
Under review as a conference paper at ICLR 2024

LATENT SHATTERING: TURNING UNCONDITIONAL
PRETRAINED GENERATORS INTO CONDITIONAL
MODELS BY IMPOSING LATENT STRUCTURE

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep generative models, such as GANs and VAEs, have gained substantial atten-
tion for their ability to synthesize realistic data. Pretrained generative models are
often unconditional, thus do not easily allow the user to specify the class of the
output. Yet supporting conditional generation offers inherent benefits for many
tasks. Due to current models requiring huge data sets and often prohibitively ex-
pensive computational resources for training, it is desirable to have a lightweight
method that can convert pretrained unconditional generators into conditional mod-
els without retraining. Previous research into this problem is limited, typically
assuming either access to classifiers that identify which regions of the genera-
tor’s latent space correspond to specific classes, access to labeled data, or even
retraining of the generative model itself. These strict requirements pose a serious
limitation. In this work, we propose LASH, a fresh approach at the conversion
of unconditional generators into conditional models in a completely unsupervised
manner without requiring retraining nor access to any real data. Instead, the key
principle of LASH is to identify points in the generator’s latent space that are
mapped to low-density regions of the output space. The insight is that by remov-
ing these points, LASH “shatters” the latent space into distinct clusters where each
cluster corresponds to a semantically meaningful mode in the output space. We
demonstrate that these modes correspond to distinct real-world classes. Lastly,
LASH utilizes a simple Gaussian mixture model to adaptively sample from these
clusters, supporting unsupervised conditional generation. Through a series of ex-
periments on MNIST, FashionMNIST, and CelebA, we demonstrate that LASH
significantly outperforms existing methods in unsupervised conditional sampling.

1 INTRODUCTION

Motivation. Generative models are increasingly being adopted in a wide range of domains due to
their impressive ability to synthesize realistic data for many modalities (Bond-Taylor et al., 2022).
Many popular classes of generative models, such as Generative Adversarial Networks (GANs)
(Goodfellow et al., 2014) and Variational Auto-Encoders (VAEs) (Kingma & Welling, 2013), utilize
a generator1 that maps from a lower-dimensional latent space Z to a higher-dimensional data space
X. Though some pretrained GAN and VAE models allow for conditional generation, many are un-
conditional (Laria et al., 2022); meaning the user does not have control over which class is sampled
from. For instance, a user can use an unconditional generator trained on a dataset of pictures on
animals to synthesize random images of animals, but cannot specify that the image be a picture of
a “dog”. Due to the expense and difficulty associated with training these generative models (Chen,
2021), it would be beneficial to have the ability to convert pretrained unconditional models into
conditional models without having to retrain the generator or any other deep network.

State-of-the-Art. Existing work in performing class-specific generation given pretrained uncon-
ditional models typically have stringent restrictions. Namely, they either require 1) classifiers or
energy functions that provide feedback on which class each point in the latent space Z corresponds

1In auto-encoder based models, the generator corresponds to the decoder network

1

Under review as a conference paper at ICLR 2024

? ? ? Generator’s Latent Space

Generator’s Output Space

(a) An example of an unstructured latent space.

Generator’s Latent Space

Generator’s Output Space

(b) An example of a structured latent space.

Figure 1: a) The latent space of the generator typically follows a data-independent prior and is thus
unstructured; clusters in the output space do not have corresponding clusters in the latent space. b)
Alternatively, a structured latent space consists of distinct clusters that each map to a unique sub-
manifold in the data space. Our LASH approach produces a structured space.

to when passed through the generator (Wu et al., 2022; Engel et al., 2018); or 2) labeled data and
training of additional deep networks to guide the generator’s output (Laria et al., 2022). However,
neither access to additional networks that can provide this class-specific feedback nor access to
training data and sufficient compute resources is practical in many real-world resource-constrained
settings.

Problem Statement. This leads to the open research question tackled by this work, namely, can
we convert a pretrained generator into a conditional model in an unsupervised manner and without
retraining any deep networks? To the best of our knowledge, we are the first to study this open
problem. For this work, we limit our focus to generative models that map from a lower dimensional
latent space to a higher dimensional data space, as is typical for models such as GANs and VAEs
(Goodfellow et al., 2014; Kingma & Welling, 2013).

Challenges. Performing class-conditional generation is extremely challenging, especially when
we assume we have no labels nor auxiliary classifiers at our disposal to provide supervision. How
can we possibly determine what classes even exist in the generator’s output space? In this work, we
put forth that a natural proxy for class labels is to identify the different modes or sub-manifolds in
the data space. This is motivated by recent work which has provided evidence that high-dimensional
data such as images often lay on a union of disjoint sub-manifolds (Brown et al., 2023), where these
sub-manifolds correspond to semantically meaningful classes. For example, in MNIST each digit
lies on a different sub-manifold in the image space (Brown et al., 2023). Therefore, a potential
solution may aim to identify which regions of the latent space Z correspond to each of these sub-
manifolds, and then selectively sample from these regions. However, this is difficult because the
distribution over the latent space of leading generative models is typically enforced as a prior and is
thus not data-dependent (Goodfellow et al., 2014; Kingma & Welling, 2013); e.g., the distribution
is Gaussian or uniform. In other words, there is no fluctuation in density or any other variation that
would align with any of the submanifolds in the data space.

Our Proposed Approach: LASH. In this work, we propose Latent Shattering (LASH), the first
approach to convert pretrained unconditional generators into conditional models. The key idea of
LASH hinges on the fact that common generative models utilize a continuous function with a con-
nected latent space, and are therefore unable to produce perfectly distinct sub-manifolds in their
output space (Tanielian et al., 2020). Assuming the true data generation is concentrated on a set of
sub-manifolds, a well-trained generator will place most mass on these sub-manifolds but provably
must2 also place a small amount of mass between the manifolds (Khayatkhoei et al., 2018). One

2Assuming the generator is a continuous function, which nearly alway holds.

2

Under review as a conference paper at ICLR 2024

of our key insights is thus to use knowledge of the density of the latent space’s prior along with a
calculated volume change induced by the generator to identify regions of the latent space that are
mapped to these low-density off-manifold regions in the data space. By removing the latent points
that exist in these low-density regions, we can shatter the latent space into k sub-manifolds, each of
which corresponds to one of the k manifolds in the data space. This would then allow us to learn
to sample from and compute the density for each of these k manifolds by fitting a parametric distri-
bution to each manifold. An illustration highlighting the difference between the standard generator
latent space and the structured space produced by LASH is depicted in Figure 1.

