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ABSTRACT

We propose trust-but-verify (TBV) mechanism, a new method which uses model
uncertainty estimates to guide exploration. The mechanism augments graph search
planning algorithms with the capacity to deal with learned model’s imperfections.
We identify certain type of frequent model errors, which we dub false loops,
and which are particularly dangerous for graph search algorithms in discrete
environments. These errors impose falsely pessimistic expectations and thus hinder
exploration. We confirm this experimentally and show that TBV can effectively
alleviate them. TBV combined with MCTS or Best First Search forms an effective
model-based reinforcement learning solution, which is able to robustly solve sparse
reward problems.

1 INTRODUCTION

Model-based approach to Reinforcement Learning (RL) brings a promise of data efficiency, and
with it much greater generality. However, it is still largely an open question of how to make robust
model-based RL algorithms. In most cases, the current solutions excel in low sample regime but
underperform asymptotically, see Wang et al. (2019); Nagabandi et al. (2018a); Kaiser et al. (2020).
The principal issues are the imperfections of the learned model and fragile planners not able to
robustly deal with these imperfections, see (Sutton & Barto, 2018, Section 8.3), (François-Lavet et al.,
2018, Section 6.2), (Wang et al., 2019, Section 4.5).

Model errors are unavoidable in any realistic RL scenario and thus need to be taken into account,
particularly when planning is involved. They can be classified into two categories: optimistic and
pessimistic, see (Sutton & Barto, 2018, Section 8.3). The former is rather benign or in some cases
even beneficial, as it can boost exploration by sending the agent into falsely attractive areas. It has a
self-correcting mechanism, since the newly collected data will improve the model. In contrast, when
the model has a pessimistic view on a state, the agent might never have the incentive to visit it, and
consequently, to make the appropriate adjustments. In this work, we propose trust-but-verify (TBV)
mechanism, a new method to augment planners with capacity to prioritise visits in states for which
the model is suspected to be pessimistic. The method is based on uncertainty estimates, is agnostic to
the planner choice, and is rooted in the statistical hypothesis testing framework.

Taking advantage of the graph structure of the underlying problem might be beneficial during planning
but also makes it more vulnerable to model errors. We argue that graph search planners might benefit
most from utilising TBV. While TBV can correct for any type of pessimist errors, we explicitly
identify certain type of model errors which frequently occur in discrete environments, which we dub
false loops. In a nutshell, these are situations when the model falsely equates two states. Such errors
are much similar to (Sutton & Barto, 2018, Example 8.3), in which the model erroneously imagine
’bouncing off’ of a non-existing wall and thus failing to exploit a shortcut.

From a more general point of view, the problem is another incarnation of the exploration-exploitation
dilemma. We highlight this by evaluating our method in sparse reward environments. In a planning
context, exploration aims to collect data for improving the model, while exploitation aims to act
optimally with respect to the current one. The problem might be solved by encouraging to revisit
state-action pairs with an incentive of ’bonus rewards’ based on the state-action visitation frequency.
Such a solution, (Sutton & Barto, 2018, Dyna-Q+), is restricted to tabular cases. TBV can be though
as its scalable version.
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Our contributions are:

• TBV - a general risk-aware mechanism of dealing with pessimistic model errors, rooted in
the statistical hypothesis learning framework.

• Conceptual sources and types of model errors accompanied with empirical evidence.

• Practical implementation of TBV with: classical Best First Search - a classical graph search
algorithm family and Monte Carlo Tree Search - the state-of-the-art class of planners in
many challenging domains.

• Empirical verification of TBV behaviour in two sparse rewards domains: ToyMontezumaRe-
venge Roderick et al. (2018) and the Tower of Hanoi puzzle.

The code of our work is available at: https://github.com/ComradeMisha/
TrustButVerify.

2 RELATED WORK

There is a huge body of work concerning exploration. Fundamental results in this area come from the
multi-arm bandits theory, including the celebrated UCB algorithm (Auer et al. (2002)) or Thompson
sampling (Thompson (1933)), see also Lattimore & Szepesvári (2020) for a thorough treatment of
the subject. There are multiple variants of UCB, some of which are relevant to this work, including
UCB-V Audibert et al. (2007) and tree planning adaptations, such as UCT (Kocsis et al. (2006)) or
PUCT (Silver et al. (2017; 2018)). Classical approach to exploration in the reinforcement learning
setting, including the principle of optimism in the face of uncertainty and ε-greedy exploration, can be
found in Sutton & Barto (2018). Exploration in the form of entropy-based regularization can be found
in A3C (Mnih et al. (2016)) and SAC (Haarnoja et al. (2018)). Plappert et al. (2017) and Fortunato
et al. (2017) introduce noise in the parameter space of policies, which leads to state-dependent
exploration. There are multiple approaches relying on reward exploration bonuses, which take into
account: prediction error (Stadie et al. (2015), Schmidhuber (2010) Pathak et al. (2019), Burda et al.
(2018)), visit count (Bellemare et al. (2016), Ostrovski et al. (2017)), temporal distance (Machado
et al. (2020)), classification (Fu et al. (2017)), or information gain (Sun et al. (2011), Houthooft
et al. (2016)). An ensemble-based reinforcement learning counterpart of Thompson sampling can be
found in Osband et al. (2016) and Osband et al. (2019). An exploration driven by experience-driven
goal generation can be found in Andrychowicz et al. (2017). A set of exploration methods has
been developed in an attempt to solve notoriously hard Montezuma’s Revenge, see for example
Ecoffet et al. (2019); Guo et al. (2019). In the context of model-based planning Lowrey et al. (2019)
and Milos et al. (2019) use value function ensembles and uncertainty aware exploration bonuses
(log-sum-exp and majority vote, respectively).

