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ABSTRACT

Large language models (LLMs) are being used to solve planning problems that
require search. Most of the literature uses LLMs as world models to define the
search space, forgoing soundness for the sake of flexibility. A recent work, Thought
of Search (ToS), proposed defining the search space with code, having LLMs
produce that code. ToS requires a human in the loop, collaboratively producing
a sound successor function and goal test. The result, however, is worth the effort:
all the tested datasets were solved with 100% accuracy. Consequently, there is
great potential to automate the ToS process. We take a first major step towards
automating ToS (AutoToS), taking the human out of the loop of interactions with
the language model. AutoToS guides the language model step by step towards the
generation of sound and complete search components, through feedback from both
generic and domain specific unit tests. We show that AutoToS is able to achieve
100% accuracy on all the evaluated domains with a small number of LLM calls.
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Figure 1: An overview of ToS and AutoToS.

INTRODUCTION

Large language models (LLMs) have shown great promise across countless domains and fields,
especially as their architectures become more advanced. Spurred by their abilities in natural language
tasks, recently LLMs were used for solving Al planning tasks. The approaches vary from giving
a planning problem to an LLM and asking it to output an entire plan at once (Silver et al.| 2022
Kambhampati et al.,[2024; |Pallagani et al.,[2022) to asking an LLM to generate a planning model to be
given to an automated planner (Guan et al., 2023} |Oswald et al.| [2024} |Gestrin et al.|[2024). Between
these two extremes, lies a body of work on using LLMs to plan by performing a combinatorial search
(Hao et al., [2023}; |Yao et al., 2023} Besta et al., 2024 |Sel et al., [2023)). Among these, Thought of
Search (ToS) (Katz et al., 2024)) stands out; it uses LLMs to define the search space for the entire
domain at once, by soliciting two crucial search components, a successor function and a goal test.
These components are then plugged into a standard search algorithm, such as Breadth-First Search
(BFS) or Depth-First Search (DFS) (Cormen et al.,|1990). ToS has an impressive accuracy of 100%
on all tested benchmarks and it produces a symbolic model whose soundness and completeness
can be verified. However, ToS has a significant limitation - it requires a human expert in the loop,
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iteratively providing feedback to the model on the produced code. Our contribution is precisely there.
We take the first major step towards automating the ToS process, starting with the feedback loop.

We automate the iterative feedback and exception handling process through the use of unit tests and
print debugging statements, incorporated with Chain of Thought (CoT) style prompting (Wei et al.|
2022). We remove the human expert interaction with the LLM, shifting the human involvement
to specifying unit tests. We note that unit tests often exist already for search problems or can be
generated with the help of LLM (Pan et al.| 2025). Our approach leverages these existing unit tests
(referred to henceforth as domain-specific unit tests), along with a small number of predefined generic
domain-independent unit tests. The manual involvement in creation of unit tests is therefore minimal.

We demonstrate our approach on five representative search problems of various complexity and
benchmark using a variety of LLMs. We find that the accuracy of the code generated by LLMs
with automated feedback consistently reaches 100% in at least one trial of most models for every
tested domain, while the total number of LLM calls remains small, comparable to the results of ToS
with human feedback. In an ablation study, we show the importance of soundness and completeness
feedback for obtaining highly accurate final code. Finally, we investigate the errors in the code
generated by LLMs and find that the tested models differ significantly in error type distribution.

RELATED WORK

Planning with LLMs|Valmeekam et al.[(2023b) analyzed LLMs ability to generate plans for classical
planning problems described in natural language. Raman et al.[(2022) generated task plans and used
precondition errors as feedback to revise them. External validators were used to feedback LLMs,
to generate better plans (Stechly et al.| |2024} [Kambhampati et al., 2024). |Pallagani et al.| (2023)
investigate training approaches to plan generation. All these approaches use LLMs to solve one
problem at a time—essentially treating LLM as a policy. Another line of work extracted policies or
generalized plans from LLMs. [Silver et al.|(2024) synthesized generalized plans as Python programs
for planning domains described in a formal language (PDDL). LLMs were also used to extract
planning problems and models from their natural language description, either domain model (Guan
et al.| [2023; |Gestrin et al., 2024 |(Oswald et al., [2024)) or instance (Liu et al.| 2023 [Zuo et al., [2024;
Xie et al.,|2023). However, LLM generated PDDL remains less reliable and difficult to evaluate.

