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Abstract

Accurate reconstruction of cortical surfaces from brain magnetic resonance images
(MRIs) remains a challenging task due to the notorious partial volume effect in
brain MRIs and the cerebral cortex’s thin and highly folded patterns. Although
many promising deep learning-based cortical surface reconstruction methods have
been developed, they typically fail to model the interdependence between inner
(white matter) and outer (pial) cortical surfaces, which can help generate cortical
surfaces with spherical topology. To robustly reconstruct the cortical surfaces
with topological correctness, we develop a new deep learning framework to jointly
reconstruct the inner, outer, and their in-between (midthickness) surfaces and
estimate cortical thickness directly from 3D MRIs. Our method first estimates the
midthickness surface and then learns three diffeomorphic flows jointly to optimize
the midthickness surface and deform it inward and outward to the inner and outer
cortical surfaces respectively, regularized by topological correctness. Our method
also outputs a cortex thickness value for each surface vertex, estimated from its
diffeomorphic deformation trajectory. Our method has been evaluated on two
large-scale neuroimaging datasets, including ADNI and OASIS, achieving state-of-
the-art cortical surface reconstruction performance in terms of accuracy, surface
regularity, and computation efficiency.

1 Introduction

The analysis of the cerebral cortex using magnetic resonance imaging (MRI) is crucial in under-
standing neurodegenerative diseases [9, 43] and psychological disorders [42]. Since the cerebral
cortex is a thin (a few millimeters thick) and highly folded sheet between the inner (white matter:
WM) and outer (pial) surfaces, voxel-based segmentation methods cannot accurately capture its
complicated morphology [17]. Instead, triangular meshes have been widely used for cortical surface
reconstruction (CSR) [14] in order to accurately measure cortical thickness, volume, and gyrification.
Although well-established methods for CSR (e.g., FreeSurfer [17], BrainSuite [48]) can produce
promising results, they often require significant computational resources (e.g., 6h/subject [17]) and
may necessitate manual editing in order to attain sub-voxel precision.

Recently, deep learning (DL) methods have achieved significant improvement in CSR in terms of
both accuracy (sub-voxel error) and efficiency (orders of magnitude faster) [10, 13, 19, 20, 26, 30,
31, 41, 47, 59]. These DL methods can be broadly classified into two categories according to the
representation of the output surfaces. (I) Implicit surface representation, such as signed distance
function [13, 19], occupancy filed [13], and level set [41], can be predicted by neural networks,
and cortical surface is then generated by a marching cubes algorithm [27]. (II) Explicit surface
reconstruction methods take a coarse or fine initial mesh as input and directly predict a target
mesh [10, 20, 26, 30, 31, 59]. A detailed comparison of the existing DL-based CSR methods is
summarized in Table 1.
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Table 1: A comparison of existing DL-based CSR methods and ours. For input, “volume”: the whole 3D volume;
“cube”: a sub-volume; FS: fine surface mesh; CS: coarse surface template; IS: implicit surface representation.
For output, explicit surface: triangular mesh; implicit surface: signed distance function or occupancy field.

Methods Input Network Output
Explicit surf.

Joint surf.
reconstruction

Direct thickness
estimationImg. Surf. CNN GNN/MLP

DeepCSR [13] volume ✓ ✓
vox2surf [19] vol.+cube ✓ ✓
FastCSR [41] volume ✓
PialNN[31] cube FS ✓ ✓ ✓

CorticalFlow [26, 47] volume CS ✓ ✓
vox2cortex [10] volume CS ✓ ✓ ✓ ✓

TopoFit [20] volume CS ✓ ✓ ✓
CortexODE[30] cube FS ✓ ✓ ✓

Ours volume FS+IS ✓ ✓ ✓ ✓

However, the existing DL-based CSR methods are subject to limitations. First, the interdependence
between the inner and outer cortical surfaces is generally ignored, and therefore separate or multi-
stage DL models are typically trained to reconstruct both the inner and outer cortical surfaces and
intersections between them may occur. Even if both the inner and outer surfaces can be reconstructed
simultaneously [10], they are loosely combined with no topological constraints. Second, complex
DL architectures are commonly used, with separate learning of image and surface/vertex features
using both convolutional neural networks (CNNs) and graph neural networks (GNNs)/multi-layer
perceptrons (MLPs). Moreover, graph convolutions become less scalable as the number of vertices in
the mesh grows to accommodate complex shapes, and often fail to learn diffeomorphic mappings to
produce genus-zero regular meshes [10]. Third, using a coarse mesh template incurs difficulty of
learning large deformations for highly folded cortical regions and may lead to non-smooth deformation
and undesirable artifacts. Last but not least, the cortical thickness estimation is neglected in all
existing DL-based CSR methods (i.e., needs a separate step to compute cortical attributes as in
conventional pipelines [17, 56]). It may serve as an anatomical constraint to couple the inner and
outer cortical surfaces, help generate cortical surfaces with topological correctness, and facilitate
quantitative analysis of the cortical thickness.

In order to robustly reconstruct the cortical surfaces with topological correctness, we develop a
DL-based approach to simultaneously reconstruct both the inner and outer cortical surfaces and
estimate the cortical thickness by optimizing and deforming an initialized midthickness surface. First,
our method explicitly couples the inner and outer surfaces by jointly learning three diffeomorphic
flows to optimize the initialization midthickness surface to lie halfway between the inner and outer
cortical surfaces and deform it to inner and outer cortical surfaces, respectively. Second, instead of
designing a complex mixed architecture of CNNs and GNNs/MLPs, our method employs a single
model of 3D CNNs to predict the diffeomorphic flows from a multi-channel input, consisting of a
3D brain MRI, a ribbon segmentation map that encodes structural information of the cerebral cortex,
and a signed distance function that implicitly encodes the initialization surface. Third, our method
calculates the diffeomorphic deformation trajectories in a continues coordinate space rather than on
a 3D voxelwise grid, achieving higher sub-voxel accuracy from fine-grained velocity fields while
maintaining reasonable computational efficiency even as the number of mesh vertices increases.
Fourth, we devise an efficient and reliable approach to initialize a fine midthickness surface from a
cortical ribbon segmentation result, followed by topology correction to ensure genus zero. Finally, a
vertex-wise thickness estimation can be obtained by tracing the geodesic trajectory of each vertex
during the mesh deformation process. In summary, our new DL framework differs from the existing
DL-based CSR approaches in its coupled reconstruction of multiple surfaces and the simultaneous
cortical thickness estimation, which facilitates robust reconstruction of the cortical surfaces with
spherical topology. Ablation studies and comparison experiments on two large public datasets
(ADNI [22] and OASIS [33]) have demonstrated that our method attains superior performance over
the state-of-the-art methods [10, 13, 26, 30, 31, 47].