More recently, Pathak et al. (2017), Shyam et al. (2019), Henaff (2019) and Sekar et al. (2020)
dealt with exploration and model learning. These works are similar in spirit to ours. They train
exploration policies intending to reduce the model error (e.g. by maximizing the disagreement
measure). Our work differs from the above in the following ways. First, we aim to use powerful
graph search techniques as planners simultaneously to learning of the model. Our method addresses
the fundamental issue, which is balancing intrinsic planner errors and the ones stemming from
model imperfection. Second, we use the prediction error of the model ensemble to measure model
uncertainty and apply a statistical hypothesis testing framework to switch between actions suggested
by the model and actions leading to model improvement. Third, we use a discrete model and a
discrete online planning regime.

When a learned model is unrolled during planning, errors typically accumulate dramatically. Numer
of works adress this problem. Racanière et al. (2017) and Guez et al. (2018) are two approaches
to learn the planning mechanism and make it robust to model errors. In a somewhat similar spirit,
Eysenbach et al. (2019) treats the replay buffer as a non-parametric model forming a graph and
uses ensembles of learned distances as a risk-aware mechanism to avoid certain types of model
errors. Nagabandi et al. (2018b) successfully blends the strengths of model-based and model-free
approaches. PlaNet (Hafner et al. (2019)) and Dreamer Hafner et al. (2020) train latent models, which
are used for planning. Conceptually, a similar route was explored in MuZero (Schrittwieser et al.
(2019)) and Universal Planning Networks (Srinivas et al. (2018)). Farquhar et al. (2017) and Oh et al.
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(2017) investigate the possibility of creating neural network architectures inspired by the planning
algorithms.

Many model-based reinforcement learning algorithms, including ours, follow the general framework
laid out in Dyna, see Sutton (1991). Kaiser et al. (2020) uses a model to collect fictitious playouts
and obtains impressive results for low data regime on Atari. In the continuous domains, a similar
approach is adopted by Kurutach et al. (2018). Simultaneous training of a single policy on model
ensemble is proposed to tackle model errors. Interestingly, this approach is reported to perform
better than back-propagation through time. Clavera et al. (2018) indicates that polices trained on
model ensembles might be over-conservative and proposed to use policy meta-learning. Another
approach to dealing with model errors works by choosing the unroll horizon for a model. Janner
et al. (2019), proposed short model-generated branched rollouts starting from data collected on
“real environment”. Perhaps surprisingly, they find that one-step rollouts provide competitive results.
Similarly, short rollouts are used in Feinberg et al. (2018) and Buckman et al. (2018) to improve
value estimates. Janner et al. (2019); Buckman et al. (2018) uses ensembles to reduce model bias.
The former generates diverse data similarly to Chua et al. (2018), and the latter automatically adapt
the planning horizon based on uncertainty estimates. Xiao et al. (2019) proposed another adaptive
horizon mechanism based on measurement of model errors using principled Temporal Difference
methods.

There is a huge body of work about planning; for classical results, the interested reader is referred
to Cormen et al. (2009), Russell & Norvig (2003) and the references therein. Traditional heuristic
algorithms such as A∗ (Hart et al. (1968)) or GBFS (Doran & Michie (1966)) are widely used in
practice. In Agostinelli et al. (2019) the authors utilise the value-function to improve upon the A∗

algorithm and solve Rubik’s cube. Similarly, Orseau et al. (2018) bases on the classical BFS to build
a heuristic search mechanism with theoretical guarantees. The Monte Carlo Tree Search (MCTS)
algorithm, which combines heuristic search with learning, led to breakthroughs in the field, see
Browne et al. (2012) for an extensive survey. Famously, Silver et al. (2018) develop MCTS-based
technique to master the ancient game of go. The POLO algorithm presented in Lowrey et al. (2019)
proposes to enrich MPC planning with ensemble-based risk measures to augment exploration. This
work is extended by NEEDLE (Milos et al. (2019)) to tree-based MCTS planners and by Lu et al.
(2019) to successfully tackle life-long learning scenarios of environmental change. Hamrick et al.
(2020) explores how to use better statistics collected while searching to calculate signal for value
function training.

3 TBV FRAMEWORK

Figure 1: Agent (gray circle) is moving in a grid-world. It
can move through the door (blue) to other rooms, if it enter
a trap (red) the episode is terminated. (Genuine) one-step
loop arise when agent attempts to walk into the wall. In the
example, the model imagines that performing action "right"
will not result in environment change (false loop). In fact
choosing this action would result in moving to the next room.

This work attempts to pave the way in
harnessing the power of graph search
methods to reinforce model-based re-
inforcement learning. Majority of the
planners were designed to solve a well
defined problem, which means that
the user is expected to supply a perfect
model. Consequently, when the user
fails to do it, the planner can yield an
unexpected, or outright wrong, result.
Although in some environments, like
games or simulators, a perfect model
is available, in most real-world sce-
narios it is a luxury we cannot afford.
Especially in the learning regimes, ob-
taining the perfect model requires ex-
ploration of the whole state space,
which is usually unacceptably hard.
Consequently, any real-world model-
based RL system is unlikely to avoid dealing with model errors.
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We are thus led to two seemingly conflicting desiderata for the choice of a method: we would
like to use planners which are robust to model errors, and planners which leverage the structure of
the underlying problem, and hence are more susceptible to model errors. We advocate developing
methods, which will facilitate adoption of search algorithms into setting with imperfect models. In
this work we make a step towards implementing this plan. We identify and study certain type of
model errors, which we dub false loops, and we propose Trust, but verify (TBV) method, which can
successfully immunize planners with respect to said errors.