Contributions In this work, we:

• Propose the Latent Shattering (LASH) approach to split the latent space of pretrained gen-
erative models into meaningful disjoint manifolds, by identifying and removing instances
mapped between modes in the output space.

• Utilize LASH to learn to sample from each of these disjoint manifolds individually, pro-
viding the first solution for turning a pretrained unconditional generative model into a con-
ditional model in a completely unsupervised manner - with no external guidance.

• Perform a series of experimental studies that demonstrate that our proposed approach rou-
tinely identifies semantically meaningful regions of the generator’s latent space without
requiring any additional data, labeled or otherwise.

2 PROBLEM STATEMENT

Let G : Z → RN , Z ⊂ RM with M < N , be a pretrained generative model such that G is a smooth
continuous function. Let Z be a simply connected manifold. Let G(Z) be a Riemannian manifold
with intrinsic dimensionality M , and let qG be the “generated distribution” defined as a pushforward
distribution qG = G#pz, where pz is the prior “noise” distribution over Z. pz here is a Gaussian or
uniform distribution (Bond-Taylor et al., 2022), but we do not require this to be the case.

Further, assume that G was trained to minimize a divergence between qG = G#pz and px, where
px is the target distribution of real data. Let X ⊂ RN be a subset of RN where the real data lies. Let
X consist of k distinct non-overlapping sub-manifolds:

⊔k
i=1 Mi = X, and (Mi∩Mj = ∅) (∀i ̸= j).

Our goal is to find a latent space Z∗ ⊂ Z and a corresponding distribution qv with the following
properties: 1) qv has minimal divergence from qz; 2) the latent space Z∗ =

⊔k
i=1 Vi, Vi ∩ Vj = ∅

∀i ̸= j consists of k distinct non-overlapping manifolds Vi; and 3) if latent code vi ∈ Vi then
G(vi) ∈ Mi. See Figure 1 for an illustration of this goal. In effect, if there are k disjoint sub-
manifolds in the data distribution, then we want to find a latent distribution that likewise has k
disjoint sub-manifolds - with a one-to-one correspondence between them.

To develop our method, we make use of a small set of assumptions that we state below.
Assumption 1. G is an injective, continuous, differentiable mapping from Z to RN . Thus, the
pullback distribution (G∗qG)(G(z)) is well-defined for all z ∈ Z and G(z) is unique for all z ∈ Z,
and {G(z) | z ∈ Z}

Assumption 1 requires G to be a one-to-one mapping from the latent space to the data space, such
that each generated instance has a unique latent code. This assumption is commonly used by other
works (Abbasnejad et al., 2019; Humayun et al., 2022b). Like them, we do not practically require
that this exactly holds for every instance and we do not need to explicitly define a left-inverse;
injectivity is required for theoretical analysis, and in practice our approach will be effective so long
as it holds for almost all of the input space.
Assumption 2. There exists a positive real valued number ρ such that pG(G(z)) > ρ if G(z) ∈
supp(px), and pG(G(z)) ≤ ρ if G(z) ̸∈ supp(px) otherwise.

In essence, Assumption 2 states that the density of the generated distribution is higher when on-
manifold with regards to the real data X, and lower when off-manifold. For example, realistic
synthetic data points have higher density than unrealistic synthetic points.
Assumption 3. For each submanifold in the data space, Mi ∈ X, ∃ z ∈ Z such that G(z) ∈ Mi.

3

Under review as a conference paper at ICLR 2024

Generator’s Output Space

Generator’s Latent Space
Remove Low
Probability

Codes;
Cluster

Remaining

Generator’s Output Space

Shattered Latent Space

Clusters Correspond To
Output Space Sub-Manifolds

Figure 2: Latent Shattering. We remove latent codes that correspond to low-probability (off-
manifold) samples in the output space, and then cluster the higher-probability latent codes. This
results in a disjoint, structured latent space.

Assumption 3 states that the generator places at least some mass on each mode or submanifold of
X. For example, if the real data consists of 10 distinct classes, the generator G would be capable of
producing some instances of each class.

3 METHODOLOGY

In this section, we describe our approach to transform the “unstructured” single-manifold latent
space into k distinct sub-manifolds, where each of the k submanifolds contains latent codes that
are mapped to only one single submanifold in the target data space X. Section 3.1 describes this
approach of finding these k submanifolds in Z. Thereafter, we describe our proposed approach for
selectively sampling from each of these submanifolds in Section 3.2.

3.1 LATENT SHATTERING: DIVIDING LATENT SPACE INTO MEANINGFUL SUBMANIFOLDS

Note that as G is a continuous function and the latent space Z is simply connected, then G = G(Z)
will likewise be simple connected (Tanielian et al., 2020). Thus, the generated data will by default
lie on a single generated manifold in RN . However, as G was trained to match the distribution of
real data (which lies on k submanifolds), qG should place more mass on the submanifolds in X and
lower mass between submanifolds (see Assumption 2). This leads us to define the property of a
generated manifold being k-ρ-disconnected:
Definition 1 (k-ρ-disconnected). For a generative model G : Z → Rn, let G be the support of
the generated distribution qG. Let G\ρ ⊂ G be a subset of the support such that G\ρ = {x ∈
G|qG(x) ≥ ρ}. Then, we say that G is k-ρ-disconnected if G\ρ consists of k disjoint submanifolds;
i.e., G\ρ =

⊔k
i=1 Si and Si ∩ Sj = ∅ ∀ i ̸= j.

Definition 1 means that we say the manifold of generated data is k-ρ-disconnected if removing points
where qG has a density less than ρ results in a set G\ρ that consists of k disjoint submanifolds.

Next, we define the density of the generated data after removing the regions with density < ρ as the
ρ-shattered density qG\ρ.

Definition 2 (ρ-shattered density qG\ρ). For a generative model G : Z → Rn, let G\ρ = {x ∈
G|qG(x) ≥ ρ}. The density of the ρ-shattered density qG\ρ is the density function defined over

G\ρ such that qG\ρ(x) =
(
1−

∫
G−G\ρ

qG(x
′)dx′)−1

qG(x).

Definition 2 simply defines a distribution over the disjoint generated space G\ρ as equivalent to the
original generated density qG with only a few slight modifications: 1) the density is set to 0 where
qG < ρ; and 2) the remaining non-zero density is scaled by a constant factor to account for the mass
that was “removed”.

4

Under review as a conference paper at ICLR 2024

We can begin to see where these two definitions are useful when we consider Lemma 1.
Lemma 1. If X consist of k disjoint submanifolds M1 to Mk, then ∃ρ such that G is k-ρ-
disconnected.