2 Related Works

2.1 Learning-based Cortical Surface Reconstruction

Recent years have witnessed a surge of interest in geometric DL-based methods for general computer
vision tasks [15, 29, 49, 52, 54, 57, 58]) and biomedical object reconstruction [24, 25, 37, 38, 55].
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However, their applications to biomedical tasks are limited to organs with simple shapes such as
the liver and heart. The cerebral cortex, on the other hand, is a highly folded, thin structure with a
significantly complex shape, necessitating more advanced approaches.

Table 1 summarizes two categories of CSR methods, i.e., implicit and explicit surface reconstruction.
The implicit surface reconstruction methods typically learn a function that maps 3D coordinates to a
continuous implicit representation of the surface, such as signed distance function [39] and occupancy
field [34]. Compared to well-established pipelines [17], these methods have significantly improved
inference efficiency (reducing time cost from hours to minutes). Despite their ability to generate
surfaces at any desired resolutions [13, 18, 19, 41], these methods often rely on a marching cubes
algorithm [27] to obtain a triangular mesh and post-processing topology correction methods [7] for
ensuring correct spherical topology of the reconstructed surfaces.

The explicit surface reconstruction methods typically learn a mapping from an initialization mesh to
a target surface and the mapping can be modeled as a deformation model [52, 53, 55]. Particularly,
Pixel2Mesh [52] utilizes GNNs to learn vertex-wise deformations of an ellipsoid and increase the
mesh resolution in a coarse-to-fine manner. Such a strategy has also been adopted in Voxel2Mesh [55]
to reconstruct simple human organ surfaces (e.g., liver, hippocampus) from CT/MR images. Similarly,
PialNN [31] learns to deform an input inner cortical (i.e., WM) surface to a target outer (pial) surface
by a sequence of deformation blocks; TopoFit [20] warps a topologically-correct template surface to
fit the WM surface by a series of graph convolutional blocks; and Vox2Cortex [10] deforms a brain
template surface to target cortical surfaces by leveraging combined CNNs and GNNs. Another line
of research leverages ODE to parameterize the deformation of vertices as diffeomorphic flows, such
as CoticalFlow methods [26, 47] and CortexODE [30]. However, all these methods may produce
intersecting inner and outer cortical surfaces because they predict the inner and outer cortical surfaces
either using separate DL models or using a joint DL model without explicit constraints to penalize
the generation of intersecting surfaces.

2.2 Diffeomorphic Deformation

A diffeomorphism is theoretically differentiable and invertible and guarantees smooth and one-to-one
mapping [46]. Diffeomorphic deformation has been widely used in image registration [2, 4, 5, 35, 51].
It can be generated from a velocity field v by integrating an ordinary differential equation (ODE) [1],

dϕ(x, t)

dt
= v(ϕ(x, t), t), and thus ϕ(x, t) = ϕ(x, 0) +

∫ t

o

v(ϕ(x, t), t)dt, (1)

where ϕ(x, 0) = x. The velocity field can be stationary [4] or time-varying [8]. Standard numerical
integration techniques, such as the Euler method and the Runge-Kutta method [11], can be used to
perform the integration. CoticalFlow methods [26, 47] and CortexODE [30] parameterize the ODE
by a neural network [12]. CoticalFlow requires the deformation field to be Lipschitz at each time step
to ensure a bijective mapping with Lipschitz inverse and derives a stability condition for the numeric
approximation of ϕ. As a chain of deformation modules is trained in sequential stages to predict a
series of deformation fields that deform the initial mesh template to the target surface in a coarse-
to-fine manner, there is a risk of generating self-intersections due to the low-resolution template
in the coarsest level model and the whole process is prone to error accumulation in multiple steps.
CortexODE [30] is built upon NODE [12] and operates on a topologically-corrected high-resolution
initialization mesh. The sufficient condition of diffeomorphism can be satisfied if the deformation
network is Lipschitz continuous and a sufficiently small step size is used in numerical approximation.
Most learning-based image registration approaches [6, 28, 36] adopt stationary velocity field (SVF),
and the integral (displacement field) is computed on a voxel-grid using the scaling and squaring
method [3], yielding comparable registration accuracy to conventional methods while significantly
improving efficiency. Our work lies at the intersection of these methods in that our method uses CNNs
to parameterize multiple SVFs based on a multi-channel input and train the SVFs jointly to optimize
cortical surfaces under topology-preserving and inverse-consistent transformation regularizations.

3 Methodology

As illustrated in Fig. 1, our framework consists of two parts: a pipeline that estimates a midthickness
surface, represented both explicitly as a 3D mesh and implicitly as a 3D distance map (Sect. 3.1), and
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Figure 1: Overview. (a) Surface initialization. An FCN generates cortical ribbon segmentation
maps from the raw image. An SDF is derived, followed by topology correction and marching cubes
algorithms, and then used for initializing the midthickness surface. (b) Cortical surface reconstruction
network. It takes a multi-channel input and learns three parallel velocity fields (VFs) in parallel. VF1

is used to generate a deformation field for optimizing the midthickness surface SM . VF2 (or VF3) is
used to deform SM to the WM surface SW (or pial surface SG) and then VF3 (or VF2) deforms SW

(or SG) to midthickness surface S ′′
M (or S ′

M ) to constrain topology between cortical surfaces.

an end-to-end fully convolutional network (FCN) that reconstructs multiple surfaces and estimate
cortical thickness simultaneously (Sect. 3.2). Loss functions are presented in (Sect. 3.3).