3.1 MODEL ERRORS

Sutton & Barto (2018, Section 8.3) conveniently categorize model errors into two categories: opti-
mistic and pessimistic. A situation when a model predicts higher reward or better state transitions
(optimistic error) is easier to handle since while the agent enters an erroneous region, it collects
corrective data. More dangerously, predictions more pessimistic then reality may prevent the agent
ever to visit certain regions.

The optimistic and pessimistic errors are often of the same nature. In this work, we concentrate on
errors related to the graph structure of the problem. By definition, the edges in this graph correspond
to transition induced by actions, and thus the errors are “incorrect edges”. Perhaps the simplest
prediction task (for a model) is to determine if an edge is one-step loop (i.e. if an action will
change or not the current state). Another task is the prediction of absorbing states. In this work, we
focused on the loop errors, as they turn out to be critical to performance (see Figure 1 for examples).
In experiments, we also observed other types of errors (like “random teleports”); however they
disappeared rather quickly during the training. It is possible that they would be more problematic in
other environments, which we leave for further work. In Figure 5 we show numerical results that
show rather frequent occurrence of false loop. This is a pessimistic error, which, unless corrected, e.g.
by TBV, prevents exploration.

Algorithm 1 Model-based training loop
# Initialize parameters of ensemble of models
# Initialize parameters planner specific networks
# Initialize buffer
repeat

episode← COLLECT_EPISODE
buffer.ADD(episode)
B ← buffer.BATCH
Train ensembles of models
Update planner specific networks

until convergence
function COLLECT_EPISODE

s← env.RESET
episode← []
repeat

a← TBV_planner.CHOOSE_ACTION(s) . TBV-augmented graph planner
s′, r ← env.STEP(a) . using models, see Algorithm 2
episode.APPEND((s, a, r, s′))
s← s′

until episode is done
return episode

3.2 STATISTICAL HYPOTHESIS TESTING

Assume that there exists a function STATE_SCORE(s) scoring each state by the model’s uncertainty.
Consider a state s and denote the set of states reachable from s in a specified budget of steps, by
D(s). In this paper, we will take D(s) as a search graph expanded by the planner starting from s and
a standard deviation of model ensemble prediction error for STATE_SCORE, however other options
are possible (e.g. states achievable by a behavior policy or information gain, respectively). The set
D(s), together with STATE_SCORE, imply the distribution of values of STATE_SCORE for the set

4



Under review as a conference paper at ICLR 2021

reachable form s. We are interested in determining whether the actions recommended by the planner
at state s leads to good exploration choices both in terms of the model (state-space exploration) and
the value function (proper data for value function learning). To do this, we make use of statistical
hypothesis testing. Namely, we form a null hypothesis, stating that the planner is exploring correctly,
and an alternative hypothesis, making an opposite claim. If the STATE_SCORE(s) takes extreme
values, then it provides evidence against the null hypothesis. Hence, as a critical value for the test, we
take the quantile of the STATE_STATE distribution on D(s). This procedure has several interesting
properties. It is invariant to the STATE_SCORE scale, provides an automatic method for threshold
selection, and introduces only one task-agnostic hyperparameter. It can also mitigate the negative
effect of propagating the errors in value function, which can deteriorate learning (see Lee et al. (2020)
and Kumar et al. (2020)). Finally, since hypothesis testing is closely related to confidence intervals,
our approach fits nicely with confidence bounds exploration methods.

3.3 TRUST, BUT VERIFY METHOD

Trust, but verify (TBV) is a method which can be integrated with graph search planners. The key idea
of TBV is to prioritize visits in states for which the model is suspected to be pessimistic. In each state,
the planner is asked for a recommended action. If the model uncertainty of the current state is high,
we may suspect that the planner’s results are misleading. We quantify it by an appropriate statistical
test described in Section 3.2. This promotes exploration and thus reduces errors in the model. To
measure uncertainty, we utilize ensembles, which empirically proved to be successful in that regard
(see e.g. Osband et al. (2018)). The details follow the pseudo-code for TBV, listed in Algorithm 2.
For completeness, we also present a typical model-based training loop in Algorithm 1.

As shown in Algorithm 2, TBV interacts with a planner, which uses an imperfect learned model.
During its execution, the planner expands a search graph, gp, in order to propose an action ap. Each
state-action pair in gp is given a score reflecting uncertainty assigned to it by the model, and which is
quantified by a function DISAGREEMENT_MEASURE. Based on that, TBV decides whether to keep
the planner’s decision ap (trust the model) or override it (and explore to verify model predictions).
More precisely, a state-action pair with the maximal score is considered if it reaches above the
threshold given by quantile_score. We found using quantiles instrumental in avoiding tuning
thresholds which are problem-specific and change during the training.

