Under review as submission to TMLR

Safe Reinforcement Learning using Action Projection:
Safeguard the Policy or the Environment?

Anonymous authors
Paper under double-blind review

Abstract

Projection-based safety filters, which modify unsafe actions by mapping them to the closest
safe alternative, are widely used to enforce safety constraints in reinforcement learning (RL).
Two integration strategies are commonly considered: Safe environment RL (SE-RL), where
the safeguard is treated as part of the environment, and safe policy RL (SP-RL), where
it is embedded within the policy through differentiable optimization layers. Despite their
practical relevance in safety-critical settings, a formal understanding of their differences
is lacking. In this work, we present a theoretical comparison of SE-RL and SP-RL. We
identify a key distinction in how each approach is affected by action aliasing, a phenomenon
in which multiple unsafe actions are projected to the same safe action, causing information
loss in the policy gradients. In SE-RL, this effect is implicitly approximated by the critic,
while in SP-RL, it manifests directly as rank-deficient Jacobians during backpropagation
through the safeguard. Our contributions are threefold: (i) a unified formalization of SE-
RL and SP-RL in the context of actor-critic algorithms, (ii) a theoretical analysis of their
respective policy gradient estimates, highlighting the role of action aliasing, and (iii) a
comparative study of mitigation strategies, including a novel penalty-based improvement
for SP-RL that aligns with established SE-RL practices. Empirical results support our
theoretical predictions, showing that action aliasing is more detrimental for SP-RL than for
SE-RL. However, with appropriate improvement strategies, SP-RL can match or outperform
improved SE-RL across a range of environments. These findings provide actionable insights
for choosing and refining projection-based safe RL methods based on task characteristics.

1 Introduction

For safety-critical environments, reinforcement learning (RL) policies have to be verified or safeguarded to
ensure safety specifications at all times. Provably safe RL through closest-point projection (Krasowski et al.
2023)), also often called safety filtering, is a widely used approach that provides safety guarantees during
both training and deployment. The projection operation adjusts unsafe actions to the closest safe action by
solving an optimization problem. This operation is usually differentiable (Gros et al., 2020)), allowing for
two different formulations:

(a) Safe environment RL (SE-RL): The projection is treated as part of the unknown environment
dynamics, requiring the critic to understand its effect indirectly. Intuitively, the agent learns an
unsafe policy that acts in a safeguarded environment (Hunt et al., 2021)).

(b) Safe policy RL (SP-RL): The projection is integrated into the policy itself, meaning that gradients
are backpropagated through the safeguard. In SP-RL, the objective is to approximate the optimal
safeguarded policy for the original unsafe environment (Pham et al., |2018)).

Figure|[l]illustrates the structural differences between SE-RL and SP-RL. A key advantage of SE-RL is that
it leaves the underlying RL algorithm unchanged, preserving any existing theoretical guarantees (Hunt et al.
2021). On the other hand, SP-RL promises a more direct informing of the agent about the impact of the
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(a) SE-RL: Safeguard is part of the environment. (b) SP-RL: Safeguard is part of the policy.

Figure 1: In provably safe reinforcement learning, we can either consider the safeguarding as part of the
environment (figure or as part of the policy (figure .

safeguarding by including the sensitivity of the safe action with respect to the unsafe action in the policy
gradient estimator. However, SP-RL is also more invasive: it requires embedding the safeguard within
the policy, typically using differentiable optimization layers (Agrawal et all 2019)), and incurs additional
computational cost due to sensitivity analysis. These trade-offs lead to a central question: should one
safeguard the environment or the policy?

Although empirical comparisons exist (Pham et al., 2018} [Kasaura et al., 2023)), a theoretical foundation
for understanding the trade-offs between SE-RL and SP-RL is still lacking. In this work, we close this gap
by developing a formal framework that clarifies their relationship, identifying both equivalences and key
differences. As discussed later in section [6.3] a central difference lies in how both approaches are affected
by what we refer to as action aliasing: In closest-point projection, multiple unsafe actions are mapped to
the same safe action, resulting in identical returns. Action aliasing has been well studied in the context of
SP-RL. It has been shown to lead to a rank-deficient Jacobian of the safeguard (Gros et al., 2020), also
referred to as the zero-gradient problem (Lin et al., [2021)). The zero-gradient problem has been associated
with degraded performance (Pham et all 2018 [Bhatia et al., |2019) and is commonly addressed through
alternative loss functions (Bhatia et al. 2019 |(Chen et al., [2021) or modified policy update rules (Pham
et al.l|2018). Similarly, performance issues linked to action aliasing have been reported for SE-RL (Krasowski
et al |2023)), and are often mitigated by introducing penalty terms in the reward function that penalize the
distance between the original and projected actions (Wabersich & Zeilinger), 2021; \Wang, [2022; [Markgraf &
Althoft, |2023; [Bejarano et al., |2024). However, a formal comparison of the action aliasing effect on learning
in SE-RL versus SP-RL, and of the differences in improvement strategies, does not yet exist.

Our contributions are as follows:
o We develop a unified formalization of SE-RL and SP-RL in terms of the underlying Markov decision
process (MDP), value functions, and policy gradient estimators;
e We prove that the optimal value functions of SE-RL and SP-RL coincide under mild assumptions;

o We formalize the impact of action aliasing on SE-RL, highlighting how it differs from the known
zero-gradient problem induced by action aliasing in SP-RL;

o We identify fundamental differences in how action aliasing is mitigated in SE-RL and SP-RL, and
propose a novel remedy for SP-RL that aligns more closely with the penalty-based strategy used in
SE-RL;

e We perform an empirical comparison of SE-RL and SP-RL, emphasizing the importance of adapta-
tion strategies for handling action aliasing in both deterministic and stochastic policy settings.

The remainder of this study is structured as follows: In section [2] we provide an overview of the related
literature. The theoretical background for SE-RL and SP-RL is established in section [3] We then formalize
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the problem statement in section[d Sections [5] and [6] provide a formal definition and a comparative analysis
of the two approaches, respectively. We discuss mitigation strategies for action aliasing and suggest a new
alternative for SP-RL in section [7} before conducting a thorough experimental evaluation in section [§ We
discuss our findings in section [J] before concluding in section [I0]

2 Related Work

Safe RL augments RL algorithms with mechanisms to increase the probability of learning and deploying
safe policies, or to ensure hard safety guarantees for the policy (Garcia & Ferndndez, [2015). Specifically,
provably safe RL encompasses approaches for which hard safety guarantees are provided during training and
deployment (Krasowski et all [2023). Provably safe RL can be further categorized by means of ensuring that
only safe actions are executed. The first category relies on pre-characterizing the set of safe actions through
specific structural properties, as it is often necessary to compute center or boundary points efficiently. It
comprises methods such as mapping unsafe actions to the interior of the safe action set
[2022} [Kasaura et al [2023) or sampling from within it (Stolz et all, [2024]). While computationally efficient,
these approaches typically work with inner approximations of the true safe action set. The second category
of safeguarding mechanisms works directly with the safety constraints themselves, defined, for example,
through control barrier functions (Marvi & Kiumarsi, 2022; Wang), [2022) or predictive filters (Selim et al.
[2022} [Wabersich et all 2023} [Markgraf & Althoff, 2023; (Gros et al., [2020). Within this group, closest-point
projection is particularly prevalent in continuous control settings, mapping unsafe actions to their nearest
safe counterpart by solving a constrained optimization problem.

While effective and widely used, action projection introduces a key limitation known as action aliasing: All
unsafe policy actions that lie within the normal cone to the boundary of the safe action set are projected to
the same safe action. Consequently, they all incur the same reward, no matter how close the policy action was
to the safe action. In the context of SE-RL, action aliasing has not been theoretically analyzed, although
it has been empirically acknowledged by some studies (Wang} [2022; Krasowski et al., 2023; Markgraf &
. In contrast, in SP-RL, the impact of action aliasing is well understood. Here, the projection
is commonly integrated into the policy using differentiable optimization layers (Agrawal et al.,[2019)) as the
last layer of the policy network to retain gradient flow through the safeguard (Pham et al., [2018; Dalal et al.|
[2018} Bhatia et al., 2019 |Chen et al 2021} [Kasaura et al| [2023). Consequently, action aliasing directly
affects the policy gradient computation, eliminating components in the normal direction of the mapping(Gros|
let al |2020; [Walter et al., |2025).