3.1 Midthickness Surface Initialization

The human cerebral cortex is a 2D sheet with an average thickness of ∼2.5mm and has a highly
folded geometry with peaks (i.e., gyri) and grooves (i.e., sulci) [17]. The existing CSR methods
typically use a smoothed template surface estimated from a group of subjects [10, 47], or a WM
surface [30, 31] to initialize the surface reconstruction. However, our preliminary experiment shows
that the closer the initial surface is to its target surface, the higher the reconstruction accuracy is (see
Fig. 2(a)). Thus, we propose to extract the midthickness layer which lies halfway between the inner
and outer cortical surfaces as an initialization surface, which brings three advantages: (1) Deforming
a surface from the midthickness surface reduces the learning difficulty and improves accuracy by
avoiding learning “large” deformations. It also strikes a balance between optimizing the inner and
outer surfaces, making it less challenging. (2) The distance between the midthickness surface and
the pial surface can help prevent topology errors in cases of deep sulci, as this layer still provides a
clear separation between them. (3) Deforming the midthickness surface inward and outward to the
inner and outer surfaces establishes a one-to-one mapping that explicitly encodes the correspondence
between surfaces, facilitating coupled surface learning and improving CSR accuracy.

A key challenge is how to obtain a surface as close to the midthickness surface as possible. A
straightforward method is to inflate the WM surface along the normal direction by a pre-determined
distance [30]. However, this method cannot accurately estimate the midthickness surface in that
the cortical thickness varies across the cortex and the normal is merely an approximation using
neighboring faces. We propose a more accurate method by leveraging the cortex ribbon segmentation
map (i.e., the filled interior area of WM and pial surfaces). Given an input brain MRI volume I ∈
RD1×D2×D3 , we utilize a 3D U-Net [44] to generate a WM segmentation map MW ∈ RD1×D2×D3

and a GM segmentation map MG ∈ RD1×D2×D3 (see Fig. 1(a)). The network is trained on a large-
scale public neuroimaging dataset [22] by minimizing the cross-entropy loss between the prediction
and ground truth which can be obtained using existing pipelines [17, 45]. Based on the predicted
segmentation map MW , we generate a signed distance function (SDF), KW ∈ RD1×D2×D3 , using a
distance transform algorithm: d(vi) = SDF (vi) is the minimal Euclidean distance of voxel vi ∈ I
to the boundary voxels. Voxels with values equal to zero represent the surface boundaries and voxels
with negative or positive values encode their distances to the surface boundaries inward or outward,
respectively. Similarly, we generate an SDF, KG, for the pial (gray matter) surface. A new SDF can
be obtained by averaging the WM and GM SDFs: KM = (KG +KW )/2, whose 0-level defines the
midthickness surface implicitly. To ensure the midthickness surface maintains a spherical topology,
a fast topology check and correction algorithm [7, 30] is then applied to the implicit surface KM .
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Figure 2: (a) The relationship between the initialization surface position (X-axis) and the surface
reconstruction accuracy (Y-axis) using PialNN [31]. Orange and blue lines represent WM and pial
surfaces reconstruction resp. (b) Illustration of a symmetric deformation trajectory and cortical
thickness estimation. (c) Illustration of DDM. Each vertex is deformed by sampled velocities.

Finally, the initialization midthickness surface is extracted by the marching cubes algorithm [27]
from the 0-level of KM and parameterized by a triangular mesh S0.

3.2 Coupled Reconstruction of Cortical Surfaces

Based on the formulation in Eq. 1, an accurate parameterization of the SVFs is crucial to modeling
the diffeomorphic trajectory of each vertex and reconstructing the cortical surfaces. In this section,
we will show how our method achieves the goals.

Feature Extraction from a Mutli-channel Input of Brain MRI, Cortical Ribbon, and Cortical
Surface. The existing DL-based CSR studies have demonstrated that it is critical to fuse both image
features extracted from the MRIs using CNNs and geometry features extracted from surface meshes
using GNNs/MLPs. However, besides employing two different network architectures, these methods
typically learn the image and geometry features separately before fusion, which does not adequately
utilize image texture and surface geometric information. To better model the SVFs, we propose to
learn features from a multi-channel input consisting of a brain MRI, its cortical ribbon segmentation
maps, and its midthickness surface represented as an SDF: Icomb = I©MW⊕G©KM , where © is
channel-wise concatenation and MW⊕G is a multiclass mask (BG = 0, WM = 0.5, GM = 1).

Such a feature learning procedure brings two key benefits: (1) Utilizing heterogeneous features
enables mutual knowledge distillation. The brain MRI contains detailed texture and semantic
information but may include noise and irrelevant regions far from the target surfaces. The cortical
ribbon segmentation maps contain structural/semantic information about the cortical sheet and can
act as an attention guide for extracting informative features around its boundaries. The SDF implicitly
embeds the surface location information and relative relation between all voxels. Together, the
multi-channel input provides richer and complementary information for our model to reconstruct
the surfaces. (2) Only a single CNN is needed, which simplifies the model design and improves
efficiency. Features can be extracted in a single forward pass for all coordinates. When scaling up the
number of vertices in mesh, we can interpolate in the feature space efficiently.

Coupled Learning of Cortical Surfaces. The goal is to learn diffeomorphic deformations that
deform the initialization midthickness surface S0 ⊂ R3 to its target WM and pial surfaces, SW and
SG. Taking into account the discrepancy between the initialization S0 and the true midthickness
surfaces SM , our method also learns a diffeomorphic deformation to optimize the initialization
midthickness surface. In total, our method learns a function to model three diffeomorphic defor-
mations fθ(Icomb,S0) = (ϕM , ϕW , ϕG), using an FCN and several diffeomorphic deformation
modules (DDMs). Specifically, the FCN has a similar architecture as U-Net [44], consisting of a
5-level hierarchical encoder-decoder with skip connections as shown in Fig. 1(b) (see Supplementary
Materials for details). By taking the multi-channel input, the FCN learns to estimate three dense
SVFs jointly, denoted by vM , vW , and vG. We then use vM to compute ϕM that deforms S0 to the
true midthickness surface SM , vW to compute ϕW that deforms SM inward to the WM surface SW ,
and vG to compute ϕG that deforms SM outward to the pial surface SG. By doing so, we establish a
one-to-one mapping across SW , SM , and SG.

However, since ϕW and ϕG are computed using different SVFs, they may cause non-invertible
transformation around the midthickness surface. To address this issue, we utilize the property of
diffeomorphic mapping to compute a symmetric deformation trajectory of each vertex and devise a
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symmetric cycle function Lcyc (Eq. 2) for training. Fig. 2(b) illustrates the deformation of a vertex
pMid outward to pGM using ϕG (vG) followed by the deformation inward to p′

Mid using ϕW (vW ),
which should be as close to pMid as possible. Similarly, p′′

Mid should also be as close to pMid as
possible when deformed inward by ϕW followed by the outward deformation by ϕG. The symmetric
cycle loss is formulated as:

Lcyc =
1

N

∑
p∈SM

∥pϕW ◦ϕG
− p∥22 + ∥pϕG◦ϕW

− p∥22, (2)

Trajectory from 
𝑺𝑴𝒊𝒅 to 𝑺𝑮𝑴

Trajectory from 
𝑺𝑴𝒊𝒅 to 𝑺𝑾𝑴

w/o 𝐿!"! w/ 𝐿!"!

