene, 2018), Data Programming (Ratner et al.,
2016), and MeTaL (Ratner et al., 2019), all of which were
originally included as part of the Wrench benchmark (Zhang
et al., 2021).
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the absolute difference between the actual accu-273

racy and the predicted probability in each bin, and274

then taking the weighted average of these differ-275

ences across all bins. ECE effectively measures the276

discrepancy between a model’s confidence in its277

predictions and its actual performance, with lower278

values indicating better calibration.279

ECE =

M∑
m=1

|Bm|
N

|acc(Bm)− conf(Bm)| (1)280

Where: M is the number of bins, N is the total281

number of samples, Bm is the set of samples in282

bin m, |Bm| is the number of samples in bin m,283

acc(Bm) is the accuracy of predictions in bin m,284

and conf(Bm) is the average predicted probability285

in bin m.286

3.3 Calibrating Ensembled Models for287

Reliable Probability Estimates288

Histogram Binning (Zadrozny and Elkan, 2002),289

Bayesian Binning into Quantiles (BBQ) (Naeini290

et al., 2015), and Isotonic Regression (Zadrozny291

and Elkan, 2002) are non-parametric methods meth-292

ods of calibration, while Temperature Scaling (Guo293

et al., 2017) and Platt Scaling (Platt, 1999) are para-294

metric. Platt Scaling applies a sigmoid function to295

model outputs to calibrate them. We test and ap-296

ply Platt Scaling, BBQ, Histogram Binning, and297

Isotonic Regression, to obtain reliable probability298

estimates from our ensembled models.299

3.4 Methodology for Prompt Creation300

Our LLM prompts, created using GPT-4 in the301

OpenAI playground, employs various Chain of302

Thought (CoT) (Wei et al., 2023) approaches to303

guide models through a structured evaluation of304

factual consistency. Most prompts have various305

explicit evaluation criteria, requiring the LLM to306

determine if each claim in the summary can be307

inferred directly from the context.308

3.5 Selection of Prompt Pool309

Prompt selection for each prompt pool size was310

determined using Recursive Feature Elimination311

(RFE) and Minimum Redundancy Maximum Rele-312

vance (MRMR) methods (Guyon et al., 2002; Ding313

and Peng, 2005). We select the best-performing314

subset of prompts of these two methods for each315

prompt size.316

4 Results 317

4.1 Individual Prompt Results 318

Table 1 displays the top five prompts’ performance, 319

highlighting an average 2.5% increase in balanced 320

accuracy when using GPT-4-Turbo over GPT-3.5- 321

Turbo. 322

4.2 Ensemble Benchmarking and Comparing 323

to Existing Methods 324

For each test dataset, we train ensemble models 325

on the binary LLM prompt outputs using only the 326

three remaining non-test datasets. Table 2 shows 327

the impact of different LLM prompt sizes and en- 328

sembling methods on balanced accuracy for the 329

AggreFact-XSUM FTSOTA, HaluEval Summariza- 330

tion, and TofuEval Summary-Level test datasets. 331

The LabelModel (Ratner et al., 2017) is the most 332

frequent top performer among the ensemble mod- 333

els across dataset and prompt size combinations. 334

Snorkel’s LabelModel emerges as the top per- 335

former among the ensemble models, likely because 336

it is designed to effectively combine weak and 337

noisy classifiers, which accurately describe the in- 338

dividual performance of the LLM prompts. 339

Table 2 demonstrates that ensembling binary out- 340

puts from multiple prompts significantly improves 341

performance compared to the best individual LLM 342

prompts, shown in Table 1. Increasing the num- 343

