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Abstract. To meet the problems that great dependence on fully an-
notated data and spatio-temporal inefficiency of remaining automatic
multi-organ segmentation methods, an efficient semi-supervised frame-
work with uncertainty rectified pyramid consistency regularization is in-
troduced. Specifically, inspired by the fact that the predictions of the
same input should be similar under different disturbance, we extend a
backbone to produce predictions at different scale for unlabeled images
and encourage them to be consistent. Since the multi-scale predictions
have different resolution, directly encouraging them to be consistent may
bring problems including lost of fine detail or model collapse. So a rec-
tified scale-level uncertainty-aware module is introduced to enable the
framework to gradually learn from reliable prediction regions. To deal
with the domain gaps among multi-center datasets, a number of pre-
pocessing methods are utilized, such as resampling the multi-center CT
volumes to the same spacing and adjusting the window level and width.
Quantitative evaluation on the FLARE2022 20 validation cases, this
method achieves the average dice similarity coefficient (DSC) of 0.793
and average normalized surface distance (NSD) of 0.852.

Keywords: Semi-supervised learning - Multi-organ segmentation - Un-
certainty rectifying - Pyramid consistency.

1 Introduction

Whole abdominal organ segmentation plays an important role in the diagnosis of
abdominal lesions, radiotherapy and follow-up. Manual organ delineation is time-
consuming and error-prone|7]|. Although many automatic segmentation methods
based on deep learning have achieved good performances in abdominal organ
segmentation, most of them rely heavily on large-scale fully annotated data,
which is often difficult to obtain due to cost and privacy issues. Additionally,
these methods are often difficult to be implemented into clinical practice due to
the large model size and the extensive computational resources.

To meet the needs of fast inference and low computational cost while only use
a small number of labeled cases, we develop an efficient semi-supervised frame-
work with uncertainty rectified pyramid consistency to fully make use of the
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unlabeled data. Concretely, we extend a U-Net[9] backbone to produce pyramid
predictions at different scales and encourages these multi-scale predictions to
be consistent for a given input. A standard supervised loss is used for learning
from labeled data. For unlabeled cases, we encourages the pyramid predictions
to be consistent, which served as a regularization. Since the predictions of the
unlabeled cases are not necessarily reliable because of its insufficient supervi-
sion information, which may cause the model to collapse and lose details|(],
we propose to estimate the uncertainty via the prediction discrepancy among
multi-scale predictions. Different from those that estimate the uncertainty of
each target prediction with Monte Carlo sampling[5], which needs massive com-
putational costs as it requires multiple forward passes to obtain the uncertainty
in each iteration, our proposal just needs a single forward pass. Under the guid-
ance of the estimated uncertainty, the model strengthens the consistent learning
of reliable regions and weakens that of unreliable ones. Meanwhile, to further
improve the utilization of unlabeled data information and increase the segmen-
tation efficiency, we introduce the uncertainty minimization[l1] to reduce the
prediction variance during training.

To address the domain gaps among FLARE2022 training, validation, and test
sets, we employ a series of data preprocessing methods. For instance, resampling
the images’ spacing to 2 x 2 X 2.5mm, adjusting the window level and window
width of the CT images, data augmentation with CLAHE, gamma correction,
random noise, random rotate and random flip.

2 Method

The overview of the proposed semi-supervised segmentation network is illus-
trated in Fig.1, which consists of a 3D U-Net[9] backbone with a pyramid pre-
diction structure at the decoder and an uncertainty rectifying module.
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Fig. 1. Network architecture.
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2.1 Multi-Scale Prediction Network with Pyramid Consistency

Firstly, we introduce pyramid prediction network (PPNet) for the multi-organ
segmentation task, which can produce prediction at different scales. In this work,
a 3D U-Net is employed as backbone and is modified to produce pyramid predic-
tions by adding a prediction layer after each upsampling block in the decoder,
where the prediction layer is implemented by 1 x 1 x 1 convolution followed
by a softmax layer. A dropout layer and a feature-level noise addition layer
are inserted before the prediction layer to introduce more perturbations to the
network.

