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Abstract

Scaling laws have emerged as important compo-
nents of large language model (LLM) training
as they can predict performance gains through
scale, and provide guidance on important hyper-
parameter choices that would otherwise be ex-
pensive. LLMs also rely on large, high-quality
training datasets, like those sourced from (some-
times sensitive) user data. Training models on this
sensitive user data requires careful privacy protec-
tions like differential privacy (DP). However, the
dynamics of DP training are significantly differ-
ent, and consequently their scaling laws are not
yet fully understood. In this work, we establish
scaling laws that accurately model the intricacies
of DP LLM training, providing a complete picture
of the compute-privacy-utility trade-offs and the
optimal training configurations in many settings.

1. Introduction
Large language models (LLMs) are revolutionizing how we
interact with technology, powering everything from instant
translations and concise summaries to complex reasoning
and creative content generation (Achiam et al., 2023; Gem-
ini Team, 2023). Training increasingly large models on
ever larger datasets is a key success factor for these LLMs,
with frontier models being trained for millions of GPU-
hours (Dubey et al., 2024) and trillions of tokens (Abdin
et al., 2024; Gemma Team et al., 2024a;b). Scaling laws
for neural language models are crucial because they provide
a framework for understanding and predicting the perfor-
mance gains achievable with increased computational re-
sources, and importantly, guide the optimal allocation of
that compute budget between model size and dataset size
(Kaplan et al., 2020; Hoffmann et al., 2022).
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The scale of data driving LLM progress also creates a critical
privacy challenge. State-of-the-art models train on massive,
diverse datasets (Dubey et al., 2024; Gemma Team et al.,
2024a) that are also distributed (Carlini et al., 2024) making
it difficult to exclude inadvertently shared personal infor-
mation. Paradoxically, user data, a key privacy concern, is
also crucial for advancing LLM capabilities. User interac-
tions provide invaluable feedback for generating realistic
synthetic data (Xie et al., 2024; Kurakin et al., 2023) and
aligning models with human values (Stiennon et al., 2020),
reflecting real-world use cases better than web-scraped text.
However, direct training on sensitive user data is risky due to
memorization and regurgitation (Carlini et al., 2021; 2023;
Ippolito et al., 2023; Lukas et al., 2023; Biderman et al.,
2023; Prashanth et al., 2025). This tension—the need for
user data versus protecting user privacy—is addressed by
differential privacy (DP) (Dwork et al., 2006).

While DP offers a principled solution to the tension between
data utility and privacy in LLM training, applying it in prac-
tice, especially to large-scale models, presents significant
challenges. DP mechanisms like DP-SGD (Abadi et al.,
2016) and its variants introduce computational overhead,
implementation complexity (Subramani et al., 2021), and
utility degradation (Bassily et al., 2014). While it is well-
known that DP-SGD benefits substantially from training
with very large batch sizes (Anil et al., 2022; De et al., 2022;
Ponomareva et al., 2023), little work has been done to un-
derstand the conditions under which this holds in compute-
constrained settings, i.e., when an increase in batch size
must be coupled with a decrease in model size or number of
iterations. In part due to this reliance on large batch sizes,
the largest models trained with DP today have hundreds
of millions, rather than billions, of parameters (Anil et al.,
2022; Li et al., 2022; Berrada et al., 2023; Ghalebikesabi
et al., 2023; Charles et al., 2024; Sander et al., 2023).

To train large models with DP, it is crucial to spend both
the compute budget and the privacy budget judiciously. In
this work, we pave the way towards training at the billion-
parameter scale by initiating a study on the scaling laws of
DP training. To that end, we extend traditional scaling laws
to consider a compute-privacy-utility trade-off, accounting
for intricacies and additional variables introduced by DP
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training. Through a rigorous set of experiments, we empiri-
cally model this trade-off, and provide a thorough analysis
of these experimental results to answer a number of scaling
law-style questions, finding (among other things) that:

• The compute budget allocation predicted by non-private
scaling laws is far from optimal under DP, even for huge
privacy budgets, confirming the need for our study.

• However, we can accurately predict the optimal break-
down of the compute budget into model size, batch size,
and iterations for virtually any privacy budget and dataset
size. These compute-efficient training configurations save
5× to 100× compute compared to baseline configurations,
while retaining comparable privacy and utility.

• The optimal model size is typically at least an order
of magnitude smaller with DP than without. This pro-
vides insight into the challenges of training large billion-
parameter or larger language models with DP.

• In the DP setting, increasing the compute budget can
sometimes yield little to no reduction in the loss unless
accompanied by a corresponding increase in the privacy
budget or dataset size.

2. Preliminaries and Problem Setup

Key Definition
ϵ Privacy budget
N Data budget
C Compute budget
B Batch size
T Iterations
S Sequence length
M Model parameters
σ̄ Noise-batch ratio

Our dataset D consists of text
sequences, where each indi-
vidual contributes a single se-
quence x = (x1, . . . , xS) of
S tokens, and each token is
drawn from a predefined vo-
cabulary V . We let N denote
the total number of individu-
als contributing to the dataset.

Masked Language Modeling. In this work we focus on
the masked language modeling task (Devlin et al., 2019),
where each sequence has a chosen fraction pmask of tokens
masked out, i.e., replaced with a special masking token
[MASK], uniformly at random. The goal is to predict the
original token for each masked token using the entire context
(bidirectionally). Let x̄ represent the original sequence of
tokens but masked using the above procedure and M the ids
of the masked tokens in x̄. For a given parameter vector θ ∈
RM , the language model defines a conditional probability
pθ(xj | x̄) for each j ∈ M, and the goal is to find θ to
maximize the likelihood of all masked training tokens.

Differential Privacy. A randomized mechanism A satis-
fies (ϵ, δ)-DP (Dwork et al., 2006) if, for any two datasets
D, D′ that differ by a single individual, all subsets O of
possible outputs of A and ϵ > 0, 0 ≤ δ < 1:

Pr[A(D) ∈ O] ≤ eϵ Pr[A(D′) ∈ O] + δ.

Algorithm 1 (Informal) Generalized DP-SGD.
Appendix B.1 discusses the informalities.
Input: Dataset D, noise-batch ratio σ̄, (expected) batch size

B, iterations T
Output: Model parameters θ.
Initialize model parameters θ0 ∈ RM

for t = 1 to T do
Select a (possibly random) size ≈B minibatch Bt⊂D
ḡ = 1

B

∑
x∈Bt

clip(∇ℓ(θt−1;x))

g̃ = ḡ + σ̄N (0, 1)M

θt = OptimizerUpdate(θt−1, g̃)

return θT

DP-SGD. DP-SGD is a widely used algorithm to train
neural networks with DP. It attains provable DP guarantees
through limiting the contribution (sensitivity) of each exam-
ple by clipping its gradient to some ℓ2-norm (wlog, 1), and
then adding isotropic Gaussian noise to the averaged clipped
gradients; see Algorithm 1 for pseudo-code. Our algorithm
is a slight generalization of the original DP-SGD (Abadi
et al., 2016): to enable adaptive optimizers, which are often
crucial for training transformer models, the subroutine Opti-
mizerUpdate can be any first-order optimizer. Throughout
this work, we set OptimizerUpdate to be Adam (Kingma &
Ba, 2015), which we denote DP-Adam. Algorithm 1 satisfies
a formal DP guarantee that can readily be computed as a
function of σ̄, B, N , and T using a suitable privacy accoun-
tant. The dp_accounting library provides functions that can
efficiently and tightly compute the minimum value of σ̄ as a
function of ϵ, δ, N , and B (Google DP Team, 2022).

Noise-Batch Ratio. Note that we parameterize Algorithm 1
in terms of the noise-batch ratio σ̄, which is the standard
deviation of noise added to the mean minibatch gradient,
instead of the usual noise multiplier which is typically added
to the summed minibatch gradient. While the noise multi-
plier typically governs the privacy properties of the mecha-
nism, the noise-batch ratio is a better proxy for the down-
stream learning performance. Specifically, there are two
sources of variance in the stochastic gradient estimate g̃:
(1) the minibatch estimate of the true population gradient
and (2) the Gaussian noise added to ensure DP. Prior work
has shown that the latter dominates the variance in most
practical regimes (Ponomareva et al., 2023).

