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ABSTRACT

Due to the limitation of coarse-grained video-level labels, the action-background
confusion is a tough problem for the weakly-supervised temporal action local-
ization. Point-level temporal action localization recently utilizes point-level la-
bels to overcome this difficulty to some extent. However, considering the sparsity
of point-level labels, existing methods still lack the ability to effectively elimi-
nate false positive action proposals. To address this issue, in this paper, we pro-
pose a new framework to provide guidance for fine-grained separation of action-
background for the model. Specifically, the framework relies on annotated single
frame labels to extend the original action features and generate dense pseudo la-
bels, providing the model with more precise position information. Based on this
information, the framework generates pseudo segment-level labels from video se-
quences and utilizes our proposed score contrast module and feature separation
module, which are different from the previous works,to amplify the differences
in scores and features between segment labels. Extensive experiments on four
benchmarks verify the effectiveness of our proposed framework, and demonstrate
that our method is significantly superior to previous state-of-the-art methods and
obtains 3.9% performance gains in terms of the average mAP on THUMOS’14.

1 INTRODUCTION

Temporal action localization is a crucial task in the video understanding field that involves identi-
fying the start and end timestamps of various actions in untrimmed videos (Rashid et al., 2020; Ma
et al., 2005; Xiong et al., 2019), while concurrently predicting their respective categories. Although
numerous existing works have accomplished remarkable performance under the fully-supervised
setting (i.e., frame-level labels) (Zhang et al., 2019; Zhao et al., 2020; Zeng et al., 2019; Shou et al.,
2017; Xu et al., 2020), the extremely expensive cost associated with obtaining such labels has led re-
searchers to devise weakly-supervised methods (Wang et al., 2017; Shi et al., 2020; Liu et al., 2019;
He et al., 2022). These methods only need video-level annotations for action categories, which is
simpler to gather and more efficient for creating extensive datasets.

Typically, most weakly-supervised methods follow a hypothesis that video segments providing
greater support to video-level classification are more likely to be action. However, this is often not
the case. On the one hand, the lack of explicit location guidance makes it difficult for the model to
determine the position of the action and background. On the other hand, several background seg-
ments that are more relevant to the video-level classification would further mislead the model into a
dilemma of action-background confusion.

To address these difficulties and improve the performance while maintaining lower costs, point-
supervised methods (Moltisanti et al., 2019; Ju et al., 2020) have begun to attract attention amongst
researchers. In this setting, point-level labels provide approximate localization and quantity of action
instances for the model, and the cost of point-level label is quite similar to that of the video-level
label and significantly cheaper than frame-level label (45s vs. 50s vs. 300s per minute of video)
(Ma et al., 2020). While recent works (Lee & Byun, 2021; Yang et al., 2022; Jing Tan, 2022) can
apply point-level annotations that provide more information, they are inevitably subject to a large
solution space, leading to high false-positive rates and generating discontinuous actions, which are
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similar to many weakly-supervised frameworks. We employ the diagnostic tool (Alwassel et al.,
2018) to perform the error analysis of BackTAL (Yang et al., 2022) and ASM (He et al., 2022), as
shown in Figure 1. As expected, due to the use of point-level labels, BackTAL performs slightly
better than the advanced weakly-supervised method ASM. However, from the diagnosing results,
the performance of both are not excellent. For these two methods, the vast majority of errors come
from the Localization Err. and the Background Err. among five types of errors. Obviously, the high
error rates indicate the problem that the action and the background are difficult to be distinguished
and separated is still not well solved.

Figure 1: The performance analysis of Top 1 Prediction at IoU=0.5 on THUMOS14 for two methods.
Illustration of these five types of errors are defined in detail in Alwassel et al. (2018). It is worth
noting that other four types of errors except DD are greatly affected by action-background confusion.
(a) The diagnosing results of BackTAL. (b) The diagnosing results of ASM.

How to effectively separate actions and backgrounds to improve the recognition performance and
reduce error rates has become the primary research topic. In this paper, we propose a novel learning
framework to achieve the fine-grained separation of action-background under the point-supervised
setting called FS-PTAL. This fine-grained separation is considered from two perspectives: firstly,
the intensity of the position information of the action and the background is enhanced; secondly,
amplify the differences between the action and the background. The overall architecture of our ap-
proach is illustrated in Figure 2. Technically, we first design a label extension module and optimize a
pseudo label mining strategy to strengthen the position information of the actions and backgrounds
in original video sequence. Secondly, we rely on the precise position information which are pro-
vided by point-level labels to create a distribution copy of action-background aligned with the video
features, and to generate pseudo segment-level labels that contain relatively complete instances of
actions or backgrounds. In addition, to respectively intensify the score differences and the feature
similarity differences between actions and backgrounds, we optimize the calculation of OIC (out-
inner-contrastive loss) and redesign the score contrast module, and introduce feature embedding
space and point-level cosine similarity separation in the feature separation module. Finally, We re-
design four losses to better separate the action and the background and improve performances in the
detection and localization.

In summary, our contributions are as follows:

1) We design a novel framework to achieve fine-grained separation of action-background under
the point-supervised setting. Compared with the previous methods, it can effectively overcome the
difficulty of action-background confusion but with similar annotation costs.

2) We utilize the label extension and mining strategy to enhance the location information of the
action and the background, and optimize a score contrast module and propose a novel feature sepa-
ration module to magnify the difference of action-background. On this basis, we redesign the com-
position of the video-level loss, the point-level loss and the score contrast loss, and introduce the
feature separation loss.
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3) Extensive experiments are performed on four benchmarks to prove the effectiveness of each
module. Experimental results show that FS-PTAL achieves a new state-of-the-art on these datasets,
e.g., 56.74% with the average mAP on THUMOS’14.