Figure 3: Example vertex deformation tra-
jectories with and without Lcyc.

where pϕb◦ϕa
represents deforming a vertex p using

velocity fields va and vb sequentially. It ensures si-
multaneous alignment of pϕW ◦ϕG

≃ p ≃ pϕG◦ϕW
for

each vertex p ∈ SM . Fig. 3 demonstrates the effective-
ness of Lcyc in the coupled reconstruction of multiple
surfaces in the network optimization. Moreover, we can
trace the geodesic trajectory of each vertex during the
mesh deformation process for estimating vertex-wise
cortical thickness (Fig. 2(b)).

Diffeomorphic Deformation Module (DDM). To numerically solve the ODE in Eq. 1, scaling and
squaring (SS) method [3] can be applied on the image grid, followed by trilinear interpolation (Lint(·))
for vertices in continuous coordinates. However, there are three limitations: (1) Interpolation cannot
guarantee the invertibility of diffeomorphic mapping; (2) Numerical errors are amplified in the two
sequential steps of SS+Lint(·); (3) Computation on grid voxels including no vertices is unnecessary.
Hence, we utilize the DDM to directly compute the vertex-wise integral. As shown in Fig. 2(c), we
obtain the velocity vector for a vertex with coordinate x by interpolating its neighboring velocity
vectors (:= −→v N (x)), i.e., −→v x = Lint(−→v N (x)). The vertex then moves to a new coordinate −→v x · 1

T ,
where T is the total time steps. We can obtain overall deformation using this procedure in T steps.

3.3 Loss Functions

We design multiple loss functions to optimize the geometric precision of the reconstructed surfaces
and regularize the SVFs for diffeomorphic deformation.

Mesh loss. It aims to minimize distances of the vertices between the predicted surface meshes
SW (and SG) and their corresponding ground truth (GT) meshes S∗ by the bidirectional Chamfer
distance [26]:

LchW =
∑

p∈SW

min
p∗∈SW∗

∥p− p∗∥22 +
∑

p∗∈SW∗

min
p∈SW

∥p∗ − p∥22, (3)

where p and p∗ are the coordinates of vertices on meshes. We can compute LchG analogously. The
mesh loss is Lch = LchW + LchG.

Trajectory loss. Starting from the midthickness surface, the trajectory length of the vertex moving
to the WM and the pial surfaces should be equal. We propose to compute the mean square difference
of the vertex’s trajectories:

Ldist =
1

N

∑
p∈Ω

∥LMid→GM (p)− LMid→WM (p)∥22, (4)

where LMid→GM (p) =
∑T

t=0 ∆ϕG,t(p) is the accumulated Euclidean distance (i.e., trajectory
length) of T steps of deformation. This term encourages the midthickness surface can be deformed
to the inner and outer cortical surfaces with the same deformation path length. In other words, the
midthickness surface should lie halfway between the inner and outer cortical surfaces.

Symmetric cycle loss. We formulate it as Eq. 2 to encourage ϕW and ϕG to be invertible.

Symmetric similarity loss. To optimize the midthickness surface to lie halfway between the inner
and outer cortical surfaces, a magnitude difference constraint is adopted directly on the SVFs:

Lss = ∥vG − vW ∥22, (5)

where vW represents reverse-directional vW .
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Normal consistency loss. We also incorporate a normal consistency regularization term to promote
robust learning of the surfaces and ensure their smoothness:

Lnc =
∑

e∈E,f0∩f1=e

(1− cos(nf0 ,nf1)), (6)

where e is an edge, f0 and f1 are e’s two neighboring faces with their unit normals nf0 and nf1 .

In summary, we combine all the losses to jointly optimize our DL model: L = λ1Lch + λ2Ldist +
λ3Lcyc + λ4Lss + λ5Lnc, where {λi}i=1,··· ,5 are weights to balance the loss terms. We empirically
set λi = 1 (i = 1, · · · , 4) and λ5 = 0.001.

4 Experiments

We evaluated our method for reconstructing both white-matter (WM) and pial surfaces on two large-
scale datasets, (ADNI) [22] and OASIS [33], and compared it with state-of-the-art (SOTA) DL-based
CSR methods. We also tested its robustness and performed ablation analyses.

Datasets. The ADNI-1 [22] dataset consists of 817 subjects and we randomly split it into 654,
50, and 113 subjects for training, validation, and testing, respectively. The OASIS-1 [33] dataset
consists of 413 subjects and we randomly split it into 330, 25, and 58 for training, validation, and
testing, respectively. The models were trained on the training set until they reached a loss plateau
on the validation set, after which their performance was evaluated on the test set. We followed
pre-processing protocols in previous works [10, 13, 26, 30] for fair comparison. The T1-weighted
MRI scans were aligned rigidly to the MNI152 template and clipped to the size of 192× 224× 192
at 1mm3 isotropic resolution. The pseudo ground-truth of ribbon segmentation and cortical surfaces
were generated using FreeSurfer v7.2.0 [17]. The intensity values of MRI scans, ribbon segmentation
maps, and SDFs were normalized to [0, 1] and the coordinates of the vertices were normalized to
[−1, 1]. The WM and GM in the cortical ribbon segmentation maps were assigned values of 0.5 and
1 respectively.

Implementation details. Our framework was implemented in PyTorch [40] and trained on an
NVIDIA P100 GPU of 16 GB memory. The 3D U-Net [44] for ribbon segmentation was trained for
200 epochs using Adam [23] optimization and achieved an average Dice index of 0.96 on the testing
set. The CSR model was trained for 400 epochs using Adam (β1 = 0.9, β2 = 0.999, ϵ = 1e−10,
learning rate 1e−4) to optimize the midthickness surface and reconstruct the WM and pial surfaces
for each hemisphere. The surface meshes had ∼130K vertices.