The approaches for addressing action aliasing differ in SE-RL and SP-RL. A common remedy in SE-RL is
to augment the reward with a penalty proportional to the action adjustment (Wabersich & Zeilinger] 2021
Markgraf & Althoff| 2023}, [Stanojev et all, [2023} [Bejarano et all, 2024} [Kasaura et al, [2023} [Dawood et al.
2025). As shown in Markgraf & Althoff| (2023), agents trained with proportional penalties often outperform
those trained with constant or no penalties. Recently, Bejarano et al.| (2024) confirmed this observation
in quadrotor hardware experiments. In SP-RL, additional policy loss terms are often used. For example,
Bhatia et al| (2019) employ a loss term that is proportional to the safety constraint violation. Similarly,
Chen et al| (2021) propose a loss term that is proportional to the Euclidean distance between the safe and
the unsafe action. [Pham et al|(2018)) propose a two-step gradient step approach in which a first update step
is calculated for the unsafe action (with a penalty, following SE-RL), followed by an update step on the safe
action.

Most existing studies treat projection safeguarding separately in the context of either SE-RL or SP-RL,
leaving a theoretical comparison of the two approaches unexplored. [Kasaura et al| (2023)) provide a valuable
empirical comparison of both basic and improved versions of these methods, focusing on deterministic poli-
cies with static safety constraints. Building on their empirical insights, our work contributes a comprehensive
theoretical framework that explains the fundamental differences between SE-RL and SP-RL, including their
respective improvement strategies for handling action aliasing. We extend the empirical analysis to in-
clude both deterministic and stochastic policies, consider benchmark problems with state-dependent safety
constraints, and focus on appropriately scaling penalties in SE-RL and additional loss terms in SP-RL.
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3 Preliminaries

Policy-based RL algorithms have proven successful in safety-critical tasks if augmented with safety measures
(Krasowski et al., [2023). Therefore, we provide an overview of the basic concepts of these algorithms before
detailing how to differentiate between SE-RL and SP-RL for projection-based safeguarding in section

3.1 Reinforcement Learning

An MDP is a tuple (X, U, p,, ps,y), where X and U are the state space and action space. We assume x,
uy, and 1 to be continuous random variables (CRVs) modeling the state, action, and reward at time step ¢,
respectively. The transition function p, : X x U x X — R>( denotes the probability density p (@41 | ¢, ut)
of transitioning to a state ;41 when applying the action u; in state x; (Van Hasselt, 2012, section 1.1). The
reward for a transition is defined through the probability density p,(r; | @, u,), where p, : X x U xR — R
(Van Hasselt} 2012, section 1.1). The discount factor 0 < < 1 is used to discount long-term rewards, and
serves as a simplistic model of the probabilistic life-time of the MDP.

We define the discounted return at time ¢ as (Sutton & Barto) 2018|, equation 3.8)
o0
g =Y Ytk (1)
k=0

The goal of RL is to find the policy 7 associated with a probability density function m(wu; | @;) over actions
given state x;, that maximizes the expected return (Sutton & Bartol 2018, equation 13.4)

J(m) = Er [go | we ~ (- [21)], (2)

where E,[-] refers to the expected value of a random variable given that the agent follows the policy .
Note that a deterministic policy u; = 7(a;) is a special case where the policy is a state-dependent Dirac
distribution centered at ;.

To find the optimal policy 7* = argmax, cy J(m) (Gros et all 2020, equation 2), most RL algorithms use
various forms of value function estimation. A state value function v,(x;) = E.[g,|x: = 2] (Sutton &
Barto, [2018, equation 3.12) expresses how good it is to be in a certain state @; provided that policy 7 is in
use. A state action value function qr(x:,u:) = Er g, |x: = xs, up = u](Sutton & Bartol 2018, equation
3.13) expresses how good it is to use action u; in state x;, provided that policy 7 is in use after that. Finally,
the advantage of taking an action u; in state x; is commonly defined as ar (@, ur) = gr (T, ut) — v ().
All optimal policies 7* satisfy the same so-called optimal value functions

v (GCt) = Ug=* (.’Bt) Va; € X (3)
0 (e, ue) = g (24, up) Ve, € X uy € UL (4)

3.2 Policy Gradient Algorithms

The policy w can be inferred directly from the value function, a central concept of so-called value-based
RL algorithms. However, these algorithms are mainly designed for discrete action spaces. In continuous
and high-dimensional action domains, it is more common to directly learn a policy mg parameterized by 8,
also referred to as policy-based RL. Most modern algorithms use actor-critic algorithms, combining concepts
from value-based and policy-based RL by simultaneously learning a policy (the actor) and a value function
(the critic) parameterized by ¢. To find the optimal policy parameters 8*, actor-critic algorithms perform
repeated updates using 0 « 0+ aVeJ(mg) (Van Hasselt, [2012] equation 13) where « is a learning rate. The
gradient VgJ(mg) cannot be computed analytically since the reward function and the transition probability
distribution are not known explicitly. RL algorithms thus estimate the gradient from data, more specifically
from tuples (@, us, 141, 7). According to the policy gradient theorem, an unbiased estimate of VgJ(7g) is
given by (Silver et al, 2014} theorem 1)

VoJ(mg) = Ex [Vome(xt)Vu,gr e (T, ur)] (5)



Under review as submission to TMLR

for deterministic policies and a parameterized critic ¢r ¢, and (Van Hasselt, 2012, equation 15)

VeoJ(me) = Ex [¥(xt, ur) Ve log mg(uy | )] (6)
for stochastic policies, where ¥ differs depending on the algorithm. Possible choices include
Or,p (1, Ur); an (@, wy) (Schulman et al., 2015), which vary in the variance of the gradient estimate.

Actor-critic algorithms with stochastic policies such as Advantage Actor Critic (A2C) (Mnih et al., [2016]) or
Proximal Policy Optimization (PPO) (Schulman et al.,2017)) that learn a state value v, ¢ use ¥ = a(x, ue),
where @ is an estimate of the true advantage function. The most common estimator is the generalized
advantage estimation (GAE) (Schulman et all [2015| equation 16)

oo

af At = (V)67 (7)
1=0

where A is a hyperparameter and ¢} is the temporal difference residual (Schulman et al., 2015, equation 10)

8 =11 +YVr,¢(Te41) — Vnp(Tt)- (8)

To find the optimal parameters ¢* of the value function ¢, ¢, actor-critic algorithms minimize the expected

squared error between the current value function estimate and a target y using (Lillicrap et al.,[2015, equation
4)

Lo =B | (re + 745 g(®e11, wrs1) =G, (@e,ue))? | (9)

Y

or the equivalent equation for a state value function vy 4. Here, g, 4 1s a target critic that is slowly updated
using Polyak averaging. Alternative choices for the target include using the return g; directly, or more
advanced formulations that address overestimation bias using the minimum value of two target critic networks
(Fujimoto et al., [2018)).

4 Problem Statement

We consider a system with dynamics defined through the transition function p, that is subject to state-
dependent safety constraints of the form
g(x,u) <0, (10)

which must be satisfied at all times. To enforce these constraints, we define a state-dependent safe action
set Ug, C U, such that for any u; € U, there exists a policy that, when applied consecutively from time
t+ 1 onward, ensures satisfaction of equation [10]at all times ¢' > ¢. We assume that U% can be represented
as

Ug, = {u | s(@i,u) < 0}, (11)

where constraints s could, for example, be formulated using robust control invariant sets, control barrier
functions, or predictive filters. Details on how we define s in this work are provided in appendix
Furthermore, we define X C X as the set of states for which Ug, is non-empty.

Given the safe action set, we introduce a safeguard ® : X x U — U into the interaction between the RL
policy and the system that ensures that unsafe inputs are projected to the constraint boundary by solving

. 1, .
® (s, uy) = argmin §||ut — ut||§ (12a)
@, €U
st s(ay,uy) <0, (12b)

where u; ~ 7(-|x¢). As a result, only safe actions uf = ®(x;,u;) can be applied to the system, and the
return in equation[I] depends on a sequence of safe actions and states. Note that the mapping in equation [I2]



Under review as submission to TMLR

only modifies unsafe actions. To ensure that ® is a deterministic operator, we assume that UZ, is convex.
This is a mild assumption since safe sets are commonly constructed as convex inner approximations in
practice due to their simple parametrization (e.g., polytopes, ellipsoids), computational tractability, and the
uniqueness of closest-point projections.