2.1. Compute-Optimal DP Training

We are interested in empirically modeling how the compute-
privacy-utility trade-off changes as a function of the problem
parameters. We follow ideas used to model the compute-
utility trade-off in the non-private setting (Kaplan et al.,
2020; Hoffmann et al., 2022), but extend them to study
the private setting by additionally considering the privacy
budget and data budget. The key concepts are:

• Compute Budget (C) refers to the total floating point
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operations (FLOPs) required to train the model. We use
the standard approximation of Kaplan et al. (2020): 6 ·
M ·B ·S ·T to measure this, which is proportional to the
model size (M ) and the total number of training tokens
(B·S·T ). Note that unlike the non-private scaling laws, we
use B to represent the number of examples in a batch (not
tokens) because this quantity is what matters for privacy
calculations. This approximation provides a platform-
independent estimate of compute requirements, and is
justified further in Appendix B.3.

• Privacy Budget (ϵ) refers to the value of ϵ at fixed δ in
(ϵ,δ)-DP. We fix δ = 10−8 = Θ(1/N) unless otherwise
mentioned, which is a common choice in the literature
(Abadi et al., 2016).

• Data Budget (N) refers to the number of individuals in
the training dataset, |D|, which can be different from the
number of examples processed by DP-SGD under multiple
passes. Note that our analysis and insights also hold in
the more general setting where individuals can contribute
multiple examples, although the data budget must still be
interpreted as the number of individuals rather than the
number of examples (see Appendix B.2).

The privacy and data budgets are absent in most non-private
scaling laws because they often assume that an infinite
stream of data is available and no privacy protections are
needed. In the private setting, model training is often con-
strained by both a fixed data budget (i.e., a limited set of
examples) and a fixed privacy budget (i.e., ϵ in DP). Both of
these impact model training; thus, it is crucial to determine
the optimal compute usage given the constraints on privacy
and data, by fitting a scaling law accounting for this.

2.2. Private Scaling Law Challenges

Additional Scaling Factors. As mentioned above, our pri-
vate scaling laws account for the additional data and privacy
considerations not present in the non-private scaling law
studies. These add complexity because DP adds noise be-
yond what is introduced through the stochasticity of training.
Without DP, training with a batch size of B for T iterations
is roughly equivalent to training with a batch size of 1 for
B ·T iterations, as long as B is below the so-called “critical
batch size” (McCandlish et al., 2018; Shallue et al., 2019;
Zhang et al., 2025). However, this relationship does not
hold in DP settings, and further, DP training requires larger
batch sizes to mitigate the impact of the added noise (Anil
et al., 2022; De et al., 2022).

Compute Requirements. Even without DP, exhaustive
hyperparameter tuning is infeasible for large models. DP
training introduces further complexity with additional hy-
perparameters and the need to adapt standard defaults (e.g.,
learning rate) to new regimes, necessitating careful protocol
design to achieve near-optimal selection within reasonable

compute. Further, it is important to consider that collapsing
the privacy and data budgets to a single quantity is unlikely
to provide generalizable insights.

3. Private Scaling Law Methodology
In this section, we detail our methodology for estimating the
validation cross-entropy loss from model size, noise-batch
ratio, and training iterations, which in turn lets us estimate
the utility under a fixed compute, privacy, and data budget.

3.1. Decoupling Noise Calibration

A key part of our methodology is to directly analyze the
impact of the noise-batch ratio for a fixed but reasonably
large physical batch size, rather than indirectly through
changes to the privacy budget or batch size. Via post-hoc
accounting, we will predict what could happen at different
hypothetical batch sizes, an approach that is justified by the
fact that typically the noise-batch ratio is the primary source
of noise in the minibatch gradients, outweighing the noise
due to minibatch sampling (Ponomareva et al., 2023).

This decoupling enables for a better understanding of the
underlying trade-offs. Without this approach, the non-
linearities in DP accounting (detailed in Section 4.5) make
it difficult to assess these. We note that a naive methodology
that tries to directly model the scaling law as a function of
privacy budget (without going through the noise-batch ratio)
would either provide less insight (by not generalizing across
data budgets), or require much more compute.

After decoupling, the function we want to fit requires three
inputs: the model size M , the number of iterations T , and
the noise-batch ratio1. We require the function to be well-
defined for a broad range of possible inputs that could be
encountered in practical settings. We also need it to cover
extreme points that may not be likely to be useful in practice,
but may provide additional scientific insight. The methodol-
ogy described below attempts to balance this need with the
goal of using compute responsibly.

3.2. Detailed Experimental Setup

Models and Datasets. We train BERT models ranging in
scale from Tiny (4M parameters) to Mega (778M parame-
ters), summarized in Table 1. We focus on the default BERT
dataset, which includes approximately 3.3B words (Zhu
et al., 2015; Devlin et al., 2019) before tokenization. Each
example is truncated or padded as necessary to a sequence
of fixed length S = 512.2

1The learning rate is a hyperparameter that is optimized over
and not modeled directly.

2Future work could fruitfully consider other sequence lengths,
as they are likely to showcase interesting trade-offs.
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Table 1. Models used in this study, taken from Devlin et al. (2019).
Model Layers Heads Dims Params (M )

BertTiny 2 2 128 4.5M
BertMini 4 4 256 11.4M
BertSmall 4 4 512 29M
BertMedium 8 8 512 41M
BertBase 12 12 768 109M
BertLarge 24 16 1024 335M
BertMega 24 24 1536 778M

Optimizer. We use DP-Adam throughout. We use 1000
steps of learning rate warm-up, followed by exponential
learning rate decay, decreasing the learning rate by a factor
of 10× over a horizon of 128K iterations. We use per-
example clipping with an ℓ2 clip norm of 1.0 across all
experiments. We employ the normalized variant of clipping
proposed by De et al. (2022), to help decouple learning rate
tuning from clip norm. We verified that this setting effec-
tively clips most per-example gradients, as recommended in
prior work (Li et al., 2022; De et al., 2022).

Learning Rates. We tune the learning rate with per-
example gradient clipping but no noise, finding that the opti-
mal learning rate is consistently 2−7 across all model scales.
With noise, we consider three learning rates: 2−7, 2−8, 2−9.
This methodological choice was based on early ablations
that showed that when adding noise the optimal learning
rate does decrease, but gradually so; see Appendix C.7.

Batch Sizes. We use a fixed physical batch size of 1024
across all experiments. Via post-hoc accounting, we will
analyze what could happen at different hypothetical batch
sizes, under the assumption that cross-entropy primarily
depends on the privacy budget and batch size through the
noise-batch ratio. We may expect this choice underesti-
mates the benefit of larger batch sizes, a question we study
empirically in Appendix C.3.

Noise-Batch Ratio. We consider 18 values of noise-batch
ratio: {2−k | k = 6, . . . , 23}, plus a baseline value of 0
corresponding to non-private training.

Metrics. Every 100 training iterations, we record the av-
erage training loss over the previous 100 iterations (or
102, 400 training examples). Using training loss instead
of evaluation loss is standard practice in scaling laws work,
and is justified by the fact that we are training for less than
a single physical epoch, so training loss is an unbiased esti-
mate of evaluation loss.

We provide details on the compute platforms and training
throughput in Appendix C.5.

3.3. Semi-Parametric Modeling

After training the models described above, we obtain a grid
of measurements over 6 unique model sizes, 1280 unique

number of iterations, 18 unique noise-batch ratios, and three
learning rates. While one can directly query this data to
answer a variety of interesting questions, we ultimately
need to know what might happen in-between (and possibly
outside of) the grid points we specifically evaluated. For
that, we need to fit a function to the data, for which we
follow a semi-parametric approach. See Appendix E for
studies with fully parametric fits.