The above lemma follows from Assumptions 1 - 3. This means that if G was trained to match a
real-data distribution over k submanifolds, then there should exist a density value for the generated
distribution that distinguishes on-manifold instances from off-manifold instances. Put differently,
there is a value ρ such that the generated density is greater than ρ for all generated data that lies on
any of the real-data manifolds and is less than ρ otherwise.

In effect, the preceding statements have lead up to the insight that we can remove low-probability
generated instances (where low-probability is defined in reference to a scalar value ρ) such that the
remaining generated data will lie on k distinct submanifolds. However, this does not tell us anything
about the struture of our latent space - which was our initial goal. To that end, we now introduce the
following important theorem underlying our proposed method.
Theorem 1. Let G be k-ρ-disconnected by Definition 1. Then the support of the pullback distribu-
tion (G∗qG\ρ)(G(z)), Z\ρ = {z ∈ Z | qG\ρ(G(z)) > 0} consists of k disjoint submanifolds.

Theorem 1 states that if removing generated instances with a density less than ρ not only makes the
generated distribution lie on k disjoint submanifolds in the data space, but also results in a latent
space with k distinct submanifolds.

The following lemma and theorem now establish the relationship between the submanifolds in Z to
the submanifolds in the data space.
Lemma 2. For each submanifold Si ∈ G\ρ, ∃ Vj ∈ Z\ρ such that G(z) ∈ Si ∀ z ∈ Vj . Likewise,
for each submanifold Vj ∈ Z\ρ ∃ S ∈ G\ρ such that G(z) ∈ Si ∀ z ∈ Vj .

Theorem 2. Let ρ be a scalar such that qG(G(z)) > ρ ∀G(z) ∈ X and qG(G(z)) ≤ ρ ∀G(z) ̸∈ X.
Then, for each submanifold Mi ∈ X ∃Vj ∈ Z\ρ such that every point in Vj is mapped to a point in
Mi. Additionally, for every submanifold Vj ∈ Z\ρ, every point in Vj maps to the same submanifold
Mi ∈ X.

Theorem 2 follows directly from the preceding Theorem and Lemmas. In a nutshell, the above
analysis shows that by removing points from the latent space that map to low-density points in the
data space, we can split the latent space of our pretrained generator G into k disjoint submanifolds
(or clusters), where each submanifold in the latent space corresponds to one of the submanifolds in
the data space. In other words, we now have achieved our important goal of introducing structure
onto the prior latent space by removing data from certain regions of Z.

The above findings refer to the concept of removing latent codes that are mapped to low-probability
regions in the data space. Of course, this requires us to be able to identify which codes are mapped
to low-probability regions. The following equation for the density of G(z) allows us to do just that:

qG(z) =
pz(z)√

det(J⊤
G (z)JG(z))

, (1)

where JG(z) =
∂G
∂z is the Jacobian of G evaluated at z. Equation 1 follows from the pushforward

distribution between Riemannian manifolds and was is similarly utilized by recent works (Humayun
et al., 2022a). Here, we utilize the expression in Equation 1 to identify points with a generated
density less than ρ.

It is known that for high-dimensional data, a Gaussian distribution is well approximated by a uniform
distribution over a sphere (Vershynin, 2018). Thus, for z ∼ N (µ,Σ), the generated density is
approximately proportional to the following for the majority of realizations of z:

qG(z) ∝∼
1√

det(J⊤
G (z)JG(z))

. (2)

Equation 2 also holds for the case where z is from a uniform distribution.

5

Under review as a conference paper at ICLR 2024

Our above results imply a strategy for converting the original latent space Z of the pretrained gen-
erator G into a structured latent space Z∗. In short, first, we collect a large sample of D points
{zi}i=1:D from pz. Second, we compute the density of each point according to Equation 1. Lastly,
we remove each zi where qG(zi) < ρ, where ρ is a hyperparameter that we chose.

A pseudocode algorithm for this process is given in Algorithm 1.

Algorithm 1 Obtaining dataset from structured latent space Z∗

Require: Pretrained generator G, sample size D, hyperparameter ρ
Ensure: Dataset of samples Z∗ from structured latent space Z∗

1: Initialize empty set Z∗

2: Sample {zi}i=1:D from pz
3: for i = 1 to D do
4: Compute density qG(zi) using Equation 2
5: if qG(zi) ≥ ρ then
6: Add zi to Z∗

7: return Z∗

3.2 SAMPLING FROM THE SHATTERED LATENT SPACE

We now need a strategy of performing online sampling from Z∗ or from some specific submanifold
Vi ⊂ Z∗, so as to perform controllable generation.

To that end, we first propose to cluster the new latent space Z∗ so that we can identify the k sub-
manifolds it consists of. This can be achieved using one of the existing clustering algorithms. In our
experiments we utilize k-means sampling due to its simplicity, and find it is sufficient to achieve our
goal. Though more sophisticated approaches could equally be deployed, and they may yield even
more robust clustering performance.

After clustering, the fitted clusterer C maps each point z ∈ Z∗ to a cluster label ℓ ∈ {1, 2, . . . , k}.
Then, we propose to fit a mapper function K : {1, 2, . . . , k} × J → Z∗ that allows us to sample
from any of the k desired submanifolds in Z∗. Specifically, the mapper K takes in the index i of
the cluster we want to sample from along with a noise code j and maps to a point z ∈ Z∗ such that
z ∈ Vi.

As we do not want to modify the distribution of latent codes for each cluster, we parameterize K to
encourage Ki #pj = pZ∗

C=i
for each cluster i. Specifically, we parameterize K(i, ·) as a collection

of Gaussian mixture models (GMM) fit to samples from Vi. We utilizes GMMs as they are very
computationally inexpensive. At the end, we can selectively sample from the ith sub-manifold by
sampling from the GMM that was fit to the ith cluster in the latent space.

4 RELATED WORK

Disjoint manifold learning. It is well known that typical generative models that are trained to map
a connected Z to a disjoint data manifold are incapable of producing a disjoint distribution in their
output space (Khayatkhoei et al., 2018; Salmona et al., 2022; Tanielian et al., 2020). Approaches
such as Partition-Guided GANs (Armandpour et al., 2021), Disconnected Manifold Learning (Khay-
atkhoei et al., 2018), and MG-GAN (Dendorfer et al., 2021) address this issue by training multiple
generators. Another standard approach is to utilize an unconnected latent space when training the
generative model (Liu et al., 2022; Mukherjee et al., 2019; Gurumurthy et al., 2017). However, these
approaches are applicable when training new generative models and do not address the problem of
sampling from different modes given an existing generator. On the other hand, truncation approaches
(Katzir et al., 2022; Tanielian et al., 2020; Azadi et al., 2018) reject certain sampled latent codes,
which can allow a pretrained generative to sample from a disconnected latent space. Similarly, La-
tent Reweighting (Issenhuth et al., 2022) and Polarity Sampling (Humayun et al., 2022b) aim to
reweight the latent distribution to sample latent codes that correspond to modes in the output space.
While these approaches can be applied to pretrained generators, they do not typically allow for
control over which mode is being sampled from at a given time.