ber of ensembled prompts from 5 to 9 does not 344

consistently improve performance, likely because 345

the top-5 prompts use GPT-4 while the remaining 346

prompts use GPT-3.5. The limited training data 347

may hinder the ensembling models’ ability to ben- 348

efit from the less reliable GPT-3.5 prompts. 349

Table 3 compares the balanced accuracy of state- 350

of-the-art encoder-based factual consistency mod- 351

els and LLM solutions to our ensemble methods in 352

identifying factual inconsistencies and hallucina- 353

tions. As shown in Table 3, our proposed ensemble 354

approach outperforms all existing methods across 355

the benchmark datasets.7 356

4.3 Calibration Analysis 357

We investigate the effectiveness of applying cal- 358

ibration to obtain reliable probability estimates 359

from our ensembled models. Platt Scaling (Platt, 360

7The QAFactEval and QuestEval results for HaluEval Sum-
marization were obtained using a balanced random sample of
2,000 context-summary pairs. LLM Solution method results
on HaluEval were obtained using a slightly larger balanced
random sample of 3,000 context-summary pairs. All other
results use the full datasets.
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Prompt LLM AggreFact- HaluEval TofuEval MediaSum TofuEval MeetingBank
XSUM FTSOTA Summarization Summary-Level Summary-Level

Prompt 1
GPT-3.5 67.4 69.7 57.6 68.0
GPT-4 69.1 71.5 60.2 73.2

Prompt 2
GPT-3.5 66.4 67.2 58.4 65.0
GPT-4 68.4 68.7 61.4 70.3

Prompt 3
GPT-3.5 65.0 70.2 63.2 60.0
GPT-4 66.8 72.7 63.9 64.3

Prompt 4
GPT-3.5 61.7 63.7 65.4 68.7
GPT-4 62.8 66.4 66.6 72.0

Prompt 5
GPT-3.5 60.2 66.4 61.0 63.3
GPT-4 61.8 68.2 61.8 67.6

Table 1: Balanced accuracy of the top-5 performing prompts across all test datasets. GPT-4 refers to GPT-4-Turbo,
while GPT-3.5 refers to GPT-3.5-Turbo for all datasets except HaluEval Summarization, where GPT-3.5-Turbo-16K
is used due to the longer context length. The best performance for each dataset is shown in bold.

Ensembling
AggreFact- HaluEval TofuEval MediaSum TofuEval MeetingBank

Method
XSUM FTSOTA Summarization Summary-Level Summary-Level

Number of Prompts Number of Prompts Number of Prompts Number of Prompts
3 5 9 3 5 9 3 5 9 3 5 9

Baseline 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00
AdaBoost 67.04 67.04 70.21 71.47 73.73 72.67 65.80 63.80 64.74 71.17 72.89 71.97
BernoulliNB 67.04 71.02 68.07 73.27 72.33 68.57 64.24 65.96 64.80 74.07 76.38 77.16
CatBoost 67.04 67.04 68.73 71.47 71.80 71.53 65.80 63.80 64.74 71.17 72.89 73.80
DawidSkene 69.17 69.62 70.28 73.27 70.53 67.37 64.17 64.33 63.47 74.07 73.70 71.91
DecisionTree 67.04 67.04 66.11 73.27 68.67 71.50 60.16 64.90 63.31 73.16 73.91 67.00
GradientBoosting 67.04 66.53 68.91 73.90 71.07 67.63 65.80 64.67 64.30 71.17 73.91 73.80
KNeighbors 67.04 67.04 67.39 74.87 71.43 68.77 64.24 64.17 63.28 74.07 69.55 71.08
LDA 67.04 67.04 69.79 73.27 73.83 70.60 65.80 63.80 64.44 71.17 72.89 71.03
LabelModel 69.40 71.92 67.93 73.90 71.67 68.50 64.24 66.33 65.53 74.10 79.38 79.74
LGBM 67.04 67.04 68.73 73.90 74.07 73.43 65.80 64.67 65.17 74.07 73.91 73.58
LogisticRegression 67.04 67.04 70.17 73.27 72.53 70.40 65.80 63.80 63.77 71.17 72.89 70.74
MajorityLabelVoter 69.17 69.62 71.05 73.27 70.37 67.87 64.17 64.33 63.50 74.10 73.70 70.67
RandomForest 67.04 66.72 67.91 73.90 70.87 70.77 65.80 64.90 63.54 71.17 73.99 73.58
SVC 67.04 66.72 67.61 73.90 72.87 72.03 65.80 64.67 64.30 71.17 73.91 72.27
WeightedMajorityVoting 67.04 67.04 70.17 73.27 73.73 72.60 65.80 63.80 63.77 71.17 72.89 70.74
XGB 67.04 66.72 70.39 73.90 71.73 66.73 65.80 64.90 63.87 71.17 73.99 72.14