For an input image x;, the PPNet produces a set of multi-scale predictions
[Py, Phs -+ Dl -+ Ds_;] ;where S means the number of the scales, p) means the
prediction at scale s. A smaller s presents a higher resolution in the decoder. In
our work, we set S = 4 for the multi-organ segmentation. Then, the multi-scale
predictions are rescaled to the input size, and the the corresponding results are
denoted as [p},p1,- -, Ds, -+, Ps—1]. For the labeled data, we use a combination
of Dice and cross-entropy loss at multiple scales as the supervised loss:

S—1
1 ﬁdice(psayi) + Ece(ps,yi)

where y;, Lgice, Lce denote the ground truth of input z;, the Dice loss and the
cross entropy loss, respectively.

To efficiently leverage unlabeled data, we design a pyramid consistency loss
to encouraging the multi-scale predictions to be consistent by minimizing their
discrepancy(i.e., variance) with Lo distance:

151
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where p. is the average prediction across scales, which is denoted as:
=
Pec = g ; Ps (3)

2.2 Uncertainty Rectified Pyramid Consistency Loss

As the pyramid predictions have different spatial resolutions, imposing voxel-
level consistency directly between these predictions may lead to problems due the
different spatial frequencies, such as lost of fine detail or model collapse. Inspired
by existing works [1,11], a scale-level uncertainty-aware method is introduced to
address these problems, which only requires a single forward pass and thus need
less computational cost and running time than exiting methods[5].

We use the KL-divergence between the prediction at scale s and the mean
prediction as the uncertainty measurement:

P

C .
Ds%Zp;-logp—z (4)
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where C' = 14 is the class(i.e., channel) number in this work, and pJ is the jth
channel of ps. We can get a set of uncertainty maps Dy, Dy, --,Ds, -+, Dg_1,
where D, represents the uncertainty of p,. A larger value of D, indicates the pre-
diction for that pixel at scale s has high uncertainty, which means the prediction
is unreliable and may be ignored for stable unsupervised learning.

Based on the uncertainty maps, we automatically select reliable voxels(with
low uncertainty) to rectify the pyramid consistency loss for better using the
information of unlabeled data:

S—1 S—1
r L (e —pe)? - wy 15~ p .
unsup — S—1 + Z || 5”2 ( )
S ZS:O Zv ’LU}; S s=0
———
uncertaintyrecti fication uncertaintyminimization

where p? and DY are the corresponding prediction and uncertainty values for
voxel v. Rather than use the threshold-based cut off approaches which is hard
to determine[1], we follow the policy in [11] to use a voxel- and scale-wise weight
w? to automatically rectify the MSE loss, which is defined as: w? = =P, where
a higher uncertainty leads to lower weight. Meanwhile, in order to encourage
the PPNet to produce more consistent predictions at different scales, we use the
uncertainty minimization term as a constraint.

2.3 The Overall Loss Function

The proposed semi-supervised segmentation network learns form both labeled
data and unlabeled data by minimizing the following combined objective func-
tion:

Etotal = Esup + A Eunsup (6)

where A is a widely-used time-dependent Gaussian warming up function [5] to
control the balance between the supervised loss and the unsupervised loss. The
formula of A(t) is: A(t) = Wmae - el — 5(1 — %)2, where w4, means the
final regularization weight, ¢ denotes the currenjnn?raining step and t,,4, is the
maximal training step.

2.4 Preprocessing

To reduce the domain gaps between multi-center data, the following preprocess-
ing techniques are employed:

— Resampling the anisotropic data:

Due to differences in scanners or acquisition protocols, data from different
centers usually have different spacing. The convolution operation of CNN
requires the image to be isotropic for better feature extraction. So all data,
including training, validation and test data, need to be resampled to keep the
image isotropic. Observing the resolution information of the training data,
combined with the consideration of the trade-off between the amount of
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contextual information in the networks patch size and the details retained in
the image data, the sampling layer spacing is set to 2.5mm. To save memory
overhead and speed up training, the intra-layer resolution is resampled to
2mm X 2mm.