Figure 2: Framework of the proposed FS-PTAL. We extract video features and classify each frame
to obtain the final score Q̂. This framework contains four important modules: (a) Label extension
module (see Sec. 3.1). (b) Pseudo label mining module (see Sec. 3.3). (c) Feature Separation Module
(see Sec. 3.5). (d) Score contrast module (see Sec. 3.4).

2 RELATED WORK

Temporal action localization(TAL). TAL methods rely on precise annotations for each frame.
These methods can be categorized into one-stage and two-stage approaches. The two-stage paradigm
(Dai et al., 2017; Sridhar et al., 2021; Zhu et al., 2021) firstly generates action proposals, and then
classifies the proposals and refines the boundary. The majority of proposal generation methods rely
on anchor mechanisms (Chao et al., 2018; Xu et al., 2017; Yang et al., 2020), but there are also other
ways to generate proposals, including sliding window approaches (Shou et al., 2016) and combining
confident starting and ending frames (Lin et al., 2019) which are classified by the temporal action
grouping method. Many recent works focus on the one-stage methods (Lin et al., 2021; Long et al.,
2019; Xu et al., 2020) that show excellent performance while having a relatively simple structure,
which predict the boundaries and labels of actions. ReAct (Shi et al., 2022) proposes a DETR-like
Carion et al. (2020) framework to approach temporal action localization. Zhao et al. (2023) designed
the Movement Enhance Module to explore local and temporal relations between snippets. Kim et al.
(2023) utilized cross-attention maps to provide feedback to self-attention of the encoder and decoder.

Weakly-supervised temporal action localization(WS-TAL). Weakly-supervised methods aim to
address the high cost of annotation by relying on video-level category labels. There are two main
branches of methods: MIL-based (Lee et al., 2020; Luo et al., 2020; Ma et al., 2021; Moniruzzaman
et al., 2020) and attention-based frameworks (Hong et al., 2021; Liu et al., 2022; Luo et al., 2021;
Narayan et al., 2021). Recently, there have been a few new Weakly-supervised researches. ASM-Loc
(He et al., 2022) introduced three novel segment-centric modules for action-aware segment model-
ing beyond standard MIL-based methods. RSKP (Huang et al., 2022) identified the representative
snippets in each video to propagate information between these snippets, so as to generate better
pseudo labels. Ju et al. (2023) extracted unrestricted action information from readily available VLP
models to facilitate WTAL. Liu et al. (2023) proposed a clustering-based F&B separation algorithm
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for WTAL. Zhou et al. (2023) came up with an effective pipeline for learning better pseudo labels.
Tang et al. (2023) introduced a new graphical network for modeling ambiguous and discriminative
segments with different connection types. However, due to their reliance on insufficient labels and
the need for empirical preset thresholds, these methods often encounter difficulties of background
false positives and incomplete action predictions. Therefore, there is a significant performance gap
between weakly-supervised methods and fully-supervised methods.

Point-Level supervised temporal action localization. It is a new kind of weakly-supervised
paradigm for temporal action localization, which is widely used to balance labeling costs and model
performance. Moltisanti et al. (2019) firstly annotated the single timestamp of each action in place
of expensive action boundaries. SF-Net (Ma et al., 2020) utilized the pseudo label mining strat-
egy to acquire more labeled frames, obtaining certain performance improvements. Ju et al. (2020)
introduced the proposal-based prediction paradigm for point-level labels. BackTAL (Yang et al.,
2022) proposed background-click supervision to replace the previous action-click supervision to
reduce background error rates. LACP (Lee & Byun, 2021) generated the dense optimal sequence
to provide completeness guidance for the model. Although the performance of the above work is
better than that of the weakly-supervised method, there is a significant performance gap compared
to fully-supervised methods due to the interference of action-background confusion. Our proposed
FS-PTAL, which extends action point-level annotations and mines pseudo action and background
point-level labels to enhance the location information of the instances. At the same time, we use
the score contrast module and the feature separation module to intensify the difference between the
action segments and the background segments, and provide the guidance of fine-grained separation
of action-background for the model. In Sec. 4, the effectiveness of our method is clearly verified
through numerous experiments.

3 OUR APPROACH

In this section, as shown in Figure 2, we first describe the problem definition and the feature ex-
traction. Afterward, we demonstrate the action point-level label extension module and the baseline
setup. Then, we provide a detailed explanation of the pseudo label mining strategy and the related
point-level loss. Finally, the score contrast module and the feature separation module are elaborated
exhaustively.

Problem definition. The action point-level label of an input video is defined as P act =

{ti, pti}
Nact

i=1 , which is processed in Sec. 3.1, here the i-th action instance is marked with its ac-
tion label pti at the ti-th frame, and Nact is the total number of action instances for this input
video. We use the binary vector label, denoted by pti , where pti [k] = 1 if the i-th action instance
contains the k-th action class and 0 otherwise. These point-level labels can be aggregated to obtain
video-level labels, denoted by yvid ∈ RC . During inference, we generate a set of action propos-
als S̃ = {sn, en, cn, qn}N

pro

n=1 with a quantity of Npro, where each proposal is represented by the
predicted action class cn, the confidence score qn, and start and end times sn and en.

Feature extraction. To process a video, we first divide it into 16-frame segments and input them
into a pre-trained feature extractor that has been trained on the Kinetics-400 dataset. Following Liu
et al. (2019), the RGB and flow stream features are combined by concatenation to create X ∈
RT×D, where T represents the number of segments and D represents the feature dimension. It
is worth noting that the X here is the data feature that has been extended in Sec. 3.1. Next, the
extracted features are passed through a convolutional layer followed by ReLU activation, resulting
in embedded features F ∈ RT×D. We utilize F as the input for our model.