Furthermore, QR is relatively easy to tune (see Section 4) and is the only hyperparameter introduced
by TBV. In the algorithm, we use additional randomization to prevent multiple revisits of the same
state-action pair, while waiting for the model (and scores) update (see Section A.5 in Appendix for
more detailed discussion). This could be alternatively realized by more principled approach, which
we leave for future work.

Using TBV yields little computational overhead beyond the necessity of using ensembles (in
efficient implementations STATE_SCORE and TRANSITION_SCORE calls can be inlined into
planner.CHOOSE_ACTION). DISAGREEMENT_MEASURE depends on the state space represen-
tation; in our experiments, we found standard deviation computed on states to work well. Other
methods, like Bayesian inference, could also be used.

3.4 BEST FIRST SEARCH

Best First Search (BestFS) is a family of search algorithms that build a graph by expanding the most
promising unexpanded node. In the off-line setting, the search is run upon reaching the goal state. In
order to apply BestFS in on-line framework, during each planning phase, we choose to extend the
graph by a fixed amount of nodes, typically 10. Afterwards, the recommended action is the first edge
on the shortest path to the best node in the subgraph searched so far.

An important design decision is choosing heuristics for assigning nodes numerical values. This leads
to many well-known algorithms (e.g., BFS, DFS, A∗, etc.). In our experiments, we concentrated
on exploration and thus used Disagreement_Measure (standard deviation) between ensemble
predictions. This choice proved to be effective in discrete problems with sparse rewards.

By design, BestFS ignores one step loops and thus is especially prone to false loops described in
Section 1.
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Algorithm 2 TBV planner
Require: model ensemble of models used in Algorithm 1

planner planner that uses model
QR quantile rank ∈ (0, 1)

Use: QUANTILE(l, q) computes the q-quantile of list l
RANDOM() random number from U(0, 1)

function CHOOSE_ACTION(state)
ap ← planner.CHOOSE_ACTION(state)
gp ← planner.GET_GRAPH_OF_PLANNING()
scores← []
for state ∈ gp do

scores.APPEND(STATE_SCORE(state))

quantile_score← QUANTILE(scores,QR)
one_step_scores← []
for a ∈ actions do

one_step_scores.APPEND(TRANSITION_SCORE(state, a))

if max(one_step_scores) > quantile_score and RANDOM() > 0.5 then
return argmaxaction one_step_score

else
return ap

function TRANSITION_SCORE(state, action)
predictions← []
for network ∈ model do

next_state, next_reward← network.PREDICT_NEXT_STATE(state, action)
predictions.APPEND((next_state, next_reward))

return DISAGREEMENT_MEASURE(predictions)

function STATE_SCORE(state)
return maxaction(TRANSITION_SCORE(state, action))

3.5 MONTE CARLO TREE SEARCH

Monte Carlo Tree Search (MCTS) is a well-established planning algorithm which was successfully
applied to complex problems. Due to its simplicity and effectiveness, it has numerous extensions (see
Browne et al. (2012) for a comprehensive review) including famous AlphaZero (Silver et al. (2018)).

A vanilla MCTS constructs a search tree in four stages: node selection, leaf expansion, rollout, and
backpropagation (see Browne et al. (2012, Section 3.1)). In modern approaches, the rollout phase is
often replaced by a neural network evaluation step. MCTS is often equipped with auxiliary mecha-
nisms exploiting the graph structure of the problem. In our work, we use an MCTS implementation
with four such mechanisms: hard loop-avoidance inside the search tree, soft loop-avoidance within
to the whole episode, transposition tables and amortized value estimates, see Milos et al. (2019) for
details.

Transposition tables (Childs et al., 2008; Gelly et al., 2012) enable sharing information between
different tree nodes, which correspond to the same state (i.e. have been reached using distinct
trajectories). Similar in spirit are mechanisms, which attempt to avoid visiting a node multiple times.
These are akin to classical graph search methods in which a node it typically visited only once. This
may take place on the level of the whole episode or within one planning phase (in the search tree).
A “soft” way of implementing such mechanisms is to use “virtual loss”, which assigns a temporary
negative value when a graph node is first encountered. This encourages the exploration and tree
building mechanism to avoid this node. Such solutions have been proposed in (Segal, 2010) to
enhance parallelism and later used in (McAleer et al., 2019) to tackle Rubik’s cube search. A hard
version (equivalent to setting virtual loss to −∞) strictly prohibits entering the same node twice. It
(Milos et al., 2019) it is reported to be a significant efficiency boost for modest planning budgets on
the classical Sokoban puzzle. Recent works (e.g. Milos et al. (2019), Hamrick et al. (2020)), propose
to utilize “amortized value estimates” (which are calculated using the internal MCTS statistics) as
targets for value function for training.
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Our version uses a learned value function (similarly to AlphaZero) to evaluate new nodes. Similarly
to Lowrey et al. (2019) and Milos et al. (2019) we use also value function ensemble to ensure
exploration during planning.

4 EXPERIMENTS

Figure 2: Map of ToyMontezumaRevenge state
space. The only reward is given after reaching
the goal room marked withG. To obtain it, agent
needs to gather several keys (marked in yellow)
and go through doors (marked in blue). Step-
ping on a trap (marked in red) results in episode
termination.

The experiments below were designed to illustrate
the aforementioned false loops model errors. They
also demonstrate the effectiveness of TBV.