Table 2: Exploring the impact of various LLM prompt sizes and ensembling methods on balanced accuracy across
all test datasets. The top performing ensemble method for each prompt size-dataset combination is shown in bold.

1999) outperforms other methods, achieving low361

Expected Calibration Error (ECE) scores generally362

below 7%. Applying Platt Scaling to ensemble363

models in both HaluEval Summarization and To-364

fuEval significantly reduces Expected Calibration365

Error (ECE) across various ensembling techniques.366

Reliability diagrams are tools for assessing the367

accuracy of probability estimates from both uncali-368

brated and calibrated ensemble models. The relia-369

bility diagram in Figure 4 shows that Platt Scaling,370

when applied to an ensemble model, can signifi-371

cantly reduce overconfidence in predicting a text’s372

factual consistency.373

4.4 Statistical Testing 374

We assess if the performance gains in LLM en- 375

sembling over existing methods in models is sta- 376

tistically significant. For the AggreFact-XSUM 377

FTSOTA, TofuEval, and HaluEval Summarization 378

dataset, we execute distinct evaluations using boot- 379

strap resampling techniques (Efron, 1982), com- 380

paring the best Ensembling Method against the 381

previous top performing model for each dataset. 382

Following Laban et al. (2021), we conduct compar- 383

isons at a statistical significance level of p = 0.01, 384

incorporating the Bonferroni adjustment (Bonfer- 385

roni, 1935) due to the multiple tests conducted 386

on the datasets. Our LLM ensembling methods 387

demonstrate statistically meaningful advancements 388

6



Method Type Method AggreFact- HaluEval TofuEval MediaSum TofuEval MeetingBank
XSUM FTSOTA Summarization Summary-Level Summary-Level

Encoder Models

AlignScore 70.2 ± 3.8 65.8 ± 0.7 62.3 ± 5.8 70.1 ± 5.4
QuestEval 51.3 ± 4.2 55.4 ± 2.2 53.7 ± 6.0 50.8 ± 5.9
SummaC-ZS 53.0 ± 4.2 60.5 ± 0.7 48.6 ± 6.0 57.4 ± 5.9
SummaC-Cv 50.9 ± 4.2 58.7 ± 0.7 53.3 ± 5.9 45.2 ± 6.1
QAFactEval 62.4 ± 4.0 52.0 ± 2.2 54.6 ± 5.9 57.8 ± 5.7

LLM Solution

ChatGPT-ZS (GPT-3.5) 62.1 ± 4.0 64.3 ± 1.8 63.6 ± 5.8 69.0 ± 5.3
ChatGPT-COT (GPT-3.5) 55.4 ± 4.1 62.5 ± 1.8 63.1 ± 5.8 66.8 ± 5.2
ChatGPT-DA (GPT-3.5) 56.4 ± 4.1 59.6 ± 1.8 52.7 ± 5.9 52.3 ± 5.8
ChatGPT-Star (GPT-3.5) 55.4 ± 4.1 61.5 ± 1.8 57.4 ± 5.8 55.7 ± 5.7
Tang2024-Summary (GPT-3.5) 62.4 ± 4.0 64.0 ± 0.9 61.9 ± 3.4 71.9 ± 3.1
Tang2024-Summary (GPT-4) 62.9 ± 4.0 66.1 ± 0.9 62.3 ± 3.4 72.9 ± 3.1
Ensemble-Top-3 (GPT-4) 69.4 ± 3.8 74.9 ± 1.6 65.8 ± 5.7 74.1 ± 5.1
Ensembled-Top-5 (GPT-4) 71.9± 3.8 74.1 ± 1.6 66.3 ± 5.7 79.4 ± 5.1
Ensemble-Top-9 (Mixed) 71.1 ± 3.8 73.4 ± 1.6 65.5 ± 5.7 79.7 ± 4.9