3.1 LABEL EXTENSION MODULE

As shown in Figure 2(a), in a long video sequence, the labeled action point-level annotations only
occupy a small interval, and the surrounding large area is all unlabeled. The aim of this module is
to extend the information coverage of action point-level annotations and enhance the strength of
position information. In He et al. (2022), to compensate for the insufficient information of actions
within a short duration, dynamic segment sampling was designed. However, this method judges
the position information of actions with short duration based on the predicted action proposals in
each round, which intuitively relies heavily on the accuracy of the action proposals and has quite
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limited performance improvements. In contrast, based on the precise position information provided
by point-level labels, we propose a label extension module to increase the number of action point-
level annotations and the length of the feature.

Firstly, we initialize the sampling weight vector W ∈ RTori , with values equal to 1 at all time steps.
Here, Tori is the feature length before extension. Secondly, given the original action point-level
label P act

ori , we obtain a list of label indexes Idxlabel, and group consecutive indexes into a group
to generate a list of the label group indexes Idxseg = {segsid}

Nsid

sid=1, where sid is the index of the
current group and Nsid is the total number of the groups. We set the higher sampling weights τ1
and τ2 for the position and the surrounding of the labels respectively, which aims to increase the
sampling proportion of these areas. For each segsid, we update the sampling weight as in formula
(1).

W [segsid[0] : segsid[−1] + 1] = τ1

W [segsid[0]− 1] = τ2,W [segsid[−1] + 1] = τ2
(1)

Afterwards, we compute the cumulative distribution function (CDF) of the sampling weights fW =
CDF (W), then sample T time steps uniformly from the inverse of the CDF: {xi = f−1

W (i)}Ti=1. we
apply Linear Interpolation to the original data Xori ∈ RTori×D, generating the data X ∈ RT×D.
With the feature length increasing, the positions of the original labels P act

ori must also shift and
increase accordingly. The complete algorithm which displays the extension process will be presented
in the Sec. A of appendix, and we are still in the appendix for a brief analysis of the formula (1).

3.2 BASELINE SETUP

Given the embedded features F , we apply a convolutional layer to predict the temporal class activa-
tion mapsM ∈ RT×(C+1) and intercept it to derive segment-level class scores Q ∈ RT×C and the
class-agnostic background scores B ∈ RT . Referring to the fusion strategy of Xu et al. (2017), we
acquire final scores Q̂ ∈ RT×C , i.e., q̂t[c] = qt[c](1− bt), here bt represents the background score.
Afterwards, we utilize the top-k aggregation strategy to calculate the video-level classification score
Qv ∈ RC+1, and calculate the class-wise foreground confidences Qf ∈ RC+1 as in Huang et al.
(2021).

We concatenate the video-level labels yvid and value 0 to obtain the foreground class label yvidfore ∈
RC+1, and likewise concatenate it and value 1 to acquire the background class label yvidback ∈ RC+1.
The video-level loss is composed of the foreground loss and the background loss. The foreground
loss is calculated by applying the binary cross-entropy between yvidfore and Qf , written as formula
(2). Similarly, the calculation of the background loss is presented in formula (3).

Lfore = −
C∑

c=1

(
yvidfore[c] logQf [c] + (1− yvidfore[c]) log (1−Qf [c])

)
(2)

Lback = −
C∑

c=1

(
yvidback[c] logQv[c] + (1− yvidback[c]) log (1−Qv[c])

)
(3)

The video-level loss of our approach is obtained by adding these two losses together, as shown in
formula (4).

Lvid = Lfore + Lback (4)

3.3 PSEUDO LABEL MINING STRATEGY

Even with the extension of point-level labels, the sparsity of labels has not been solved, so it is
necessary to mine pseudo labels containing actions and backgrounds in videos. The mining process
is shown briefly in Figure 2(b). Specifically, considering that the actions and the backgrounds are
often interspersed during the video, we firstly look for the segments whose background scores bt
are larger than the threshold of the potential background γbkg between two adjacent action labels.
If not found, the segment with the largest background score will be selected for marking. Followed
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by, the adjacent background segments can be concatenated into a longer one, enhancing the ability
to discover the background from the environment with the action-background confusion.

Lee & Byun (2021) firstly proposes label mining strategy at point-level supervision. However, it
is not effective to mine action labels. LACP is to search the segments whose background score bt
are lower than the threshold of the potential action γact as pseudo action labels between adjacent
action points and background points, where γact is set a quite low value to filter the background
interference. Whereas, this also limits the ability to mine pseudo action labels. To optimize it, we
raise γact but add another limitation that the model must judge the mined action score of segment
lower than γact is whether the highest value in Q̂. If it matches, it is marked as a pseudo action label,
otherwise skip it. The related algorithm and comparative experiments are shown in the Sec. B of
appendix.

After the label mining algorithm, we will describe the original action point-level labels, i.e., P act =

{ti, pti}
Nact

i=1 , pseudo action point-level labels, i.e., P act
pse = {tk, ptk}

Nact
pse

k=1 , and pseudo background
point-level labels, i.e., P bkg = {tj}N

bkg

j=1 , respectively. The point-level loss is also calculated by the
binary cross-entropy, which is composed of the classification loss for action points and background
points. The calculation for the action point-level loss is shown as following formula (5), and P =
P act + P act

pse , N = Nact +Nact
pse .

Lpact
= − 1

N

P∑
(t,pt)

C∑
c=1

(
pt[c](1− q̂t[c])2 log q̂t[c] + (1− pt[c])q̂t[c]2 log (1− q̂t[c])

)
(5)

The calculation for the background point-level loss is shown as following formula (6).

