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Abstract

Most of the previous studies on sentence em-
beddings aim to obtain one representation per
sentence. However, this approach is inadequate
for handling the relations between sentences in
cases where a sentence has multiple interpreta-
tions. To address this problem, we propose
a novel concept, interpretation embeddings,
which are the representations of the interpreta-
tions of a sentence. We propose GumbelCSE,
which is a contrastive learning method for learn-
ing box embeddings of sentences. The interpre-
tation embeddings are derived by measuring the
overlap between the box embeddings of the tar-
get sentence and those of other sentences. We
evaluate our method on four tasks: Recogniz-
ing Textual Entailment (RTE), Entailment Di-
rection Prediction, Ambiguous RTE, and Con-
ditional Semantic Textual Similarity (C-STS).
In the RTE and Entailment Direction Predic-
tion tasks, GumbelCSE outperforms other sen-
tence embedding methods in most cases. In the
Ambiguous RTE and C-STS tasks, it is demon-
strated that the interpretation embeddings are
effective in capturing the ambiguity of meaning
inherent in a sentence.!

1 Introduction

Sentence embeddings are vector representations of
the meaning of a sentence, which have been well-
studied in the field of Natural Language Processing
(NLP) (Reimers and Gurevych, 2019; Gao et al.,
2021; Jiang et al., 2024). Most of the previous
studies aim to obtain one representation per sen-
tence. However, this approach cannot handle the
relations between sentences appropriately when a
sentence has multiple interpretations. For example,
the sentence “John and Anna are married.” can
be interpreted in two ways: “John and Anna are
married to each other.” and “John and Anna are
both married.” The former contradicts the sentence

'Our code will be made publicly available upon accep-
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Figure 1: Conceptual diagram of interpretation embed-
dings

“John and Anna are not a couple.”, while the latter
does not.

To address this problem, we propose interpre-
tation embeddings, which are the representations
of the interpretations of a sentence. As illustrated
in Figure 1, in our approach, an embedding of a
sentence contains embeddings of multiple interpre-
tations of the sentence, where each of the interpreta-
tion embeddings represents the individual meaning
of the sentence. This allows us to compute the sim-
ilarity between sentences more appropriately, even
when a sentence has two or more meanings.

In this study, sentence embeddings are repre-
sented by box embeddings (Dasgupta et al., 2020),
which represent items as hyperrectangles in a vec-
tor space. Intuitively, the box embeddings represent
the meaning of a sentence not by a single point, but
by an area in a high-dimensional space. Then, in-
terpretation embeddings are obtained by measuring
the overlap of the box embeddings of the ambigu-
ous sentence and other sentences, such as the sen-
tences between “John and Anna are married.” and
“John and Anna are married to each other.” We pro-
pose GumbelCSE for learning box embeddings of
sentences, which is based on contrastive learning
using Natural Language Inference (NLI) datasets.
After obtaining sentence embeddings that include



multiple interpretation embeddings, we also pro-
pose a method to extract the interpretation embed-
dings from the sentence embeddings.

Our proposed method is evaluated by conducting
four experiments: Recognizing Textual Entailment
(RTE), Entailment Direction Prediction (Yoda et al.,
2024), Ambiguous RTE, and Conditional Seman-
tic Textual Similarity (C-STS) (Deshpande et al.,
2023). The effectiveness of our approach is demon-
strated through these experiments.

The contributions of this paper are summarized
as follows:

* We introduce a new concept, interpretation
embeddings, which are the representations of
interpretations to handle multiple meanings of
a sentence.

* We propose a new sentence embedding
method to learn box embeddings of sentences
and interpretations.

* We empirically evaluate the effectiveness of
our method through four different tasks.

2 Related Work

2.1 Sentence Embeddings

There have been numerous efforts to develop meth-
ods for learning sentence embeddings. For ex-
ample, several methods using NLI datasets were
proposed (Conneau et al., 2017; Reimers and
Gurevych, 2019). Tsukagoshi et al. (2021) used
definition sentences in a dictionary to train sentence
embedding models.