Data Cleaning and Smoothing. First, we note that loss
should monotonically increase with increased noise-batch
ratio, and monotonically decrease with increased iterations
(unless training diverges), and we want our fitted function
to capture this property. In practice, this invariant only
holds approximately due to inherent variance in the training
process. To clean the data, we apply the following post-
processing steps:

1. For each model size and noise-batch ratio, we apply a
rolling average over the 10 previous measurements to
calculate a smoothed loss value. This corresponds to an
average over 10·100·1024 total examples, but does not
perfectly preserve the expected invariant.

2. For each model size and noise-batch ratio we apply iso-
tonic regression to ensure the 1280 loss values are mono-
tonically decreasing with respect to the number of iter-
ations. For each model size and number of iterations,
we apply isotonic regression again to ensure the 18 loss
values are monotonically increasing with respect to the
noise-batch ratio. We do not enforce any monotonicity
with respect to model size.

We use isotonic regression to enforce desired monotonic-
ity properties, rather than simpler alternatives like taking
the cumulative min across each dimension. The latter ap-
proach suffers from a statistical phenomenon known as the
minimum selection bias, where one outlier sample can com-
promise the validity of the measurements. We visualize our
smoothing process in Appendix C.9.

Training Step Extrapolation. Next, we extrapolate our
smoothed data with respect to the number of iterations, by
fitting a parametric form to the training curve and predicting
where the loss would have gone if training continued beyond
128K iterations. We use a simple parametric form inspired
by Hoffmann et al. (2022), namely L = E+ A

Tα . We fit this
function using scipy.optimize.curve_fit, which uses the
Levenberg–Marquardt algorithm to solve a nonlinear least
squares problem (Nocedal & Wright, 1999). We indepen-
dently fit a function for each model size and noise-batch
ratio on data from iterations 16K to 128K.

Scaling Law Fitting. After data cleaning, our goal
is to fit a function L(M,T, σ̄) that estimates the
loss under a M -parameter model training for T iter-
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Figure 1. Optimal model size, batch size, and iterations for varying privacy and compute budgets, with a fixed data budget of 108. Lines
show minimum values for each hyper-parameter that achieve within 1% of optimal cross-entropy for constant-compute training. Shaded
regions indicate the full range of near-optimal settings.
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Figure 2. Workflow for estimating cross-entropy of different train-
ing configurations under given compute, privacy, and data budgets.

ations with a noise-batch ratio of σ̄. We fit this
function using linear interpolation, and specifically
scipy.interpolate.RegularGridInterpolator in Python.
Since M , T , and σ̄ are all naturally varied in log-
space, we apply interpolation to the function F such that
F (logM, log T, log σ̄) := L(M,T, σ̄) instead. This func-
tion is well-defined for any T and any M, σ̄ within the
range of experimental settings considered; that is, M ∈
[4.5M, 784M], σ̄ ∈ [0.523, 0.56]. Because we use interpola-
tion, our fitted function matches the smoothed data exactly
at the evaluation points, and approximates it in between
them. In Appendix E we also fit a parametric form for this
function as well, finding that it is largely consistent with the
non-parametric fit.

3.4. Using the Fitted Functions

We are now able to answer DP scaling laws questions. Fig-
ure 2 summarizes our approach. We begin with inputs: the
compute budget, privacy budget, and data budget. Second,
we proceed by enumerating an exhaustive set of constant-
compute training configurations; i.e., combinations of model
size, batch size, and iterations that require the given com-
pute budget. Using privacy accounting and noise calibration
functions from the dp_accounting library, we compute the
noise-batch ratio as a function of the privacy budget, data
budget, iterations, and (expected) batch size. Finally, we
query our fitted function with this noise-batch ratio, along
with the given model size and number of iterations, giving

us a final estimate of the cross-entropy of these training
configurations. In addition, we can also specify directly the
training configurations instead of the compute budget for the
purposes of conducting specific ablations or comparisons.

4. Experimental Findings of Scaling Laws
4.1. Optimal Compute Budget Allocation

We first determine how to best utilize our compute bud-
get in different situations. Specifically, for a given com-
pute/privacy/data budget, we aim to understand how to opti-
mally allocate our compute budget among the model size,
batch size, and number of iterations. Additionally, we seek
to understand how the optimal allocation changes per bud-
get. While this question can be answered for virtually any
setting of the budgets with the data we collected, we visu-
alize a few relevant slices of the data in Figure 1. More
comprehensive results can be found in Appendix C.8. From
this visualization, we make the following observations:

• For small compute budgets, the optimal allocation of com-
pute budget does not exhibit a strong dependence on ϵ.
However, there is a small but consistent trend that with
larger privacy budgets, one should train a larger model
with a smaller batch size and for more iterations than
one would train with a smaller privacy budget. This find-
ing is somewhat surprising, since as the privacy budget
gets larger, the point at which increasing batch size leads
to diminishing returns in terms of noise-batch ratio in-
creases roughly according to ≈ N

√
ϵ/T (Ponomareva

et al., 2023).
• There are many settings of model size, batch size, and

number of iterations that achieve near-optimal loss, as
indicated by the large shaded regions. This suggests some
amount of robustness for compute-optimal training hyper-
parameters. All else being equal, training smaller models
on more tokens should generally be preferred due to their
inference-time efficiency advantages.

• Optimal model sizes are much smaller than predicted by
non-private scaling laws. For instance, at 1022 FLOPs,
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Figure 3. (a-b) Best cross-entropy loss achieved for varying compute budgets, four data budgets, and two different privacy budgets. Each
figure is annotated with the optimal model size at the inflection point for two of the curves. (c) Number of training tokens S ·B ·T divided
by number of model parameters for the compute-optimal training configuration, fixing the data budget to N = 107.

∼ 108 parameters are compute-optimal, compared to
∼ 1010 non-privately.

4.2. Benefits of Increased Compute

We now aim to understand and measure how much bene-
fit increased compute budgets can provide and under what
circumstances. In Figure 3a, we look at how the optimal
achievable cross-entropy depends on the compute budget
for different settings of data/privacy budget. Our main ob-
servations are:

• Increasing the compute budget can be a very effective
strategy for reducing cross-entropy under a fixed pri-
vacy/data budget up to a limit, but there is an inflection
point where increasing the compute budget beyond this
point provides little to no benefit. The “critical compute
budget” where this inflection point occurs increases with
both privacy budget and data budget. For example, with
a data budget of 108 and a privacy budget of 1, the best
cross-entropy is achieved with a compute budget ≳ 1020

and corresponds to a model with 114M parameters. This
is a qualitatively different behavior than non-private scal-
ing laws, where increasing the compute budget continues
to provide benefits even at the extreme scales.

More comprehensive analysis of the saturating compute
budget for a representative set of data and privacy budgets
can be found in Appendix C.1.

4.3. Token-to-Model Ratio

We now aim to understand more about compute-optimal
training configurations, specifically the ratio of the number
of training tokens (as measured by S·B·T ) to model size and
privacy budget. In other words, we study a form of sample
complexity. In the absence of DP, a constant token-to-model
ratio of 20× is the recommended best practice (Hoffmann
et al., 2022). As we see in Figure 3c, the behavior under DP
is not as simple:

• The token-to-model ratio increases with compute budget,
especially for smaller privacy budgets. As the privacy
budget increases, the slope decreases, and for a sufficiently
large privacy budget becomes nearly flat as predicted by
the prior work. However, the privacy budget required
to exhibit behavior similar to prior work is extremely
large. Note that a privacy budget of ϵ = 1000 provides
no meaningful formal membership inference protection.3

Nonetheless, the noise added still has a significant impact
on training: its behavior in Figure 3c is more similar to a
privacy budget of 1 than non-private training (ϵ = ∞).

• For moderate privacy budgets in the range of [1, 10], a
good token-to-model ratio is typically between 1000 and
100, 000, although for sufficiently large compute budgets,
it can go beyond this point. This connects back to an
earlier observation that even with infinite compute, there
is eventually no benefit to increasing the model size when
using a modest privacy budget. These ratios roughly cor-
respond to training models 10× to 50× smaller than pre-
dicted by Hoffmann et al. (2022).