Planning with LLMs using Search A flourishing research direction pairs LLMs with external
search mechanism (MCTS, BFS, DFS, etc.) (Hao et al., 2023} |Yao et al., [2023}; Besta et al., 2024}
Zhou et al., 2023} |Shinn et al., [2023)). The idea is to treat LLMs as world models to generate next
states and as reasoning agents to guide the search. While these approaches report higher accuracy than
the basic methods, albeit possibly due to memorization (Katz et al., 2025)), their significant reliance
on LLMs for generating successors makes them extremely inefficient and unreliable. Thought of
Search (ToS) (Katz et al.,[2024), on the other hand, proposed using LLMs to generate code for the
successor and goal functions, capturing domain dynamics. Once these functions are available, any
search algorithm can be used to solve any problem in the domain. While this approach is significantly
more efficient than using LLMs in the loop during search, it requires feedback from a human expert.
Our work focuses on alleviating the requirement of human in the loop feedback. Another line of
work deals with using LLMs to generate code for the search guidance (Tuisov et al., [2025; Corréa
et al.| 2025). Our work is complementary and in fact it provides the prerequisite for these efforts.

Code Generation with LLMs LLM generated code correctness is evaluated by a variety of bench-
marks (Chen et al.|[2021; |Puri et al., 2021} [L1 et al., 2024). Subsequent approaches have demonstrated
human level performance on coding benchmarks (Zhong et al., 2024; [Muennighoff et al., 2024).
Execution errors were used to feedback LLMs for code refinement (Chen et al., [2024; |Zhang et al.,
2023)) and external verifies are used to curate the feedback (Madaan et al.,|[2023; |Gou et al., [2024;
Huang et al.,[2024)), as well as unit test results (Jiang et al.} 2023). Inspired by them, we propose to
automate the feedback of ToS with both generic and domain-specific unit tests and validators.

BACKGROUND

In this work we follow the notation of |[Katz et al.| (2018), slightly adapting it for our purposes. A
deterministic planning problem over a state space is a tuple IT = (S| A, sq, Sq, f), where S is a finite
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set of states, A is a finite set of action labels, sy € S is the initial state, S C S is the set of goal
states, and f : S x A — S is the transition function, such that f(s, a) is the state which applying
action a in state s leads to. A triplet (s, a, f (s, a)) is called a transition. A solution to such a problem
is a sequence of states and action labels (also called a trace) p = (sg, ai, S1, a2, . . . an, Sn ), such that
f(siyai41) = 8i41 for 0 < i < nand s, € Sg. In cases when the action labels are not important,
they can be dropped from the definition.

The “black box™ approach encodes the state space with a tuple IT, = (s, succ, isgoal), where s
is the initial state, succ : S — 24%5 is a successor generator, and isgoal : S — {T,F} is the
goal test. A solution to the black-box problem is a sequence of states and action labels (a trace)
T = (80,01, 81,02, . . . Gp, Sn ), such that {(a; 1, 8;41) € succ(s;) for0 < i < nand isgoal(s,) =T.
Here as well, if action labels are not important, they can be dropped.

We now establish the correspondence between the black-box encoding and the planning problem.

Definition 1 (Soundness and completeness).
isgoal is sound if Vs¢ Sq,isgoal(s)=F and complete if Vs€ S, isgoal(s)=T .
succ is sound if  succ(s) C{{a, f(s,a))|a€ A} and complete if succ(s) 2{{a, f(s,a))|ac A}.

Sound and complete successor generator and goal test provide the “black box” description of the state
space of the planning problem II. In such cases, a solution to II;, is guaranteed to be a solution to II,
and if no solution for II;, exists, then II also must be unsolvable. If the successor generator and goal
test are sound, but not necessarily complete, it is still the case that a solution to Il is guaranteed to
be a solution to II. Therefore, soundness allows us to reliably use Il for producing solutions for IT.