Recently, the contrastive learning framework
(Chen et al., 2020) has become a popular approach
for the learning of sentence embeddings. Sim-
CSE? (Gao et al., 2021) is a representative one,
which will be explained in detail in subsection 3.1.
Several methods followed SimCSE to obtain en-
hanced sentence embeddings. Yoda et al. (2024)
extended SimCSE to learn Gaussian embeddings
of sentences. Li et al. (2024) applied Matryoshka
Representation Learning (Kusupati et al., 2022)
to learning sentence embeddings, enabling the ad-
justment of not only the number of embedding
dimensions but also that of the layers.

Most recently, Large Language Models (LLMs)
have been used for learning sentence embeddings,

2SimCSE has two kinds of settings: unsupervised and
supervised. In this paper, the term “SimCSE” refers to the
supervised version.

such as PromptEOL (Jiang et al., 2024). It defines
the hidden state of the next token of a prompt, “This
sentence: [text] means in one word”, as the sen-
tence embedding of a sentence given as [text],
inspired by Jiang et al. (2022). It also has an in-
context learning setting, which uses the definition
sentences in the dictionary, inspired by Tsukagoshi
et al. (2021).

The above sentence embedding methods define
a single representation for a given sentence. In
contrast, our method aims to represent a sentence
with multiple vector representations.

2.2 Sentence-Level Ambiguity

Ambiguity of a sentence meaning is an important
issue in many NLP tasks such as Question Answer-
ing (Min et al., 2020), Event Temporal Relation
Extraction (Hu et al., 2024), Text-to-SQL (Bhaskar
et al., 2023), and Machine Translation (Lee et al.,
2023; Pilault et al., 2023; Garg et al., 2024).

The construction of an NLI dataset is often ac-
companied by disagreement in the annotation pro-
cess, which is primarily attributed to ambiguity at
the sentence level (Jiang and de Marneffe, 2022).
Several attempts have been made to address this
issue. Jiang et al. (2023) and Weber-Genzel et al.
(2024) created NLI datasets annotated with labels
and their corresponding explanations, which pro-
vided insight into the rationale behind the chosen
labels. Pavlick and Kwiatkowski (2019) and Nie
et al. (2020) created datasets that were annotated
by many subjects. Meissner et al. (2021) and Zhou
et al. (2022) proposed the paradigm of predicting
the distribution of probabilities of the labels for a
given pair of sentences. Liu et al. (2023) created
the multi-labeled NLI dataset, AMBIENT, which
considered the interpretations of the sentences. In
this study, we use AMBIENT to assess the effec-
tiveness of our interpretation embedding method in
handling the ambiguity of a sentence.

Semantic Textual Similarity (STS) is a task to
predict the similarity between two sentences. Re-
cently, Deshpande et al. (2023) proposed a Condi-
tional Semantic Textual Similarity (C-STS) task,
which aimed to predict sentence similarity under a
condition indicated by a short sentence. Given the
necessity of considering multiple interpretations in
the C-STS task, we evaluate the quality of the in-
terpretation embeddings obtained by the proposed
method concerning this task.
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Figure 2: An explanation of interpretation embeddings
comparing the situation for words

3 Proposed Method

We propose a new concept, interpretation embed-
dings, which are the representations of individual
interpretations of a sentence. In this study, an inter-
pretation embedding is represented by the overlap
of the box embeddings (Dasgupta et al., 2020) of
two sentences. As shown in Figure 2, in the case
of words, an overlap of box embeddings can be
regarded as a representation of a word sense. Simi-
larly, in the case of sentences, we propose that the
overlap of box embeddings be regarded as interpre-
tation embeddings. The box embeddings of words
are often studied (Onoe et al., 2021; Dasgupta et al.,
2022; Oda et al., 2024), while those of sentences
are not. In our proposed method, interpretation
embeddings are obtained by two distinct steps. The
first step involves training the box embeddings of
sentences, which is explained in subsection 3.1.
The second step entails retrieving the interpretation
embeddings from the trained box embeddings of
sentences, which is explained in subsection 3.2.