6

Under review as a conference paper at ICLR 2024

Converting unconditional models to conditional models. Methods such as PromptGen (Wu
et al., 2022) assume the availability of energy functions - such as pretrained classifiers - that can
be utilized to learn a distribution of a certain class or attribute in the latent space. Latent Constraints
likewise requires an auxilary classifier or user-provided reword function, and also requires train-
ing an additional GAN-like model on the latent space (Engel et al., 2018). This approach requires
training additional invertable neural networks to sample from each of these learned distributions.
HyperGAN (Laria et al., 2022) converts unconditional generative models into conditional models
by training a Hyper Net on an auxiliary labeled training dataset containing instances of each class.

5 EXPERIMENTS

5.1 COMPARED METHODS

Original Generator. We fit k-means clustering on samples from the generator’ original latent dis-
tribution pz. This acts as a baseline; the clusters found here should not meaningfully correspond to
clusters or classes in the output space.

Polarity Sampling. This approach allows for sampling from modes or minima of the generated
distribution through reweighting the original latent distribution (Humayun et al., 2022b).

JBT Sampling. This approach, proposed in (Tanielian et al., 2020), reweights the latent distribution
according to the Frobenius norm of the generator’s jacobian. Whereas our method reweights the
latent distribution according to the volume change of the generator’s transformation, JBT’s approach
corresponds to rescaling proportional to the length of the diagonal of the diagonal of the unit box
after mapping through the generator. The diagonal provides less meaningful feedback on the change
in density induced by the generator than our approach, which directly models the volume change.

For each method, we evaluate the quality of the clusters found through applying k-means on large
samples from their induced latent distributions. We also fit a GMM on each cluster for each method
and report metrics for sampling from clusters in this manner, reported as “{method} + GMM”.

5.2 DATASETS

We compare all methods on three datasets: MNIST (Lecun et al., 1998), FashionMNIST (Xiao
et al., 2017), and Faces + Flowers. The Faces + Flowers dataset is constructed by mix-
ing together the CelebA (Liu et al., 2015) and Flowers102 (Nilsback & Zisserman, 2008)
datasets. We do this as the manifold of images of human faces and the manifold of images of
flowers should be disjoint.

For each dataset, we pretrain a DCGAN (Radford et al., 2016) to match the data distribution. We
use a latent dimension of 64 for each dataset. We likewise pretrain a convolutional classifier for each
dataset to predict the classes in each. The classifier is used only for evaluating the clusters found
from each compared method. We see Section A.2 in the appendix for more details on the architecture
choices.

5.3 COMPARING CLUSTERS ON SAMPLES DIRECTLY FROM THE INDUCED LATENT SPACES

In this first experiment we analyze the quality of the clusters found when applying k-means cluster-
ing to the latent space induced by each method. For each method, we sample 20,000 latent codes
from their induced latent space. We then cluster the latent codes using k-means clustering. Note
that we do not fit a mapper function K to sample from these clusters in this experiment; we instead
perform our analysis directly on the latent codes and their cluster assignment.

For each cluster, we generate the corresponding output samples by passing the instances in each
cluster through the pretrained generator. We then use the pretrained classifier to provide class labels
for each instance in each cluster. Ideally, each cluster will be strongly correlated with one and only
one class - under the assumption that each class lies on a distinct submanifold in the data space.

To measure the correlation between cluster assignments and class labels, we utilize four metrics:
Homogeneity, Completeness, V Measure (Rosenberg & Hirschberg, 2007), and Adjusted Mutual In-
formation (MI) (Vinh et al., 2010). Homogeneity is maximized when each cluster contains instances

7

Under review as a conference paper at ICLR 2024

Table 1: Comparative study of the cluster quality found from each method. Higher numbers are
better for each metric. Best performance is bolded.

Metric Original
Generator

Polarity
Sampling

JBT
Sampling

LASH
(Ours)

MNIST

Homogeneity 0.0374 ± 0.0044 0.1657 ± 0.0069 0.3786 ± 0.0147 0.4105 ± 0.0118
Completeness 0.0375 ± 0.0044 0.1775 ± 0.0077 0.3793 ± 0.0147 0.4120 ± 0.0119

V Measure 0.0374 ± 0.0044 0.1714 ± 0.0073 0.3789 ± 0.0147 0.4113 ± 0.0118
Adjusted MI 0.0198 ± 0.0045 0.1555 ± 0.0074 0.3675 ± 0.0150 0.4004 ± 0.0121

Fashion
MNIST

Homogeneity 0.0336 ± 0.0051 0.1723 ± 0.0128 0.1965 ± 0.0090 0.2297 ± 0.0091
Completeness 0.0337 ± 0.0051 0.1761 ± 0.0127 0.1974 ± 0.0091 0.2312 ± 0.0092

V Measure 0.0336 ± 0.0051 0.1742 ± 0.0128 0.1970 ± 0.0091 0.2305 ± 0.0091
Adjusted MI 0.0159 ± 0.0052 0.1588 ± 0.0130 0.1822 ± 0.0092 0.2163 ± 0.0093

Face
+Flowers

Homogeneity 0.0020 ± 0.0016 0.1290 ± 0.0065 0.1027 ± 0.0074 0.1275 ± 0.0121
Completeness 0.0032 ± 0.0025 0.1804 ± 0.0087 0.1716 ± 0.0113 0.2211 ± 0.0170

V Measure 0.0025 ± 0.0019 0.1504 ± 0.0074 0.1285 ± 0.0089 0.1617 ± 0.0140
Adjusted MI 0.0020 ± 0.0019 0.1501 ± 0.0074 0.1281 ± 0.0089 0.1613 ± 0.0140

Table 2: Comparative study of the sample quality from the mapper function K. Higher numbers are
better for each metric. Best performance is bolded.