PROPOSED APPROACH AND METHODOLOGY

We build on prior work that proposed producing a code implementation of succ and isgoal functions
(Katz et al., 2024), but we seek to remove the human out of the feedback loop of evaluating the
functions. Similar to that work, we care about two properties, soundness and completeness. As we
deal with planning problems described in a natural language, we do not have the formally defined
planning task II. Although not stated formally, previous work on generating succ and isgoal with
LLMs assumes the existence of a human expert with the ability to access II (often in their mind).
Examples of such access include feedback on the code of succ and isgoal produced by the LLM
(Katz et al.,|2024)) or validating a solution obtained from the LLLM in cases when succ and isgoal are
implemented through LLMs (Hao et al., 2023} |Yao et al., 2023} Besta et al., [2024; |Sel et al., [2023).
Here, we make a similar assumption, but request a different access to II. We assume the existence of
unit tests (either produced by LLMs, or by a human expert) that provide evidence of unsoundness
or incompleteness. The evidence is then used to automatically feedback the model with the specific
information needed to fix the code. We deal with three types of information, as illustrated with the 24
Game (Yao et al., [2023)), where one performs arithmetic operations on 4 given numbers to reach 24.

» Examples of inputs to isgoal for which the correct output is known. For instance, we know
that isgoal(][24]) should be true and isgoal([24, 1]) should be false.

» Examples of inputs to succ for which some of the correct outputs are known. For instance,
we know that [24], [2], and [-2] are valid successors of [6,4] and should be in succ([6,4]).

* A partial soundness check for a transition (s, a, t) quickly invalidating (obviously) incorrect
transitions. For instance, in 24 Game we know that it must be that |¢| = |s| — 1.

The first two are usually readily available and often come with the description of the problem. The
third one might require some level of understanding of the problem being solved, and it is domain
specific (i.e., varies with the search problem), but the framework allows the use of a trivial partial
soundness test that always reports no issues. As stated earlier, the above categories of unit tests can
be produced relatively easily by an LLM or a human, and are domain-specific. Figure T| presents an
overview of our approach, describing how the provided information is used.

Step 1 Following Katz et al.| (2024)), we ask for the successor function succ and the goal test isgoal.

Step 2 Then, we perform the goal unit tests, providing feedback to the model in cases of failure,
repeatedly asking for a new isgoal until all goal unit tests have passed, or until a predefined
number of iterations.
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Step 3 Once isgoal has passed the unit tests, we perform a soundness check of the current succ and
1sgoal functions. We do that by plugging these functions in a BFS extended with additional
checks and run it on a few example problem instances. If BFS finished, we check if the goal
was indeed reached. If not, that means that isgoal failed to correctly identify a state as a
non-goal state and we provide that as feedback to the model, repeating Steps 2 and 3.

Step 4 (Optional) Finally, we perform the successor completeness unit test, providing feedback to
the language model in case of failure.

If the goal test fails, we go back to Step 2, if the successor test fails, we go back to Step 3. After Step
1, we always have succ and isgoal that can be plugged into a search algorithm. Step 3 failing is an
indication that we cannot trust the solutions produced by that algorithm. Example feedback produced
in Steps 2, 3, and 4 can be seen in Figure[2} In what follows, we provide detailed description of each
step of AutoToS.

System prompt We instruct the model to provide answers in convenient form for integrating as a
search component. The produced code should consist of a single, self-contained function. Following
existing work (Zhong et al.} 2024} |Yang et al.| [2024)), we use the system prompt:

You are a Python coding assistant. Help me generate my Python functions based on the task descriptions. Please always generate only a
single function and keep all imports in it. If you need to define any additional functions, define them as inner functions. Do not generate
examples of how to invoke the function. Please do not add any print statements outside the function. Provide the complete function and do
not include any ellipsis notation.

Step 1: Initial prompt While the initial prompt is the primary source of information for the language
model and therefore very important, we assume that we have very limited control over it. We therefore
mostly take the existing initial prompt from previous work, only ensuring that it includes an example
input to the requested function in the correct format (Katz et al., 2024).

Step 2: Goal function correctness check Goal unit tests assume the existence of a few known goal
and non-goal states. If the goal function ¢sgoal incorrectly identifies a goal state, then it is incomplete,
according to Definition[I] If it incorrectly identifies a non-goal state, then it is not sound. A search
with a non-sound goal function can incorrectly report that a solution was found. One illustrative
example from the 24 Game is a state [24, 1], which a goal test function may incorrectly identify as a
goal state and stop before the actual solution was found — in this case, another arithmetic operation
was needed. Whenever an issue with either goal function soundness or completeness was identified,
we give feedback to the language model with the description of the failure and the state for which
the failure occurred. See Figure 2| (top) for an example feedback. Here and later, we use a chain of
thought style request, asking the model to discuss why a mistake was made and to come up with a fix.