3.1 Learning of Sentence Embeddings

We propose GumbelCSE, a sentence embedding
method to learn box embeddings. First, we explain
the basic concepts of box embeddings in 3.1.1. Sec-
ond, we introduce related methods: SimCSE and
GaussCSE in 3.1.2 and 3.1.3, respectively. Finally,
we explain GumbelCSE in 3.1.4.

3.1.1 Box Embeddings

Box embeddings represent items as n-dimensional
hyperrectangles. A box embedding b is con-
structed from two vectors: a center vector ¢ and
an offset vector o. For each ¢th dimension, the
area of a box embedding is defined as the interval
[ci — 0i,¢; + 0]. Given two box embeddings b,
and b, the asymmetrical similarity between them

is defined as follows:

Vol(b, N'b
P(bs|b,) = Ov(01<by> Do

Here, Vol(b) is the function that calculates the
volume of b, while b, N b, is the overlap of b,
and b,,. In this study, Gumbel Box (Dasgupta et al.,
2020) is used for the calculation of the volume of
box embeddings. More specifically, the Gumbel
distribution is employed to calculate the volumes of
box embeddings. This prevents the gradient from
becoming zero during the training phase, which
could occur due to the lack of overlap between the
box embeddings.

3.1.2 SimCSE

SimCSE (Gao et al., 2021) is a representative con-
trastive learning method for sentence embeddings.
BERT (Devlin et al., 2019) or RoBERTa (Liu et al.,
2019) is used as an encoder that produces a vector
representation of a sentence. This sentence encoder
is fine-tuned utilizing a set of contrastive sentences.
Each batch is constituted by M triplets (s;, s;, s; ),
where s;, s;, and s; mean an instance (sentence),
a positive instance for s;, and a hard negative in-
stance for s;, respectively. Gao et al. (2021) use
the training set of SNLI (Bowman et al., 2015) and
MNLI (Williams et al., 2018) for constructing the
above triplets, namely, using a premise as s;, its
entailment hypothesis as s;r, and its contradiction
hypothesis as s; . The loss for the ith instance is
calculated by

esim(hi,hj)/T

j]\il (esim(hi,hj)/T + esim(hi,h;)/T

—log , (2)
)

where h is the embedding of s, sim(h;, h;) is the
cosine similarity between h; and h;, and 7 is the
temperature.

3.1.3 GaussCSE

GaussCSE (Yoda et al., 2024) is an extension of
SimCSE. It is designed to learn Gaussian embed-
dings of sentences, whereby each sentence is rep-
resented as a Gaussian distribution. A Gaussian
embedding N is constructed from two vectors: a
mean vector p and a variance vector o. These two
vectors are the outputs of two linear layers, which
are connected to the hidden state of [CLS] in the
final layer of BERT or the beginning-of-sentence
token <s> in RoOBERTa. Gaussian embeddings can
represent asymmetric relationships between two



sentences s; and s; using the following asymmet-
ric similarity score:

1
1+ Dk (NVi|| V)

sim(s;||s;) = 3)
Here, Dkr,(N;||N;) is the Kullback-Leibler diver-
gence from N; to N;.

The configuration of the triplets for training
GaussCSE is identical to that of SImCSE, while
the loss is calculated as Equation (7).

Vi = ZMl esim(stsi)/T 4)
j:
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Ve + Vo + Va
The objective of this loss function is to train Gaus-
sian embeddings so that the similarity between two
sentences becomes close to 1 for a pair of a premise
and its entailment hypothesis, while 0 for other sen-
tence pairs.

3.1.4 GumbelCSE

We propose GumbelCSE, an extension of SImCSE
to learn box embeddings of sentences. A box em-
bedding b is the output of a linear layer, which is
connected to the hidden state of [CLS] in the final
layer of BERT. Here, ¢ and o are obtained by split-
ting b in half. The asymmetric similarity between
two boxes b; and b; is defined as Equation (1).