Metric
Original

Generator
+ GMM

Polarity
Sampling
+ GMM

JBT
Sampling
+ GMM

LASH
(Ours)

+ GMM

MNIST

Homogeneity 0.0364 ± 0.0049 0.1494 ± 0.0058 0.3507 ± 0.0142 0.3781 ± 0.0145
Completeness 0.0366 ± 0.0049 0.1584 ± 0.0061 0.3519 ± 0.0143 0.3801 ± 0.0146

V Measure 0.0365 ± 0.0049 0.1538 ± 0.0059 0.3513 ± 0.0142 0.3791 ± 0.0145
Adjusted MI 0.0188 ± 0.0050 0.1377 ± 0.0061 0.3394 ± 0.0145 0.3677 ± 0.0148

Fashion
MNIST

Homogeneity 0.0340 ± 0.0045 0.1649 ± 0.0089 0.1800 ± 0.0124 0.2107 ± 0.0082
Completeness 0.0341 ± 0.0045 0.1677 ± 0.0095 0.1810 ± 0.0125 0.2122 ± 0.0083

V Measure 0.0341 ± 0.0045 0.1663 ± 0.0092 0.1805 ± 0.0125 0.2115 ± 0.0083
Adjusted MI 0.0163 ± 0.0046 0.1509 ± 0.0094 0.1654 ± 0.0127 0.1970 ± 0.0084

Face
+Flowers

Homogeneity 0.0031 ± 0.0014 0.1196 ± 0.0073 0.0932 ± 0.0051 0.1268 ± 0.0096
Completeness 0.0048 ± 0.0021 0.1684 ± 0.0093 0.1533 ± 0.0091 0.2145 ± 0.0116

V Measure 0.0037 ± 0.0016 0.1398 ± 0.0081 0.1159 ± 0.0064 0.1593 ± 0.0107
Adjusted MI 0.0033 ± 0.0016 0.1395 ± 0.0082 0.1155 ± 0.0064 0.1589 ± 0.0107

from only a single class, while Completeness is maximized if all instances of a given class are given
the same cluster assignment. V Measure is their harmonic mean, and is thus maximized when there
is a perfect correspondence between cluster assignment and class label. Adjusted MI measures the
mutual information between cluster assignments and class labels, normalized to account for the MI
generally increasing even for random assignments when the number of clusters grows.

Results are shown in Table 1. First, note that each method is an order of magnitude higher than
the baseline method. Importantly, our method routinely outperforms all other compared methods
across all metrics. The only case where our method is not the best performer (and is instead second
best) is for the Homogeneity score on the Face + Flowers dataset, for which Polarity Sampling
slightly outperforms LASH. However, LASH significantly outperforms Polarity Sampling on the
Completeness metric for this setting. This indicates that while each cluster found after applying Po-
larity Sampling contains mostly instances from single classes, not every class is strongly correlated
with some cluster. A likely explanation for this is that polarity sampling over-samples the mode
(the face manifold in this case), and thus both clusters it finds mostly contain face images while the
flower manifold does not have a cluster it is as strongly associated with.

5.4 COMPARING QUALITY OF MIXTURE MODELS FIT ON THE INDUCED LATENT SPACES

In this experiment, we evaluate our proposed approach of using a Gaussian Mixture Model (GMM)
to easily sample from the clusters found in our shattered latent space. To this end, we take the clusters
identified in the preceding experiment and fit a GMM on each cluster. We utilize a two-component

8

Under review as a conference paper at ICLR 2024

GMM for each cluster. We then sample instances from each GMM, and compare the correlation
between GMM samples and classes in the output space. If the clusters are correlated with classes
or submanifolds in the output space (which is our goal), then the GMM samples should likewise
be correlated with these classes if they -model the clusters well. To compare our approach with the
state-of-the-art, we likewise fit GMMs on the latent space induced by each compared approach. We
utilize the same metrics as in our previous experiment above.

Results are shown in Table 2. LASH again outperforms all other compared methods. We note that
the performance of each method using the GMM to obtain samples is close to the corresponding
performance in the last experiment, where the analysis was performed directly on the latent space
without using any mapper network. This indicates that the GMMs are able to well-model the sub-
manifolds in the latent space of each method, implying that using a GMM to cheaply sample from
any desired latent cluster is a promising approach that has only minimal performance costs.

5.5 PARAMETER STUDY

We analyze the impact of our two important hyperparameters on LASH’s performance: the choice
of k for k-means clustering, and the amount of mass we chose to remove (analogous to our choice of
ρ). We utilize MNIST for this experiment. Figure 3a shows the average cluster entropy of LASH’s
clusters over a range of choices for number of clusters k. If each cluster is strongly associated with
some class, the entropy should be low. We see that this is the case so long as the number of clusters
is not very significantly over or under-estimated. Figure 3b shows both the average cluster entropy,
as well as the average total entropy across clusters, as a function of the amount of mass removed. We
see that the average cluster entropy decreases significantly as more mass is removed, indicating each
cluster becomes more strongly correlated with a class. However, the average class entropy likewise
decreases for the distribution of classes across clusters - indicating that as more mass is removed,
we start to lose more instances of certain classes causing an increase in class imbalance. We see that
removing around 20% of the mass results in minimal loss of overall diversity, while still having the
desired property of a low average cluster entropy.

1 3 5 7 9 11 13 15 17 19
Number of Clusters

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

Av
er

ag
e

Cl
us

te
r E

nt
ro

py

Effect Of Choice of k On Cluster Entropy
Original Latent Space
LASH Latent Space

(a) Parameter study for number of clusters k

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Fraction of Mass Removed

1.75

2.00

2.25

2.50

2.75

3.00

3.25

Av
er

ag
e

Cl
us

te
r E

nt
ro

py

Effect Of Choice of On Cluster Entropy
Average Cluster Entropy
Average Overall Entropy

(b) Parameter study for amount of mass removed.

Figure 3: Parameter study for LASH.

6 CONCLUSION

In this work we have proposed LASH, a novel approach for converting pretrained unconditional gen-
erators into conditional generative models. Our approach is based on the idea that removing latent
codes that are mapped to low-probability regions between submanifolds in the data space shatters
the latent space into disjoint submanifolds, which we can then cluster and selectively sample from
by utilizing helper mapper functions. Notably, we do not require retraining the generative model
or any new deep network. LASH can be easily applied to any pushforward generative model that
maps from a lower dimensional latent space with a known distribution into a high-dimensional data
space. Our experimental analysis shows that the clusters found using LASH are highly correlated
with classes in the output space.

9

Under review as a conference paper at ICLR 2024

REFERENCES

M. Ehsan Abbasnejad, Qinfeng Shi, Anton van den Hengel, and Lingqiao Liu. A
Generative Adversarial Density Estimator. pp. 10782–10791, 2019. URL https:
//openaccess.thecvf.com/content_CVPR_2019/html/Abbasnejad_A_
Generative_Adversarial_Density_Estimator_CVPR_2019_paper.html.

Mohammadreza Armandpour, Ali Sadeghian, Chunyuan Li, and Mingyuan Zhou. Partition-Guided
GANs. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, volume Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 5099–5109. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021. URL https://openaccess.thecvf.com/content/CVPR2021/
html/Armandpour_Partition-Guided_GANs_CVPR_2021_paper.html.