4.4. Comparison Against Baselines

We now measure the improvement our compute-optimal
training configurations provide over natural baselines. In
the DP training literature, it is common to fix the training
configuration (model, iterations, batch size), and vary the
privacy budget. To that end, we consider 3 baseline training
configurations: BertLarge trained for 7500 steps with a batch
size of 1295, BertMedium trained for 5000 steps with a
batch size of 15879 and BertTiny trained for 2500 steps with
a batch size of 283, 061. In all three, we fix the data budget
to N = 107. Each of these training configurations requires
1019 FLOPs. The first configuration is close to what would
be predicted by non-private scaling laws (Hoffmann et al.,
2022), while the last might be selected by an expert in DP

3However, values even larger than this have been shown to be
effective against reconstruction attacks in prior works (Balle et al.,
2022; Kaissis et al., 2023; Ziller et al., 2024).
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Figure 4. Marginal benefits of increasing the privacy budget (ϵ), compute budget (B), and data budget (N ) on the noise-batch ratio.

who recognizes the importance of large batch sizes. The
results are shown in Figure 5, from which we find:

• For most privacy budgets, the training configuration pre-
dicted by non-private scaling laws (BertLarge) yields very
low utility. While utility improves for sufficiently large
privacy budgets, this suggests that private scaling laws are
fundamentally distinct from non-private ones.

• The optimal training configuration changes with the pri-
vacy budget, and naively using a fixed training config-
uration across all privacy budgets, as is common in the
literature, leaves significant utility on the table.

• Compute-optimal training can either give better utility, or
save compute/privacy budget under fixed utility. Training
a compute-optimal model with 2×1018 FLOPs yields sim-
ilar utility as the best baseline models with 5× the FLOPs
for the reasonable range of privacy budgets. This is just
one instructive example. The savings in other settings may
change depending on factors like data budget, compute
budget, and quality of the baseline training configurations
(e.g., the compute savings over BertLarge exceeds 100×,
although this is not shown).
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Figure 5. Comparison of a compute-optimal training configuration
to some natural baselines as a function of the privacy budget. All
models are trained with a compute budget of 1019 FLOPs and a
data budget of N = 107 respectively.

4.5. Synergy between Privacy/Data/Compute Budgets

While many of the trade-offs that we explore in this work
are data-dependent and require significant empirical investi-
gation, many generalizable scaling insights can be derived
purely by exploring privacy accounting. In this section we
detail some of these, which corroborate many of our ex-
perimental evidence above and require very little compute.
These insights are domain-agnostic, and therefore likely to
generalize to other machine learning settings beyond lan-
guage models, while also helping us understand and explain
some of the experimental observations presented earlier.

We analyze how the noise-batch ratio behaves as a function
of privacy budget (as measured by ϵ), compute budget (as
measured by B), and data budget (as measured by N ). We
fix T = 16000 training steps here, but our findings hold
for any fixed number of steps4. We compute the noise-
batch ratio for different settings by using the dp_accounting
library (Google DP Team, 2022). Although the function that
computes the noise-batch ratio is generally well-understood
in the sense that we know how to compute it tightly given
the privacy and training parameters, its precise behavior as
a function of the privacy budget, compute budget, and data
budget is not common knowledge. Indeed, due to lack of
clear and simple guidance on how to configure DP-SGD, it
is not uncommon to use or compare against sub-optimal
configurations of DP-SGD.

In Figure 4 we plot three vector fields. Along each axis
we vary the privacy budget, compute budget, and data bud-
get. The direction and magnitude of the vectors indicate
how much doubling each of these budgets reduces the noise-
batch ratio. Each budget is varied on a logarithmic scale at
different powers of 2. The length of the x and y components
of the vector is determined by ratio of noise-batch ratio mi-

4While compute budget could also be varied through T , the
effect of changing T is data-dependent and the noise batch ratio is
not directly comparable across different T .
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nus one. For example, a vector of length 1 along the privacy
budget axis means doubling the privacy budget reduces the
noise-batch ratio by a factor of two.

As there are three budgets that together determine the noise-
batch ratio and they interact in nuanced ways, we show three
plots in Figure 4, where we vary two of the budgets at a
time while fixing the third. These plots together provide a
fairly complete picture of the behavior of the noise-batch
ratio. Our main observations are enumerated below:

• In Figure 4a we see that varying the privacy budget or
compute budget alone (while fixing the other) leads to
diminishing returns. Increasing the privacy and compute
budgets in tandem leads to consistent and predictable
reductions in the noise-batch ratio.

• In Figure 4b we see a similar trend when varying data and
compute budgets. At small compute budgets, increasing
the data budget provides limited benefit, and vice-versa.
Increasing them simultaneously leads to consistent and
predictable improvements in the noise-batch ratio.

• In Figure 4c we see that while increasing data and pri-
vacy budgets can be helpful, for a fixed compute budget,
increasing either provides diminishing and eventually neg-
ligible benefits.

These observations provide guidance on how to effectively
configure DP-SGD and corroborate our scaling laws above.

5. Related Work
Scaling Laws of Language Models. Recent research has
explored the scaling laws governing the performance of lan-
guage models as they increase in size. Kaplan et al. (2020)
found a power-law relationship between model size, dataset
size, and compute budget, with performance on downstream
tasks following predictable scaling curves. Hoffmann et al.
(2022) extended this to open-ended language models, ob-
serving smooth scaling over 7 orders of magnitude. Chowd-
hery et al. (2022) trained PaLM, a 540B parameter model
that continued the trends. These results suggest language
models may continue improving as they scale, although Gan-
guli et al. (2022) note scaling alone may not be sufficient for
open-ended intelligence. In the context of training language
models with DP, where gradient clipping and noise addition
(Abadi et al., 2016) alter training dynamics, the scaling laws
have remained largely unexplored until this work.

Applying DP in Fine-tuning or Prompting. Recent stud-
ies demonstrate that fine-tuning (Bu et al., 2023; Wang
et al., 2024; Du et al., 2023; Thaker et al., 2023; Zhang
et al., 2024b; Tobaben et al., 2023; Wu et al., 2024a; Zhang
et al., 2024a; Chua et al., 2024a) or prompting (Duan et al.,
2023b;a; Wu et al., 2024b; Tang et al., 2024; Hong et al.,
2024; Amin et al., 2024) LLMs can achieve strong perfor-
mance while ensuring downstream data privacy. However,

these privacy guarantees are limited to downstream data,
leaving the pre-training process exposed. Given that LLMs
are pre-trained on extensive Internet data, which is often
sourced without explicit user consent (Gold & Latonero,
2017), this raises ethical and privacy concerns (Tramèr et al.,
2024). Safeguarding privacy during pre-training remains
a significant challenge. This study seeks to provide new
insights to advance privacy-preserving pre-training of lan-
guage models.

DP Training of Vision Models. Training DP models from
scratch for vision tasks is an active area of research (Yu
et al., 2021; De et al., 2022; Bu et al., 2022; Kurakin et al.,
2022; Sander et al., 2024). The most related work is that of
Sander et al. (2023), who investigate the scaling behavior
of DP training on vision tasks by varying key hyperparame-
ters. They demonstrate that, under a fixed privacy budget,
carefully tuning batch size, training steps, and learning rate
is critical for better accuracy. However, they do not account
for a bounded compute budget, a crucial factor in scaling
law studies for language models (Hoffmann et al., 2022).
Additionally, it remains unclear how their findings translate
to language modeling tasks. In this work, we extend scal-
ing law analyses to language models, incorporating both
standard optimization hyperparameters and a bounded com-
pute budgets to align more closely with recent LLM scaling
research.