Table 3: A chart comparing the balanced accuracy of encoder-based models and LLM solutions in identifying
factual inconsistencies and hallucinations. For each test dataset, the encoder-based model scores are obtained using
linear thresholds optimized on the other three datasets, ensuring that neither the test data nor its validation set is
used for threshold tuning. Lower performance in encoder models compared to existing studies is due to evaluating
without fine-tuning each model’s threshold using the test dataset’s development subset. 95% confidence intervals
are shown, with the highest performing method for each dataset in bold. Mixed refers to ensembling the binary
LLM outputs from both GPT-3.5 and GPT-4.

Model
AggreFact-XSUM FTSOTA

3 Prompts 5 Prompts 9 Prompts
Uncal. (%) Platt (%) Uncal. (%) Platt (%) Uncal. (%) Platt (%)

AdaBoost 5.1 2.1 12.0 5.7 18.7 4.3
BernoulliNB 9.2 5.1 15.9 5.0 21.5 7.2
CatBoost 8.2 2.5 8.1 5.2 7.7 6.7
DecisionTree 8.9 6.4 7.2 5.3 9.3 4.9
GradientBoosting 7.5 4.6 6.1 5.2 8.6 5.4
KNeighbors 11.0 4.9 10.4 4.7 9.8 4.5
LabelModel 14.7 4.1 23.8 4.7 22.8 5.3
LDA 6.9 4.5 7.4 6.1 7.1 4.1
LGBM 15.5 4.9 20.0 7.7 15.9 6.1
LogisticRegression 13.4 4.9 6.5 5.8 6.6 3.9
MultinomialNB 8.3 8.1 4.2 2.6 4.4 2.6
RandomForest 9.8 6.3 6.0 4.1 9.8 4.5
SVC 9.3 0.9 8.4 6.5 9.5 5.7
XGB 7.2 6.4 6.9 4.8 16.0 6.9

Table 4: Comparison of the Expected Calibration Error (ECE) for ensembling models before (uncalibrated) and
after calibration using Platt Scaling, across various models and prompt pools. The calibration model was trained
only on the three non-test datasets.

on the HaluEval dataset, with statistically signif-389

icant p-values of under .01 in both the original390

and Bonferroni-adjusted analyses. However, the391

statistical tests do not confirm a statistically signifi-392

cant advantage, with p-values below .01, compared393

to the second-best methods across the remaining394

three datasets. The limited number of samples395

in the AggreFact-XSUM FTSOTA and TofuEval396

datasets, in contrast to the larger HaluEval dataset,397

necessitates a significantly greater improvement in 398

performance to achieve statistical significance. 8 399

8To eliminate any biases caused by varying sample sizes
across models, we exclusively conduct statistical testing on
the overlapping subsets of all samples under consideration,
thereby ensuring that differing sample sizes do not affect our
statistical significance testing.
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Example Reliability Diagram: Applying Platt Scaling
 to LabelModel with Nine Prompts

Empirical Accuracy Output Confidence

Figure 4: An example reliability diagram highlighting the difference in reliability between the predicted probabilities
before and after calibration. The reliability diagram is separated by positive and negative predictions, highlighting
the contrast in model confidences between predicting whether a summary is factually consistent with the source
context versus inconsistent. In this visualization, LabelModel was trained with the output of nine LLM Prompts on
the non-test datasets and tested on the AggreFact-XSUM FTSOTA test dataset.