Step 3: Successor function soundness check A soundness check assumes the existence of example
problem instances for which we know how to validate that a goal was reached. We extend the
BFS/DFS search with additional checks as follows. First, both the successor and goal test functions
are wrapped with a timeout of 1 second. These functions should be able to finish in a few milliseconds
and therefore 1 second timeout is an indication of an issue with the function. An issue can be as
simple as unnecessary computation or multiple successor steps performed instead of a single step
or it can even be an infinite loop. Second, the successor function is wrapped with a check whether
it modifies the input state. Such modifications often happen when successor states are copied from
the input state and modified. A shallow copy of the input state was observed in the previous work
(Katz et al.l 2024). These two types of tests are domain-independent and baked into the search
process. Third, for every successor generated at the expansion step of BFS, a partial soundness check
is performed, examining the validity of transitioning from the parent state to the successor state. An
example of such a partial soundness check in 24 Game is that the successor state size must be one
number less than the parent state. If that does not hold, the successor function is not sound according
to Definition[I] It is worth emphasizing that this partial soundness check may be more difficult for
an LLM or human to generate and therefore we treat it as an optional check. If any of the checks
did not pass, we provide feedback to the LLM with the respective error message, providing example
input state and the unexpected (or expected and unobserved) output, until all tests are passed or a
predefined number of iterations was exhausted. See Figure |2 (middle) for an example feedback.

Step 4: Successor function completeness check A successor function completeness check assumes
the existence of a few known parent and successor states. These can include all successors for some
parent state or a subset thereof. If the successor function does not produce some of the known
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The goal test function failed on the following input state [24, 1], incorrectly reporting it as a goal state. First think step by step what it
means for a state to be a goal state in this domain. Then think through in words why the goal test function incorrectly reported input state:
[24, 1] as a goal state. Now, revise the goal test function and ensure it returns false for the input state. Remember how you fixed the
previous mistakes, if any. Keep the same function signature.

Invalid transformation: length mismatch - the length of a successor must be one less than the parent. Let’s think step by step. First think
through in words why the successor function produced a successor that had a length that was not exactly one less than the parent. Then
provide the complete Python code for the revised successor function that ensures the length of a successor is exactly one less than the
parent. Remember how you fixed the previous mistakes, if any. Keep the same function signature.

Input state: [1, 1, 4, 6] Example wrong successor state: [6, 5]

Successor function when run on the state [1, 1, 4, 6] failed to produce all successors. Missing successors are: [[1, 4, 7], [-5, 1, 4], [1, 1, 2],
[1, 5, 6], [0.25, 1, 6], [-3, 1, 6], [0.16666666666666666, 1, 4], [1, 3, 6], [1, 4, 5], [1, 1, 1.5]] First think step by step why the successor
function failed to produce all successors of the state. Then, fix the successor function. Remember how you fixed the previous mistakes, if
any. Keep the same function signature.

Figure 2: 24 Game example feedback.

successors, then it is not complete according to Definition|l} While completeness is not required for
producing valid (sound) solutions, incomplete functions may not generate the part of the search space
where goal states are located and therefore may not be able to find solutions. Improving completeness
is therefore an optional step that may improve the accuracy of the produced code. Here as well, we
give feedback to the language model with the respective error message, providing example input state
and the missing successors. See Figure 2] (bottom) for an example feedback.

Automation, evaluation and validation Since the expensive calls to large language models are not
performed during search, there is no need to artificially restrict the algorithms to their incomplete
variants ( e.g.,[Yao et al[(2023))). Sound and complete algorithms BFS/DFS can be used for solving the
search problems. Still, as the human feedback is before the feedback loop and the search components
produced are not guaranteed to be sound, the solutions produced must be validated for soundness.