Evaluation metrics. We utilized three distance-based metrics to measure the CSR accuracy, including
Chamfer distance (CD), average symmetric surface distance (ASSD), and Hausdorff distance (HD).
In particular, CD measures the mean distance between two sets of vertices [16, 52]; ASSD and HD
measure the average and maximum distances between two surfaces [13, 50]. They are computed
bidirectionally over ∼130K points uniformly sampled from the predicted and target surfaces. A
lower distance indicates a better result. We used the 90th percentile instead of the maximum because
HD is sensitive to outliers [21]. We also utilized the ratio of self-intersection faces (SIF) to measure
surface quality [13, 30].

4.1 Comparison with Related Works

From the two categories of existing DL-based cortical surface reconstruction methods described in
Section 1, we selected representative ones from each category for comparison. The experimental
results are summarized in Table 2 and illustrated in Figure 4.

Main Results & Analysis. It is evident that our method achieved substantial improvement on both
the WM and pial surface reconstruction over other approaches. Since DeepCSR [13] predicts an
SDF-based implicit surface and requires post-processing to correct topology and extract a mesh, its
results may contain no SIFs but were less accurate compared with the explicit CSR methods. Starting
from the WM surface, PialNN [31] can achieve sub-voxel accuracy but its SIF ratio was relatively
high. Vox2Cortex [30] can generate multiple surfaces from different template meshes. It employs
complex CNN and GNN models to model the deformation for each vertex but has no diffeomorphism
guarantee. The promising results of [26, 30, 47] indicated that using neural networks to parameterize
the ODE can facilitate the diffeomorphic deformation, yielding better CSR accuracy. Our method
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Table 2: Quantitative analysis of cortical surface reconstruction on geometric accuracy and surface
quality. The Chamfer distance (CD), average symmetric surface distance (ASSD), Hausdorff distance
(HD), and the ratio of the self-intersecting faces (SIF) were measured for WM and pial surfaces on
the two datasets. The mean value and standard deviation are reported. The best ones are in bold.

L-Pial Surface L-WM Surface
Method CD (mm) ASSD (mm) HD (mm) SIF (%) CD (mm) ASSD (mm) HD (mm) SIF (%)

A
D

N
I

DeepCSR [13] 0.945±0.078 0.593±0.065 1.149±0.203 \ 0.938±0.076 0.587±0.064 1.137±0.193 \
PialNN [31] 0.621±0.035 0.465±0.044 1.002±0.106 0.137±0.093 \ \ \ \

CorticalFlow [26] 0.691±0.043 0.497±0.049 1.106±0.115 0.149±0.087 0.641±0.037 0.465±0.042 0.996±0.100 0.108±0.073
CorticalFlow++ [47] 0.545±0.036 0.410±0.033 0.886±0.069 0.098±0.067 0.544±0.034 0.401±0.030 0.878±0.066 0.069±0.042

cortexODE [30] 0.476±0.017 0.214±0.020 0.455±0.058 0.022±0.012 0.458±0.016 0.192±0.015 0.436±0.014 0.015±0.011
Vox2Cortex [10] 0.582±0.028 0.370±0.025 0.746±0.057 0.059±0.039 0.577±0.027 0.353±0.022 0.722±0.055 0.043±0.023

Ours 0.410±0.016 0.136±0.012 0.293±0.026 0.035±0.021 0.213±0.008 0.071±0.005 0.155±0.012 0.007±0.010

O
A

SI
S

DeepCSR [13] 0.986±0.085 0.617±0.070 1.331±0.212 \ 0.975±0.081 0.594±0.067 1.151±0.197 \
PialNN [31] 0.635±0.032 0.460±0.038 0.993±0.082 0.141±0.096 \ \ \ \

CorticalFlow [26] 0.687±0.040 0.495±0.047 1.082±0.110 0.147±0.086 0.637±0.035 0.462±0.040 0.992±0.097 0.101±0.070
CorticalFlow++ [47] 0.531±0.035 0.399±0.030 0.812±0.057 0.088±0.045 0.529±0.033 0.398±0.030 0.810±0.055 0.086±0.042

cortexODE [30] 0.481±0.019 0.218±0.021 0.461±0.062 0.026±0.015 0.463±0.018 0.207±0.017 0.435±0.015 0.018±0.010
Vox2Cortex [10] 0.588±0.032 0.381±0.030 0.750±0.063 0.061±0.037 0.581±0.028 0.375±0.027 0.731±0.059 0.046±0.027

Ours 0.442±0.014 0.161±0.012 0.348±0.025 0.037±0.023 0.218±0.007 0.073±0.006 0.159±0.013 0.008±0.011

achieved the overall best performance due to its explicit regularizations on the deformation trajectory
of vertices and its better initialization surface. On the ADNI dataset, our method achieved ∼48.8%
improvement in mean ASSD (of WM and pial surfaces) compared to the second best CortexODE
(i.e., 0.104mm v.s 0.203mm) with competitive self-intersection ratio (average ∼0.021%). On the
OASIS dataset, our method achieved similar performance improvement. More quantitative results on
the WM surface are reported in the Supplementary Materials. As shown in Fig. 4, the CSR results
obtained by our method had uniformly smaller errors across the whole surfaces.
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Figure 4: Visualization of the reconstructed surfaces with distance compared to ground truth.

Runtime Analysis. It took ∼0.8s for our method to obtain a ribbon segmentation map and another
∼2s for the topology correction and surface initialization. For the surface reconstruction, the inference
time for simultaneously reconstructing three (i.e., WM, pial, and midthickness) surfaces was ∼1.5s.
In comparison, the SOTA explicit CSR method CortexODE [30] needed ∼2s to reconstruct two
surfaces sequentially. Overall, our method is computationally as efficient as the SOTA alternatives.

4.2 Ablation Studies

Input. Our method takes as input a multi-channel 3D images Icomb and an initialization midthickness
surface S0. We conducted two experiments to analyze the influence of the input components on the
CSR performance (Table 3 Top). First, by gradually removing components from Icomb, we observed
a significant drop in accuracy, indicating the contribution of both the SDF and segmentation maps to
the final results. Second, we investigated the impact of the fine structure of the initialization surface
by applying Laplacian smoothing on S0 to generate oversmoothed initialization surfaces. The results
revealed that the accuracy of the model decreased with the increasing of smoothing steps which
resulted in a coarser initialization surface S0.