Lpbkg
= − 1

N bkg

P bkg∑
t

C∑
c=1

(
q̂t[c]

2 log(1− q̂t[c]) + (1− bt)2 log bt
)

(6)

At last, the point-level loss is defined as the sum of above two losses.
Lpoint = Lpact

+ Lpbkg
(7)

3.4 SCORE CONTRAST MODULE

Based on the dense pseudo labels, we establish a distribution copy of action-background. Next,
we splice pseudo point-level labels into pseudo segment-level labels. We extend the coverage of
the segment-level labels by using the distribution copy and make these labels contain as complete
actions or backgrounds as possible. Shou et al. (2018) firstly introduces OIC (out-inner-contrastive
loss) to evaluate whether a segment contains complete instances, and this strategy has also been
adopted by many works(He et al., 2022; Lee & Byun, 2021; Lee et al., 2018). However, there is a
flaw in the general calculation (Lee & Byun, 2021; Shou et al., 2018) for the outer-inner contrast
score. For example, in Figure 3(b), during a sequence with alternating long and short actions, the
calculated scope of the outer score for a long action is very likely to contain the short action. The
pseudo segment-level labels of the class-specific c are defined as SLc = {(scn, ecn)}

Nc
sl

n=1, where
scn and ecn denote the start and end time for the label, N c

sl is the number of labels of class c. The
calculated length δlseg of the outer score is only related to the segment length lseg = ecn − scn + 1.
Obviously, this calculation is not what we really want. We optimize the calculation method for the
outer scope as following formula 8), here δ is hyper-parameter adjusting the outer range. Based on
previous works (Qu et al., 2021; He et al., 2022; Lee & Byun, 2021), we set δ to 0.25.

{
left :(min(scn − δlseg, ecn−1), s

c
n − 1), if n = 1, ecn−1 = 0

right :(ecn + 1,min(ecn + δlseg, s
c
n+1)), if n = N c

sl, s
c
n+1 = T

(8)

Then, we calculate the difference in qt between the inner and outer ranges to obtain R(SLc). At
last, we maximize (set to 1) inner scores and minimize (set to 0) outer scores to acquire the best
outer-inner contrast score R(SLbest

c ). The calculation of score contrast loss is as formula (9).

Lscore =
1

sum(yvid)

C∑
c=1

yvid[c](1−R(SLbest
c ))2 (9)
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Figure 3: The process of outer-inner contrast score for class c. Given the final scores and the point-
level labels, we mine dense pseudo labels. Then, We calculate the outer-inner contrast score among
all possible candidates.

In the Sec. D of appendix, we compare the effects of pre-and post-optimization OIC calculations
on experimental results.

3.5 FEATURE SEPARATION MODULE

Feature separation has been widely used by previous works (Min & Corso, 2020; Paul et al., 2018;
Sun et al., 2020; Lee & Byun, 2021), and its aim is to guide the model easier for separating the ac-
tions from the backgrounds each other. We note that our module differs from Min & Corso (2020);
Lee & Byun (2021) in that they use segment-level coarse-grained features and destroyed the integrity
of feature information during the pooling and feature sampling, whereas ours introduces feature em-
bedding space, which not only preserves complete feature information but also enhances it, we also
contrast feature at point-level to achieve fine-grained separation. Due to the consideration of high
space consumption and slow convergence speed, we abandon triplet loss, and due to the precise in-
formation provided by frame labels, the Contrastive loss also has a very excellent effect. Specifically,
we firstly utilize two convolution layers to operate the input features to obtain a feature embedding
space which distinguish actions from backgrounds and strengthen their feature information. Then,
we calculate the cosine similarity between different frame sequences of the instances and obtain
frame-specific attention weight, namely feature masked attention layer. As shown in Figure 2(c),
this layer is added to the convolution calculation process to focus effectively on features of interest.
Given the feature embedding space E ∈ RT×Debd , Debd is the embedding dimension of the single
frame. Meanwhile, We define the cosine similarity between e1 and e2 by the following formula (10).

cos(e1, e2) =
e1 · e⊤2

∥e1∥2 · ∥e2∥2
(10)

Based on the action point-level labels P act and the pseudo background point-level labels P bkg , we
can get the action feature embedding eact ∈ RTact×Debd and the background feature embedding
ebkg ∈ RTbkg×Debd , where Tact and Tbkg are respectively the number of marked action frames and
labeled background frames. Afterwards, the feature separation loss Lfs is calculated from three
aspects, i.e., between two background labels, between two action labels and between the action-
background pair. Firstly, feature embedding vectors from two background frames should be similar
to each other, and the loss Lbg

fs can be formulated as formula (11).

Lbg
fs = max (ψsame −H (cos(ebkg, ebkg)) , 0) (11)

Here, ψsame is the similarity threshold between frames from the same category.H() is the function
to mine the hard example from the comparison of the feature embedding vector pair, which selects
the minimum of the same category pair or the maximum of the different category pair from the
second dimension. Similarly, the calculation of the remaining two aspects are as follows, and ψdiff

is the threshold to constrain the similarity between actions and background.

Lact
fs = max (ψsame −H (cos(eact, eact)) , 0) (12)

Lab
fs = max (H (cos(eact, ebkg))− ψdiff , 0) (13)
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Table 1: State-of-the-art comparison on THUMOS14, including frame-level, video-level and point-
level supervision methods. The average mAPs are calculated under the IoU thresholds 0.1:0.5 and
0.3:0.7 with the step 0.1.