EXPERIMENTS

To validate the feasibility of our approach, AutoToS, we conduct experiments on a representative
collection of five search/planning problems of varying computational complexity: BlocksWorld
(Gupta & Naul [1992), PrOntoQA (Saparov & Hel 2023)), Mini Crossword , 24 Game (Yao et al.,
2023)), and Sokoban (Junghanns & Schaeffer, [1997). Four of these domains appeared in ToS (Katz
et al.| 2024)), Sokoban domain did not. Two of these domains are polynomial, two are NP-complete,
and one is PSPACE-complete. We test the performance of various LLMs from 3 families, using
both the largest and smallest models from the same family. Specifically, we use GPT-40 and GPT-
40-Mini (OpenAl et al., [2024)), Llama3.1-70b and Llama3.1-405b (Dubey et al.| [2024), as well as
DeepSeek-CoderV2 (DeepSeek-Al et al.l |2024). We additionally tested Llama3-70b (Al@Meta,
2024), Mistral7x-8b (Jiang et al., [2024), and DeepSeek-CoderV2-Lite, finding these models to
perform poorly and hence excluded from consideration. We use greedy decoding with maximum
context length for each model. For each domain, we restrict the number of calls to the language
model per function to 10. We repeat each experiment 5 times.

Following ToS, we use a simple implementation of BFS and DFS search algorithms in Python. DFS
is used for Mini Crosswords, while BFS is used for the other 4 domains. Each successor function
execution is limited to 1 second and each overall search is limited to 600 seconds. For each domain, a
few (up to 10) instances are used for creating the unit tests. In one case, these instances are taken
out of the available set of instances, in other cases we invent new instances. The rest are used
for evaluating the accuracy of the generated code, where accuracy measures the percentage of the
instances solved. In the case of BFS search, we also require the solution produced to be optimal.
This is relevant to BlocksWorld and Sokoban where the solution length matters, but irrelevant for
PrOntoQA, where solution is a boolean answer, and 24 Game, where all solutions are of the same
length. It is important to emphasize again that if successor function and goal test are sound and
complete, then the solution produced by BES/DFS is guaranteed to be correct (and in the case of BFS
optimal). However, since no such guarantees are available, we automatically validate every solution
obtained. Experiments were performed on a AMD Ryzen 7 4800H. OpenAl models were accessed
via an API, while Llama and DeepSeek were interacted with through a chat user interface

'The data, unit-tests, the code, and the model correspondence logs are provided in the supplemental material.
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The aim of our evaluation is to test the following hypotheses. First, whether a partial soundness test
improves the accuracy of AutoToS. Second, whether the (optional) completeness step improves the
accuracy of AutoToS. Third, whether the number of calls to the language model increases significantly
compared to ToS. Finally, whether the performance of AutoToS is consistent across different language
models of varying sizes. We thus view the models performance without any feedback as our baseline.

24 Game The 24 Game (Yao et al., 2023)) takes 4 integers as an input that can be manipulated through
the four most common arithmetic operations: addition, subtraction, multiplication, and division. The
goal of the game is to reach 24, if possible. States are represented as lists of length 4 or less.

Data: We use the set of 1362 instances (Yao et al.l 2023} |[Katz et al.,[2024) and we take out the first
10 instances for unit tests. Goal unit tests use [24] for goal and [], [3] ,[24, 1], [1, 6, 4], [1, 1, 4, 6]
for non-goal examples. Successor completeness test uses the initial state with all its successors for
each of the 10 instances, as well as a single transition along a known solution path for each of these
instances. For example, the successors of [6, 6, 6, 6] are [1, 6, 6], [6, 6, 12], [0, 6, 6], and [6, 6, 36].
Also, a successor of [6, 6, 12] along the known solution path is [6, 18] and of [6, 18] is [24].
Fartial soundness test: For the partial soundness test we check whether the number of elements in a
successor state is one less than for the parent state.

Solution validation: A solution is a sequence of states sg, s1, S2, 53, where sq is the initial state,
s3 = [24] is the goal state, and (s, s1), (s1, S2), and (ss, s3), are valid transitions. We check that all
these hold for a given sequence.

BlocksWorld BlocksWorld is a classic Al planning domain, where the task is to rearrange blocks in
towers (Gupta & Nau|[1992). There are 4 actions: stack a block on top of another block, unstack a
block from another block, put a block down on the table, and pick a block up from the table. States are
represented as dictionaries based on ‘clear’, ‘on-table’, ‘arm-empty’, ‘holding’, and ‘on’, describing
whether a block is clear (no block above it in the tower), the block is on the table, whether the arm is
not holding a block and which blocks are on which.

Data: The domain has a PDDL representation and a large collection of 502 instances was created
by |Valmeekam et al.|(2023a) and used in the recent literature (Hao et al.,|2023). We use the entire
collection for evaluation and invent 2 example states (and transitions along 2 plans) per unit test for
the successor completeness tests.