Loss functions. We evaluated the contribution of different losses of our method to the surface
reconstruction performance in terms of both accuracy (CD, ASSD, HD) and topological correctness
(SIF), with the results summarized in Table 3 Middle. Through the ablation studies, we observed
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Table 3: Ablation studies with the surface reconstruction results quantified in terms of CD, ASSD,
HD, and SIF. The setting I0, S0, and T = 5 all refer to our complete setting (cf. Table 2). Top:
The impact of the input image and initialization surface. Middle: The impact of the loss functions.
Bottom: The impact of the deformation steps in DDM.

Setting Input Initial mesh L-Pial Surface L-WM Surface
I SDF Seg # of Lap. Sm. CD (mm) ASSD (mm) HD (mm) CD (mm) ASSD (mm) HD (mm)

I0 ✓ ✓ ✓ 0 0.410±0.016 0.136±0.012 0.293±0.026 0.213±0.008 0.071±0.005 0.155±0.012
I1 ✓ ✓ 0 0.426±0.017 0.167±0.017 0.358±0.038 0.222±0.011 0.075±0.006 0.164±0.013
I2 ✓ 0.453±0.021 0.201±0.026 0.438±0.074 0.250±0.013 0.085±0.008 0.184±0.016

M1 ✓ ✓ ✓ 10 0.416±0.016 0.147±0.013 0.315±0.028 0.225±0.010 0.084±0.007 0.184±0.015
M2 ✓ ✓ ✓ 20 0.429±0.018 0.163±0.017 0.361±0.040 0.235±0.012 0.091±0.009 0.190±0.017

Setting Loss L-Pial Surface L-WM Surface
LCH Ldist Lcyc Lss Lnc CD (mm) ASSD (mm) HD (mm) SIF (%) CD (mm) ASSD (mm) HD (mm) SIF (%)

S0 ✓ ✓ ✓ ✓ ✓ 0.410±0.016 0.136±0.012 0.293±0.026 0.035±0.021 0.213±0.008 0.071±0.005 0.155±0.012 0.007±0.010
S1 ✓ ✓ ✓ ✓ 0.412±0.016 0.138±0.012 0.299±0.026 0.036±0.021 0.213±0.010 0.073±0.006 0.158±0.013 0.008±0.010
S2 ✓ ✓ ✓ 0.412±0.016 0.139±0.012 0.302±0.027 0.037±0.022 0.211±0.009 0.073±0.007 0.158±0.013 0.008±0.011
S3 ✓ ✓ 0.409±0.016 0.135±0.012 0.300±0.027 0.275±0.100 0.209±0.009 0.073±0.007 0.156±0.013 0.008±0.011
S4 ✓ 0.404±0.015 0.129±0.011 0.278±0.024 2.522±0.791 0.203±0.009 0.069±0.006 0.153±0.013 0.009±0.012

Number of steps
(T ) in DDM

Surface Surface
CD (mm) ASSD (mm) HD (mm) SIF(%) CD (mm) ASSD (mm) HD (mm) SIF(%)

5 0.410±0.016 0.136±0.012 0.293±0.026 0.035±0.021 0.213±0.008 0.071±0.005 0.155±0.012 0.007±0.010
4 0.411±0.015 0.137±0.012 0.295±0.026 0.038±0.022 0.208±0.009 0.072±0.006 0.157±0.012 0.008±0.011
3 0.411±0.016 0.138±0.012 0.297±0.026 0.044±0.025 0.205±0.009 0.072±0.006 0.158±0.013 0.009±0.012
2 0.415±0.016 0.143±0.013 0.309±0.028 0.432±0.110 0.204±0.008 0.075±0.005 0.166±0.012 0.011±0.013

that each component played its own role in a complementary way. The first row (referred to as
S0) corresponds to our complete network setting, while the last row (S4) represents using Chamfer
distance alone. The results of setting S4 indicated that the model generated surfaces well matched
to the ground truth data at the cost of high topological errors, particularly in highly curved regions,
reflected by the results that the SIF ratio was worse on the pial surface than on the WM surface.
Enforcing equality of the trajectories from the midthickness surface to the WM and pial surfaces
(S3, Ldist) helped optimize the midthickness surface, thereby preventing deformation in an arbitrary
direction and reducing self-intersection. However, the geometric accuracy slightly decreased, which
might be caused by the difficulty in accessing highly curved regions or deep sulci under such strong
topology constraints. The proposed symmetric cycle loss (S2, Lcyc) promoted the invertibility
of deformations, yielding a significant reduction of self-intersections on the meshes since our
method jointly reconstructs both the inner and outer surfaces by deforming the midthickness surface
inward and outward with two VFs. Such invertibility also facilitates accurate estimation of the
cortical thickness from the trajectory, as illustrated by a sample vertex deformation trajectory in
Fig. 2 obtained with settings of S2 and S3. Moreover, the inclusion of regularization terms on the
smoothness of SVFs (S1, Lss) and surfaces (S0, Lnc) contributed to enhancement in surface quality.
Overall, our proposed method struck a balance between geometric accuracy and topology quality.

Deformation steps in DDM. Table 3 Bottom shows the evaluation results of different numbers of
deformation steps (T ) in DDM. As T increased, the performance first improved and then saturated,
indicating that five steps were sufficient to deform the midthickness surface to the inner or outer
surfaces.

4.3 Reproducibility

Table 4: Reproducibility analysis.

Method L-WM Surface
CD (mm) ASSD (mm) HD (mm)

A
D

N
I-

pa
ir Ours 0.520±0.053 0.337±0.058 0.738±0.151

CortexODE 0.521±0.056 0.340±0.060 0.741±0.154
DeepCSR 0.618±0.103 0.397±0.080 0.823±0.211
FreeSurfer 0.556±0.049 0.364±0.054 0.764±0.118

T
R

T

Ours 0.451±0.019 0.235±0.030 0.492±0.059
CortexODE 0.457±0.021 0.238±0.031 0.504±0.071
DeepCSR 0.505±0.047 0.297±0.053 0.610±0.100
FreeSurfer 0.476±0.015 0.253±0.022 0.519±0.048

We carried out two experiments on two datasets: a
paired ADNI1.5&3T dataset [22] consisting of 1.5T and
3T MRIs of the same subjects, and the Test-Retest
dataset [32] comprising 40 MRIs collected within a
short period for each of the 3 subjects. In these sce-
narios, the cortical surfaces of the same subject should
be nearly identical. Following the experimental setup
outlined in [10, 13, 30], we utilized the iterative closest-
point algorithm (ICP) to align image pairs and com-
puted the geometric distance between surfaces. The
results for the left WM surfaces are presented in Table 4 (more in Supplementary Materials),
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demonstrating that our method obtained superior reproducibility compared with FreeSurfer and
was comparable to the SOTA DL methods.