— Adjusting window level and window width:

The method of adjusting the window width and window level was leveraged
to improve the contrast of abdominal CT images. And the window level and
width were adjusted 50 and 400, respectively.

— Intensity normalization method:

The data were normalized with z-score normalization based on the mean
and standard deviation of the intensity to avoid the problem of data being
compressed after normalization.

— Data augmentation method:

Due to the lack of label data and to avoid the problem of overfitting,
channel-wise gamma correction, random noise, random flip, random rotate
were used to augment the training data.

2.5 Proposed Method

— Network architecture details: The network architecture is shown in Fig.1.
— Loss function: the loss function is shown as Formula 6
— Number of the parameters of PPNet: 1330104.

2.6 Post-processing

A connected component analysis of segmentation mask is applied on the outputs
to remove small connected areas. And then the results are resampled back to
original spacing for the convenience of the following evaluation.

3 Experiments

3.1 Dataset and evaluation measures

The FLARE2022 dataset is curated from more than 20 medical groups under
the license permission, including MSD [10], KiTS [3,4], AbdomenCT-1K [8],
and TCIA [2]. The training set includes 50 labelled CT scans with pancreas
disease and 2000 unlabelled CT scans with liver, kidney, spleen, or pancreas
diseases. The validation set includes 50 CT scans with liver, kidney, spleen, or
pancreas diseases. The testing set includes 200 CT scans where 100 cases has
liver, kidney, spleen, or pancreas diseases and the other 100 cases has uterine
corpus endometrial, urothelial bladder, stomach, sarcomas, or ovarian diseases.
All the CT scans only have image information and the center information is not
available.

The evaluation measures consist of two accuracy measures: Dice Similar-
ity Coefficient (DSC) and Normalized Surface Dice (NSD), and three running
efficiency measures: running time, area under GPU memory-time curve(AUC
GPU), and area under CPU utilization-time curve(AUC CPU). Moreover, the
GPU memory consumption has a 2 GB tolerance.
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3.2 Implementation details

Environment settings The development environments and requirements are

presented in Table 1.

Table 1. Development environments and requirements.

Windows/Ubuntu version Ubuntu 20.04.4 LTS

CPU Intel(R) Xeon(R) CPU E5-2678 v3 @ 2.50GHz

RAM 16x4GB; 2.67TMT /s

GPU (number and type) Four NVIDIA Corporation TU102(2080Ti) 10G

CUDA version

11.4.48

Programming language

Python 3.7.13

Deep learning framework Pytorch (Torch 1.11.0, torchvision 0.12.0)

Specific dependencies None

Training protocols The training protocols of the baseline method is shown in

Table 2.

Table 2. Training protocols.

Network initialization

“he" normal initialization

Batch size 4
Patch size 80x96x96
Total epochs 100

Optimizer

Adam with momentum (u = 0.9)

Initial learning rate (Ir)

0.001

Lr decay schedule

halved by 20 epochs

Training time 24 hours
Number of model parameters 15.3M
Number of flops 59.32G

4 Results and discussion

4.1 Quantitative results on validation set

Table 3 illustrates the results of this work on the 20 validation cases whose
ground truth are publicly provided by FLARE2022. Large-volume organs like
liver, Aorta, spleen and kidney have relatively good performance. However, the



Title Suppressed Due to Excessive Length 7

poor performance on small organs and diseased organs reduces the overall av-
erage performance. Indeed, the segmentation results have the problem of organ
disappearance, that is, the segmentation results of some organs, especially small
organs, are not predicted. Another problem is that due to the deformation of
some diseased organs as well as the lack training of model on such data, the
segmentation prediction of diseased organs is completely wrong. The above two
situations are the main reasons that lead to the corresponding DSC and NSD
of some cases’ organs segmentation valuing 0, which is also a part to be further
explored and sovled. It is noted that the values of NSD are generally better than
that of DSC, indicating that the method proposed in this paper has a relatively
better performance on organ boundary segmentation.

Table 3. Quantitative results of ours comparing with those of baseline on validation
set(best).