6. Conclusion and Future Directions
This work establishes a principled methodology for under-
standing the compute-privacy-utility trade-off of language
models trained under DP, and it represents an important step
towards training larger, more capable models efficiently on
sensitive user data. This endeavor will require collecting
increasingly larger datasets over larger groups of individu-
als, while simultaneously scaling up compute. For example,
to train a billion parameter model optimally with DP, one
could collect data from one billion individuals, using a gen-
erous privacy budget of ϵ ≈ 10, and train on large compute
clusters for ≈ 1023 FLOPs. This is in stark contrast to
non-private laws, e.g., Anil et al. (2023) suggest a much
larger ≈ 20B parameter model could be trained with ≈ 2B
examples.

This work raises several new questions worth exploring in
future work, including how do the scaling laws change when
(1) doing fine-tuning instead of pre-training, (2) using better
underlying mechanisms, and (3) when allowed to vary the
sequence length. These questions (along with several others)
are discussed in greater detail in Appendix A.
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Impact Statement
This paper presents work whose goal is to advance the field
of machine learning, specifically in the area of differentially
private (DP) language models. It establishes DP scaling
laws that shed light on the trade-offs between compute, pri-
vacy, and utility, and can lead to more efficient and effective
methods for training LLMs on user data while satisfying DP,
a gold standard for bounding the privacy loss. The scaling
laws presented can help researchers and practitioners choose
model sizes, batch sizes, and training iterations based on
available compute, data, and privacy budgets. By develop-
ing methods to make DP training more feasible, the paper
contributes to the responsible development and deployment
of AI technologies. We point out that, when applying DP
in practice, the privacy unit has to be chosen carefully; in
particular, a user-level guarantee may be needed. More-
over, while a valuable tool, DP may not be sufficient when
training on user data; additional mitigations may need to be
simultaneously applied depending on the application.
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A. Limitations and Open Questions
While our methodology revealed a number of interesting findings about the behavior of scaling laws under DP, there are
some limitations of our approach and questions that remain unanswered that we enumerate below.

Fixed Physical Batch Size. Our methodology relies crucially on the assumption that the Gaussian noise introduced to
preserve privacy far outweighs the randomness introduced from minibatch sampling, and thus it would be sufficient vary the
noise-batch ratio while keeping the physical batch size fixed to a large constant value of 1024. Appendix C.3 reveals that this
assumption may not be fully true, and that the physical batch size has a more nuanced effect that we cannot fully explain.

Robustness to Other Training Setups. Our methodology focuses on a single class of BERT models, with a fixed dataset
and DP mechanism, which allowed us to do deeper experimentation on other relevant variables. Our general methodology
holds for different models, datasets, and mechanisms, but the exact quantitative findings may differ under different training
setups. As the field continues to make advancements on training transformers with DP, it would be interesting and informative
to rerun our experiments with better base mechanisms.

Pre-training vs. Fine-tuning. As an important first step, we focused on the pre-training regime in this work, where we
start with a completely random model which we train from scratch. Fine-tuning a pre-trained model with DP is often a
preferable approach in practice to get the best privacy/utility trade-offs (Yu et al., 2022; Li et al., 2022). There are a number
of challenges to overcome to quantify the scaling laws in this regime, but it remains an interesting question for future work.

Sequence Length. Our experiments focus on a fixed sequence length of 512 tokens, which was the default value in the
experiment we branched. However, the sequence length is yet another important knob that can be tuned alongside the batch
size, model size, and number of iterations in language modeling tasks. There are likely interesting trade-offs to explore here:
with smaller sequence lengths, less context is available to predict the next / missing tokens, but the saved computation can
be used to increase the batch size, model size, or number of iterations. Whether the trade-off is worth it likely depends on
the exact setting as well as the distributional properties of the training data.

Over-Training and Inference-Time Compute. While this work focuses on the FLOPs required to pre-train a model to a
given loss threshold, in practice language models are often over-trained in order to account for inference-time costs (Gadre
et al., 2025). If a model is going to be deployed, it may make sense to over-train a smaller model (which is cheaper to serve)
than to train a larger model for a compute-optimal FLOPs budget. While we do not study over-training in our work, we
note that such a study is particularly fruitful in the case of DP training; the privacy costs already often favor smaller models
(when compared to non-private scaling laws). Investigating this confluence would likely yield valuable insights into DP
scaling laws.

Larger Model Sizes. The accuracy of any given scaling law is predicated to some degree on the range of model sizes
trained on. For example, Hoffmann et al. (2022) train model of up to 16B parameters. Due to the necessity of using very
large batch sizes, training models of such scale requires a significant amount of compute. We leave the task of training on
model of larger scale to future work, along with analysis of how much this affects the derived scaling law.

Efficient Implementations of Per-Example Gradient Clipping. When considering to use a significant compute budget
to train a large language model with DP, it is important that that model training code is carefully optimized to minimize the
overheads of DP training. Using efficient vectorized per-example clipping implementations in JAX have been shown to
work perform well with a reasonable overhead compared to non-private training (Subramani et al., 2021), although this
focused on single-machine training scenarios, and more careful study is needed in this area when doing multi-machine
training, especially when moving beyond pure data-parallelism, which we focused on in this paper.

The Choice of Optimizer Our analysis relies on current optimization techniques, which may not be optimal for privacy-
preserving training. Several potential optimizer improvements could affect our findings. A uniformly better optimizer would
likely preserve the observed scaling relationships while the actual optimal operating points might shift. In previous scaling
law studies we do see the better optimizer can somehow smooth out the discontinuities in scaling behavior (Chen et al.,
2023; Loshchilov & Hutter, 2019) or even enable new scaling regimes sometimes (e.g., LAMB (You et al., 2020) for large
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Algorithm 2 Generalized DP-SGD.
Input: Dataset D, noise-batch ratio σ̄, (expected) batch size B, iterations T
Output: Model parameters θ.
Initialize model parameters θ0 ∈ RM

for t = 1 to T do
Select a (possibly random) size ≈B minibatch Bt⊂D
ḡ = 1

B

∑
x∈Bt

clip(∇ℓ(θt−1;x))

g̃ = g + σ̄N (0, 1)M

θt = OptimizerUpdate(θt−1, g̃)

return θT

batch size pre-training shows a very different scaling behavior). The optimizers specifically designed for privacy-preserving
training might recommend a new set of parameters to enable better absolute performance.

B. Additional Details
B.1. Notes on Generalized DP-SGD

Minibatch Selection We were vague in our description of the minibatch selection step. In most descriptions of DP-SGD,
the minibatch is formed by Poisson subsampling with a fixed probability. Sampling with or without replacement, as well
as deterministic batching are also possible (Balle et al., 2018). In our paper, we calibrated noise under both the Poisson
sampling assumption and the deterministic batching strategy, picking the lower noise multiplier. When doing Poisson
sampling, we use the sampling probability B/N and noise multiplier B ·σ̄.

Known Quantities If doing Poisson sampling, we typically are operating under the add/remove adjacency definition. Under
this definition, N is considered a sensitive quantity that we do not have access to directly, hence we cannot technically
define the sampling probability as B/N without violating DP. We also rely on N later on, discussing its importance as it is
interpreted as the data budget. If necessary, one can approximate N quite accurately with DP since it is a simple count.

Alternatively, one can simply use the “zero-out” adjacency notion (Chua et al., 2024b), where N is known but Poisson
sampling still enjoys the same privacy analysis.

Clipping Function We omit a clipping norm parameter in the definition of “clip”. This can be any function that maps an
arbitrary real-valued vector to one with ℓ2-norm at most one. One standard choice is to clip the norm to C, and then divide
by C (De et al., 2022).