The triplets for training GumbelCSE are con-
structed in the same manner as those of SimCSE
and GaussCSE. The loss function is defined as
Equation (12).

M b /7
Vi = Zj:1 L (by [bi)/ 8)
M “1bs) /T
Vo = Zj:1 PPy [bi)/ )
M
Vi, = Zj:1 ep(bilb;r)/T 10)
M _
P (b |by)/7
I =-1 (12)

O
gVE + Ve + Vg, + Vg,

The design of this loss function draws inspiration
from the work of Yoda et al. (2024). The proba-
bility P(b;|b;) becomes close to 1 for a pair of a
premise and its entailment hypothesis, while O for

Figure 3: Extraction of interpretation embeddings

other pairs. In addition, a modification is made to
obtain better box embeddings of sentences. We add
Vg, to learn the relation between a sentence and its
hard negative sentence more clearly.

3.2 Extraction of Interpretation Embeddings

Let b, be a box embedding of a sentence s. We
extract Us, a set of box embeddings of multiple
interpretations of the sentence s, from b. As pre-
viously stated, we assume that b, includes embed-
dings of multiple interpretations of s, and each
interpretation can be represented by an overlap of
box embeddings of s and another sentence.

First, a set of reference sentences, denoted as 7T,
is prepared. For each ¢; € T, the overlap of b, and
by,, denoted as b, ;,), is obtained as interpretation
(box) embeddings. Obviously, all of b(, ;) are not
appropriate interpretation embeddings. Therefore,
Us is formed by b, 4, that meets the following con-
dition: P(b(,,)|bs) is greater than a1 and smaller
than a. That is, U, is formalized as follows:

Us = {b(sﬂgi) | o) < P(b(s,ti)|b8) < OéQ}. (13)

P(b(s,)|bs) measures how much the two box em-
beddings overlap. a1 and ag are hyperparameters,
which are optimized using the development set.

The motivation for our method of extracting in-
terpretation embeddings is as follows. As shown
in Figure 3 (b), when the overlap of by and by,
are small, the meanings of these two sentences are
extremely different, so the overlap may not repre-
sent an interpretation of s. As shown in Figure 3
(c), when the overlap of bs and by, is large, the
meanings of two sentences are similar and by, ;, is
almost the same as by, thus by, ;) is unlikely to be
an interpretation embedding. When the moderate
overlap is found, as shown in Figure 3 (a), we add
b(s,ti) to Us.



4 [Experiments

Four experiments are conducted to evaluate Gum-
belCSE: RTE, Entailment Direction Prediction
(Yoda et al., 2024), Ambiguous RTE, and C-STS
(Deshpande et al., 2023). The experimental setups
are described first in subsection 4.1, then the details
of the experiments are presented in the following
subsections.

4.1 Setup

The pre-trained BERT model (Devlin et al., 2019)
bert-base-uncased? is utilized through all exper-
iments. The number of dimensions of the out-
put of the linear layer connected to the BERT
model is set to 32, thereby enabling the training
of the 16-dimensional box embeddings. This low-
dimensional setting aims to reduce the memory and
time costs associated with extracting interpretation
embeddings.

During the training, the batch size is set to 512,
the learning rate is 5¢~°, and the temperature is
0.05, which are the same setting used in the training
of SimCSE (Gao et al., 2021). The model is trained
using the training sets of SNLI (Bowman et al.,
2015) and MNLI (Williams et al., 2018) prepared
by (Gao et al., 2021), which consist of 275,601
triplets in total. The hyperparameters are optimized
using a development set of the RTE task. The
model is validated every 100 steps, and the optimal
model is chosen based on the Area Under the Curve
(AUC) of the precision and the recall of the RTE
task, which is the same setting as Yoda et al. (2024).
The development set of SNLI is employed for the
RTE and Entailment Direction Prediction tasks,
while that of MNLI-mismatched* is utilized for the
Ambiguous RTE and C-STS tasks. The number of
instances in each of the development sets of SNLI
and MNLI-mismatched is 10,000.