As shown in figure [I, we can use two different architectures to integrate ® into the RL training loop to
maximize the expected return in equation We can consider the safeguard to be part of the black-box
environment dynamics and aim to approximate the optimal unsafe policy n* € II for the safeguarded
environment. Or we can learn a safe policy 7+ € I+, where II+ C II is the set of safe policies. Note that
for any safe policy, the probability density function 71 (u] | ;) is zero for all unsafe actions. In this work,
our aim is to clarify whether one solution approach dominates the other, both theoretically and empirically.

Notation: In the remainder of this work, we will omit the subscript ¢ when possible and use =, z’, u,r
instead of &y, Tyy1, us, ry for brevity. Furthermore, we will omit the subscripts 8 and ¢ to improve readability.

5 Perspectives on Safe Reinforcement Learning

We develop a unified theoretical framework for both approaches to safe RL with action projection by spec-
ifying the corresponding value functions and policy gradient estimates. An overview is provided in table [I]
For brevity, we limit our analysis to RL algorithms derived directly from the policy gradient theorem, as
including methods with additional modifications (e.g., PPO, Soft-Actor Critic (SAC)) would require exten-
sive theoretical derivations beyond the scope of this paper. Similar to the work in |Gros et al.| (2020), we
distinguish between stochastic and deterministic policies. We then discuss equivalences and differences of
both approaches in section [6]

5.1 Safe Environment Reinforcement Learning (SE-RL)

This changes the MDP from section to MSF = (X,U,pr,ng,’y), with pSF : XxUxX — R>o and
PP XxUxR— R>0, where pSF and p>F are defined as the composition of the safeguard mapping ® with
the original functions:

In SE-RL, the safeguard is considered part of the system dynamics that are unknown to the RL agent.
i

paScE(w/ ‘uvw) :pf(wl ‘qu)(wvu))v (13)

PE(r |z, u) = p.(r|x, ®(x,u)). (14)

According to this definition, the environment receives a (potentially) unsafe action w ~ 7 that is projected
internally. Consequently, the value functions are learned for the unsafe policy such that

0" (x,u) = B [g | % = @, 0, = u], (15a)
0 (@) = Ex [g | %0 = 2] (15b)

s

The policy gradient estimate is computed as given in equation [5and equation[6] Note that the critic forming
this estimate is not aware of the safeguard and has to assess its impact through the data alone.

5.2 Safe Policy Reinforcement Learning (SP-RL)

If we consider the safeguard a part of the policy, sampled actions are adjusted by a differentiable optimization
layer, such that the final policy action is a random variable uf := ®(x;,u;). The transition function
PSP X x P(U%?) x X — Rsg and the probability density of the reward pSt : X x P(U¥) x R — Rx of the
MDP M5P for SP-RL are then given by

pe’ (&' |u?, @) = p, (x| u?, @), (16)
pEP(T|$7u’(p) :pr(r‘mvu¢)7 (17)
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Table 1: Overview of the MDP formulations and learning equations for SE-RL and SP-RL with stochastic
and deterministic policies, respectively.

SE-RL SP-RL

MSE = (X, U, pi®, pS, ) MSP = (X, P(U%),pS, 3T, 7)
MDP PSP X xUxX = Rs PSP X x P(U%) x X = R

E:XxUxR— R PSP X x P(U?) x R — R

Policy T:XxU—>Rsp;m:X—>U 7t X x P(U%) = Rsg; 7t : X — P(U¥)
Value QEE(%U) =Erx g |x = z,u; = u] (],STE (x,u?) =B [g | % = , uw = u?]
functions VS (x) = Er [g, | x, = 2] P (@) = Eps [g | %0 = a
Polic.y VeJ(m) =E, {\]’ip(a:. u)Vglogm(u| :1:,)} VeJ(m—)=E, . {\]/ip (z,u?)Vologm(u|x }
gradient ’ \ - \
estimates VoJ () =Er [Vor(2)Vugy" (x,u)] Vo (mh) =E, 1 [Vort (@) Vue L (, uv{)}

where the action space P(U¥) is the power set of all UZ. We aim to learn a value function for the safe actions
such that

qfer (113, u‘P) =Ers [gt ‘Xt = uf = u@] > (188‘)

oS (@) =B [g, | x: = a]. (18D)

Note that this requires us to also project the action u’ when computing the state action value 4, 3@, u?’ )
for the target y given in equation [0} To obtain the policy gradient estimates, we must dlbtlnglﬂbh between
deterministic and stochastic policies.

5.2.1 Deterministic Policies

The deterministic policy gradient estimate in SP-RL is defined by
VeJ(nt) =K1 [Vor (z)Vurds (z,u?)]. (19)

Computing the gradient Vg.J(71) requires differentiating through the safeguard ®. We can apply the chain
rule to obtain

Vor™(x) = Vo ®(z,u)Ver(x). (20)
The sensitivity of the safeguard V,,®(z,u) can be obtained using the implicit function theorem as described

in appendix
5.2.2 Stochastic Policies

To find the optimal parameters of the safeguarded policy 7 in the stochastic policy case, we use the policy
gradient estimate

VoJ(nt) =E . [V (z,u?)Velogrt(u? |z)], (21)
which depends on the probabilities of safe actions given states. While the unsafe policy 7(u|x) features
a bounded probability density, the safe policy 7+ (u? |x) takes on a Dirac-like structure on the border of
the safe set as illustrated in |Gros et al. (2020, figure 2). In general, no closed-form expression of 7t (u? | )
exists, making it difficult to provide a gradient estimate for a projected stochastic policy. However, in
Proposition 2), the authors show that we obtain an unbiased gradient estimate using

Vo (1) = Eypr [W5E (2, u?) Vg logm(u | z)] (22)

1An alternative for SP-RL with stochastic policies is proposed by M E Given an unsafe pohcy represented
by a Gaussian distribution (g, Xg), they first project the mean using pg (z) = ®(pg, ) and then sample u® ~ N(ua ,3g).
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6 Comparative Analysis of SE-RL and SP-RL

Having established SE-RL and SP-RL as two distinct solution paradigms for the same task, we now ex-
amine their theoretical relationship and practical differences. Since the learning equations differ between
approaches, identical initial policy and critic parameters will yield different updates, raising a fundamental
question: do both frameworks converge to equivalent (sub-)optimal solutions?

6.1 Theoretical Equivalence of Optimal Solutions

We first establish that, in principle, both approaches target the same optimal value function.

Theorem 1. For any given task, let vSF be a value function for policy 7 interacting with the MDP MSE
and vff a value function for policy m+ interacting with MST. Then, a value function v°F that is optimal

for M5 is also an optimal value function v5*" for MSF.

The proof is provided in appendix [AZ3] Theorem 1 tells us that, given a specific task, a policy 7* that is
optimal in the SE-RL framework yields the same expected return as an optimal policy 71" in the SP-RL
framework. While this theoretical result provides important insight, it offers limited practical guidance for
continuous state and action spaces where optimal policies are rarely found (Van Hasselt, |2012). Subsequently,
we derive a more practical result for a certain group of algorithms.

6.2 Practical Equivalence for Stochastic Policies

Algorithms employing stochastic policies and GAE (e.g., A2C) learn a state value function v, (x) to compute
aGAE | The following lemma shows that in this case, the differences between SE-RL and SP-RL disappear.

Lemma 1. Let g, 7r9L and va ,vff denote the parameterized policies and value functions for a given task

when employing SE-RL or SP—RL, %espectz'vely. Define the advantage estimates used in the policy gradient
estimates in SE-RL (equation[§) and SP-RL (equation[29) as

U (x,u) = a4 (x,u) and U (x,u?) = a9 P(x,u?),

respectively, where a%4F is computed using equation @ Then, for any initial parameters 6y and ¢q, the

parameter updates Op11 < 0, + aVg J(mg,) and ¢rpi1 < ¢r + o Vg L(¢r) are identical in both the
SE-RL and SP-RL framework at every iteration k > 0.

The proof is provided in appendix [A4]

Corollary 1. Under the conditions of Lemma the sequences of parameters (O, dr)p, generated by
SE-RL and SP-RL are identical, and consequently both frameworks converge to the same policy and value
function parameters.

In contrast, for algorithms using deterministic policies, SE-RL and SP-RL have different learning equations
and may thus converge to different locally optimal policies as shown next.