Partial soundness test: For the partial soundness test we notice that in each tower there is a top block
(that is clear) and there is a bottom block (that is on the table). Therefore we simply check that the
number of blocks in the ‘clear’ list is the same as in the ‘on-table’ list.

Solution validation: As the instances are given in PDDL, we simply translate the solution into a
PDDL format and use an external validator VAL (Howey & Long, 2003).

Mini Crosswords The mini crosswords (Yao et al.,2023) is a 5x5 crosswords dataset where the input
describes the 5 horizontal and 5 vertical clues and the output is the full 25 letters board. We provide a
list of horizontal and vertical clues which are strings of words. The verifier ensures that the size of
each word in the rows or columns does not exceed 5.

Data: We use the existing 20 instances (Yao et al., 2023} |[Katz et al., [2024), all used for evaluation,
with the unit tests constructed based on 3 invented states each to minimize use of examples for
feedback, with the successor completeness based on a state in which one horizontal and one vertical
clue already filled, which limits the number of possible successors considerably.

Partial soundness test: The partial soundness test verifies that at most 5 new letters are filled in one
transition, as well as that the number of unfilled letters does not get larger.

Solution validation: A crossword puzzle is solved if the end result is valid, meaning every vertical
and horizontal clue is present in the list of possible clues.

PrOntoQA Logical reasoning can be viewed as a search problem of finding a sequence of logical
rules that when applied to the known facts, derive or disprove the target hypothesis. Previous work
applies MCTS with successor function and rewards obtained by calling an LLM, to examples from
the PrOntoQA dataset (Saparov & He, [2023)) to derive the answer but also the proof, a sequence of
reasoning steps. A state is therefore a set of the facts which are known to be true.

Data: We use the existing set of 4000 instances entirely for evaluation, inventing 3 examples per unit
test as in the other search problems.
Fartial soundness test: A partial soundness test simply checks that each transition adds a single
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known fact to the state, ensuring that the state size increases by exactly 1.
Solution validation: In order to validate the solution, we compare to the known correct answer.

Sokoban Sokoban (Junghanns & Schaeffer, [1997) is a planning problem of PSPACE-complete
complexity even for non-optimal planning. The problem, despite its simple conceptual rules, is
notoriously hard for generic Al planners and even for specialized solvers. We use a 2-D grid setup,
in which, given equal number of boxes and goal squares, the player needs to push all boxes to goal
squares without crossing walls or pushing boxes into walls. The player can only move or push up,
down, left and right, and some pushes are irreversible. States are represented as dictionaries with
entries: ‘at-player,” which represents a single pair of coordinates, and ‘at-stone’, a list of coordinates
for the stones. The domain has a PDDL planning model.

Data: We use the collection of PDDL problem instances from the International Planning Competition
(IPC) 2008. Out of these instances, we select a subset that can be solved relatively quickly by using
the blind search configuration of the efficient planner Fast Downward (Helmert, 2006)) and choose
the instances that were solved in under 5 seconds. This resulted in 11 instances. We use the entire set
for evaluation and invent 3 states per unit test.

Partial soundness test: The test checks if the locations of the player and the stones are all different.

Solution validation: Similar to BlocksWorld, we translate the solution to PDDL format and use VAL.

Evaluation Accuracy Figure [3|depicts the progression of the ]
average accuracy values across the 5 domains and 5 trials, com-
paring using the partial soundness test (solid lines, ‘+PST’) and
not (dotted lines). Each color represents a language model. The 4
first point in the process corresponds to when the search compo-
nents are first created, meaning no feedback at all - our baseline.
The second point is when the goal and successor function sound- .6
ness tests are not failing. The third and final point is the end of
the process, when successor completeness tests are not failing.
The aggregation is performed over the cases when the step was 0.4
reached. The figure allows us to find answers for both the first
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. DeepSeck-CoderV2 1.0 1.0 1.0{10 1.0 10|10 1.0 10|10 1.0 1.0 |10 1.0 10
partial sogndness teSt,  peepSeek-CoderV2+PST| 1.0 1.0 1.0/1.0 1.0 10|10 10 10[10 1.0 1.0 [10 1.0 1.0
even as simple as the GPT-4o-mini 0.0 1.0 1.0[0.0 0.1 NA|1.0 1.0 1.0[0.0 0.0 00 |L0 1.0 10
ones we described above, GPT-4o-mini+PST 0.64 1.0 1.0/0.0 0.83 083/ 1.0 1.0 1.0[0.0 1.0 1.0 [1.0 1.0 10
. GPT-4o 1.0 1.0 1.0{1.0 1.0 1.0|10 1.0 1.0|1.0 1.0 1.0 |10 1.0 10
Going forward, we there-  Gpr4o4psT 10 1.0 1.0/10 10 1.0 |10 1.0 10|10 10 10 1.0 1.0 1.0
fore restrict our atten- Tlama3.1-70b 1.0 1.0 10|00 037 10| 1.0 1.0 1.0/00 0.0 00 L0 1.0 1.0
tion to using the partial ~Llama3.1-70b+PST 1.0 1.0 1.0/00 1.0 1.0 |0.15 10 1.0[0.0 0.82 0.82[1.0 1.0 10
Llama3.1-405b 1.0 1.0 10|00 1.0 1.0| 00 095 NA|1.0 1.0 1.0 [1.0 1.0 1.0