4.2 RTE

Task definition RTE is a task of classifying a
pair of a premise and a hypothesis, (p, h), into two
classes: entailment or non-entailment.

Datasets Following Yoda et al. (2024), we use
the test set of SNLI, MNLI-mismatched?, and the

3https://huggingface.co/google—bert/
bert-base-uncased

“MNLI provides two development sets, MNLI-matched
and MNLI-mismatched, which respectively comprise samples
of domains consistent and inconsistent with the training data.

SRecall that it is one of the development sets in MNLI,
consisting of 10,000 samples.

Model SNLI MNLI SICK Avg.
LINEAR 82.79 7454 86.02 81.12
SimCSE* 7496 7818 86.11 79.75
GaussCSE*  76.64 76.85 83.15 78.88
GumbelCSE 80.25 7374 87.05 80.35

Table 1: Accuracy of RTE. * indicates the results from
Yoda et al. (2024).

test set of SICK (Marelli et al., 2014) for evaluation.
As they are NLI datasets, the labels “neutral” and
“contradiction” are converted to “non-entailment”,
while “entailment” remains unchanged. The num-
ber of instances in the test set of SNLI and SICK is
10,000 and 4,927, respectively.

Method Following Yoda et al. (2024), Gum-
belCSE predicts the relation of (p, k) as entailment
if P(byp,|by) is greater than the threshold 3, other-
wise non-entailment. 3 is optimized by the devel-
opment set of SNLI.

Baselines We prepare three baseline models:
LINEAR, SimCSE, and GaussCSE. LINEAR is
a model that comprises a two-dimensional linear
layer connected to the hidden state of [CLS] in
the final layer of BERT. This is an ordinary BERT
model fine-tuned for the RTE task. SimCSE pre-
dicts the label in the same way as our model, where
the similarity between the premise and hypothesis
is measured by the cosine similarity. Note that all
models are trained or fine-tuned using the same
dataset used to train SimCSE.

Results The results of the RTE task are shown
in Table 1. Comparing three sentence embedding
methods, GumbelCSE achieves the best perfor-
mance on the average of the three datasets, fol-
lowed by SimCSE and GaussCSE. Given that the
LINEAR model is fine-tuned for the RTE task,
it outperforms the other CSE-based methods that
learn task-agnostic sentence embeddings. However,
GumbelCSE is almost comparable to LINEAR.

4.3 Entailment Direction Prediction

Task definition Entailment Direction Prediction
is a task to predict the entailment direction between
two given sentences s and sy. This is a binary
classification task of which the goal is to determine
whether s; entails sy or sy entails s;.

Datasets We use 3,368, 3,463, and 794 sentence
pairs labeled with “entailment” in the test set of
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Model SNLI MNLI SICK Avg.
LENGTH*  92.63 82.64 69.14 81.47
GaussCSE* 9738 9192 86.22 91.84
GumbelCSE  98.10 9241 89.67 93.39

Table 2: Accuracy of Entailment Direction Prediction.
* indicates the results from Yoda et al. (2024).

SNLI, MNLI-mismatched, and the test set of SICK,
respectively. In SICK, the labels for NLI are anno-
tated for each direction of the sentence pairs. In-
stances labeled with the “entailment” tag for both

directions have been excluded, following Yoda et al.
(2024).

Method Similar to Yoda et al. (2024), Gum-
belCSE predicts that s; entails sy if P(bs,|bs,)
is greater than P (b, |bs,) and vice versa.

Baselines We prepare two baseline models:
LENGTH and GaussCSE. LENGTH is a simple
rule-based method that predicts a longer sentence
entails a shorter one.

Results The results of the Entailment Direction
Prediction task are shown in Table 2. Both Gauss-
CSE and GumbelCSE demonstrate superior perfor-
mance compared to the naive baseline, LENGTH.
Furthermore, GumbelCSE outperforms GaussCSE
for all three datasets, substantiating the effective-
ness of our GumbelCSE in capturing asymmetric
relations between sentences.