6.3 Differences for Deterministic Policies

As summarized in table [T} the first difference consists in the scope of the critic. Most algorithms using
deterministic policies learn a state action value function g. In SP-RL, ¢ is evaluated only on safe actions
and, thus, does not learn a meaningful approximation outside of the safe action set. In SE-RL, ¢ is also
evaluated on unsafe actions. However, any value function in SE-RL that is conditioned on actions is affected
by what we refer to as action aliasing: Every action in the normal cone of a point on the boundary of the
safe action set is projected to the same safe action. This means that the critic cannot distinguish between
these actions, potentially hindering learning. We formalize this flat-lining critic phenomenon in the following
lemma, which is proven in appendix

However, since this action is not guaranteed to satisfy the constraints, they project again to obtain u? = ®(u®,x). We detail
in appendix @ how this affects the computation of the log-likelihood of actions in the policy gradient estimate. Nevertheless,
this approach does not solve the problem of finding a closed-form solution for 7+ (u¥ |z) and is thus not further considered
here.
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(a) Without safeguarding, the critic ap- (b) SE-RL: Policy converges to an unsafe (c) SP-RL: Policy with differentiable

proximates the true objective function, and suboptimal action that lies in the di- projection safeguard does not improve in

and the policy converges to the optimal rection normal to the safe optimal action the direction normal to the projection

safe action. and the safe set boundary. and therefore does not reach the optimal
safe action.

Figure 2: Effect of action aliasing on SE-RL and SP-RL algorithms using deterministic policies. We illustrate
the policy improvement step for a given state & in the quadrotor balancing task. The deterministic policy
m(x) is updated for 50 steps using a loss function based on the learned state action value function g(x,u) in
the SE-RL case and ¢(x, u¥) in the SP-RL case.

Lemma 2. Let Uy be the boundary of a convex safe action set U and Nyg (u®) the normal cone at
u® € 9UE. Furthermore, let U¢(u’) = {u® € U\UZ |u® = u’+(n,( > 0,n € Ny=(u’)} be the set of unsafe
actions u® in the normal cone of a given u® € OUL. Then the state action value function, the advantage
function, and the GAE adhere to

qr(x,u®) ,ub)  Yu® e U,
an(x,u’) ,ub)  Yu® € U, and

T
0S4 (z,u®) = altP(z,ub) Vu € U,

Gr(
ax(x

respectively.

Note that the flat-lining critic issue also applies to algorithms using stochastic policies in both SE-RL and
SP-RL. Essentially, lemma [2] tells us that when using a perfect value function approximation in equation
gradient information along the normal directions will be eliminated.

We illustrate this using a simplified example. Consider the quadrotor task described in section [A'8] Here,
we assume deterministic system dynamics and compute the safe action set U¥ for a fixed state  given the
RCI set. We use supervised learning and a random behavior policy to train a critic network to approximate
the state action value function ¢, (x,u) for the given state. Then, we use a deterministic target policy
represented by a tensor of the same dimension as w and perform 50 policy update steps using stochastic
gradient descent to maximize the learned objective. Note that for this environment, task performance
(reaching the equilibrium state) and safety are well-aligned since the equilibrium is considered a safe state.
Therefore, the optimal action is often also safe, as shown in figure 2] In appendix [A.7 we provide a second
example where task performance and safety are not aligned.

Figure shows a non-safeguarded setup, where the critic has learned a good approximation of the true
objective function. The policy improvement steps lead to the optimal safe action. However, such a learning
process is only possible in computer simulation or non-safety-critical environments, as unsafe actions might
be executed. In SE-RL, the safeguarding takes place in the environment such that the projection is not
visible in figure We observe that the policy actions never converge to the safe action set, and would
not reach the optimal safe action even after the projection. This is caused by the flat-lining critic, which
eliminates gradients in the direction normal to the boundary of the safe action set.
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SP-RL avoids the flat-lining critic by restricting evaluation to safe actions. We visualize this in figure
Instead, the impact of action aliasing is shifted to another part of the policy gradient estimation.
When computing the sensitivity of the safeguard V., ®(x,u), any components in the normal direction to the
boundary vanish (Gros et al.l 2020), leading to a rank-deficient Jacobian. This is termed the zero-gradient
problem in existing work (Lin et al.| 2021} [Kasaura et al., 2023). As shown in figure the zero-gradient
problem can be particularly challenging for safe action sets with non-smooth surfaces, as multiple constraints
are active on vertices, further reducing the rank of the Jacobian. This is also visible to a lesser extent for
the flat-lining critic in figure [6b]

We would like to highlight that while the zero-gradient problem in SP-RL always exists, the flat-lining
critic problem in SE-RL depends on the quality of the learned value function. An imperfect value function
approximation may, in fact, alleviate the issue, as shown in other works highlighting the advantages of
sampling-based gradient estimation (Suh et al.,|2022). We will examine the practical implications in section

B

7 Addressing Action Aliasing in SE-RL and SP-RL

We extend our comparative analysis to variants of SE-RL and SP-RL that aim to address the shared issue
of action aliasing. First, we establish how existing approaches differ, impairing the theoretical equivalence
established in theorem Then, we propose an alternative approach for SP-RL that re-establishes the
validity.

7.1 SE-RL

In SE-RL, action aliasing is commonly addressed by adding a penalty h to the reward each time the safeguard
has to intervene (Wabersich & Zeilinger, 2021; Markgraf & Althofl] 2023 Stanojev et al.l [2023; Bejarano
et al., 2024} [Kasaura et al.,|2023} [Dawood et al., 2025)). This changes the MDP reward function from section
5.1 to r5%ue . X x U x R — Rsq where

rSEae (g ) = 58 (z, u) — h. (23)
A common choice for the penalty function is the squared Euclidean distance between the safe and the unsafe
action

0 if u € Uz,

24
wl|lu —u?||3 otherwise, 24)

h=¢&u? u) = {
where w is a hyperparameter. Introducing a penalty changes the optimization goal of SE-RL as shown in
figure 3] To enable a better comparison with the improvement strategies for SP-RL presented in section
[7:2] we quantify the impact the penalty has on the value function and policy gradient estimate.

The state action value function ¢2"8(x,u) can be rewritten as

[ oo
au _ E k_SE,aug _ _
qr g($7u) - Eﬂ' v rt+k+1 Xy =T, U = 'U:|
L k=0
)
k(. SE
=E- § Y (rt+k+1 —hiyrp1) | Xe =z, 0 = u
L k=0
) 0o
k. SE k
=E, E Ve | Xe =z, u =u| —Ex E Yihirpt+1 | Xe =2, 0 = u
L k=0 k=0

ESCRD) a7 ()

Then, the policy gradient estimate for a deterministic policy can be expressed as

VoJ(n) =E; [Vor(x)Vyugie(x,u)] = E; [Vgﬂ(a;)vu (qiE(m, u) — qpcn(:c,u))] , (25)

™

10
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(a) SE-RL: Adding a penalty to the re- (b) SP-RL: An additional policy loss (¢) SP-RL: Learning an additional
ward addresses the flat-lining critic prob- term that penalizes the distance between penalty critic is very similar to adding
lem and improves convergence toward unsafe and safe action improves conver- a penalty to the reward in SE-RL. Note
the optimal safe action. gence to the optimal safe action but stops that as the penalty critic is conditioned
on the border of the safe action set. on unsafe actions, we display the objec-

tive over the entire action space.

Figure 3: Effect of improvement strategies when using a differentiable safeguard during policy updates for
a given state @ in the navigation task. The deterministic policy mg(x) is updated for 50 steps using a loss
function based on the learned state action value function g(x,w) in the SE-RL case and ¢(x,u¥) in the
SP-RL case.

showing the impact of the penalty. The term ¢2°"(x, u) steers the policy away from actions that frequently
trigger the safeguard, such that policy actions that are inherently safe or closer to the feasible region are
preferred. The strength of this effect is controlled by the hyperparameter w in equation A similar

derivation can be done for stochastic policies, resulting in

Vo (r) = E [¥2"%(z, u) Vg logm(u|z)] = E (P35 (x, u) — U2 (z,u)) Ve log m(u|z)] . (26)

7.2 SP-RL

In SP-RL, action aliasing manifests as rank-deficient Jacobians of the safeguard that directly enter the policy
gradient computation through backpropagation. Unlike in SE-RL, where penalties can influence the value
function approximation to mitigate action aliasing effects, reward penalties in SP-RL cannot eliminate the
underlying rank-deficiency in the sensitivity of the safeguard. Instead, existing literature in SP-RL suggests
a direct modification of the policy loss to improve performance (Chen et al., 2021; Bhatia et al. [2019). For
deterministic policies, this results in a combined policy gradient estimate