We have selected ToyMontezumaRevenge envi-
ronment and the Tower of Hanoi puzzle (with 7
discs). These environments are challenging for
RL as they have sparse rewards, and require at
least a few hundred steps to reach the solution.
At the same time, they are solvable through an
exhaustive search using graph search algorithms
with access to a perfect model. Since there is a
gap in the performance of these two categories of
methods, the environments present a good testing
grounds for studying the unfavorable influence of
model errors on graph planners.

As for performance metrics, we use minimal dis-
tance to the goal. It is measured in steps and
treated as a function of total environment steps
used in training. We apply this measure to two planners: BestFS and MCTS (each in three versions:
with TBV, with ε-greedy and without additional exploration mechanism). As an additional baseline,
we also use RND (see Burda et al. (2018)), a strong model-free exploration algorithm.

In all experiments, we found that using TBV mechanism significantly outperform other baselines.

4.1 TOYMONTEZUMAREVENGE

ToyMontezumaRevenge is a navigation, maze-like, environment introduced by Roderick et al. (2018).1
It is a testing ground for long-horizon planning and exploration (see Figure 2). It has a greatly
simplified visual layer when compared to the original Montezuma’s Revenge Atari game, but it
retains much of its exploration difficulty. In our experiments, we consider the biggest map containing
24 rooms and sparse rewards: the agent gets a reward 1 only if it reaches the treasure room; otherwise
the episode is terminated after 600 steps. Observation is represented as a tuple containing current
room location, agent position within the room, and status of all keys and doors on the board, see
Figure 2 for the full map of the state space.

For both planners, MCTS and BestFS, using ε-greedy improves over baseline version, but not as
much as TBV (see Figure 3).

It turns out that traps (see the caption below Figure 1) pose a challenge for BestFS algorithm. In order
to mitigate this issue, we modified the TBV mechanism for BestFS in this environment to explicitly
avoid traps (performing actions resulting in episode termination without positive reward, according
to the learned model). For a fair comparison, we also added the same mechanism to ε-greedy variant:
when sampling from the action space, only the actions not leading to traps were considered. Similar
improvements were unnecessary for MCTS.

For BestFS, 4 out of 10 experiments were unable to leave the first room. This stemmed from the fact
that the agent could not make progress: it kept getting stuck in the early stages of exploration due to
the inability to pass through false loops. This is visualized in Figure 5, where it is shown that TBV
encourages the agent to leave the first room when it has a chance to do so but is being blocked by the
model error.

1We use the code from https://github.com/chrisgrimm/deep_abstract_q_network
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Interestingly, it was quite hard to tune RND on this domain (the agent struggled to find the second
key and explored at most 14 out of 24 rooms). This could be related to the fact that RND needs a
lot of data (originally RND was trained with billions of transitions), whereas our experiments are
conducted in low data regime. Hyperparameters choice for RND can be found in Appendix (see
Table 1, Table 2 and Table 3).

Figure 3: ToyMontezumaRevenge, comparison between planners augmented with TBV, ε-greedy,
and no top-level exploration mechanism. Results are averaged over 10 random seeds, shaded areas
show 95% confidence intervals.

Figure 4: Tower of Hanoi, both MCTS and BestFS quickly find the solution if augmented with TBV.
Other methods struggle to find solution. Results are averaged over 10 random seeds, shaded areas
show 95% confidence intervals.

Figure 5: Numerical measurement of influence
of TBV on BestFS in the presence of a false
loop in ToyMR. The upper (blue) line presents
the frequency of reaching the open doors in the
first room for the agent without TBV. This agent
never enters the door due to a false loop error.
The lower (orange) line present the frequency the
agent would leave the room if TBV was used.

Figure 6: False loop verification in the Tower
of Hanoi. We consider two agents: MCTS with
TBV (orange) and ε-greedy (blue) exploration
(presented also on Figure 4). The plots shows
how often agent performed action which falsely
seemed to be a loop in the state-action graph.
TBV does much better job in verifying such tran-
sitions.

4.2 TOWER OF HANOI

The Tower of Hanoi is a classical puzzle consisting of 3 pegs and n disks (see Figure 7). The objective
of the game is to move the entire stack of disks from the starting peg to the goal peg. The rules
are that only one disk can be moved at a time and it is not allowed to put a larger disk on top of a
smaller one. It can be shown that an optimal solution requires 2n − 1 moves (see e.g. Pierrot et al.
(2019)). This makes it a challenging combinatorial problem and an interesting domain for planning

8



Under review as a conference paper at ICLR 2021

methods. Model-free algorithms struggle to deal with larger instances (Troussard et al. (2020) used
n = 4, and Edwards et al. (2018) used n = 3). In this paper, we use a considerably harder version,
with n = 7. The observation passed to the agent is represented as a binary vector of length 3× n.
Each consecutive triplets of bits encode the location (peg) of a given disk. This representation makes
the task more difficult for the environment model as we do not pass disk sizes. This prevents easy
generalization of the dynamics of the environment from partial data, and it makes it challenging to
learn the rule that "the smaller disk can always be placed on larger". Instead, the agent needs to learn
the relation between sizes for each pair of disks separately, as the exploration progresses.

Figure 7: Tower of Hanoi puzzle. For the first
time, the agent finds himself in a position to
move the fourth disk but mistakenly believes
that it is not possible, resulting in a false-loop.