5 Conclusion400

We introduce Detecting Errors through Ensembling401

Prompts (DEEP), a state-of-the-art LLM-based402

method for detecting factual consistencies and hal-403

lucinations in summaries. Our findings reveal that404

factual consistency encoder models exhibit a pro-405

nounced sensitivity to threshold settings, with their406

performance markedly declining if the threshold is407

not adjusted based on the test datasets. We demon-408

strate that DEEP surpasses the performance of ex-409

isting methods and models in evaluating the factual410

consistency of summaries produced by recent trans-411

former models. Finally, we show that by calibrating412

ensemble models using binary input features de-413

rived from LLM prompts, DEEP achieves reliable414

probabilities indicating a text’s factual consistency415

or presence of errors.416

Limitations417

LLM approaches for identifying factual errors are418

significantly more resource-intensive than existing419

fine-tuned encoder models, requiring up to three420

orders of magnitude more parameters. Our method421

requires more computation; however, this cost may422

be justified in high-stakes situations where failing423

to identify factual errors is costly. 424

Future research should explore the performance 425

of these prompts on more powerful language mod- 426

els as they become available. Additionally, future 427

work should create a dataset of quality examples 428

of chain-of-thought reasoning to identify factual er- 429

rors, enabling few-shot learning to boost LLM per- 430

formance. Future work should consider comparing 431

the performance of ensembling factual consistency 432

model scores to LLM prompt ensembling. 433

Future work should investigate why encoder 434

models for factual consistency evaluation require 435

dataset-specific linear thresholding for optimal per- 436

formance. Possible reasons include: (1) the depen- 437

dence of optimal binary classification thresholds on 438

the average number of sentences per summary, as 439

most models calculate summary factuality scores 440

by averaging sentence-level scores; (2) dataset im- 441

balances in the ratio of summaries with factual 442

errors, with thresholding balancing specificity and 443

sensitivity; and (3) inherent differences in iden- 444

tifying factual errors across datasets, even when 445

controlling for summary length and annotation im- 446

balances, due to factors like summarization models 447

or the context’s source. However, these reasons are 448

speculative, and further experiments are needed to 449
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test these hypotheses and explore approaches that450

reduce model sensitivity to dataset characteristics.451

It is uncertain how many labeling errors exist in452

the AggreFact-XSUM-SOTA and HaluEval Sum-453

marization datasets. Future datasets should create454

summarization error datasets, where, like TofuEval,455

ground truth labels are generated by combining456

multiple humans annotations. Additionally, the457

datasets under test contained solely English Sum-458

maries. To evaluate LLMs’ ability to identify errors459

across languages, there is a need for multi-lingual460

summarization error datasets.461

Fine-tuning LLMs for error detection and ap-462

plying our end-to-end pipeline for spotting wider463

ranges of language generation errors, including464

those in QA and machine translation, should be465

explored.466
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A Our Prompts669

Prompt 1

Assess the factual consistency of the fol-
lowing claim based solely on the informa-
tion provided in the summary. Do not make
inferences or assumptions beyond the pro-
vided information.
Summary: {...}
Claim: {...}
Assessment: Think step by step. Use the
following chain of thought.
Step 1: Remember the claim.
Step 2: Remember the summary.
Step 3: Break down all the lines in the claim
and remember them. Pay close attention
to numbers associated with the events and
store them separately.
Step 4: Follow the given chain of thought.
After following these steps, decide if
the claim is SUPPORTED or NOT SUP-
PORTED. If you are not sure, output NOT
SUPPORTED. Only output SUPPORTED
if you are 100 percent confident that the
claim is fully supported by the summary.
But regardless, be sure that you output your
answer.

670

Prompt 2

Assess the factual consistency of the fol-
lowing claim based solely on the informa-
tion provided in the summary. Do not make
inferences or assumptions beyond the pro-
vided information.
Summary: {...}
Claim: {...}
Assessment: Think step by step. Use the
following chain of thought.
Step 1: Remember the claim.
Step 2: Remember the summary.
Step 3: Break down all the lines in the
claim and remember them. Pay close
attention to numbers associated with the
events and store them separately.
Step 4: Use multiple factuality metrics (e.g.,

671

ChatGPT-based metrics, FEQA, QAGS)
to evaluate the factuality of every line.
Compare and contrast the results from each
metric, discussing any variations in their
effectiveness in detecting factual errors.
Explain which metric appears to be most
effective and why, based on the specific
characteristics of the summary.
Step 5: Summarize results.
Step 6: Be strict. Even if one line is
factually inconsistent, mark as UNSUP-
PORTED; else mark as SUPPORTED.