Supervision Method mAP@IoU(%) AVG AVG
0.1 0.2 0.3 0.4 0.5 0.6 0.7 (0.1:0.5) (0.3:0.7)

Frame-level
(Fully)

BMN (Lin et al., 2019) - - 56.0 47.4 38.8 29.7 20.5 - 38.5
BC-GNN (Bai et al., 2020) - - 57.1 49.1 40.4 31.2 23.1 - 40.2
BU-TAL (Zhao et al., 2020) - - 53.9 50.7 45.4 38.0 28.5 - 43.3
AFSD (Lin et al., 2021) - - 67.3 62.4 55.5 43.7 31.1 - 52.0
ReAct (Shi et al., 2022) - - 69.2 65.0 57.1 47.2 35.6 - 55.0
MENet (Zhao et al., 2023) - - 70.7 65.3 58.8 49.1 34.0 - 55.6
Self-DETR (Kim et al., 2023) - - 74.6 69.5 60.0 47.6 31.8 - 56.7

Video-level
(Weakly)

FTCL (Gao et al., 2022) 69.6 63.4 55.2 45.2 35.6 23.7 12.2 53.8 34.4
ASM-Loc (He et al., 2022) 71.2 65.5 57.1 46.8 36.6 25.2 13.4 55.4 35.8
RSKP (Huang et al., 2022) 71.3 65.3 55.8 47.5 38.2 25.4 12.5 55.6 35.9
DELU (Chen et al., 2022) 71.5 66.2 56.5 47.7 40.5 27.2 15.3 56.5 37.4
Ju et al. (2023) 73.5 68.8 61.5 53.8 42.0 29.4 16.8 60.0 40.8
Liu et al. (2023) 72.3 - 59.2 - 37.7 - 13.7 57.1 -
DDG-Net (Tang et al., 2023) 72.5 67.7 58.2 49.0 41.4 27.6 14.8 57.8 38.2

Point-level
(Weakly)

SF-Net (Ma et al., 2020) 68.3 62.3 52.8 42.2 30.5 20.6 12.0 51.2 31.6
Ju et al. (2020) 72.3 64.7 58.2 47.1 35.9 23.0 12.8 55.6 35.4
BackTAL (Yang et al., 2022) - - 54.4 45.5 36.3 26.2 14.8 - 35.4
LACP (Lee & Byun, 2021) 75.7 71.4 64.6 56.5 45.3 34.5 21.8 62.7 44.5
Ours 79.1 74.6 68.6 61.0 50.7 38.9 24.2 66.8 48.7

At last, the feature separation loss jointly considers the above three terms and can be calculated as
formula (14).

Lfs = Lbg
fs + L

act
fs + Lab

fs (14)

3.6 JOINT TRAINING

The overall training objectives of our model are as formula (15). Among them, λ∗ is the weighted pa-
rameter used to balance the loss, which are determined empirically. The inference will be explained
in the Sec. C of appendix.

Ltotal = λ1Lvid + λ2Lpoint + λ3Lscore + λ4Lfs (15)

4 EXPERIMENTS

Dataset. We evaluate our FS-PTAL on four datasets: THUMOS14 (Jiang et al., 2014), ActivityNet
v1.3 (Heilbron et al., 2015), BEOID (Damen et al., 2016) and GTEA (Lei & Todorovic, 2018).
THUMOS14 contains untrimmed videos in 20 action class. THUMOS14 may has multiple instances
of action in a single video with 200 and 210 videos (Wang et al., 2017; Zhai et al., 2020; Zhang et al.,
2021) for validation and test, respectively. ActivityNet v1.3 is a large dataset containing 200 complex
daily activities, which contains 10,024 training, 4,926 validation and 5,044 test videos. GTEA is a
dataset containing 7 fine-grained daily actions in the kitchen, with 21 and 7 videos used for training
and testing, respectively. BEOID consists of 58 videos with a total of 34 action categories.

Experiment Setting. Our method is implemented with Pytorch toolbox, and the overall network
architecture is built on the GPU of Geforce RTX 3080. The parameter settings and experiments can
be found in the Sec. C of appendix.

4.1 COMPARISON WITH THE STATE OF THE ART

As shown in Table 1, our FS-PTAL is compared with state-of-the-art methods at different levels of
supervision on THUMOS14. Obviously, our mthod is significantly superior to advanced WS-TAL
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Table 2: Ablation experiments on THUMOS14. AVG represents the average mAP at the IoU thresh-
olds 0.1:0.1:0.7. (A: label extension module, B: pseudo label mining module, C: score contrast mod-
ule, D: feature separation module).

A B C D mAP@IoU(%) AVG
0.1 0.2 0.3 0.4 0.5 0.6 0.7

✗ ✓ ✓ ✓ 77.6 73.2 66.9 59.2 47.3 36.1 23.1 54.8
✓ ✗ ✓ ✓ 72.2 68.9 61.3 52.7 42.3 30.8 16.9 49.3
✓ ✓ ✗ ✓ 75.3 71.1 63.8 57.2 44.6 35.1 20.4 52.5
✓ ✓ ✓ ✗ 75.5 70.8 62.4 54.9 44.1 33.7 19.8 51.6
✓ ✓ ✓ ✓ 79.1 74.6 68.6 61.0 50.7 38.9 24.2 56.7

and point-level supervised methods. For example, both Avg(0.1:0.5) and Avg(0.3:0.7), ours are far
better than that of LACP, with the improvement of nearly 4%. In particular, the performance gains at
high IOU suggest that our method does indeed better separate the actions from the backgrounds. In
addition, the performance gap between our approach and the fully-supervised methods has narrowed
dramatically, and the performances at low IOU (i.e., 0.3 or 0.4) are even better than that of some
fully-supervised approaches. Due to the lack of action boundary information, the performance of
our method at high IOU (i.e., 0.6 or 0.7) still lags significantly behind fully-supervised methods.

Notably, We also provide extensive experiments which compare our FS-PTAL with state-of-the-art
methods on ActivityNet v1.3, BEOID and GTEA. There is no doubt that our approach achieves the
best performances on these three benchmarks. Considering the length of this paper, the experimental
tables and the related analysis are in the Sec. D of appendix. Meanwhile, we also explore the impact
of the use of different kinds of point-level labels (Ma et al., 2020; Moltisanti et al., 2019) on the final
performance on THUMOS14 in the Sec. D.