As can be seen in Figure 4, TBV method signifi-
cantly improves both MCTS and BestFS planners
in this domain. This is due to the nature of the
Tower of Hanoi, which in the early stages of train-
ing creates an illusion that the larger disks stays
in the same position. It may result in the false
belief of the model that the larger disks cannot be
moved, hence causing the false loop errors. We
verified that TBV handles such errors effectively,
see Figure 6. We found that RND continued to
explore the environment when left for longer train-
ing (up to 25M transitions, see Figure 10 in the
Appendix.). Its progress is, however, very slow
when compared to other methods. This is in line
with our observation from the previous section
that RND is designed to work on larger scale ex-
periments.

4.3 QUANTILE RANK SENSITIVITY

By design, TBV it quite easy to tune. Its only
hyperparameter is Quantile Rank (QR). We found
out that values in the range 0.8−0.95 worked well
across most choices of environments and planners.
Excessively large value of QR (e.g. 0.99) causes
TBV to accept planner’s actions too often, slow-
ing down exploration. Performance of a BestFS
agent with TBV across multiple values of QR is
presented in Appendix in Figure 8.

5 CONCLUSIONS

This work concentrates on an important open research problem, concerning the design of planners,
which are resistant to model errors. Our study shows that model imperfections, especially false loops,
can significantly hinder exploration. New algorithm presented in this paper, TBV, alleviates them by
repeatedly verifying model predictions. TBV builds upon a statistical hypothesis testing framework
and uses disagreement measure distribution to form an appropriate test.

Based on experiments in two challenging domains, we verify the design to be successful. Precisely, we
show experimentally, that augmenting a planner with TBV, significantly improves agents exploration.
At the same time we empirically confirm that TBV actively encourages the agent to pass through
false loops.

Finally, TBV is a robust algorithm: it can be combined with different model-based planners and is
easy to tune.
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A APPENDIX

A.1 ALGORITHMS

We tested the combination of TBV with two planning algorithms: Monte Carlo Tree Search (equipped
with some auxiliary mechanisms) and Best First Search. Here we present the pseudo-code for both
algorithms and provide some additional explanation.

A.1.1 BESTFS

In Algorithm 3 we present the pseudocode for BestFS algorithm used in out experiments. In Data
Structures 4 and 5 we present two additional data structures used by our implementation of BesFS.

Algorithm 3 BestFS planner
Require: model learned model used in Algorithm 1

V value function
C number of nodes expansions per step
γ discount factor

Use: F priority queue of unexpanded nodes (fringe)
G graph of all seen nodes

function RESET
F ← ∅
G← ∅

function CHOOSE_ACTION(state)
G.ADD(state)
if state /∈ G then

state.n_visits← 1
else

state.n_visits← state.n_visits+ 1
reachable← FIND_REACHABLE_NODES(G, state) . find all nodes reachable from state
EXPAND_GRAPH(reachable)
best_node← G.FIND BEST NODE(reachable) . see Algorithm 5
path← FIND_PATH_TO_NODE(best_node)
return path.first_action

function EXPAND_GRAPH(reachable)
for 1 . . . C do

n← F.POP_BEST_NODE(reachable) . see Algorithm 4
EXPAND_GRAPH_NODE(n)

function EXPAND_GRAPH_NODE(n, reachable)
children← []
for a ∈ A do

model.LOAD_STATE(n.state)
new_state← model.STEP(a)
new_state.uncertainity ← maxactionmodel.uncertainity(new_state, action)
if new_state /∈ G then

value← V.EVALUATE(new_state)
new_state.SET_VALUE()
F.ADD_NEW_NODE(new_state)
G.ADD_NEW_NODE(new_state)
reachable.ADD(new_state)

F.REMOVE(n) . fringe contains only unexpanded nodes
function GET_GRAPH_OF_PLANNING()

return G
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Data structure 4 Fringe (priority queue)
Require: SF . set of nodes
1: function ADD_NODE(n)
2: SF .ADD(n)

3: function REMOVE(n)
4: SF .REMOVE(n)

5: function POP_BEST_NODE(reachable)
6: nodes← SF .INTERSECTION(reachable)
7: return argmaxn∈nodes n.uncertainity

Data structure 5 BestFS graph
Require: SG . set of nodes
1: function ADD_NODE(n)
2: SG.ADD(n)

3: function LEXICOGRAPHICAL_MAX(nodes) .
returns max according to keys: (solved, -n_visits,
uncertainity)

4: function FIND_BEST_NODE(reachable, state)
5: nodes← S.INTERSECTION(reachable)
6: return LEXICOGRAPHICAL_MAX(nodes)

A.1.2 MCTS WITH AVOID HISTORY COEFFICIENT DEAD ENDS AND AVOID SELF LOOPS

In Algorithm 6 we present the general structure of our MCTS planner. In Algorithms 7, 10, 8 and
9 we present our version of key functions in MCTS. In Algorithm 11 we provide pseudo code for
ad auxiliary dead end mechanism used in this paper. Finally, in Data structure 12 we present the
functionality of graph node used in this implementation.