672

Prompt 3

In this task, you are required to analyze the
factual consistency of a summary against
the original article by directly comparing
key points.
Procedure:
1. Identify Key Points: - List the key points
and claims made in the summary and the
corresponding points in the article.
2. Comparative Analysis: - Create a side-
by-side comparison for each key point be-
tween the summary and the article. - Note
any discrepancies, no matter how minor, in
each comparison.
3. Detailed Discrepancy Evaluation: - For
each noted discrepancy, determine whether
it falls under any specific error type (e.g.,
Negation, Adjective, Coreference, etc.). -
Evaluate the impact of each discrepancy
on the overall factual consistency. - For
each noted discrepancy, determine whether
it falls under any specific error type (e.g.,
Adjective Error, Coreference Error, Num-
ber Error, Entity Error, Attribute Error, Pro-
noun Error, Commonsense Error, Temporal
Error, Predicate Error, Discourse Link Er-
ror, Relation Error, Quantity Error, Event
Error, Noun Phrase Error, Circumstance
Error, Hallucination Error). - ENSURE
THAT YOU THOROUGHLY AND COM-
PREHENSIVELY CHECK FOR ANY Ad-
jective Error, Coreference Error, Number
Error, Entity Error, Attribute Error, Pronoun
Error, Commonsense Error, Temporal Er-
ror, Predicate Error, Discourse Link Error,

673
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Relation Error, Quantity Error, Event Er-
ror, Noun Phrase Error, Circumstance Error,
Hallucination Error - If any of the follow-
ing discrepancies fall under the listed error
types, output NOT SUPPORTED.
4. Strict Criteria for Comparative Support:
- Classify the summary as ’SUPPORTED’
only if there are no discrepancies in the com-
parative analysis. - If any discrepancy is
found, classify the summary as ’NOT SUP-
PORTED’.
Article: {...}
Summary: {...}
Answer (SUPPORTED or NOT SUP-
PORTED):

674

B Existing Prompts675

Li et al. (2023) Prompt For Identifying Fac-
tual Consistencies

Follow the instructions. Instruction: Deter-
mine if the text is consistent or inconsistent
with the provided knowledge and dialogue
history. If there is a logical conflict, respond
with ’inconsistent’. If there is no conflict,
respond with ’consistent’.
Input: Text: {...}.
Dialogue History: {...}: Please summarize
the given knowledge.
Response:

676

Luo et al. (2023) Zero-Shot

Decide if the following summary is consis-
tent with the corresponding article. Note
that consistency means all information in
the summary is supported by the article.
Article: [...]
Summary: [...]
Answer (yes or no):

677

Luo et al. (2023) Chain-of-Thought

Decide if the following summary is consis-
tent with the corresponding article. Note
that consistency means all information in
the summary is supported by the article.
Article: [...]
Summary: [...]

678

Explain your reasoning step by step then
answer (yes or no) the question:

679

Wang et al. (2023) ChatGPT-DA

Score the following news summarization
given the corresponding news with respect
to consistency on a continuous scale from 0
to 100, where a score of zero means “incon-
sistency” and score of one hundred means
“perfect consistency”. Note that consistency
measures whether the facts in the summary
are consistent with the facts in the original
article. Consider whether the summary does
reproduce all facts accurately and does not
make up untrue information.
Article: [...]
Summary: [...]
Scores:

680

Wang et al. (2023) ChatGPT-Star

Score the following news summarization
given the corresponding news with respect
to consistency with one to five stars, where
one star means “inconsistency” and five
stars means “perfect consistency”. Note
that consistency measures whether the facts
in the summary are consistent with the facts
in the original article. Consider whether the
summary does reproduce all facts accurately
and does not make up untrue information.
Article: [...]
Summary: [...]
Stars:

681
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