B.2. Unit of Privacy and Multiple Participations

In traditional scaling laws work, it is common to assume access to an endless stream of data that does not require privacy
protections. Therefore, every training example is only seen once, which simplifies the analysis of the scaling laws. In our
case, we trained our models for 128K iterations with a physical batch size of 1024, which is slightly less than a single
pass over our entire dataset, satisfying the typical assumption. However, in our data analysis, we estimate what would
happen with significantly larger batch sizes than we ran with, and in some cases this would involve multiple passes over
the actual private dataset, something we did not account for directly in our analysis. Therefore, the actually setting that is
best represented by our experimental methodology is not actually example-level DP, but rather user-level DP. There, we
may assume that we have a finite number of users N (which we should now interpret as the data budget), but we have an
endless stream of data for each user. This circumvents the main concern, while allowing for users to participate multiple
times during training which is typically very useful under DP. Alternatively, one can still consider the example-level DP
setting, where each base example has multiple augmentations (e.g., rewritten text sequences that are semantically similar)
that we can train on. All of our findings should hold, and be more reliable in this setting based on our methodology.

B.3. FLOPs estimation under DP

As discussed, we approximate the compute cost C as 6·M ·B ·S ·T based on the non-private scaling laws (Kaplan et al.,
2020; Hoffmann et al., 2022) except that B represents the number of examples (not tokens) in a batch, as this determines the
privacy budget. This cost model is useful because we can directly compare to the non-private scaling laws. Further, this cost
model is also accurate because the extra overhead of DP-SGD compared to Adam can be directly amortized: compiler-based
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systems like GSPMD (Xu et al., 2021) and parallel machine learning libraries (Rush et al., 2024) let us parallelize the
per-example gradient computations without a linear (in B) increase in memory usage. The total clipping costs are only
a small linear cost (comprising of only element-wise operations and no matrix multiplications) in M , T , and B (and are
independent of sequence length S); the total noising costs are independent of B and are linear in only M and T . Thus, the
overall compute in DP-SGD is dominated by the non-private approximation above.

C. Additional Experiments
C.1. Saturating Compute Budget

Building on our findings above, it is natural to ask where the saturation point occurs for different privacy budget and data
budgets. This can be helpful to determine how much compute is needed to get the most utility under a fixed data and privacy
budget, as well as how to spend that compute optimally. These results are shown in Table 2.

• With a higher data and privacy budget, we benefit substantially from larger compute budgets.
• With DP, the compute-optimal training configurations requires training significantly smaller models over significantly

more tokens than without DP. For these training configurations, the ratio of training tokens to model parameters varies in
different settings, but in all settings it is significantly larger than it would be without DP, where prior work found 20× to
be a good rule of thumb (Hoffmann et al., 2022).

Table 2. Saturating compute budgets, as well as optimal training configurations for those compute budgets across a representative set of
data and privacy budgets.

Data Privacy Compute Cross Model Iterations Batch Token / Model
Budget Budget Budget Entropy Size Size Ratio

1.0× 105 1 1.3× 1016 7.28 4.6× 106 1.8× 103 5.1× 102 1.0× 102

4 1.1× 1017 6.65 4.6× 106 1.8× 103 4.1× 103 8.5× 102

16 2.0× 1018 5.60 1.7× 107 2.7× 103 1.4× 104 1.1× 103

64 7.5× 1018 4.63 2.0× 107 6.3× 103 1.9× 104 3.2× 103

1.0× 106 1 2.8× 1017 5.89 4.6× 106 2.5× 103 8.2× 103 2.3× 103

4 8.8× 1018 4.62 1.9× 107 6.5× 103 2.3× 104 4.1× 103

16 3.3× 1019 3.61 1.7× 107 1.4× 104 4.6× 104 1.9× 104

64 3.2× 1020 2.82 4.9× 107 1.2× 104 1.9× 105 2.2× 104

1.0× 107 1 3.8× 1019 3.73 1.7× 107 9.6× 103 7.8× 104 2.3× 104

4 3.8× 1020 2.81 4.9× 107 1.1× 104 2.2× 105 2.6× 104

16 2.0× 1021 2.15 7.0× 107 1.2× 104 7.4× 105 6.7× 104

64 4.4× 1022 1.66 3.3× 108 4.9× 104 8.8× 105 6.7× 104

1.0× 108 1 5.2× 1021 2.26 1.3× 108 5.8× 104 2.2× 105 4.9× 104

4 4.4× 1022 1.66 3.3× 108 4.9× 104 8.8× 105 6.7× 104

16 1.0× 1023 1.32 3.3× 108 9.3× 104 1.0× 106 1.5× 105

64 1.0× 1023 1.23 3.3× 108 1.1× 105 8.8× 105 1.5× 105

1.0× 109 1 8.5× 1022 1.36 3.3× 108 9.4× 104 8.8× 105 1.3× 105

4 1.0× 1023 1.23 3.3× 108 1.1× 105 8.8× 105 1.5× 105

16 1.0× 1023 1.22 3.3× 108 1.1× 105 8.8× 105 1.5× 105

64 1.2× 1023 1.20 3.3× 108 1.1× 105 1.1× 106 1.8× 105

C.2. Full Experiment Grid

In Figure 6, we plot the cross-entropy loss for different privacy budgets, data budgets, and compute budgets under varying
numbers of iterations, model sizes, and batch sizes. Much can be learned from these plots, including:

• The optimal number of iterations typically falls around T ≈ 10K, and the optimal batch size often falls in the range
B ≈ 10− 100K, although neither of these is universally true and as expected it depends on the values of the privacy,
data, and compute budgets. Batch size seems to be the most important parameter, as indicated by the steep slope of
those lines.

C.3. Physical Batch Size Ablation

Central to our methodology is an assumption that for a fixed noise-batch ratio, the training curves should be similar for
different physical batch sizes. In this section, we conduct ablations to test this hypothesis, and quantify the impact of varying
physical batch size under a fixed noise-batch ratio. We consider 3 values for noise-batch ratio: 0.520, 0.515, and 0.510, and

15



Scaling Laws for Differentially Private Language Models

103 104 105 106 107

Iterations

3

4

5

6

Cr
os

s 
En

tr
op

y

107 108

Model Size
102 103 104 105 106

Batch Size

Privacy Budget
1
4
16
64

103 104 105 106 107

Iterations

3

4

5

6

Cr
os

s 
En

tr
op

y

107 108

Model Size
102 103 104 105 106

Batch Size

Data Budget
106

107

108

109

103 104 105 106 107

Iterations

3

4

5

6

Cr
os

s 
En

tr
op

y

107 108

Model Size
102 103 104 105 106 107

Batch Size

Compute Budget
1017

1019

1021

1023

Figure 6. Cross-entropy of best models trained in each setting. From top to bottom , we vary the Privacy Budget, Data Budget, and
Compute Budget, keeping the other two budgets fixed to default values (bolded). From left to right, we vary the number of Iterations, the
Model Size, and the Batch Size, and treat the other two as nuisance parameters which we minimize over.
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Figure 7. Cross-entropy loss of BertTiny averaged over 3 trials for different physical batch sizes and noise-batch ratio values.

physical batch sizes of 128, 512, 2048, and 8192. For this ablation we focus on the BertTiny model, which we train for
128K iterations. We average the losses across three random trials.

The results of this experiment are shown in Figure 7. Our primary findings are:

• At the smallest noise-batch ratio in Figure 7a, results are as expected. Specifically, larger batch sizes lead to better model
performance, but there are diminishing returns. Physical Batch Sizes of 2048 and 8192 have nearly identical training
curves.

• At the medium and larger noise-batch ratio values shown in Figures 7b and 7c, we observe a surprising phenomenon:
smaller physical batch sizes lead to models with lower loss. The effect is most prominent in Figure 7c. We do not
have a good explanation for this behavior, but we did additional experiments to rule out some plausible explanations in
Appendix C.4. Large physical batch sizes (B = 2048 and B = 8192) still have very similar learning curves.

While the results of this experiment did not fully match expectations, a similar behavior was observed in prior work (Sander
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et al., 2023) (Figure 4b). Moreover, for sufficiently large batch sizes the training curves are very similar across all noise-batch
ratio values tested. Thus, we believe that the physical batch size of 1024 that we use in our main experiments is a reasonable
(although not perfect) indicator of what would happen with much larger batch sizes that would be needed to get favorable
privacy/utility trade-offs in real-world settings. Understanding when and why thsi behavior manifests is a very interesting
direction for future work.