S. Azadi, Catherine Olsson, Trevor Darrell, I. Goodfellow, and Augustus Odena. Discriminator
Rejection Sampling. ArXiv, September 2018. URL https://www.semanticscholar.
org/paper/866aa9bcb15cf4a23a0afed515fa2f6b93f91d11.

Sam Bond-Taylor, Adam Leach, Yang Long, and Chris G. Willcocks. Deep Generative Modelling:
A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive
Models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(11):7327–7347,
November 2022. ISSN 0162-8828, 2160-9292, 1939-3539. doi: 10.1109/TPAMI.2021.3116668.
URL https://ieeexplore.ieee.org/document/9555209/.

Bradley C. A. Brown, Anthony L. Caterini, Brendan Leigh Ross, Jesse C. Cresswell, and Gabriel
Loaiza-Ganem. Verifying the Union of Manifolds Hypothesis for Image Data, March 2023. URL
http://arxiv.org/abs/2207.02862. arXiv:2207.02862 [cs, stat].

Haiyang Chen. Challenges and Corresponding Solutions of Generative Adversarial Networks
(GANs): A Survey Study. Journal of Physics: Conference Series, 1827(1):012066, March 2021.
ISSN 1742-6596. doi: 10.1088/1742-6596/1827/1/012066. URL https://dx.doi.org/
10.1088/1742-6596/1827/1/012066. Publisher: IOP Publishing.

Patrick Dendorfer, Sven Elflein, and Laura Leal-Taixe. MG-GAN: A Multi-Generator Model Pre-
venting Out-of-Distribution Samples in Pedestrian Trajectory Prediction. In 2021 IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 13138–13147, Montreal, QC, Canada,
October 2021. IEEE. ISBN 978-1-66542-812-5. doi: 10.1109/ICCV48922.2021.01291. URL
https://ieeexplore.ieee.org/document/9711160/.

Jesse Engel, Matthew Hoffman, and Adam Roberts. Latent Constraints: Learning to Generate Con-
ditionally from Unconditional Generative Models. In International Conference on Learning Rep-
resentations, February 2018. URL https://openreview.net/forum?id=Sy8XvGb0-.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sher-
jil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Nets. In
Advances in Neural Information Processing Systems, volume 27. Curran Associates,
Inc., 2014. URL https://papers.nips.cc/paper_files/paper/2014/hash/
5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html.

Swaminathan Gurumurthy, Ravi Kiran Sarvadevabhatla, and R. Venkatesh Babu. DeLiGAN: Gener-
ative Adversarial Networks for Diverse and Limited Data. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 4941–4949, Honolulu, HI, July 2017. IEEE. ISBN
978-1-5386-0457-1. doi: 10.1109/CVPR.2017.525. URL http://ieeexplore.ieee.
org/document/8100008/.

Ahmed Imtiaz Humayun, Randall Balestriero, and Richard Baraniuk. MaGNET: Uniform Sampling
from Deep Generative Network Manifolds Without Retraining. In International Conference on
Learning Representations, January 2022a. URL https://openreview.net/forum?id=
r5qumLiYwf9.

Ahmed Imtiaz Humayun, Randall Balestriero, and Richard Baraniuk. Polarity Sampling: Qual-
ity and Diversity Control of Pre-Trained Generative Networks via Singular Values. In 2022

10

https://openaccess.thecvf.com/content_CVPR_2019/html/Abbasnejad_A_Generative_Adversarial_Density_Estimator_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Abbasnejad_A_Generative_Adversarial_Density_Estimator_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Abbasnejad_A_Generative_Adversarial_Density_Estimator_CVPR_2019_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Armandpour_Partition-Guided_GANs_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Armandpour_Partition-Guided_GANs_CVPR_2021_paper.html
https://www.semanticscholar.org/paper/866aa9bcb15cf4a23a0afed515fa2f6b93f91d11
https://www.semanticscholar.org/paper/866aa9bcb15cf4a23a0afed515fa2f6b93f91d11
https://ieeexplore.ieee.org/document/9555209/
http://arxiv.org/abs/2207.02862
https://dx.doi.org/10.1088/1742-6596/1827/1/012066
https://dx.doi.org/10.1088/1742-6596/1827/1/012066
https://ieeexplore.ieee.org/document/9711160/
https://openreview.net/forum?id=Sy8XvGb0-
https://papers.nips.cc/paper_files/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://papers.nips.cc/paper_files/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
http://ieeexplore.ieee.org/document/8100008/
http://ieeexplore.ieee.org/document/8100008/
https://openreview.net/forum?id=r5qumLiYwf9
https://openreview.net/forum?id=r5qumLiYwf9

Under review as a conference paper at ICLR 2024

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10631–
10640, New Orleans, LA, USA, June 2022b. IEEE. ISBN 978-1-66546-946-3. doi: 10.
1109/CVPR52688.2022.01038. URL https://ieeexplore.ieee.org/document/
9879198/.

Thibaut Issenhuth, Ugo Tanielian, David Picard, and Jeremie Mary. Latent reweighting, an almost
free improvement for GANs. In 2022 IEEE/CVF Winter Conference on Applications of Computer
Vision (WACV), pp. 3574–3583, Waikoloa, HI, USA, January 2022. IEEE. ISBN 978-1-66540-
915-5. doi: 10.1109/WACV51458.2022.00363. URL https://ieeexplore.ieee.org/
document/9706934/.

Oren Katzir, Vicky Perepelook, Dani Lischinski, and Daniel Cohen-Or. Multi-level Latent Space
Structuring for Generative Control, February 2022. URL http://arxiv.org/abs/2202.
05910. arXiv:2202.05910 [cs].

Mahyar Khayatkhoei, Maneesh K. Singh, and Ahmed Elgammal. Disconnected Man-
ifold Learning for Generative Adversarial Networks. In Advances in Neural In-
formation Processing Systems, volume 31. Curran Associates, Inc., 2018. URL
https://proceedings.neurips.cc/paper_files/paper/2018/hash/
2b346a0aa375a07f5a90a344a61416c4-Abstract.html.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization, January 2017.
URL http://arxiv.org/abs/1412.6980. arXiv:1412.6980 [cs].

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. December 2013. URL
https://openreview.net/forum?id=33X9fd2-9FyZd.