Algorithm 6 MCTS planner
Require: model learned model used in Algorithm 1

V value function ensemble (assigns a vector of value estimates to state)
C number of MCTS passes
κ score factor for value uncertainty
γ discount factor

γdead dead end value
γah avoid history coefficient

Use: T planning graph
Svisited set of states visited by the agent
Sseen set of states seen in one MCTS pass

function RESET
T ← ∅

function CHOOSE_ACTION(state)
root← state
for 1 . . . C do

MCTS_PASS(state)

return argmaxa∈A(n.child(a).value)

function MCTS_PASS(root)
Sseen ← ∅ . used in Algorithm 11
path, leaf ← TRAVERSAL(root)
value← EXPAND_LEAF(leaf,model)
BACKPROPAGATE(value, path)

function GET_GRAPH_OF_PLANNING() return T

16



Under review as a conference paper at ICLR 2021

Algorithm 7 traversal()

Input: root
1: n← root
2: path← ∅
3: while n is not a leaf do
4: a← select_child(n)
5: if a is None then . dead end, terminal or leaf
6: break
7: path.APPEND((n, a)
8: n← n.child(a)

9: return path, n . n /∈ path

Algorithm 8 expand_leaf()
Require: γdead, V , model
Input: leaf . MCTS tree node without children

1: if leaf is terminal then
2: UPDATE(leaf, 0.)
3: return 0.
4: else if IS_DEAD_END(leaf) then
5: UPDATE(leaf, γdead)
6: return γdead
7: else
8: for a ∈ A do
9: new_node← CREATE_NODE()

10: model.LOAD_STATE(leaf.state)
11: new_state← model.STEP(a)
12: new_node.state← new_state
13: if new_state not yet visited then
14: new_state.value← V (new_state)
15: leaf.child(a)← new_node
16: return leaf.value

Algorithm 9 backpropagate()

Require: γ
Input: v, path

1: for (n, a) in reversed(path) do
2: v ← n.reward+ γv
3: n.UPDATE(v)

Algorithm 10 select_child()
Input: n

1: if n not expanded or terminal then
2: return None
3: if IS_DEAD_END(n) then
4: return None
5: else
6: Aallowed ← ALLOWED(n)
7: return

argmaxa∈Aallowed
n.child(a).EVAL()

Algorithm 11 Dead end detection
Require: Sseen

Input: v, path
1: function ALLOWED(n)
2: Aallowed ← ∅
3: for a ∈ A do
4: if n.child(a) /∈ Sseen then
5: Aallowed.ADD(a)

6: return Aallowed

7: function IS_DEAD_END(n)
8: Aallowed ← ALLOWED(n)
9: if Aallowed 6= ∅ then

10: return False
11: else
12: return True

Data structure 12 node

Attributes: count MCTS node counter
value value ensemble estimate
visits number of agents visits
child list of children nodes

1: function UPDATE(value)
2: self.value← self.value+ value
3: self.count← self.count+ 1

4: function ADD_VISIT()
5: self.visits← self.visits+ 1

6: function EVAL()
7: s← SCORE(self.value, self.count)
8: std← STD(self.value) . uncertainty

of value ensemble
9: return score+ γahself.visits+κstd

A.2 TRAINING SETUP

Code for all our experiments can be accessed at https://github.com/ComradeMisha/
TrustButVerify.

Our experiments adhere to the general model-based training loop logic, described in Algorithm 1.
We use a distributed system with 32 workers solving distinct episodes, where data gathered across
a batch of workers is collected in two common experience buffers: the replay buffer for trainable
model of size 50000 and the replay buffer for value function of size 30000. Before the solving of
actual episode, we collect 1000 random trajectories, that we use for initial training of the model of
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environment. This initial training has critical importance for the performance of our agents. Episodes
are limited to: 600 steps for ToyMontezumaRevenge and 1000 steps for the Tower of Hanoi.

To update value network for MCTS we follow approach of Milos et al. (2019) (similar to Hamrick
et al. (2020)) for BestFS experiments we simply calculate future discounted returns for each transition
encountered by agent.

A.3 NETWORK ARCHITECTURES FOR MODEL AND VALUE

A.3.1 SINGLE NETWORKS

In every experiments we use two neural network architectures: one to estimate the value function
of a given state and the other to predict the outcome of taking a step in the environment. In ToyMR
we represent the state as a vector of length 17 and in the Tower of Hanoi as a vector of length
3× number of discs (it is due to one-hot encoding of the peg number for each disc).

In both environments, for value estimation we use an MLP (multilayer perceptron) architecture with
two hidden layers of 50 neurons and ReLu non-linearity. For model, in both environments, we use an
MLP with four hidden layers of 250 neurons and ReLU activation functions.

The model network has three outputs: the difference between next and current observations (delta
target), reward and the episode termination flag (0 or 1).

A.3.2 ENSEMBLE

For both value estimation and model we use ensemble of networks with architectures described in
Section A.3.1. The usage of ensembles is however different for value network and model network.
Ensemble of model network is used as described in Algorithm 2. In case of value estimation, the
final result of value is an average of predictions across ensemble. The standard deviation of this
predictions multiplied by κ is used by MCTS as an auxiliary score added to each vertex in the search
tree.

In Algorithm 13 we present the procedure of transforming the output of ensemble of model networks
to a valid prediction of environment signal. In our experiments, it turned out to be beneficial to
train the model to predict change between observations rather then the ready observations. The
transformation performs the following step: collects predictions of all networks in ensemble, then
averages next predicted change of observations, predicted rewards and predicted end of episode flags.
Averaged observation change is added to current state, then clipped to the range of possible values
(some coordinates of the state vector are binary variables), rounded to integers and returned as the
next predicted state. Reward and end of episode flag are predicted to be true if their average value
across networks in ensemble is larger than 0.5.

To stabilize performance of value and model ensembles we used additional masks mechanism. We
create some number of networks (given by ensemble size parameter), that are trained with the same
data buffer, but for prediction each worker uses only a random subset of given size (given by number
of masks parameter).