VoJ(nh) =E, . [Vor (2)Vaue S (z,u?) — Vod(-)] (27)

where d(-) commonly depends on the unsafe and the safe action. For example, in |Chen et al. (2021)), the
authors suggest using the squared distance between the unsafe and the projected action as an additional loss
such that d = £(7t(z), 7(x)) as defined in equation Others use a loss term proportional to the constraint
violation which is theoretically similar (Bhatia et al., 2019). We illustrate the effect of the squared distance
loss in figure [3b] for a deterministic policy. Compared to figure the policy evolves toward the boundary
of the safe action set, even though it does not reach the optimal safe action. For stochastic policies, the
vanishing gradient problem does not apply as discussed in section [6.3] Nevertheless, we can apply this
additional loss to the mean p and its projection p* such that

VoJ(nh) =E i [V, (z,u?)Velogm(u| )] — Er [Vel(puh (), p(z))]. (28)

Using an additional loss term as in equation 27| and equation [28] captures myopic effects of unsafe actions. In
contrast, penalties added to the reward are embedded into the value function estimate, providing information

11
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regarding their long-term consequences. Consequently, the per-sample loss in SP-RL targets a different
optimal value function than the improved SE-RL version presented in section breaking the equivalence
established in theorem [1

Therefore, we suggest an alternative that consists of training an additional critic conditioned on the unsafe
policy such that
qgen(m7 U) =E, [ggen | Xt =T, U = u] ) (29)

where gf" = E;OZO ¥*hisri1. This yields the deterministic policy gradient estimate
VoJ(rt) =E,. [VQWL(I')VU«;) &F (, u?)| — Ex [Vor(2) Vg™ (z, u)], (30)

which is similar in structure to the one from equation[25] The main difference to SE-RL is that the first term
in equation [30] depends on the safeguarded policy and involves the sensitivity of the safeguard. Since the
second term is computed for the unsafe policy, convergence behavior compared to the vanilla loss function
is improved as shown in figure In comparison to the per-sample loss, the policy reaches the interior of
the safe action set.

In principle, this approach can also be applied to algorithms with stochastic policies, resulting in the policy
gradient estimate

Vo (1) =B i [V, (2, u?)Velogn(u| )] — By [V (2, u) Ve logm(u|x)]. (31)

However, as discussed in section [5.2.2] the distinction to SE-RL with additional penalties vanishes when the

algorithm is based on learning a state value function vi% (z) that does not depend on the action.

8 Experiments

We design our numerical experiments to answer the following questions: (1) Without any modifications,
which approach achieves better returns empirically - SE-RL or SP-RL? (2) How do the approaches for
addressing action aliasing in SE-RL and SP-RL compare to each other? For SP-RL, we consider the per-
sample squared distance loss (PSL) and our proposed penalty critic (PenC), and for SE-RL proportional
penalties.

We restrict our investigation to actor-critic algorithms based on the policy gradient theorem, as|Gros et al.
(2020) provide a derivation of unbiased policy gradient estimates under the SP-RL framework for these
algorithms. We choose Twin-delayed Deep Deterministic Policy Gradient (TD3) (Fujimoto et al., 2018) and
A2C (Mnih et all 2016) as RL algorithms using deterministic and stochastic policies, respectively.

We use cvxpylayers (Agrawal et al.,|2019)) to integrate the safeguard into the policy for SP-RL as it automates
the computation of the sensitivities of the projection in the backward pass. To ensure a fair comparison,
we run all experiments on the same CPU (Intel Core i9-14900K). Furthermore, we conduct hyperparameter
tuning for the unsafe baselines of each algorithm and then use this set of hyperparameters for all experiments.
The weighting factor w is an important hyperparameter. Therefore, we do not tune it, but instead test for
different choices: w € {0.1,0.5,1.0,2.0}. We report the final performance using the interquartile mean
and 95% bootstrapped confidence intervals of the undiscounted return over 7 training runs evaluated on 10
random seeds, respectively.

8.1 Benchmark Problems

We perform the evaluation using a stabilization task for two classic control examples — a pendulum and a
quadrotor — as well as a navigation task. For the first two tasks, we compute RCI sets using the approach
from [Schéfer et al| (2023]). Since the RCI sets are centered around the equilibrium point, task performance
is closely aligned with safety. This is different in the navigation task, where a simple point mass seeker
has to find the shortest path to a goal while avoiding obstacles. Here, instead of an RCI set, we use a
state-dependent safe action set to avoid collisions. Further details on the benchmark problems are provided

in appendix [A-§
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Figure 4: Interquartile mean and 95% bootstrap confidence interval of the return and safeguard interventions
over environment steps during training with TD3. We compare the vanilla SE-RL and SP-RL versions and
the strategies for mitigating action aliasing.

8.2 Results

8.2.1 Comparison of SE-RL and SP-RL Without Moaodifications

As shown in lemma [T} for algorithms such as A2C that employ stochastic policies and learn a state value
function, SE-RL and SP-RL result in the same policies. Consequently, they deliver the same return at test
time as shown in figure [5b]

For TD3, figure [pal shows that vanilla SE-RL often outperforms SP-RL, especially for more complex envi-
ronments. For the pendulum task, the final performance is very similar, with a slight advantage for SP-RL.
For the quadrotor and the seeker task, the differences are more pronounced, and vanilla SE-RL clearly dom-
inates SP-RL. Figure [d]shows a large variance in the training performance for TD3-SP-RL caused by several
non-convergent runs, which explains the poor performance at test time.

8.2.2 Comparison of Improved SE-RL and SP-RL

In figure [5] we only report the results for the best-performing choice of w, while the full results are shown in
appendix [AX9] For the quadrotor and the seeker environment, the choices of w that perform well are largely
consistent for one algorithm. For the pendulum, larger w in SE-RL can deteriorate performance significantly,
while SP-RL with the per-sample loss is very robust.

For TD3-SP-RL, both the per-sample loss and the penalty critic improve test performance across all three
environments (see figure . As shown in figure {4} the convergence issues of vanilla TD3-SP-RL in the
quadrotor and the seeker can be mitigated. Which of the two strategies for action aliasing performs better
depends on the type of environment: In the two balancing tasks, the penalty critic delivers better results,
while the per-sample loss has the edge in the navigation task. Statistical analysis using Kruskal-Wallis and
Dunn’s tests with Bonferroni correction (p < 0.05) confirmed that compared to TD3-SE-RL with penalties,
one of the improved SP-RL versions always performs on par or better.

13
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(a) Results for TD3 (deterministic policies).
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(b) Results for A2C (stochastic policies). For the pendulum, we clip the returns obtained with vanilla A2C to enable a better
comparison. The actual returns are much lower as shown in table E}

Figure 5: Comparison of vanilla and modified SE-RL/SP-RL approaches (PSL: per-sample loss, PenC:
penalty critic). We provide the interquartile mean and the 95% confidence interval of the return achieved
at test time. For the improved SE-RL/SP-RL approaches, we only show the result for the best-performing
choice of w € {0.1,0.5,1.0,2.0}. The full results are listed in appendix

For A2C, the penalty in SE-RL and the penalty critic in SP-RL are again equivalent. They significantly
improve performance for the pendulum and quadrotor environments. In the seeker environment, performance
slightly deteriorates for all improvement strategies in both SE-RL and SP-RL.

9 Discussion

For actor-critic algorithms using stochastic policies and GAE, both theoretical and empirical results confirm
that SE-RL and SP-RL are equivalent. While the per-sample loss on the policy mean can sometimes improve
performance, it is usually outperformed by penalty-based approaches. The seeker environment proved more
challenging for improvement strategies due to the difficulty of weighing task performance with safety and
the already strong performance of vanilla A2C.

As reported previously (Pham et al.l [2018), we observe convergence issues when using SP-RL with determin-
istic policies, particularly in complex environments, while SE-RL shows no such issues. This supports our
theoretical finding that critic flat-lining only hinders learning under perfect value function approximations.
In contrast, rank-deficient Jacobians always affect policy updates in SP-RL, making action aliasing more
detrimental. Following Bhatia et al.|(2019)); |Chen et al.| (2021)), we find that these convergence issues can be
mitigated by adding loss terms proportional to the distance between safe and unsafe actions.