4.4 Ambiguous RTE

Task definition Ambiguous RTE is a task to clas-
sify a pair of a premise and a hypothesis into one
of the three classes: entailment, non-entailment,
or both. The class “both” means that the relation
between a premise and a hypothesis is ambiguous
due to multiple interpretations of a sentence.

Datasets We use the test set of AMBIENT (Liu
et al., 2023) and ChaosNLI (Nie et al., 2020) for
evaluation and MNLI-mismatched for optimizing
parameters. In these datasets, multiple NLI labels
are given for each sentence pair, considering the
ambiguity of the interpretation of a sentence. For
example, the pair of the premise “The cat was lost
after leaving the house.” and the hypothesis “The
cat could not find its way.” is labeled with both “en-
tailment” and “neutral” (when the premise means
“The cat is unable to be found.”). These NLI labels
are simplified to the three aforementioned coarse
classes.

In ChaosNLI and MNLI-mismatched, the labels
are voted by 100 and 5 annotators, respectively.
Similar to the setting in Jiang and de Marneffe
(2022), only the labels supported by 20 votes are
used in ChaosNLI, while 2 votes are in MNLI-
mismatched.

The test set of ChaosNLI is divided into
ChaosNLI-S and ChaosNLI-M, where the samples
are derived from the development set of SNLI and
MNLI-matched, respectively. The number of in-
stances in the test set of AMBIENT, ChaosNLI-S,
and ChaosNLI-M is 1,545, 1,514, and 1,599, re-
spectively.

Method First, the sets of interpretation embed-
dings of p and h, U,, and U},, are extracted as de-
scribed in subsection 3.2. Here, T (the set of refer-
ence sentences) is constructed from the n triplets
randomly sampled in the training set of Gum-
belCSE. Second, for all pairs of the interpretation
embeddings of p and h, namely (b, 1), B(t,)) €
Up X Un, P(bp1,)|Dp,1,)) is calculated. This prob-
ability evaluates how the interpretation embedding
b(p¢,) subsumes by, ;.), indicating the possibility
that p entails h. Finally, (p, h) is classified as fol-
lows:

entailment
ifv(b(p,t,;)7 b(h,tj)) Eup XUp, P(b(h’t].) |b(p_’t7.’)) >f
non-entailment
ifV(bp, i), Pen,ty)) EUy XUn P(B(n,i;)Pp,t;y) <B
both
otherwise
(14)

The parameter «; and oo are optimized using
the development set by the grid search from 0.5 to
1.0 at intervals of 0.1. Also, 3 and n are optimized
using the development set.

To evaluate the effectiveness of the use of in-
terpretation embeddings, two methods are com-
pared: GumbelCSE-sen and GumbelCSE-int.
GumbelCSE-int is the aforementioned method,
while GumbelCSE-sen classifies sentence pairs
into entailment or non-entailment using not inter-
pretation embeddings but sentence embeddings ob-
tained by GumbelCSE.

Baselines We prepare two baseline models: LIN-
EAR and SimCSE. LINEAR is a model that com-
prises a three-dimensional linear layer connected
to the hidden state of [CLS] in the final layer of
BERT. It is fine-tuned by two steps. First, it is fine-
tuned by the training set of GumbelCSE, where the
label is entailment or non-entailment. Then, it is
fine-tuned by MNLI-mismatched where the label



Model ChaosNLI-S ChaosNLI-M AMBIENT

ent. non. both ent. non.  both ent. non.  both
LINEAR 48.69 81.81 38.67 | 37.52 62.68 40.53 | 28.17 61.25 25.74
SimCSE 24.54 7040 - 3436 56.72 - 26.50 51.86 -
GumbelCSE-sen | 37.50 73.90 - 3540 55.88 - 28.26  68.91 -
GumbelCSE-int | 28.57 71.64 46.25 | 34.33 5495 27.17 | 27.63 67.94 3.27

Table 3: F1 score of each class for Ambiguous RTE

is one of the three classes. SIimCSE predicts the
label in the same way explained in subsection 4.2.