A.4 QUANTILE RANK VALUE ANALYSIS

Figure 8 presents performance of BestFS Agent in the Tower of Hanoi environment for different
values of Quantile Rank. We observed the the best performance was for values between 0.8 and
0.95, and when the parameter was within the appropriate range of values, the performance was not
very sensitive to the changes of quantile rank parameter. We observed similar behaviour in ToyMR
experiments - the best performance was for quantile rank between 0.9 and 0.95 but it was hard to
narrow down this interval, due to aforementioned little sensitivity.
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Algorithm 13 Transforming model ensemble predictions
function PREDICT_STEP(state, action)

next_observations← []
rewards← []
is_done_flags← []
for network ∈ ensemble do:

(next_obs_delta, reward, is_done)← network.PREDICT(state, action)
next_obs← state+ next_obs_delta
next_observations.APPEND(next_obs)
rewards.APPEND(reward)
is_done_flags.APPEND(is_done)

predicted_reward← AVERAGE(next_reward)
if predicted_reward > 0.5 then

predicted_reward← 1
else

predicted_reward← 0

predicted_is_done← AVERAGE(is_done_flags)
if predicted_is_done > 0.5 then

predicted_is_done← True
else

predicted_is_done← False

predicted_next_obs← AVERAGE(next_observations)
predicted_next_obs← CLIP(predicted_next_obs)
predicted_next_obs← ROUND(predicted_next_obs)
return(predicted_next_obs, predicted_reward predicted_is_done)

Figure 8: Performance of TBV BestFS on the Tower of Hanoi domain with different values of Qantile
Rank

A.5 RANDOM TBV REJECTION ANALYSIS

In our preliminary experiments we have seen that without random rejection of TBV mechanism the
agents often tends to get stuck in cycles with high ensemble disagreement and is unable to leave
such cycle until the end of episode (since model is not updated in during the episode). In Figure
9 we present the performance in Tower of Hanoi for different values of frequency of random TBV
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Figure 9: Performance of TBV BestFS on the Tower of Hanoi domain with different frequencies of
random rejection of TBV

rejection (while the rest of parameters is same as in our best experiments). It can be seen, that if the
frequency of TBV override (i.e. frequency with which we allow TBV to change planners action) is
between 0.5 and 0.9 we obtained best results. Also, TBV is not very sensitive to this parameter as
long it is in an appropriate range of values.

A.6 HYPER-PARAMETERS

In tables 1 and 2 we present hyper-parameters used in our experiments.

Toy MR Tower of Hanoi
Parameter BestFS MCTS BestFS MCTS

Number of planner passes C 10 10 10 10
Discounting factor γ 0.99 0.99 0.99 0.99
ε greedy exploration for baslines 0.001 0.02 0.001 0.02
score factor for value uncertainty κ - 3 - 3
Dead end value - −0.2 - −0.2
Avoid history coefficient - −0.2 - −0.2
Value ensemble size 2 20 20 20 20
Value ensemble mask size 2 10 10 10 10
Model ensemble size 2 8 8 8 8
Model ensemble mask size 2 4 4 4 4
Optimizer RMSprop RMSprop RMSprop RMSprop
Learning rate 2.5e−4 2.5e−4 2.5e−4 2.5e−4
Batch size for value training 32 32 32 32
Batch size for model training 1024 1024 1024 1024
2 See Section A.3.2 for explanation of these parameters.

Table 1: Hyper-parameters values used in our experiments.

For MCTS we took hyperparameters from Milos et al. (2019). As they used setup without learned
model we needed to tune model architecture and model training parameters on ToyMontezumaRe-
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Figure 10: Performance of RND and PPO on Tower of Hanoi with longer training.

venge domain. Then, we separately tuned epsilon and Quantile Rank for each combination of
domain/planner.

A.7 RND AND PPO

RND continued to further explore state space for Hanoi (figure 10), for comparison we also show
performance of PPO (the same parameters as RND but without intrinsic reward).

Parameter ToyMR Tower of Hanoi

Rollout length 128 128
Maximal length of an episode 600 1000
Total number of rollouts per environment 6200 6200
Number of minibatches 4 4
Number of optimization epochs 16 4
Coefficient of extrinsic reward 1 1
Coefficient of intrinsic reward 100 10
Number of parallel environments 32 32
Learning rate 0.001 0.001
Optimization algorithm Adam Adam
λ 0.95 0.95
Entropy coefficient 0.001 0.001
Proportion of experience used for training predictor 1.0 1.0
γE 0.999 0.999
γI 0.99 0.99
Clip range [0.9, 1.1] [0.9, 1.1]
Policy architecture FCN FCN

Table 2: Default hyper-parameters for PPO and RND algorithms for ToyMR and Tower of Hanoi
experiments.
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Parameter Value

Number of optimization epochs [1, 4, 16]
Coefficient of intrinsic reward [1, 3, 10, 30, 100, 300]
Learning rate [5 · 10−2, 10−2, 5 · 10−3, 10−3, 5 · 10−4, 10−4]
λ [0.95, 0.99]
Proportion of experience used for training predictor [0.25, 1.0]
γE [0.999, 0.9999]
γI [0.99, 0.999]
Policy architecture layers number [2, 3, 4]
Policy architecture layers width [64, 128, 256]
Random target and prediction networks last layer width [64, 128]

Table 3: Hyper-parameters for RND algorithm checked during tuning process of ToyMontezumaRe-
venge.
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