soundness test. Further,  1j,m.314050+pST | 10 1.0 10[00 1.0 10|10 10 10[10 1.0 1010 1.0 1.0

we can clearly see the
strong increase in accu-
racy when not stopping
after the soundness test
passes and performing the completeness tests, across all models.

Table 1: Domain-wise best-of-5 accuracy. F/S/C stand for First, Sound,
and Complete, respectively. NA: no trials passed completeness. +PST:
with partial soundness test.

24 Game PrOntoQA Sokoban Crossword BlocksWorld

Number of LLM calls Table[2] shows the to- GPT-40-mini 3.8 48 6.4 9.6 10.0

L
tal number of calls to the language model until & GPT-40 34 26 22 58 20
&, Llama3.1-405b 34 20 26 40 32
soundness. apd completeness tests.pass. Note 2 [jama3.1-700 74 20 82 62 53
that the minimum number of calls is 2, one for DeepSeek-CoderV2 4.4 2.0 2.8 6.6 4.2
ToS GPT-4 22 26 NA 338 33

each component, even without feedback. The ‘
number of automated calls is comparable to the Table 2: Average per domain number of LLM calls.
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Figure 4: Average number of feedback calls for goal correctness, successor soundness/completeness.

one when a human expert is giving the feedback to the model. To look deeper into how the feedback
is partitioned among the three phases, Figure |4| compares the numbers across language models and
domains. We see that the larger models rarely require any feedback on the goal function and only a
few iterations on the successor function, and more often than not on completeness.

Finally, we can observe that there is no single model that performs better than all other, according
to all parameters and the performance is quite consistent across the large models. Interestingly, the
smaller model GPT-40-mini performs quite well in terms of accuracy.

CODE ERRORS DISCUSSION

To be able to improve the performance of the large language models in generating search components,
it is important to understand the errors in the code produced by these models. In the following section
we first present the error categories and show the partitioning of the errors to these categories and
then elaborate on a few interesting cases.

Error categories AutoToS distinguishes 10 error categories and gives each a separate feedback.

1. succ soundness test failed. 2. Input state changed by succ. 3. succ completeness failed.

4. isgoal soundness failed. 5. succ exception occurred. 6. isgoal exception occurred.
7. Timeout in succ soundness test. 8. Timeout in succ execution. 9. Timeout in <sgoal execution.
10. Response parsing error.

Interestingly, we did not observe any errors in the last two categories. Furthermore, only 1, 2, and
3 errors in categories 6, 8, and 7, respectively. The partition of the errors to the other 5 categories
(see Figure[5), shows how much the models differ in the type of errors produced. Interestingly, the
DeepSeek-Coder-V2 model rarely produces code that triggers exception or changes the input state
and even typically passes the goal soundness test. Other models, especially the smaller ones, are
more diverse in errors produced. Across all models, the majority of the errors account for the failed
successor soundness and completeness tests.

Bloopers We noticed a few “bloopers”, interesting phenomena that occur during AutoToS. We
share these observations in a hope of shedding some light onto future understanding of LLM code
generation for planning and search problems.