The relative effectiveness of our proposed penalty critic versus the per-sample loss depends on the alignment
between safety and task performance. In the balancing tasks where these objectives align, the penalty critic
outperforms the per-sample loss because it can converge to optimal actions within the safe set, while the
per-sample loss is limited to the boundary (figures and. In the seeker environment, where optimal task
actions typically lie outside the safe set, both methods converge to boundary actions, making the per-sample
loss more efficient.
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Overall, improved SP-RL variants typically match or exceed SE-RL performance for deterministic policies,
but incur 2 — 10 times computational overhead due to sensitivity computations via cvxpylayers. While
our evaluation excludes detailed wall-clock analysis due to software-specific variations, future advances in
sensitivity computation (Frey et al., |2025; Nguyen & Donti, [2025) may mitigate this overhead.

10 Conclusion

We present a comprehensive theoretical and empirical comparison of SE-RL and SP-RL, two prominent ap-
proaches for integrating projection-based safeguards into actor-critic RL. Our unified formalization enables
us to prove that both approaches share optimal value functions but differ in their learning dynamics. For a
specific subclass of RL algorithms that use stochastic policies and GAE, we show theoretical and practical
equivalence of SE-RL and SP-RL. For algorithms using deterministic policies, the approaches diverge de-
pending on whether the sensitivity of the safeguard mapping is used explicitly in the backward pass of the
policy loss (SP-RL), or whether it is learned implicitly through the value function approximation (SE-RL). A
central concept when analyzing these differences is action aliasing, where multiple unsafe actions are mapped
to identical safe actions. Our analysis reveals that the effect of action aliasing is more detrimental to SP-RL
than SE-RL, potentially leading to convergence issues. We propose a novel penalty critic for SP-RL that
estimates discounted cumulative penalties proportional to the distance between safe and unsafe actions,
providing a principled mitigation strategy aligned with penalty-based approaches in SE-RL. Our theoretical
findings and empirical analysis provide practitioners with clear guidance: Vanilla SE-RL presents a strong
baseline, particularly for environments where scaling additional penalties or loss terms is challenging, while
improved SP-RL variants should be considered when performance gains justify the additional computational
cost.
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A Appendix

A.1 Action Projection Using Zonotopes

One option for defining safe action sets is to consider control invariant sets as safe state sets X¥, where
x; € X% ensures that there exists an admissible action u; € U such that equation can satisfied for all
times. Then, the constraints in equation can be defined using C(x, us, w;) C X?, where C is the set of
all reachable states at the next time step under the system dynamics and bounded Gaussian noise w; € W.
The precise formulation of these constraints depends on the chosen set representations for approximating
reachable and safe sets. In this work, we adopt zonotopes to enable efficient computation. Consequently, we
have to replace equation [I2D] with the necessary constraints for verifying zonotope-in-zonotope containment.
Consider a zonotope Z C R™* in generator representation that is given by

Z={zeR" :z=c+ Bpj,|B| <1}

with the center ¢ € R"= and the generator matric B € R™=*"(%) where 1(Z) € Ny denotes the number of
generators of Z. A more compact notation is given by Z = (¢, B)z. Consider two zonotopes Z; = (¢1, B1)z,
Zs = (€2, Ba)z. Then, Z, is contained in Zs, i.e., Z1 C Zs, if there exist I' € R7Z2)xn(Z1) oy e R(Z2)
such that (Ghasemi et al., 2020, Lemma 1)

B1 = BQF, (323)
Cy — C1 = ng, (32b)
T w]lle <1 (32¢)

The resulting optimization problem involves both equality and inequality constraints, which is an important
consideration when analyzing the sensitivity of the solution, as discussed in appendix

If the safe action set is given directly as a zonotope UZ = (¢, B,,), we only have to verify that @ € Ug. This
can be achieved by replacing equation with (Kulmburg & Althoft] 2021)
B, =1—c, (33)
¥ < 1. (34)

A.2 Differentiating the Safeguard Using the Implicit Function Theorem

If the projection safeguard ® is integrated into the policy as shown in figure we require the sensitivity of
its output (the safe action) with respect to its input (the unsafe action) for the backward pass of the policy
optimization. To obtain the sensitivity of u? = ®(x,u) with respect to u, let us first consider the Lagrange
function associated with the projection problem [12]

Lz, u, 0, k,v) =z, u, @)+ k" D(x,u,a)+v Hzx, u,a),
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and the Karush-Kuhn-Tucker (KKT) conditions,

Val(x,u, 4, k,v)
e(x,u, 0, kK, V) = D(x,u,u) . (35)
p"H(z, u,a)

where 2 is the safeguard objective, and the equality and inequality constraints resulting from the zonotope
containment problem are represented with D and H, with k and v as the corresponding dual variables,
respectively. At the KKT point, we have

E(CB, u, 'ﬂ,’ K, U)|:c,u,u“’,n*,’u* =0

where {u¥, k*,v*} are the primal-dual solution of the safeguard. Then, with the implicit function theorem
(Krantz & Parks, [2002)), the sensitivity of the safeguard with respect to u is

Vud(z,u) = Vyee(T, u, @, 5, 0) Vaue(T, w, @, K, V) |gwwr s o - (36)

A.3 Equivalence of Optimal Value Functions

To prove Theorem [I} let us first recall the definition of an optimal policy. A policy is called optimal if its
expected return is greater than or equal to that of all other policies in all states. Therefore, all optimal
policies satisfy the same optimal value function (Sutton & Barto, |2018])

V(@) = ver () > vp () Ve e X, mell (37)

If we can show that SE-RL and SP-RL share the same optimal value function, this implies that any optimal
policy in either framework will yield the same expected return. Note that policies in both frameworks, m
and 71, are parameterized by 0, though this dependence is omitted for readability. Moreover, when 8 is the
same, the SP-RL policy 7+ corresponds to the same underlying RL policy as 7, with 71 incorporating the
safeguard ® on top of the (potentially unsafe) policy .

To demonstrate this equivalence, we begin by comparing the conditional probability densities of SE-RL
—specifically, its transition probability p>F and reward distribution pSF — with those of SP-RL, pSF and pSF.

The two approaches, SE-RL and SP-RL, are merely different takes on the underlying stochastic process. In
SP-RL, the probability density function (PDF) is conditioned on the safe action u¥ ~ 7t (-|x) as defined
in equation This safe action is obtained by applying the projection operator u¥ = ®(x,u) to the unsafe
action u ~ m(-|x). At the core of the two perspectives, we have the following chain,

SP

T P o P I
z—u—u’ —zx,r,

and the two perspectives combine probabilities in different ways. Since the projection operator is determin-
istic, this is the same as applying the projection operator within the environment as done in SE-RL (see
equation , i.e., we have the following two Markov chains,

ﬂ_L pSP ,
SP-RL: x — u¥ — z',r,

SE
SE-RL: z D ul—a r.

Thus, the Markov chains resulting from policies 7 and 7+ with same @ would have the same conditional
probability densities,

P (@ | x) = pi" (@ | 2) (38)

PR @) = PR ). (39)
Now, we can prove theorem [I]
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Proof. In SE-RL, for a certain policy , the state value function (equation [L5b]) is given as

V3 () = By, s, mpse (8] X0 = ] (40)

Xo = m} (41)

o0

— k
=E, T, Xy ~pSE [ E YV Titk+1

— / // //rpr r| @k, ug)m(ug | )

[H (Tig1 | @iy wi)m(u; |wz)1 drdug...du dx;...dz;, (42)

*ZV/ // //Tpr @, ug)m(uy | Tk)

k=0 PSE-RL (1| )
k—1
H piE(wiH | i, w)m(u; | @;) | dr dug...duy, do; ...dxy, (43)
i=0

PSE-RL (2, 1 |a;)
_ Z’Yk[ / / TpEE RL |ka [HPSE RL wiJrl |wz)] drdxz...dxy, (44)
k=0 X X

where g = z. Similarly, for the corresponding safe policy 7+, we have

’Uili (ZC) = ]Equ,,TJ_’xthgP [gt| X9 = x] (45)

o0

k
u‘t”rv'rrL x¢~pSP [E Y Ttk+1

[H uf |2)pSF (i | @i, u )] drduf..du] dz;...dxy (47)

—ZV/ //TPSPRL |zk) [HPSPR 93‘+1|wz')1 dr dz;...dzy, (48)

Thus, with equation [38| and equation for a policy 7 € II, there exists a safe policy 7+ € II* such that,

=

Xo = w} (46)

vOE(z) =03l (z) VxeX. (49)
A trivial case would be when 7 and 71 have the same values for 6.