4.2 ABLATION EXPERIMENT

We conducted four sets of ablation experiments to verify the effectiveness of our proposed mod-
ule. Table 2 shows the results of ablation experiments. The label extension Module has the lowest
performance gain 2.1% as it only extends point-level labels and does not affect the model frame-
work. In contrast, due to the sparsity of labels, which may greatly affect the performance of the
score contrast module and feature separation module, the performance gain brought by pseudo label
mining module reaches its maximum value, which is 7.4%. In addition, the score contrast module
and feature separation module mainly promote the separation of action-background from differ-
ent perspectives, their performance gains are 4.2% and 5.1%, respectively. Finally, the significant
performance improvement of the complete framework at all IOU thresholds clearly indicates that
our method effectively provides the fine-grained separation guidance of action-background for the
model.

4.3 QUALITATIVE COMPARISON AND VISUALIZATION

We provide qualitative comparisons with methods such as LACP and DELU, and the visualization
results are presented in the Sec. E. In addition, we also employ the diagnostic tool (Alwassel et al.,
2018) to compare and perform error analysis of our model with other SOTAs in the Sec. E. All anal-
ysis and comparison results indicate that our FS-PTAL has superior performance to other methods.

5 CONCLUSION

In this paper, we propose a novel point-supervised framework to guide the fine-grained separation
of action-background. We utilize the label extension module and the pseudo label mining strategy
to address the difficulty of label sparsity, and create a distribution copy of action-background based
on dense pseudo labels. Next, we generate a large number of segment-level labels by aggregating
point-level labels, and separate actions and backgrounds from two aspects by our proposed the score
contrast module and the feature separation module. We perform a large number of experiments and
the results show that our model achieves a new state-of-the-art with a large gap on four benchmarks.
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A SUPPLEMENTARY INFORMATION FOR LABEL EXTENSION MODULE

Algorithm 1 shows the extension process of the label extension module in Sec. 3.1. The final point-
level labels output by this algorithm will be used as input to our model, as shown in Sec. 3, for
subsequent processing. In addition, for formula (1), we respectively set higher sampling weights
τ1, τ2 for the position and surroundings of action point-level labels. This is because most action
instances have a longer duration, and for them, the surroundings of action labels also contain action
instances; But considering that for short actions, the surroundings of labels is more likely to contain
backgrounds. Therefore, we set the weight value of τ1 to be higher than τ2 to reduce the negative
impact of the surroundings that may contain background.

Algorithm 1: Extension on class-specific point-level labels

input : point-level labels of specific-class: P c
ori = {(tori, pctori)}

Tori
tori=1, feature array:

Sam ∈ RTori , sampled feature array: Sametd ∈ RT , range hyper-parameter: ϑ
output: extended point-level labels: P c = {(t, pct)}Tt=1

1 for (tori, p
c
tori) in P c

ori do
2 pf idx ← Sam[tori]
3 for temp in Samup do
4 if temp ∈ [pf idx − ϑ, pf idx + ϑ] then
5 add temp in array pfnewidx
6 end
7 end
8 pfnews ← pfnewidx [0], pfnewe ← pfnewidx [−1]
9 for i in [pfnews , pfnewe ] do

10 t← i, pct ← pctori
11 add (t, pct) in P c

12 end
13 end
14 return P c

B ALGORITHM FOR MINING PSEUDO LABELS

In WS-TAL, pseudo label based methods (Luo et al., 2020; Yang et al., 2021; Pardo et al., 2021; Zhai
et al., 2020) are widely used to obtain segmented pseudo labels to bridge the gap between classifica-
tion and localization. Previous detection results are usually extended to generate pseudo labels. Due
to the limited information in each segment, pseudo labels can obtain over-complete or incomplete
proposals. In Sec. 3.3 of this paper, Our proposed mining algorithm can utilize the precise location
information provided by point-level labels, which can generate more accurate pseudo labels.

Algorithm 2 explains the mining process. Firstly, between two adjacent action instances, we set a
threshold of γbkg=0.85 to filter out noise segments and select segments with background scores bt
greater than this threshold to generate pseudo background point-level labels. If no such segments
exist, we set the background labels at the index with the highest bt. After generating these pseudo
background point-level labels, we search a few possible pseudo action frames from each adjacent
action frame and pseudo background frame. Specifically, the scores bt of pseudo action frames must
be lower than the threshold γact=0.25, and its action score is the highest value in Q̂.

Figure 4 visualizes two groups of pseudo label sequences from our method and LACP (Lee &
Byun, 2021), respectively. Obviously, our mined pseudo labels cover more complete instances. In
particular, for the generation of pseudo action labels, our method is significantly more effective than
LACP.
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Algorithm 2: Mining Pseudo Point-level labels

input : the original action point-level labels: P act = {(ti, pti)}N
act

i=1 , the background score
B ∈ RT , the threshold of the potential background: γbkg , the threshold of the potential
action: γact, the final score Q̂

output: pseudo background point-level labels: P bkg = {tj}N
bkg

j=1 , pseudo action point-level

labels: P act
pse = {(tk, ptk)}

Nact
pse

k=1

1 Initialize create a new array with the same dimension size as B and all values of 0: P bkg

2 Set index of the background from P bkg as Ibkg and index of the action from P act as Iact
// Mark the indexes with the background score bt higher than γbkg as the pseudo background
labels

3 for i = 1 to T do
4 if bi > γbkg then
5 add i to Ibkg , and P bkg[i] = 1
6 end
7 end

// If there is no background label between adjacent action points, select the index with the
highest background score bt within the interval as the pseudo background label

8 left← [−1, Iact[: −2]], right← [Iact[1 :], T ]
9 for idxleft, idxright in zip(left, right) do

10 for j in Ibkg do
11 if idxleft < j < idxright then
12 go to step 9
13 end
14 end
15 find the index idxtemp of maximum score in B[idxleft : idxright], and P bkg[idxtemp] = 1