Organs DSC(ours, %) NSD(ours, %) DSC(baseline, %) NSD(baseline, %)

Liver 93.73 91.30 95.04 93.62
RK 87.49 86.44 77.96 77.24
Spleen 92.78 91.40 79.95 79.66
Pancreas 76.94 87.52 66.20 76.71
Aorta 91.55 95.96 91.09 95.40
vC 81.27 82.04 75.86 75.44
RAG 68.84 85.49 60.33 75.81
LAG 68.51 84.03 58.02 69.60
Gallbladder 69.19 71.00 42.50 40.56
Esophagus 75.16 84.87 65.46 76.80
Stomach 78.49 82.98 70.36 74.56
Duodenum 64.95 79.93 52.62 72.39
LK 81.94 83.68 81.67 81.98
mean 79.30 85.17 70.54 76.11

Compared with the segmentation results using only label data under the
same experimental conditions, as shown in Table 3, the semi-supervised method
proposed in this paper is improved on DSC, which directly demonstrate that
effective utilization of unlabeled data can improve segmentation performance.
The poor results using only labeled data also demonstrate the importance of
the distribution of training data to model performance. Especially in the data of
FLARE2022, there is the problem of different organ lesions between the training
set and validation set, making their distributions vary and leading to extremely
poor segmentation of some organs.
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(a) Image

Fig. 2. Qualitative evaluation of model performance on validation set. Row 1 and

(b) Ground Truth

(c) Segmentation

2:Well-segmented examples. Row 3 and 4: challenging examples.

Table 4. Quantitative results on testing set.

Organs DSC(%) NSD(%)
Liver 94.04 + 8.33 93.37 £ 10.72
RK 87.22 £+ 24.01 87.73 £ 24.54
Spleen 82.13 + 28.72 83.14 + 29.02
Pancreas 70.78 £+ 22.99 81.01 £ 24.83
Aorta 91.56 + 10.60 95.54 + 11.32
IVC 79.67 £ 19.94 81.14 + 20.74
RAG 73.67 £ 15. 07 90.76 £ 16.66
LAG 72.17 £ 17.95 87.16 £+ 19.88
Gallbladder 69.93 + 33.71 70.38 + 34.54
Esophagus 68.93 £+ 21.66 78.83 £ 23.77
Stomach 74.31 + 23.30 76.89 + 23.19
Duodenum 58.15 + 25.13 74.25 + 25.16
LK 88.60 £ 19.38 90.41 £ 19.20
mean 77.78 £ 11.58 83.89 + 12.58

Table 5. Segmentation efficiency results on testing set.

Index Time(s)

AUC CPU

AUC GPU

18.70 £ 4.33

398.80 + 77.67

25774.29 4+ 11703.85
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4.2 Qualitative results on validation set

Figure 2 presents the qualitative results on the validation set, where row 1 and
2 show some cases that are relatively easy to segment while row 3 and 4 show
cases that are challenging to segment. It can be find that the cases of row 1 and 2
have clear boundaries and good contrast for the organs, and there exist no severe
artifacts or lesions in the organs. Compared with the well-segmented cases, the
challenge cases usually have noise(row 3) or organs lesion(row 4), which create
difficulties in correctly segmenting the organ.

4.3 Results on final testing set

Table 4 shows the segmentation quantitative results on testing set. It can be
seen that the results on testing set are very similar to those on the validation
set, showing the robustness of our method. The running time and resource con-
sumption are represented in Table 5. Compared with the results of each team
finally displayed on the official website of the FLARE2022 competition', the
method in this paper shows a relatively high efficiency.

5 Conclusion

Due to the rush of time in this work, in fact, only half a month was spent on
research, the segmentation performance did not achieve our goal. In this work,
it can be seen that the segmentation results of small organs is not very good.
The deformation of the diseased organ is also not considered in the segmentation
process. In the future, further research can be carried out in terms of boundary
constraints and attention mechanisms.

Acknowledgements We declare that the segmentation method that imple-
mented for participation in the FLARE 2022 challenge has not used any pre-
trained models nor additional datasets other than those provided by the organiz-
ers. The proposed solution is fully automatic without any manual intervention.
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