4.4 Cortical Thickness
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Fitting Line
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Figure 5: Correlation between prediction (Y-
axis) and FreeSurfer’s thickness (X-axis) on
35 cortical regions (mm).

In contrast to the alternative methods that rely on
the ICP algorithm for registering WM and pial sur-
faces prior to calculating the Euclidean distance [10],
our proposed method directly provides vertex-wise
cortical thickness estimation. To validate the corti-
cal thickness estimation, we compared our method
with FreeSurfer for estimating the cortical thickness.
We identified 200 subjects from the ADNI-2GO [22]
dataset (100 are diagnosed with Alzheimer’s dis-
ease and 100 are normal controls) and computed
the average cortical thickness across 35 cortical re-
gions based on a surface parcellation provided by
FreeSurfer [17]. Fig. 5 shows the correlation between
ours and FreeSurfer’s results, showcasing the effec-
tiveness of our proposed framework in accurately
capturing cortical thickness.

5 Limitations and Future Directions

Despite achieving improved CSR accuracy and a low SIF ratio, our method can be further improved
by adopting post-processing methods and new loss functions in order to minimize the SIF ratio
and improve surface quality. While focusing on cortical thickness estimation in this paper, we
recognize the value of incorporating other cortical attributes like surface area and sulci depth into
CSR and analysis tasks. These attributes could serve as complementary constraints, enhancing overall
performance. It should be noted that further analysis is merited to thoroughly evaluate the proposed
method on a large cohort of subjects (e.g., subjects in different stages of AD) although we have
demonstrated the correlation between the estimated cortical thickness and that of FreeSurfer on a
balanced dataset.

6 Conclusion

We introduce a new DL framework for cortical surface reconstruction by generating a midthickness
surface to initialize a coupled reconstruction of both the WM and pial surfaces. Specifically, the
midthickness surface is estimated from a 3D distance map from each MRI by generating a cortical
ribbon segmentation map that encodes structural information of the cerebral cortex. The estimated
midthickness surface is represented as a triangular mesh with spherical topology, and the mesh is
optimized to lie at the center of the inner and outer cortical surfaces and deformed to the inner and
outer cortical surfaces by three diffeomorphic flows that are learned jointly with CNNs optimized with
a multi-channel input consisting of the brain MRI, the 3D distance map of midthckness surface, and
the cortical ribbon segmentation map. Our proposed symmetric cycle loss helps learn diffeomorphic
deformation and the numerical solution of DDM improves CSR accuracy and computation efficiency.
Experiments on two large-scale neuroimage datasets have demonstrated the superior performance
of our method. Moreover, our method generates an estimation of cortical thickness, facilitating
statistical analyses of brain atrophy.

7 Acknowledgements

This work was supported in part by the NIH grants AG066650 and EB022573.

References
[1] V. I. Arnold. Ordinary differential equations. Springer Science & Business Media, 1992.

10



[2] V. Arsigny. Processing data in lie groups: An algebraic approach. Application to non-linear
registration and diffusion tensor MRI. PhD thesis, Citeseer, 2004.

[3] V. Arsigny, O. Commowick, X. Pennec, and N. Ayache. A log-euclidean framework for
statistics on diffeomorphisms. In International Conference on Medical Image Computing and
Computer-Assisted, pages 924–931. Springer, 2006.

[4] J. Ashburner. A fast diffeomorphic image registration algorithm. Neuroimage, 38(1):95–113,
2007.

[5] B. B. Avants, C. L. Epstein, M. Grossman, and J. C. Gee. Symmetric diffeomorphic image reg-
istration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative
brain. Medical Image Analysis, 12(1):26–41, 2008.

[6] G. Balakrishnan, A. Zhao, M. R. Sabuncu, J. Guttag, and A. V. Dalca. Voxelmorph: a learning
framework for deformable medical image registration. IEEE Transactions on Medical Imaging,
38(8):1788–1800, 2019.

[7] P.-L. Bazin and D. L. Pham. Topology correction of segmented medical images using a fast
marching algorithm. Computer Methods and Programs in Biomedicine, 88(2):182–190, 2007.

[8] M. F. Beg, M. I. Miller, A. Trouvé, and L. Younes. Computing large deformation metric
mappings via geodesic flows of diffeomorphisms. International Journal of Computer Vision,
61:139–157, 2005.

[9] M. Bertoux, J. Lagarde, F. Corlier, L. Hamelin, J.-F. Mangin, O. Colliot, M. Chupin, M. N.
Braskie, P. M. Thompson, M. Bottlaender, et al. Sulcal morphology in alzheimer’s disease: an
effective marker of diagnosis and cognition. Neurobiology of Aging, 84:41–49, 2019.

[10] F. Bongratz, A.-M. Rickmann, S. Pölsterl, and C. Wachinger. Vox2Cortex: Fast explicit
reconstruction of cortical surfaces from 3D MRI scans with geometric deep neural networks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
20773–20783, 2022.

[11] R. L. Burden, J. D. Faires, and A. M. Burden. Numerical Analysis. Cengage learning, 2015.

[12] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. Neural ordinary differential
equations. Advances in Neural Information Processing Systems, 31, 2018.

[13] R. S. Cruz, L. Lebrat, P. Bourgeat, C. Fookes, J. Fripp, and O. Salvado. DeepCSR: A 3D deep
learning approach for cortical surface reconstruction. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pages 806–815, 2021.

[14] A. M. Dale, B. Fischl, and M. I. Sereno. Cortical surface-based analysis: I. segmentation and
surface reconstruction. Neuroimage, 9(2):179–194, 1999.

[15] G. Fahim, K. Amin, and S. Zarif. Single-view 3D reconstruction: A survey of deep learning
methods. Computers & Graphics, 94:164–190, 2021.

[16] H. Fan, H. Su, and L. J. Guibas. A point set generation network for 3d object reconstruction
from a single image. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 605–613, 2017.

[17] B. Fischl. Freesurfer. Neuroimage, 62(2):774–781, 2012.

[18] K. Gopinath, C. Desrosiers, and H. Lombaert. SegRecon: Learning joint brain surface re-
construction and segmentation from images. In International Conference on Medical Image
Computing and Computer Assisted Intervention, pages 650–659. Springer, 2021.