Hector Laria, Yaxing Wang, Joost Van De Weijer, and Bogdan Raducanu. Transferring Uncondi-
tional to Conditional GANs with Hyper-Modulation. In 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), pp. 3839–3848, New Orleans, LA, USA,
June 2022. IEEE. ISBN 978-1-66548-739-9. doi: 10.1109/CVPRW56347.2022.00429. URL
https://ieeexplore.ieee.org/document/9857039/.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, November 1998. ISSN 1558-2256. doi:
10.1109/5.726791. URL https://ieeexplore.ieee.org/abstract/document/
726791. Conference Name: Proceedings of the IEEE.

Steven Liu, Tongzhou Wang, David Bau, Jun-Yan Zhu, and Antonio Torralba. Diverse Image Gen-
eration via Self-Conditioned GANs, February 2022. URL http://arxiv.org/abs/2006.
10728. arXiv:2006.10728 [cs].

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep Learning Face Attributes in the
Wild. In 2015 IEEE International Conference on Computer Vision (ICCV), pp. 3730–3738,
December 2015. doi: 10.1109/ICCV.2015.425. URL https://ieeexplore.ieee.org/
document/7410782. ISSN: 2380-7504.

Sudipto Mukherjee, Himanshu Asnani, Eugene Lin, and Sreeram Kannan. ClusterGAN: Latent
Space Clustering in Generative Adversarial Networks. Proceedings of the AAAI Conference on
Artificial Intelligence, 33(01):4610–4617, July 2019. ISSN 2374-3468. doi: 10.1609/aaai.v33i01.
33014610. URL https://ojs.aaai.org/index.php/AAAI/article/view/4385.
Number: 01.

Maria-Elena Nilsback and Andrew Zisserman. Automated Flower Classification over a Large
Number of Classes. In 2008 Sixth Indian Conference on Computer Vision, Graphics & Im-
age Processing, pp. 722–729, December 2008. doi: 10.1109/ICVGIP.2008.47. URL https:
//ieeexplore.ieee.org/abstract/document/4756141.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
PyTorch. In NIPS 2017 Autodiff Workshop. NIPS 2017 Autodiff Workshop, 2017.

11

https://ieeexplore.ieee.org/document/9879198/
https://ieeexplore.ieee.org/document/9879198/
https://ieeexplore.ieee.org/document/9706934/
https://ieeexplore.ieee.org/document/9706934/
http://arxiv.org/abs/2202.05910
http://arxiv.org/abs/2202.05910
https://proceedings.neurips.cc/paper_files/paper/2018/hash/2b346a0aa375a07f5a90a344a61416c4-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2018/hash/2b346a0aa375a07f5a90a344a61416c4-Abstract.html
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=33X9fd2-9FyZd
https://ieeexplore.ieee.org/document/9857039/
https://ieeexplore.ieee.org/abstract/document/726791
https://ieeexplore.ieee.org/abstract/document/726791
http://arxiv.org/abs/2006.10728
http://arxiv.org/abs/2006.10728
https://ieeexplore.ieee.org/document/7410782
https://ieeexplore.ieee.org/document/7410782
https://ojs.aaai.org/index.php/AAAI/article/view/4385
https://ieeexplore.ieee.org/abstract/document/4756141
https://ieeexplore.ieee.org/abstract/document/4756141

Under review as a conference paper at ICLR 2024

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks, January 2016. URL http://arxiv.org/
abs/1511.06434. arXiv:1511.06434 [cs].

Andrew Rosenberg and Julia Hirschberg. V-Measure: A Conditional Entropy-Based External Clus-
ter Evaluation Measure. In Proceedings of the 2007 Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL),
pp. 410–420, Prague, Czech Republic, June 2007. Association for Computational Linguistics.
URL https://aclanthology.org/D07-1043.

Antoine Salmona, Valentin De Bortoli, Julie Delon, and Agnès Desolneux. Can Push-forward
Generative Models Fit Multimodal Distributions? In Advances in Neural Information Process-
ing Systems. Advances in Neural Information Processing Systems, May 2022. URL https:
//openreview.net/forum?id=Tsy9WCO_fK1.

Ugo Tanielian, Thibaut Issenhuth, Elvis Dohmatob, and Jeremie Mary. Learning disconnected man-
ifolds: a no GAN’s land. In Proceedings of the 37th International Conference on Machine Learn-
ing, pp. 9418–9427. PMLR, November 2020. URL https://proceedings.mlr.press/
v119/tanielian20a.html. ISSN: 2640-3498.

Roman Vershynin. High-Dimensional Probability. Cambridge University Press, 2018.

Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information Theoretic Measures for Clusterings
Comparison: Variants, Properties, Normalization and Correction for Chance. Journal of Machine
Learning Research, 11(95):2837–2854, 2010. ISSN 1533-7928. URL http://jmlr.org/
papers/v11/vinh10a.html.

Chen Henry Wu, Saman Motamed, Shaunak Srivastava, and Fernando D. De la Torre. Gen-
erative Visual Prompt: Unifying Distributional Control of Pre-Trained Generative Mod-
els. Advances in Neural Information Processing Systems, 35:22422–22437, December
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
hash/8cb1c53863b290ee09b94d17f16ef355-Abstract-Conference.html.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a Novel Image Dataset for Bench-
marking Machine Learning Algorithms, September 2017. URL http://arxiv.org/abs/
1708.07747. arXiv:1708.07747 [cs, stat].

12

http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1511.06434
https://aclanthology.org/D07-1043
https://openreview.net/forum?id=Tsy9WCO_fK1
https://openreview.net/forum?id=Tsy9WCO_fK1
https://proceedings.mlr.press/v119/tanielian20a.html
https://proceedings.mlr.press/v119/tanielian20a.html
http://jmlr.org/papers/v11/vinh10a.html
http://jmlr.org/papers/v11/vinh10a.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/8cb1c53863b290ee09b94d17f16ef355-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/8cb1c53863b290ee09b94d17f16ef355-Abstract-Conference.html
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747

Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 HYPERPARAMETERS

Polarity Sampling. Polarity Sampling is determined using a parameter ρ where as ρ goes to −∞
modes are sampled from increasingly often, and antimodes are sampled from more as ρ → ∞,
with the original generative distribution corresponding to ρ = 0. As we aim to sample from the
on-manifold region of the output space, we set ρ to a negative value such as to sample from modes
rather than low-probability regions. Specifically, we set ρ = −0.1.

Training Details. For MNIST and Fashion MNIST, we trained each network for 50 epoch with a
batch size of 64. For Celeba + Flowers we trained for 50 epochs with a batch size of 16. For all
datasets and models, we used the Adam optimizer (Kingma & Ba, 2017) with learning rate set to
0.001 and betas=(0.5, 0.999). All models were implemented in PyTorch (Paszke et al., 2017).