Consider an optimal policy 7* for SE-RL, then the corresponding value function is the optimal value function

in SE-RL, i.e. v5¥(x) :~USE* (x),Vx € X. Using equation there exists a safe policy 7+ € II+ such that
v (x) = USE( ),V € X. Next, we show that the safe policy 7+ and the corresponding state value function
SP

v21 are the optimal policy and optimal state value function for SP-RL, by contradiction.

Suppose, that there exists a safe stochastic policy #+ € II' achieving strictly better performance,

03 () > 3% (x), for some x € X.

Since #1(-|x) is supported on U¥ C U, we can construct a corresponding SE-RL policy 7(-|x) whose
pushforward through ® equals 7+ (-| ). Formally, for each x:

Cui(-|z) =7 (|2,
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where @ denotes the pushforward of the probability measure under ®.
Intuition: for each safe action u® sampled from 71 (-|x), select a preimage u € ®~!(u¥) according to any
probability distribution over that set. This is always possible because ® is surjective, ensuring every u? € U¥
has at least one preimage in U.
Using equation the state-transition and reward distributions under % in SE-RL match those under 7+ in
SP-RL. Hence,
SE SP SP SE*
vz (x) = vRi(x) > il (e) = v (@),

contradicting the optimality of 7*.

Therefore, no such 71 exists, and 7+ is also optimal in SP-RL. Consequently, the optimal value functions
coincide,
SE*( sp (), VxeX.

v () = v

A.4 Equivalence of SE-RL and SP-RL for Stochastic Policies and GAE

Proof. With U5 (z, u?) = a®*F(x, u?) and V5% (z,u) = a“**(x,u), we can rewrite the policy gradient
estimates for SP-RL for stochastic policies as
VoJ(rg) =E . [V (z,u?)Velogme(u|x)]

=E,. [aS2"(z,u?)Velogmo(u|z)]

=E,. Z(fy)\)léerlVg log g (u| ) equation [7]
=0
=E._. lZ(’y)\) (regs +y0SY (@041) — 058 (2441)) Ve log e (u | :c)] equation [§]
1=0
and, similarly,
Vo (m9) = Ex | (0N (rigs + 7058 (@e1141) — v3%(@141)) Vo log 7o (u | m)] .
1=0

Using the same initial parameters ¢ = ¢™ and @ = 6™, both policy gradient estimates are the same
for the first policy update. Similarly, as the value functlons vSE and v?ﬂ only depend on the state, the
gradient V4 Ly for the loss defined in equation |§| is also equivalent. Consequently, if all other algorithm
hyperparameters are the same for both SE-RL and SP-RL, all subsequent parameter updates will also be
the same. O

A.5 SP-RL for Stochastic Policies Using Projected Mean

Chen et al.| (2021) follow a different approach to SP-RL with stochastic policies that relies on projecting
the mean of a Gaussian distribution, sampling from this distribution, and projecting again as described in
section [5.2.2] We briefly detail how this affects the policy gradient estimate with respect to the parameters
of the policy N (ug, Xg).

Under the policy gradient theorem in equation [6] the log-likelihood of an action is computed as

u — po(x))?
logmg(u|x) = f% (E%LZE())) +log (27X (x)) | . (50)
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When sampling u® ~ A (ué-,Eg) from a distribution with a projected mean and then computing u¥ =
®(u®, x), the log-likelihood of the safe action becomes

e _ L 2
log 7y (u¥ |x) = —% ng(w)) +log(2735(x))| - (51)

The gradient with respect to the unprojected mean is then

u? — pg(x
Voo gy (w? | 2) = O (g @) (52)
2]

Therein, V,,, u(J; can be obtained as described in appendix

A.6 Flat-lining Critic in SE-RL

Proof. Any action u® € U¢(u¥) will be projected to u® and will thus transition to the same next =’ and yield
the same reward 7° ~ p,.(r |, u?). Since the state action value function satisfies (Sutton & Bartol [2018)

Gr(z,u) =E[r +yv.(2) | x; = ¢, 0y = ul,
we obtain
gn(z,u) = qﬁ(az,ub) Vu® € U°,
and, consequently,
ar(x,u’) = ag(x,ub) VYu® e UC

Furthermore, for the GAE according to equation [7] we receive

&SAE(a:,ue) = dSAE(a:,ub) Yu® € U°.

A.7 Action Aliasing Visualization for Seeker Task

We provide a second minimum example for visualizing the impact of action aliasing in deterministic policies.
It is based on the seeker navigation task described in appendix[A:8] All other settings are the same as listed
in section The main difference to the previously described example is that task performance and safety
are not aligned in the navigation task, as one obstacle will always be situated between the initial and the
goal position. Therefore, actions that are optimal with respect to the task performance are usually unsafe,
and the optimal safe action lies on the boundary of the safe action set. This is visualized in figure[6] Due to
these different task characteristics, the impact of the different improvement strategies becomes more similar
as shown in figure 7]

A.8 Benchmark Problems
A.8.1 Pendulum Stabilization Task

Our pendulum environment is closely related to the OpenAl Gym Pendulum- VOE| environment with the
difference that we limit the one-dimensional control input to |u| < 8rads™!. The environment has the state

T = [19, 19]T and the dynamics

0
= (un0) o) o
where ¢ is gravity and m, ¢ are the mass and the length of the pendulum, respectively. We discretize the
dynamics using the explicit Euler method. The desired equilibrium state is ** = [0, O]T. The reward is

7= —(92 +0.19% + 0.001u2).

%https://gymnasium.farama.org/environments/classic_control/pendulum/
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showing that the optimal action would the safe optimal action and the safe set the direction normal to the projection
be unsafe. Note that we clip the policy boundary. and eventually gets stuck on a vertex of
to the feasible action set during policy the safe action set.

improvement.

Figure 6: Effect of action aliasing on SE-RL and SP-RL algorithms using deterministic policies. We illustrate
the policy improvement step for a given state @ in the navigation task. The deterministic policy w(x) is
updated for 50 steps using a loss function based on the learned state action value function ¢(z,wu) in the
SE-RL case and ¢(x,u?) in the SP-RL case.
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(¢) SP-RL: Learning an additional
penalty critic is very similar to adding
a penalty to the reward in SE-RL. Note
that as the penalty critic is conditioned
on unsafe actions, we display the objec-

in the interior of the safe action set, it tive over the entire action space.
might not be reached.

Figure 7: Effect of improvement strategies when using a differentiable safeguard during policy updates for
a given state x in the navigation task. The deterministic policy mg(x) is updated for 50 steps using a loss
function based on the learned state action value function g(x,w) in the SE-RL case and ¢(x,u¥) in the
SP-RL case
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A.8.2 Quadrotor Stabilization Task

We use the model of a quadrotor operating in the z-z-plane that is proposed in (Stolz et all |2024)). The

system has two independent thrusts u = [ul,uZ]T bounded by lower and upper limits w,w, respectively.

LT
The state of the system is & = [em, e?,év, éz,ﬁ,ﬁ}
respectively. The system dynamics are

, where e, . are the positions along the z- and z-axis,

éZL’

éZ

(u! + u?)K sin(¥)
—g+ (ut + yQ)K cos (V)
Y
—dpV — d119 + no(—ul + u2)

+

coc & & oo
—

where dy, dy,ng, K are constants and w = [wl, wQ} " are disturbances. The linearized dynamics are obtained

using a first-order Taylor expansion around the equilibrium point &* = [0, 1,0,0,0, O] T and are discretized in

time using the explicit Euler method. The disturbances are sampled uniformly from a compact disturbance
1 2 2

set W C R?. The reward is computed using r = —1 + exp (—||s — 8%l — 2| [u = o } ||1>, where

Tl WP _u?
s = [em,ez].

A.8.3 Seeker Navigation Task

In this two-dimensional navigation task, a simple massless robot has to find the shortest path to the goal
while avoiding a fixed number of obstacles. The environment is configured such that at least one obstacle
will always lie between the initial position of the seeker and the goal position e9. The initial position, goal
position, and the positions and radii of the obstacles are pseudo-randomly sampled at the beginning of each
episode. The state © = [e?,eY,é%,éY]T consists of the positions and velocities in the  — y-plane. The
actions u = [é%,¢éY] are accelerations in the respective directions and bounded by |é%],|é¥| < a™** with
a™* = 1m/s%. We use the simplified system dynamics

. (55)

and discretize them using the explicit Euler method. If the position of the seeker at time t is e; then the
step reward is 7 = —1 + exp(|le; — eg4|). In all experiments, we set the number of obstacles to three.