Results The results of the Ambiguous RTE task
are shown in Table 3. Note that SimCSE and
GumbelCSE-sen are binary classifiers that do not
classify a sample as the “both” class. The F1-
scores of GumbelCSE-int for the “entailment” and
“non-entailment” classes are almost comparable to
those of GumbelCSE-sen (except for “entailment”
in ChaosNLI-S), while Gumbel CSE-int is addition-
ally capable of classifying an ambiguous sentence
pair as “both”. This demonstrates the effectiveness
of interpretation embeddings in comprehending the
ambiguity of sentences. However, Gumbel CSE-int
could not outperform LINEAR, which is especially
fine-tuned for the Ambiguous RTE task. A com-
parison between SImCSE and GumbelCSE-sen is
similar to a comparison between SimCSE and Gum-
belCSE in the RTE task. GumbelCSE-sen outper-
forms SimCSE in most cases, which is consistent
with the results shown in Table 1.

4.5 C-STS

Task definition C-STS is a task to predict the
similarity between two sentences s; and s based
on a condition ¢ expressed by a short sentence.
For example, the similarity between the following
two sentences should be estimated high for the
condition “The motion of the ball.”, but low for the
condition “The size of the ball.” (Deshpande et al.,
2023).

s1: The NBA player shoots a three-pointer.
s2: A man throws a tennis ball into the air to serve.

Datasets The development set of C-STS (Desh-
pande et al., 2023) and Linguistically C-STS (Tu
et al., 2024), called LC-STS in this paper, are used
for evaluation. LC-STS is created by re-annotating
the development set of C-STS. The number of in-
stances in the development set of C-STS and LC-
STS is 2,834 and 2,620, respectively.

Method First, the set of interpretation embed-
dings of s; and sa, U, and Us,, are extracted using
the training set of C-STS as 7. Second, b’;, an
interpretation embedding of s; that is the most sim-
ilar to the sentence embedding of ¢, is selected as
shown in Equation (15). Here, sim is the symmet-
rical similarity of two box embeddings, which is
defined as Equation (16).

b/, = argmaxy, e u,, Sim(b(s, 1), be) (15)

P(bg[by) + P(by|b.)

sim(bg, by) = 5

(16)

The same process is applied to choose b’,. Fi-
nally, the similarity between b’; and b’ is calcu-
lated as sim(b, , b}, ). In addition to this method
(denoted as GumbelCSE-con), we also evaluate
another method, GumbelCSE-sen, which predicts
the similarity between s; and sz as sim(bg, , bs,)
without the use of c.

The parameters «; and o are optimized using
the development set by the grid search from 0.5 to

1.0 at intervals of 0.1.

Baselines We prepare two baseline models:
SimCSE-sen and SimCSE-con. SimCSE-sen is
a model that calculates the cosine similarity of
the sentence embeddings of s; and ss encoded
by SimCSE without c. SimCSE-con is a model
that calculates the cosine similarity of the sentence
embeddings of “s; [SEP] ¢” and “so [SEP] ¢” en-
coded by SimCSE, which is called as “bi-encoder”
in Deshpande et al. (2023).

Results The results of the C-STS task are shown
in Table 4. GumbelCSE-con demonstrates the best
performance on both datasets and evaluation met-
rics. This indicates that interpretation embeddings
are an appropriate approach for the C-STS task.

A comparison of the models that consider the
condition or not reveals that SimCSE-con unexpect-
edly performs poorer than SimCSE-sen despite the
condition being taken into account. This may be be-
cause the insertion of the [SEP] harms the quality



Model C-STS LC-STS
Spear. Pears. | Spear. Pears.
SimCSE-sen 440 5.07 | 749 8.69
SimCSE-con 276 357 | 633 7.59
GumbelCSE-sen | 6.75 7.13 | 1046 11.41
GumbelCSE-con| 7.39 7.80 | 1047 1141

Table 4: Spearman and Pearson correlations of C-STS

of the sentence embeddings of SimCSE. In contrast,
GumbelCSE-con outperforms Gumbel CSE-sen for
the C-STS datasets, demonstrating the advantage of
our method in terms of its ability to handle multiple
interpretations of a sentence.