A.2 NETWORK STRUCTURES

For MNIST and FashionMNIST, we utilized the following network structures:

Generator

--
Layer (type) Output Shape

==
ConvTranspose2d-1 [-1, 256, 4, 4]

BatchNorm2d-2 [-1, 256, 4, 4]
ReLU-3 [-1, 256, 4, 4]

ConvTranspose2d-4 [-1, 128, 8, 8]
BatchNorm2d-5 [-1, 128, 8, 8]

ReLU-6 [-1, 128, 8, 8]
ConvTranspose2d-7 [-1, 64, 16, 16]

BatchNorm2d-8 [-1, 64, 16, 16]
ReLU-9 [-1, 64, 16, 16]

ConvTranspose2d-10 [-1, 1, 32, 32]
Tanh-11 [-1, 1, 32, 32]

==

Discriminator

--
Layer (type) Output Shape

==
Conv2d-1 [-1, 64, 16, 16]

LeakyReLU-2 [-1, 64, 16, 16]
Conv2d-3 [-1, 128, 8, 8]

BatchNorm2d-4 [-1, 128, 8, 8]
LeakyReLU-5 [-1, 128, 8, 8]

Conv2d-6 [-1, 256, 4, 4]
BatchNorm2d-7 [-1, 256, 4, 4]

LeakyReLU-8 [-1, 256, 4, 4]
Conv2d-9 [-1, 1, 1, 1]

Sigmoid-10 [-1, 1, 1, 1]
==

Classifier (For Evaluation)

--

13

Under review as a conference paper at ICLR 2024

Layer (type) Output Shape
==

Conv2d-1 [-1, 16, 28, 28]
ReLU-2 [-1, 16, 28, 28]

MaxPool2d-3 [-1, 16, 14, 14]
Conv2d-4 [-1, 32, 14, 14]

ReLU-5 [-1, 32, 14, 14]
MaxPool2d-6 [-1, 32, 7, 7]

Linear-7 [-1, 10]
==

For CelebA + Flowers we utilized the following networks:

Generator

--
Layer (type) Output Shape

==
ConvTranspose2d-1 [-1, 512, 4, 4]

BatchNorm2d-2 [-1, 512, 4, 4]
ReLU-3 [-1, 512, 4, 4]

ConvTranspose2d-4 [-1, 256, 8, 8]
BatchNorm2d-5 [-1, 256, 8, 8]

ReLU-6 [-1, 256, 8, 8]
ConvTranspose2d-7 [-1, 128, 16, 16]

BatchNorm2d-8 [-1, 128, 16, 16]
ReLU-9 [-1, 128, 16, 16]

ConvTranspose2d-10 [-1, 64, 32, 32]
BatchNorm2d-11 [-1, 64, 32, 32]

ReLU-12 [-1, 64, 32, 32]
ConvTranspose2d-13 [-1, 3, 64, 64]

Tanh-14 [-1, 3, 64, 64]
==

Discriminator

--
Layer (type) Output Shape

==
Conv2d-1 [-1, 64, 32, 32]

LeakyReLU-2 [-1, 64, 32, 32]
Conv2d-3 [-1, 128, 16, 16]

LeakyReLU-4 [-1, 128, 16, 16]
BatchNorm2d-5 [-1, 128, 16, 16]

Conv2d-6 [-1, 256, 8, 8]
LeakyReLU-7 [-1, 256, 8, 8]

BatchNorm2d-8 [-1, 256, 8, 8]
Conv2d-9 [-1, 512, 4, 4]

LeakyReLU-10 [-1, 512, 4, 4]
BatchNorm2d-11 [-1, 512, 4, 4]

Conv2d-12 [-1, 1, 1, 1]
Sigmoid-13 [-1, 1, 1, 1]

==

Classifier (For Evaluation)

--

14

Under review as a conference paper at ICLR 2024

Layer (type) Output Shape
==

Conv2d-1 [-1, 64, 32, 32]
LeakyReLU-2 [-1, 64, 32, 32]

Conv2d-3 [-1, 128, 16, 16]
LeakyReLU-4 [-1, 128, 16, 16]

BatchNorm2d-5 [-1, 128, 16, 16]
Conv2d-6 [-1, 256, 8, 8]

LeakyReLU-7 [-1, 256, 8, 8]
BatchNorm2d-8 [-1, 256, 8, 8]

Conv2d-9 [-1, 512, 4, 4]
LeakyReLU-10 [-1, 512, 4, 4]

BatchNorm2d-11 [-1, 512, 4, 4]
Conv2d-12 [-1, 1, 1, 1]
Sigmoid-13 [-1, 1, 1, 1]

==

A.3 PROOFS

A.3.1 PROOF OF LEMMA 1

Proof. Assume that G is not k-ρ-disconnected; then, G\ρ consists of h distinct sub-manifolds,
where h < k or h > k. If h < k, then there was a sub-manifold in the data space with region
for which G did not place a density of at least ρ. However, this is not possible as it breaks the
combination of Assumption 2 and Assumption 3. If h > k, then there is a subset outside of the
support of px where G’s density is greater than ρ. This also breaks Assumption 2. Thus, Lemma 1
is proven by contradiction.

A.3.2 PROOF OF THEOREM 1

Proof. By Lemma 1 we know that G\ρ consists of k distinct sub-manifolds. Since by Assumption 1
G is a continuous injective function, it’s domain must also consist of k distinct sub-manifolds.

A.3.3 PROOF OF LEMMA 2

Proof. Due to G being a continuous function, each Vi must be mapped to a single sub-manifold
in the output space. Further, each of the k output sub-manifolds requires there to be at least one
sub-manifold in the latent space that is mapped to it. Since there are k sub-manifolds in each space,
there must be a one-to-one correspondence between them.

15

Under review as a conference paper at ICLR 2024

A.4 DISTRIBUTION OF CLASSES IN LASH CLUSTERS

Results shown for MNIST:

16

Under review as a conference paper at ICLR 2024

17

Under review as a conference paper at ICLR 2024

18

Under review as a conference paper at ICLR 2024

19

Under review as a conference paper at ICLR 2024

20

Under review as a conference paper at ICLR 2024

21

	Introduction
	Problem Statement
	Methodology
	Latent Shattering: Dividing Latent Space Into Meaningful Submanifolds
	Sampling From The Shattered Latent Space

	Related Work
	Experiments
	Compared Methods
	Datasets
	Comparing Clusters on Samples Directly From The Induced Latent Spaces
	Comparing Quality of Mixture Models Fit On The Induced Latent Spaces
	Parameter Study

	Conclusion
	Appendix
	Hyperparameters
	Network Structures
	Proofs
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Lemma 2

	Distribution of Classes In LASH Clusters