C.4. Physical Batch Size Ablation - Extended

In Appendix C.3 we observed a surprising phenomenon where for some values of noise-batch ratio, smaller physical batch
sizes perform better than larger physical batch sizes. This is in contrast to our initial hypothesis, and our experimental
results for very small values of noise-batch ratio that larger physical batch sizes should be on par with or better than smaller
physical batch sizes for the same noise-batch ratio.

While we do not have a great explanation for the observed phenomenon, we have ruled out several possible explanations,
which we discuss below:

1. Learning Rate Tuning. While our main experiment used a fixed learning rate of 0.58 across all values of noise-batch
ratio, we ran further experiments for a noise-batch ratio of 0.515 with four different learning rates (0.56, 0.57, 0.58, 0.59),
and report the best cross-entropy across all learning rates on a per-iteration basis. Even with learning rate tuning, the
conclusion is the same: smaller physical batch sizes achieve lower loss than larger ones (see Figure 8).
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Figure 8. Smaller physical batch sizes achieve lower loss than larger ones.

2. Differences in Train / Eval Loss. Our main experiment measures the training loss, but since the loss is computed
before incorporating the gradient into the model, and because we train for less than one pass over the entire dataset,
this is an unbiased estimate of the evaluation loss. It is natural to ask which models have lower final loss on the
training set (after incorporating those examples into the model). To test whether lower physical batch sizes somehow
generalize better, or whether they also do better on the training loss, we measured the loss of the final trained model
on 1M examples from the training set. We focus on the noise-batch ratio of 0.515 in this test. The table below shows
that smaller physical batch sizes also have better performance on the already-seen training examples, ruling out this
explanation (see Table 3).

Training Set
Batch Size Cross-Entropy Accuracy

128 3.586 43.59%
512 3.971 37.27%

2048 4.01 37.55%
8192 4.057 36.73%

Table 3. Loss over the entire training set is also better for lower physical batch sizes.

3. Model Size. The main experiment uses BertTiny, which is a relative small model. It is natural to ask whether the same
behavior would be observed for a larger model like BertBase. The figure below shows that the same phenomenon
happens for BertLarge, but only for the largest noise-batch ratio. The other two values of noise-batch ratio do not
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exhibit this behavior, although at the middle noise-batch ratio, the trend line suggests there may be a crossover point
beyond the limits of the x axis. Thus, increasing model size seem to influence and mitigate this behavior, but not
eliminate it completely. See Figure 9.
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Figure 9. Cross-entropy loss of BertLarge averaged over 3 trials for different physical batch sizes and noise-batch ratio values.

4. Training Pipelines. It is natural to question whether this behavior is explained by some bug in the training pipeline.
We carefully reviewed the implementation and did not find any bugs that could explain this behavior, and also did
additional experiments on a totally separate training pipeline based on NanoDO (Liu et al., 2024), where we observed
the same qualitative behavior when training a 30M parameter decoder-only transformer model with DP-Adam for 32K
iterations. The figures below show the smoothed cross-entropy averaged over 3 random trials.
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Figure 10. Loss on NanoDO (Liu et al., 2024).

C.5. Training Throughput

By looking at intermediates, using a single physical batch size, and separating the accounting from the experimentation
we greatly reduce the number of experiments to run. However, the set of experiments we outline above is still very
compute-intensive. We utilize TPUv3 pods to run all experiments, and configured the models to use pure data parallelism,
using more cores for larger models so that each experiment finishes within four to ten hours. BertTiny was trained on
16 TPUv3 cores, while BertLarge was trained on 128. Table 4 provides the training throughputs for all models in our
experiments.
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Model Params Steps/sec Per Core Batch Size Records / Sec

BertTiny 4.52M 8.959 64 573
BertMini 11.4M 5.494 64 352
BertSmall 29.0M 6.602 32 211
BertMedium 41.6M 4.196 32 134
BertBase 110M 3.621 16 54
BertLarge 335M 2.225 8 17.8
BertMega 729M 1.536 4 6.1

Table 4. Training throughput for various BERT models

C.6. Reproducing non-private scaling laws results

We now confirm that the experimental data we collected matches the expected behavior of Hoffmann et al. (2022), specifically
that in the absence of noise, the optimal model size and tokens should grow in roughly equal proportion with increasing
compute budget. This is true despite our several methodological differences, including: (1) doing per-example gradient
clipping, (2) using a different optimizer and not retraining for each number of iterations, (3) using a large physical batch
size, etc. The exact Token / Model ratio predicted here is larger than prior work, but that is well explained by the fact that a
batch size of 1024 examples is well beyond the critical batch size of compute-efficient training (McCandlish et al., 2018).
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Figure 11. Compute-optimal cross-entropy, model size, and number of iterations when running DP-Adam with σ = 0.

C.7. Optimal Learning Rates

We now look at the training curves for different learning rates and different noise-batch ratio values. These results generally
match expectations and demonstrate that the learning rates we chose were selected from the correct regime.

19



Scaling Laws for Differentially Private Language Models

103 104 105

Iterations

3

4

5

6

Cr
os

s 
En

tr
op

y

Learning Rate
0.59

0.58

0.57

103 104 105

Iterations

2

3

4

5

6

7

Cr
os

s 
En

tr
op

y

Learning Rate
0.59

0.58

0.57

(a) noise-batch ratio = 0.520

103 104 105

Iterations

4

4.5

5

5.5

6

6.5

7
Learning Rate

0.59

0.58

0.57

103 104 105

Iterations

3

4

5

6

7 Learning Rate
0.59

0.58

0.57

(b) noise-batch ratio = 0.515

103 104 105

Iterations

6

6.25

6.5

6.75

7

7.25

Learning Rate
0.59

0.58

0.57

103 104 105

Iterations

6.7

6.8

6.9

7

7.1

7.2

7.3

Learning Rate
0.59

0.58

0.57

(c) noise-batch ratio = 0.510

Figure 12. Training curves for BertTiny (top) and BertMedium (bottom) with varying learning rates at different noise-batch ratio values.

C.8. Optimal Compute Budget Allocation

In this section, we extend the results from Section 4.1, including results for more settings of the data budget, ranging from
N = 106 to N = 109. The full results are shown in Figure 13. Our findings are qualitatively similar to the ones we
identified in the main text across different data budgets, but the precise constants may differ.

C.9. Smoothing and Extrapolation

In Figure 14 we visualize how our semi-parametric smoothing approach works. Since each raw measurement is an average
cross-entropy over 1024·100 examples, it is naturally a noisy estimate of the “true” cross-entropy. Our smoothing strategy
ensures the appropriate monotonicity properties are enforced, while matching the overall trend as closely as possible.

D. Caveats on Privacy Calibration
Throughout the work, we have assumed that hyperparameter choices for model training are made against a fixed privacy
budget. In particular, we assume the common scenario in which the model trainer fixes an (ϵ, δ)-budget and then utilizes a
privacy calibration algorithm to choose DP-SGD hyperparameter combinations (sampling probability, training iterations
and noise scale) which satisfy this privacy budget. Note that in the main manuscript, we express this choice in terms of the
noise-batch ratio σ and the number of iterations T , but this is merely a matter of notation. As also noted in the preceding
subsection, the choice of sampling probability (and thus the resulting batch size) play an important role in determining the
final model’s cross-entropy. As described in the recent work of Kaissis et al. (2024), calibrating against a fixed (ϵ, δ)-budget
while varying DP-SGD hyperparameters must be done with care: In brief, one cannot assume that DP-SGD with different
hyperparameters offers the same privacy guarantees despite having the same nominal (ϵ, δ)-budget. This is due to the fact
that the privacy guarantees of DP-SGD can only be adequately expressed through a privacy profile, that is, a collection
of (ϵ, δ(ϵ)) tuples. In simple terms, two DP-SGD algorithms can share an (ϵ, δ)-budget, that is, offer the same privacy
guarantees for a specific δ while offering (sometimes drastically) different privacy guarantees at a different value of δ. As
also described in the aforementioned work, varying the sampling rate (and thus batch size) has a drastic impact on this
difference in privacy guarantees. The authors of the aforementioned work thus recommend reporting the excess vulnerability
that DP-SGD algorithms incur with respect to each other when they replace one another in a workflow. We refer to the
aforementioned work for technical details. Here, we demonstrate that meaningful differences can indeed arise between
models calibrated to satisfy the same (ϵ, δ)-budget.