In each time step, a safe action set U%(z) is computed to avoid collisions with obstacles and the boundaries
of the map. This simplifies the projection problem in equation [12] to

O(x,u) :
1
u? :argplin§||ﬁ—u||§ (56)
st. weUL. (57)

A.9 Full Results
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Table 2: TD3, pendulum: mean and standard deviation of returns and safeguard interventions for different
scaling factors w.

SE-RL SP-RL
Vanilla Penalty Vanilla per-sample loss Critic penalty

w=0.1

Interventions 0.01 £0.20 0.03£0.24 4.13 £5.10 1.33+1.35 5.49 £18.23

Returns —11.52+7.24 —1323+£8.19 —-10.52+741 —8.06 £6.16 —8.71£6.22
w=0.5

Interventions 0.01 £0.20 0.0£0.0 4.13 +£5.10 2.51£4.17 8.90 £ 18.29

Returns —11.52+7.24 —-29.34 +£19.43 —10.52+7.41 —8.77+6.21 —7.60 £5.99
w=1.0

Interventions 0.01 £0.20 0.07£0.35 4.13 +£5.10 1.36 + 1.46 13.06 £ 27.32

Returns —11.52+7.24 —-23.26+21.19 —-10.52+741 —8.33£6.84 —9.57 £7.08
w=2.0

Interventions 0.01 +£0.20 0.0+£0.0 4.13 +£5.10 18.57 £ 34.74 16.53 £+ 25.80

Returns —11.524+724 —4548+23.71 —10.52+7.41 —8.50 £ 6.30 —7.47£5.70

Table 3: TD3, quadrotor: mean and standard deviation of returns and safeguard interventions for different

scaling factors w.

SE-RL SP-RL
Vanilla Penalty Vanilla per-sample loss Critic penalty
w=0.1
Interventions 194.23 +14.01 170.13 +48.93  199.71 +0.64 199.04 +1.49 192.60 4+ 23.79
Returns —49.43 +£6.76 —49.75+12.35 —66.34 + 16.76 —66.87 +17.41 —62.52 £ 13.00
w=0.5
Interventions 194.23 +14.01  64.16 £ 46.66 199.71 + 0.64 170.44 + 51.05 145.31 +49.21
Returns —49.43+6.76 —43.76 +£13.68 —66.34 £16.76  —59.11 £+ 18.65 —53.46 +17.47
w=1.0
Interventions 194.23 +14.01  65.63 £+ 60.98 199.71 + 0.64 181.79 + 37.02 141.80 4+ 58.84
Returns —49.43+6.76 —43.33+16.68 —66.34 £ 16.76 —49.97 + 7.68 —54.22 +16.73
w = 2.0
Interventions 194.23 +14.01  45.94 +40.76 199.71 + 0.64 192.51 + 21.70 134.93 4+ 52.98
Returns —49.43+6.76 —42.81+11.78 —66.34 £ 16.76 —49.34 +5.74 —44.34 +10.26
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Table 4: TD3, seeker: mean and standard deviation of returns and safeguard interventions for different

scaling factors w.

SE-RL SP-RL
Vanilla Penalty Vanilla per-sample loss Critic penalty
w=0.1
Interventions  83.90 + 34.00 85.60 + 32.19 81.7 £ 35.16 42.24 + 43.90 49.90 £+ 44.94
Returns —34.20 £20.05 —34.164+20.14 —51.33 +£22.97 —26.31 +20.13 —31.66 + 20.43
w=0.5
Interventions  83.90 + 34.00 80.00 + 37.10 81.7 £ 35.16 44.01 + 39.53 42.63 + 44.65
Returns —34.20 £20.05 —32.734+20.70 —51.33 +22.97 —26.10 + 18.19 —31.02 +19.22
w=1.0
Interventions  83.90 + 34.00 93.96 + 22.04 81.7 £ 35.16 43.19 + 38.87 46.03 £ 45.75
Returns —34.20 £20.05 —39.124+16.59 —51.33 +22.97 —28.17+17.49 —36.06 + 19.26
w = 2.0
Interventions  83.90 + 34.00 97.47 + 14.86 81.7 £ 35.16 40.40 + 39.20 39.31 +2.97
Returns —34.20 +£20.05 —48.09 +15.86 —51.33 +22.97 —28.90 +19.73 —42.04 +17.69

Table 5: A2C, pendulum: mean and standard deviation of returns and safeguard interventions for different

scaling factors w.

SE-RL SP-RL
Vanilla Penalty Vanilla per-sample loss Critic penalty

w = 0.1

Interventions  170.03 +53.11 1.04 + 2.82 170.03 +53.11 6.06 + 8.88 1.04 +2.82

Returns —177.09£31.28 —32.90+57.86 —177.09 &+ 31.28 —7.60 £6.33 —32.90 £+ 57.86
w = 0.5

Interventions  170.03 £ 53.11 0.48 £2.15 170.03 +53.11 7.84 £11.95 0.48 +2.15

Returns —177.09 +£31.28 —24.58 +40.57 —177.09 + 31.28 —7.52 +6.54 —24.58 4+ 40.57
w=1.0

Interventions  170.03 £53.11 50.79 + 80.19 170.03 +53.11 27.50 4+ 36.68 50.79 + 80.19

Returns —177.09 +£31.28 —114.154+77.99 —177.09 + 31.28 —8.02 £7.40 —114.15 £ 77.99
w=2.0

Interventions  170.03 £ 53.11 38.66 + 68.81 170.03 &+ 53.11 11.66 £ 20.81 38.66 + 68.81

Returns —177.09 £31.28 —156.37 £64.00 —177.09 + 31.28 —7.06 £ 6.42 —156.37 £ 64.00
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Table 6: A2C, quadrotor: mean and standard deviation of returns and safeguard interventions for different

scaling factors w.

SE-RL SP-RL
Vanilla Penalty Vanilla per-sample loss Critic penalty
w=0.1
Interventions  199.90 + 0.46 161.56 £+ 50.16 199.90 4+ 0.46 198.27 + 4.67 161.56 &+ 50.16
Returns —66.09 +20.09 —50.46 £8.22 —66.09 £ 20.09 —67.58 + 25.27 —50.46 + 8.22
w=0.5
Interventions  199.90 + 0.46 98.27 + 64.17 199.90 4+ 0.46 198.46 + 2.19 98.27 + 64.17
Returns —66.09 +20.09 —52.754+12.63 —66.09 & 20.09 —58.60 +£9.41 —52.75+12.63
w=1.0
Interventions  199.90 + 0.46 63.96 + 63.01 199.90 4+ 0.46 196.94 +4.97 63.96 £ 63.01
Returns —66.09 +20.09 —50.29 +13.41 —66.09 4 20.09 —62.94 +10.30 —50.29 + 13.41
w=2.0
Interventions  199.90 + 0.46 80.19 + 82.43 199.90 4+ 0.46 195.77 + 5.66 80.19 + 82.43
Returns —66.09 +20.09 —51.524+14.81 —66.09 4+ 20.09 —63.81 + 12.06 —51.52 +14.81

Table 7: A2C, seeker: mean and
scaling factors w.

standard deviation of returns and safeguard interventions for different

SE-RL SP-RL
Vanilla Penalty Vanilla per-sample loss Critic penalty
w = 0.1
Interventions  56.93 4+ 44.75 66.42 + 44.02 56.93 + 44.75 43.71 £42.01 66.42 + 44.02
Returns —19.46 £19.92 —22.04 +£20.23 —19.46 +19.92 —24.82 +17.54 —22.04 £ 20.23
w=0.5
Interventions  56.93 4+ 44.75 97.43 +£15.16 56.93 + 44.75 61.33 £40.95 97.43 £ 15.16
Returns —19.46 +£19.92 —41.33+15.46 —19.46+19.92 —35.58 + 13.76 —41.33 +15.46
w=1.0
Interventions  56.93 4+ 44.75 100.00 + 0.00 56.93 + 44.75 72.61 + 34.33 100.00 £ 0.00
Returns —19.46 +£19.92 —50.22+15.04 —19.46+19.92 —38.61 +£13.28 —50.22 + 15.04
w = 2.0
Interventions  56.93 4+ 44.75 100.00 + 0.00 56.93 +44.75 64.86 + 36.08 100.00 £ 0.00
Returns —19.46 +£19.92 —56.06 +14.32 —19.46 +19.92 —40.67 £+ 13.33 —56.06 + 14.32
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