The performance of GumbelCSE-sen and
GumbelCSE-con is almost the same for the LC-
STS dataset. By the grid search, o is determined
to be 0.9 and oo to be 1.0 for GumbelCSE-con.
It means that the number of extracted interpre-
tation embeddings is relatively limited, suggest-
ing that Gumbel CSE-con is almost equivalent to
GumbelCSE-sen, which handles the sentence em-
beddings only.

Additionally, GumbelCSE-sen outperforms
SimCSE-sen for both datasets. It demonstrates
that the box embeddings are a more appropriate
representation of sentences than the single vectors
for the C-STS task.

5 Analysis of Impact on Number of
Reference Sentences

In our GumbelCSE method, interpretation embed-
dings are obtained by measuring the overlap be-
tween two box embeddings of the target sentence
and reference sentences, where the set of refer-
ence sentences is denoted as 7. We analyze how
the number of reference sentences influences the
performance of the Ambiguous RTE task. As men-
tioned in subsection 4.4, T is formed by sentences
in triplets randomly sampled from the training data.
The number of the triplets, n, is varied over {5,000,
10,000, 50,000, 100,000, 200,000}. Since each
triplet comprises three sentences and duplicated
sentences are removed, the number of reference
sentences (|7|) can be approximately 3 x n. The
parameter « is changed from 0.5 to 0.9 with a step
size of 0.1, while a5 is fixed at 1.0 to reduce the
computational time required for analysis.

Figure 4 shows that the macro F1 score of the
Ambiguous RTE task of the models with differ-
ent settings. The best F1 score is obtained when

50
45
o #triplets
g 40 —— 5,000
© 10,000
£ —+— 50,000
35 —— 100,000
—+— 200,000
30
0.5 0.6 0.7 0.8 0.9

[25]

Figure 4: The macro F1 scores while varying a;; from
0.5 to 0.9 in five settings

n = 10,000 and «; = 0.6. This demonstrates
that a large number of reference sentences is not
necessary to obtain a sufficient number of appro-
priate interpretation embeddings, resulting in the
reduction of the computational costs. When « is
set to a relatively small value (i.e., 0.5), the macro
F1 score is significantly reduced as n is increased.
This is because the increase in the number of inter-
pretation embeddings provides the opportunity for
the “otherwise” condition in Equation (14) to be
fulfilled, resulting in a substantial bias towards the
“both” class. In contrast, when «; is set to a large
value, the performance of the Ambiguous RTE task
remains stable concerning the number of reference
sentences, due to the decrease in the number of
interpretation embeddings.

6 Conclusion

In this paper, we introduced a new concept interpre-
tation embeddings, which represented the interpre-
tations of a sentence. The interpretation embedding
was created by overlapping the box embeddings of
two sentences. Furthermore, we proposed Gum-
belCSE, which was a contrastive learning method
for learning box embeddings of sentences, and the
method for extracting interpretation embeddings
from the box embedding of a sentence. We eval-
uated our method on four tasks: RTE, Entailment
Direction Prediction, Ambiguous RTE, and C-STS.
In the RTE and Entailment Direction Prediction
tasks, GumbelCSE outperformed other sentence
embedding methods in most cases. In the Ambigu-
ous RTE and C-STS tasks, it was demonstrated
that interpretation embeddings are effective for un-
derstanding the multiple interpretations of a sen-
tence. In the future, we plan to apply our method to
more challenging tasks such as the understanding
of metaphors or pragmatics.



Limitations

The bottleneck of our method is the substantial
memory and time required for calculating the over-
lap of box embeddings to obtain interpretation em-
beddings. To mitigate this problem, the number of
dimensions of box embeddings is set to a relatively
low value (i.e., 16) in this paper. However, increas-
ing this value could facilitate the representation of
more subtle meanings of sentences. Another limi-
tation is that our method has not yet been applied
to real applications such as information retrieval.
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