Exemplarily, we fixed a privacy budget of (ϵ, δ) = (8, 10−8) for specific fixed compute budgets and model sizes while
varying the batch size (and adjusting the noise to maintain the privacy budget). We then computed the scaling-law predicted
cross-entropy and the vulnerability of the models against membership inference attack (MIA) adversaries measured in
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(a) Model Sizes
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(b) Batch Size
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(c) Iterations

Figure 13. Compute optimal model-sizes, batch sizes, and iterations for varying privacy budgets and compute budgets, and data budgets.
Each row of plots corresponds to a different data budget of N = 106, 107, 108, and 109 respectively. Each line corresponds to the
minimum value of that hyper-parameter that achieves within 1% of the optimal cross-entropy across all constant-compute training
configurations. The shaded region corresponds to the full range of possible values for that hyper-parameter that are optimal to within 1%.

terms of MIA advantage (Yeom et al., 2018). We note that MIA advantage is a proxy metric for other attacks such as
reconstruction attacks and is related to the ∆-divergence which quantifies vulnerability as described in Kaissis et al. (2024).
Figure 15 demonstrates the phenomenon.

Note that in all three cases, it is possible to achieve virtually the same cross-entropy (blue, left vertical axis) while controlling
the MIA advantage by judiciously choosing the batch size. Conversely, it is also possible to incur an unduly high vulnerability
without a substantial decrease (or sometimes even an increase) in cross-entropy through a poor choice of batch size. As an
auxiliary finding, we note that the relationship between cross-entropy and batch size follows the trend observed in De et al.
(2022). In brief, there is a Pareto optimal batch size beyond which both the cross-entropy and the excess vulnerability can
only become worse (larger). We stress that the models shown here all satisfy the same nominal (ϵ, δ)-budget but exhibit
(substantial) differences in vulnerability against at least a subset of adversaries which may pass unnoticed if only reporting a
single (ϵ, δ)-DP guarantee. We thus recommend practitioners to monitor changes in excess vulnerability that may arise due
to hyperparameter tuning and report them alongside the (ϵ, δ)-budget to which DP-SGD has been calibrated.
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Figure 14. Demonstration of our semi-parametric smoothing on BertTiny.
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Figure 15. Varying the batch size (horizontal axis, log-scale) has a drastic effect on excess vulnerability (measured as MIA advantage,
red, right vertical axis) for models with a fixed compute budget and size and a fixed privacy budget of (ϵ, δ) = (8, 10−8). (a): Compute
budget: 6·1017, model size: 4 000 000. (b) Compute budget: 6.3·1019, model size: 200 000 000. (c) Compute budget: 2.5·1020, model
size: 200 000 000. The scaling-law-predicted cross-entropy is plotted on the left vertical axis in blue.

E. Parametric Scaling Laws
Previous work on (non-private) LLM scaling laws use a fully parametric form to predict the cross-entropy loss based on
several key factors. For example, the “Chinchilla” scaling law (Hoffmann et al., 2022) can be parameterized as follows:

L̂(nparams, ntokens) ≜ E +
A

nα
params

+
B

nβ
tokens

.

In this section, we explore a similar methodology to fit a fully parametric form of scaling law in the setting of private
training. Following the notation of this paper, we define a parametric form based on the following key factors: the model
size M , the number of examples N and the noise-batch ratio σ̄. Note our notations are slightly different from Hoffmann
et al. (2022), and we use number of examples instead of number of tokens as it is a more relevant quantity in private training.

We consider several variations of parametric forms. The first one is a naive extension of the Chinchilla scaling law, by
adding an additional term involving the noise-batch ratio:

L̂1(M,N, σ̄) ≜ E +
A

Mα
+

B

Nβ
+ Cσ̄γ . (1)

We did not put σ̄γ in the denominator because the loss increases with the noise-batch ratio. Following Hoffmann et al.
(2022), we estimate the coefficients (E,A,B,C, α, β, γ) by minimizing the Huber loss (Huber, 1992) between the predicted
and the observed loss using the L-BFGS algorithm (Nocedal, 1980), and we try multiple different initializations and choose
the best fit. We restrict the curve fitting data to only the subsets of data points with more than 100, 000 training iterations,
noise-batch ratio larger than 5× 10−7, and ignore points with very high cross-entropy loss (> 8).

Figure 16 shows the optimal fit. We observe that the prediction is generally accurate for low loss value ranges. However, the
prediction starts to diverge at high loss value ranges, corresponding to runs with high noise-batch ratio. This is partly due to
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Figure 16. Parametric private scaling law of L̂1 from Equation (1). Optimal fit with α = 0.71, β = 12.87, γ = 0.19. The two pannels
show the same plot of observed cross-entropy loss against the predicted loss from the scaling law, except the data points are colored
differerently, according to the model size and noise-batch ratio, respectively.

Figure 17. Relation between the noise-batch ratio and the cross-entropy loss. (left) The data plotted in log-log scale. (right) The data
plotted in linear scale, where the noise-batch ratio σ̄ is transformed according to a simple rule in Equation (2).

the fact that the noise-batch ratio does not impact the loss in a log-linear fashion, as shown on the left panel of Figure 17.
Therefore, the parametric form of Equation (1) cannot capture the relation accurately. Instead, we observe S-shaped curves
in the log-log plot. To account for this, we apply a simple transform to the noise-batch ratio σ̄:

σ̄↬ ≜ sigmoid
(
log(σ̄) + 8

1.6

)
. (2)

The right panel of Figure 17 shows an approximately linear relation after this transformation. Furthermore, we observe that
the relation between the noise-batch ratio and the loss changes with the model sizes.

After incorporating those observations, we consider an alternative variant of private scaling law parameterization:

L̂2(M,N, σ̄) ≜ E +
A

Mα
+

B

Nβ
+

Cσ̄γ
↬

Mα2
. (3)

The optimal fit according to this parameterization is shown in Figure 18. We observe that the predicted loss matches with
the observed loss better than the previous parameterization in Figure 16.

Figure 18. Parametric private scaling law of L̂2 from Equation (3). Optimal fit with α = 0.47, β = 0.12, γ = 0.95, α2 = −0.07. The
two pannels show the same plot of observed cross-entropy loss against the predicted loss from the scaling law, except the data points are
colored differerently, according to the model size and noise-batch ratio, respectively.
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Figure 19. Optimal model sizes under according to the parametric private scaling law in Equation (3).

In the Chinchilla parameterization of scaling law for non-private LLMs, the optimal model size under a certain compute
budget (approximately represented by 6nparamsntokens) can be directly solved and takes a power-law form (Hoffmann et al.,
2022, Equation (4)). In our case, the parameterization is more complicated, for a given compute budget and noise-batch
ratio, we use scipy.optimize.minimize_scalar to find the optimal model size that minimizes L̂2. The results are plotted
in Figure 19. We observe that the slope is lower for curves with larger noise-batch ratio, indicating the challenges to scale
model sizes under heavy DP noises. As the noise decreases, the curves shift up and the slopes increase, approaching towards
the non-private Chinchilla scaling law shown in dashed line.

While a fully parametric scaling law can be easier to interpret and understand, as noted above, there is not a simple log-linear
relation between the loss and the noise-batch ratio. Our sigmoid based transformation (and the coupling with the model size)
improved the tightness of the fitting. But the transformation is not designed in a very principled way. As a result, we opt
to use the semi-parametric fitting in Section 3 in the main analysis of our results. We also leave the exploration of other
alternative parametric fitting such as fitting a σ̄-depending delta term on top of a non-private scaling law for future work.
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