The first blooper occurs in the 5x5 Crossword for Llama3.1-70b. The representation of a Crossword
instance includes vertical and horizontal clues which are lists of 5 words each. The model handles
horizontal clues well by simply checking whether a word in row 1 is in the ith list in horizontal
clues. For vertical clues, however, the model checks whether the word in column i is at position
i among the clues for every column. The initial prompt from obtaining successor function clearly
states that:

... horizontal_answers is a list where element i is a list of possible answers to clue in row i, and verti-
cal_answers is a list where element i is a list of possible answers to clue in column i.

The second blooper occurs in the GPT-40-mini, Llama3.1-70b, and even in Llama3.1-405b on the
BlocksWorld domain. When generating successors for the unstack block from another block action,
the models check if the block is clear, but never actually check whether the arm is empty. The
resulting code, in cases when a block is already held, can generate a successor state in which the held
block is overwritten with the one that is unstacked, and therefore disappears from the state. In some
instances in the evaluation set the situation does not occur. In others, invalid solutions are produced
and the accuracy score falls far below 100%. The AutoToS feedback in the next iterations often
solves the problem.
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Figure 5: Partition of the errors by types in the generated code.

Goal test function soundness failed

Input state changed by successor function
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Another blooper occurs in Sokoban, when Llama3.1-70b generates the initial successor function and
the goal test, and no partial soundness check is performed. The model generates a helper function
is_clear that only checks whether the location on the grid is 0 or 2 (not a wall), disregarding whether
any of the stones are currently at the location. This allows the player to move and push stones to the
locations of other stones, resulting in the accuracy score of 0. Since the unit tests pass in this case, no
additional iterations were performed. The partial soundness check would catch the error the first time
a faulty state is generated (a state where multiple stones are at the same location or a player and a
stone are at the same location). The prompt explicitly states what it means to be clear:

The maze is defined by a grid of values 0,1, and 2, where 2 means it is a goal location for a stone, 1 means
the cell is blocked, and either 0 or 2 means that the cell can be occupied. A cell is clear if it can be occupied
but is not occupied by either the player or any stone.

Yet another blooper occurs in 24 Game with GPT-40-mini and DeepSeek-CoderV2 when no partial
soundness check is performed. When creating a new state out of the input state, two numbers are
chosen to perform an arithmetic operation and in order to obtain the remaining numbers, the code
selects the numbers from the state that are different from the two chosen numbers. Thus, in cases of
duplicate numbers, the state size becomes more than one smaller than of their parent and on some
instances the produced solutions would not be valid. The AutoToS completeness feedback eventually
solves the problem in each of these cases.

CONCLUSIONS AND FUTURE WORK

Conclusions We make the first step towards automating the process of generating code for the search
components by leveraging debugging and exception handing with natural language, code feedback,
and iterative reprompting. We demonstrate the performance of our approach, AutoToS, across various
sized models and across representative search problems of various complexity. With just a few calls
to the language model, we demonstrate that we can obtain the search components without any direct
human in the loop feedback, ensuring soundness, completeness, accuracy, and nearly 100% accuracy
across all models and all domains. We limit the human involvement to creating unit tests which
therefore only requires problem domain understanding, and only limited or no coding skills.

Limitations We acknowledge inherent limitations of any such approach. First, the proposed procedure
lacks convergence guarantees, as we have no theoretical way to ensure that the code quality improves
from one iteration to another. Second, as with any other software testing, there is no guarantee of test
coverage. Hence, the soundness and completeness cannot be guaranteed, even when all tests pass.
Additionally, a limitation that can be relaxed in future work is that the benchmarks only capture a
subset of planning problems that are fully observable and deterministic.

Societal Impact As with any technology, improving the planning abilities of LLMs can have positive
as well as negative impacts. An example of positive impact is increased automated productivity, the
flip side of which is loss of jobs. Awareness of pros and cons is crucial for policy generation.

Future Work For future work, we would like to further reduce human involvement in AutoToS.
While existing work deals with generating unit tests (Pan et al., [2025) with the help of LLMs, it
would be interesting to see if they could generate partial soundness tests, instead of relying on the
user writing these for a specific domain. These partial soundness tests are related to the notion of
invariants in planning (Alcazar & Torralbal 2015)). It is worth exploring whether LLMs can help us
derive such invariants. Further, it would be interesting to relax some of the assumptions, like full
observability. Finally, seeing that smaller language models can achieve accuracy on par with the
largest ones, begs the question of whether it would be possible to finetune an even smaller than the
tested models and achieve similar or better accuracy.
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