16 add idxtemp to Ibkg

17 end
// Generate continuous background segments

18 for idxbkgleft, idx
bkg
right in zip(Ibkg[: −2], Ibkg[1 :]) do

19 for j in Iact do
20 if idxbkgleft < j < idxbkgright then
21 go to step 18
22 end
23 end
24 P bkg[idxbkgleft : idx

bkg
right] = 1, and add [idxbkgleft : idx

bkg
right] to Ibkg

25 end
// Search for pseudo action point-level labels

26 for i = 1 to T do
27 if bi ≤ γact and i̸∈Ibkg then
28 nearest left action (tleft, ptleft

) and right action (tright, ptright
) for index i, where

ptleft
,ptright

are action labels and tleft < i < tright
29 if not exist j∈Ibkg is satisfied tleft < j < i then
30 if the score of category c, qci = Q̂[i : c] is highest for Q̂[i :] then
31 add (i, ptleft

) in P act, and Nact ← Nact + 1
32 end
33 if not exist j in Ibkg is satisfied i < j < tright then
34 if the score of category c, qci =Q̂[i : c] is highest for Q̂[i :] then
35 add (i, ptright

) in P act, and Nact ← Nact + 1
36 end
37 end
38 end
39 P act

pse ← P act

40 Return P bkg , P act
pse
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Figure 4: Label visualization comparison with LACP on THUMOS14. We provide an example from
the training data ”video validation 0000784”. The action instance in this example is Shotput. The
pseudo labels generated from LACP and our FS-PTAL as well as ground-truth are visualized in this
figure.

Table 3: The influence of different settings on several groups of hyper-parameters on THUMOS14.
We only present a portion of the experimental results for hyper-parameter selection in this table.
mAP@AVG is the averaged mAP at the thresholds 0.1:0.1:0.7. That τ∗ is [2.5, 1.67] indicates that
τ1 and τ2 are respectively 2.5 and 1.67.

τ∗ [2.5, 1.67] [2.5, 2] [2.5, 1.5] [2, 1.67] [3, 1.67]

mAP@AVG(%) 56.73 56.49 56.62 56.22 56.27

ψsame 0.75 0.8 0.85 0.9 0.95

mAP@AVG(%) 55.67 56.02 56.38 56.09 56.73

ψdiff 0.05 0.1 0.15 0.2 0.25

mAP@AVG(%) 56.64 56.73 56.27 55.81 55.52

Table 4: State-of-the-art comparison on ActivityNet 1.3 (Heilbron et al., 2015). AVG is the averaged
mAP at the thresholds 0.5:0.05:0.95.

Supervision Method mAP@IoU(%) AVG0.5 0.75 0.95

Video-level

Bas-Net (Lee et al., 2020) 34.5 22.5 4.9 22.2
TS-PCA (Yang et al., 2021) 37.4 23.5 5.9 23.7
FAC-Net (Huang et al., 2021) 37.6 24.2 6.0 24.0
ACM-Net (Qu et al., 2021) 40.1 24.2 6.2 24.6
ASM-Loc (He et al., 2022) 41.0 24.9 6.2 25.1
FTCL (Gao et al., 2022) 40.0 24.2 6.4 24.8
CASE (Liu et al., 2023) 43.2 26.2 6.7 26.8

Point-level LACP (Lee & Byun, 2021) 40.4 24.6 5.7 25.1
Ours 43.1 26.9 6.1 27.3
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Table 5: State-of-the-art comparison on BEOID (Damen et al., 2016) and GTEA (Lei & Todorovic,
2018). AVG denotes the average mAP at the thresholds 0.1:0.1:0.7.

Dataset Method mAP@IoU(%) AVG0.1 0.3 0.5 0.7

GTEA

SF-Net (Ma et al., 2020) 58.0 37.9 19.3 11.9 31.0
Ju et al. (Ju et al., 2020) 59.7 38.3 21.9 18.1 33.7
LACP (Lee & Byun, 2021) 63.9 55.7 33.9 20.8 43.5
Ours 65.3 56.8 34.4 21.2 44.3

BEOID

SF-Net (Ma et al., 2020) 62.9 40.6 16.7 3.5 30.9
Ju et al. (Ju et al., 2020) 63.2 46.8 20.9 5.8 34.9
BackTAL (Yang et al., 2022) 60.1 40.9 21.2 11.0 32.5
LACP (Lee & Byun, 2021) 76.9 61.4 42.7 25.1 51.8
Ours 78.1 62.2 43.6 25.4 52.5

Table 6: State-of-the-art comparison using different point-level labels on THUMOS14. Where †
indicates the use of labels manually annotated in (Ma et al., 2020), ‡ denotes the use of automatically
marked labels from (Moltisanti et al., 2019).

Method mAP@IoU(%) AVG AVG
0.1 0.2 0.3 0.4 0.5 0.6 0.7 (0.1:0.5) (0.3:0.7)

SF-Net† (Ma et al., 2020) 71.0 63.4 53.2 40.7 29.3 18.4 9.6 51.5 30.2
Ju et al.† (Ju et al., 2020) 72.8 64.9 58.1 46.4 34.5 21.8 11.9 55.3 34.5
LACP† (Lee & Byun, 2021) 75.1 70.5 63.3 55.2 43.9 33.3 20.8 61.6 43.3
Ours† 79.3 73.8 67.5 60.2 49.4 37.6 23.1 66.0 47.6
SF-Net‡ (Ma et al., 2020) 68.3 62.3 52.8 42.2 30.5 20.6 12.0 51.2 31.6
Ju et al.‡ (Ju et al., 2020) 72.3 64.7 58.2 47.1 35.9 23.0 12.8 55.6 35.4
LACP‡ (Lee & Byun, 2021) 75.7 71.4 64.6 56.5 45.3 34.5 21.8 62.7 44.5
Ours‡ 79.1 74.6 68.6 61.0 50.7 38.9 24.2 66.8 48.7

C RELATED SETTING AND INFERENCE

We employ I3D (Zeng et al., 2019) networks pre-trained on Kinetics-400(Zeng et al., 2019) to extract
feature and apply the TV-L1 algorithm (Huang et al., 2022) to extract optical flow from RGB frames.
For THUMOS14, ActivityNet 1.3, GTEA and BEOID, our model is optimized by Adam (Luo et al.,
2020) with a learning rate of 0.0001 and batch sizes of 16, 64, 8 and 8, respectively. Meanwhile, the
training epoch on these four benchmarks are 1500, 60, 200 and 200.

The hyper-parameters in this paper are determined by grid search, the specific settings are as fol-
lows. The sampling weights τ1 and τ2 are 2.5 and 1.67, respectively. The threshold ψsame and
ψdiff are 0.9 and 0.1. In Table 3, we show the influence of different settings of the above groups
of hyper-parameters on the results. Numerous comparative experiments can demonstrate that our
hyper-parameter settings are reasonable. Specifically, the weighted parameter λ1, λ2, λ3 and λ4 are
all 1, these are determined based on massive previous works and experience.

Table 7: The comparison of different calculation methods for OIC Loss on THUMOS14. △ de-
notes the use of the initial calculation(Shou et al., 2018) about OIC Loss. # denotes the user of our
optimized calculation for OIC Loss.

Method mAP@IoU(%) AVG
0.1 0.3 0.5 0.7 (0.1:0.7)

FS-PTAL△ 78.4 67.5 49.2 23.2 55.8
FS-PTAL# 79.1 68.6 50.7 24.2 56.7
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In the inference process, we first determine which action categories are to be localized by thresh-
olding the video-level classification score Qv with θvid=0.25. Afterwards, we threshold at the final
score Q̂ to select candidate segments. And after a large number of consecutive candidates merging
into many action proposals, we use non-maximum suppression (NMS=0.7) to remove overlapping
proposals.

D MORE EXPERIMENTAL RESULTS AND ANALYSIS

As shown in Table 4, our FS-PTAL obtain the absolute average mAP gains of 0.5% on ActivityNet
1.3 compared to the Liu et al. (2023). Notably, at mAP@0.95, we have no improvement, even weaker
than a few video-level methods(weakly-supervised). We believe that ActivityNet 1.3 dataset contains
many action instances whose lengths are close to the duration of the input video. However, our mined
pseudo background labels greatly affect the complete localization of such ultra long action instances,
resulting the performance does not improve under IoU=0.95 conditions. From Table 5, we can see
that our method has achieved a new state-of-the-art on GTEA and BEOID, acquiring the absolute
mAP gains of 0.8% and 0.7% compared to the previous advanced methods, respectively.

In Table 6, we present the experimental results using two different point-level labels (Moltisanti
et al., 2019; Ma et al., 2020). The results show that regardless of the type of labels, our FS-PTAL is
significantly superior to the previous methods, indicating the robustness of our method. In addition,
we speculate that sampling distribution update method in (Moltisanti et al., 2019) make automati-
cally marked labels more likely to focus on areas with significant changes in action instances com-
pared to manually annotated labels (Ma et al., 2020), so there is a slight improvement in performance
using automatically marked labels.

In table 7, we compare the effects of original OIC calculation and optimized OIC calculations on
experimental results. Obviously, our optimized OIC calculation method has a 0.9% performance
improvement on THUMOS14. As in Sec. 3.4, the initial calculation does have drawbacks in videos
of alternating long and short actions.

E DETAILED PRESENTATION FOR QUALITATIVE COMPARISON AND
VISUALIZATION

In Figures 5 and 6, we visualize the comparison of detection results between our FS-PTAL and
DELU (Chen et al., 2022) and LACP (Lee & Byun, 2021) on THUMOS14, respectively. As shown,
the detection results produced by DELU are often fragmented, because DELU only uses video-level
label, the obtained location information is extremely limited. In contrast, the detection results of
LACP are relatively complete, but still accompanied by interference from noise segments. Com-
pared with the above two methods, our FS-PTAL to some extent eliminates noise segments, making
the detection results more complete and more in line with GT. In Figure 7, we conduct the perfor-
mance analyses of BackTAL (Yang et al., 2022), ASM (He et al., 2022), LACP and our FS-PTAL.
It is simple to know that our model has the highest TP(true positive) rate, and this means that the
accuracy of our model’s locating actions does indeed significantly improve compared to previous
methods. Meanwhile, the error rate of our method also decrease obviously, indicating that the prob-
lem about the action-background confusion is somewhat mitigated and our FS-PTAL does indeed
better provide guidance on fine-grained separation of action-background, significantly improving
performance.
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Figure 5: Qualitative comparison with DELU (Chen et al., 2022) on THUMOS14. We provide an
example from the test data ”video test 0000129”. The action instance in this example is Shotput.
The final scores and detection results from DELU and our FS-PTAL as well as ground-truth are
visualized in this figure. The red boxes indicate that the frames are from action instances.

Figure 6: Qualitative comparison with LACP (Lee & Byun, 2021) on THUMOS14. We provide an
example from the test data ”video test 0000173”. The action instance in this example is CliffDiving.
The final scores and detection results from LACP and our FS-PTAL as well as ground-truth are
visualized in this figure. The red boxes indicate the frames are from action instances.
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Figure 7: The performance comparison of Top 1 Prediction at IoU=0.5 on THUMOS14. We utilize
diagnostic tools (Alwassel et al., 2018) to analyze our FS-PTAL and other three state-of-the-art
methods, and visualize the diagnosing results.
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