[19] Y. Hong, S. Ahmad, Y. Wu, S. Liu, and P.-T. Yap. Vox2Surf: Implicit surface reconstruction
from volumetric data. In International Workshop on Machine Learning in Medical Imaging in
Conjunction with MICCAI 2021, pages 644–653. Springer, 2021.

[20] A. Hoopes, J. E. Iglesias, B. Fischl, D. Greve, and A. V. Dalca. Topofit: Rapid reconstruction of
topologically-correct cortical surfaces. In Medical Imaging with Deep Learning, 2022.

11



[21] D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge. Comparing images using the
Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(9):850–
863, 1993.

[22] C. R. Jack Jr, M. A. Bernstein, N. C. Fox, P. Thompson, G. Alexander, D. Harvey, B. Borowski,
P. J. Britson, J. L. Whitwell, C. Ward, et al. The alzheimer’s disease neuroimaging initiative
(ADNI): MRI methods. Journal of Magnetic Resonance Imaging: An Official Journal of the
International Society for Magnetic Resonance in Medicine, 27(4):685–691, 2008.

[23] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Y. Bengio and
Y. LeCun, editors, International Conference on Learning Representations, 2015.

[24] F. Kong and S. C. Shadden. Learning whole heart mesh generation from patient images for
computational simulations. IEEE Transactions on Medical Imaging, 2022.

[25] F. Kong, N. Wilson, and S. Shadden. A deep-learning approach for direct whole-heart mesh
reconstruction. Medical Image Analysis, 74:102222, 2021.

[26] L. Lebrat, R. Santa Cruz, F. de Gournay, D. Fu, P. Bourgeat, J. Fripp, C. Fookes, and O. Salvado.
CorticalFlow: A diffeomorphic mesh transformer network for cortical surface reconstruction.
Advances in Neural Information Processing Systems, 34, 2021.

[27] T. Lewiner, H. Lopes, A. W. Vieira, and G. Tavares. Efficient implementation of marching
cubes’ cases with topological guarantees. Journal of Graphics Tools, 8(2):1–15, 2003.

[28] H. Li, Y. Fan, and A. D. N. Initiative. MDReg-Net: Multi-resolution diffeomorphic image
registration using fully convolutional networks with deep self-supervision. Human Brain
Mapping, 43(7):2218–2231, 2022.

[29] B. Ma, Z. Han, Y.-S. Liu, and M. Zwicker. Neural-pull: Learning signed distance function from
point clouds by learning to pull space onto surface. In International Conference on Machine
Learning, pages 7246–7257, 2021.

[30] Q. Ma, L. Li, E. C. Robinson, B. Kainz, D. Rueckert, and A. Alansary. CortexODE: Learning
cortical surface reconstruction by neural ODEs. IEEE Transactions on Medical Imaging, 2022.

[31] Q. Ma, E. C. Robinson, B. Kainz, D. Rueckert, and A. Alansary. PialNN: A fast deep learning
framework for cortical pial surface reconstruction. In International Workshop on Machine
Learning in Clinical Neuroimaging, pages 73–81. Springer, 2021.

[32] J. Maclaren, Z. Han, S. B. Vos, N. Fischbein, and R. Bammer. Reliability of brain volume
measurements: a test-retest dataset. Scientific Data, 1(1):1–9, 2014.

[33] D. S. Marcus, T. H. Wang, J. Parker, J. G. Csernansky, J. C. Morris, and R. L. Buckner. Open
access series of imaging studies (OASIS): cross-sectional mri data in young, middle aged,
nondemented, and demented older adults. Journal of Cognitive Neuroscience, 19(9):1498–1507,
2007.

[34] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger. Occupancy networks:
Learning 3D reconstruction in function space. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 4460–4470, 2019.

[35] M. Modat, D. M. Cash, P. Daga, G. P. Winston, J. S. Duncan, and S. Ourselin. Global
image registration using a symmetric block-matching approach. Journal of Medical Imaging,
1(2):024003–024003, 2014.

[36] T. C. Mok and A. Chung. Fast symmetric diffeomorphic image registration with convolutional
neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4644–4653, 2020.

[37] D. H. Pak, M. Liu, S. S. Ahn, A. Caballero, J. A. Onofrey, L. Liang, W. Sun, and J. S. Duncan.
Weakly supervised deep learning for aortic valve finite element mesh generation from 3D CT
images. In International Conference on Information Processing in Medical Imaging, pages
637–648. Springer, 2021.

12



[38] D. H. Pak, M. Liu, T. Kim, L. Liang, R. McKay, W. Sun, and J. S. Duncan. Distortion energy for
deep learning-based volumetric finite element mesh generation for aortic valves. In International
Conference on Medical Image Computing and Computer Assisted Intervention, pages 485–494.
Springer, 2021.

[39] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove. Deepsdf: Learning continuous
signed distance functions for shape representation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 165–174, 2019.

[40] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance deep learning
library. Advances in Neural Information Processing Systems, 32, 2019.

[41] J. Ren, Q. Hu, W. Wang, W. Zhang, C. S. Hubbard, P. Zhang, N. An, Y. Zhou, L. Dahmani,
D. Wang, et al. Fast cortical surface reconstruction from mri using deep learning. Brain
Informatics, 9(1):1–16, 2022.

[42] L. M. Rimol, R. Nesvåg, D. J. Hagler Jr, Ø. Bergmann, C. Fennema-Notestine, C. B. Hartberg,
U. K. Haukvik, E. Lange, C. J. Pung, A. Server, et al. Cortical volume, surface area, and
thickness in schizophrenia and bipolar disorder. Biological Psychiatry, 71(6):552–560, 2012.

[43] J. M. Roe, D. Vidal-Piñeiro, Ø. Sørensen, A. M. Brandmaier, S. Düzel, H. A. Gonzalez, R. A.
Kievit, E. Knights, S. Kühn, U. Lindenberger, et al. Asymmetric thinning of the cerebral
cortex across the adult lifespan is accelerated in alzheimer’s disease. Nature Communications,
12(1):721, 2021.

[44] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image
segmentation. In International Conference on Medical Image Computing and Computer-Assisted
Intervention, pages 234–241, 2015.

[45] A. G. Roy, S. Conjeti, N. Navab, C. Wachinger, A. D. N. Initiative, et al. Quicknat: A fully
convolutional network for quick and accurate segmentation of neuroanatomy. NeuroImage,
186:713–727, 2019.

[46] D. Ruelle and D. Sullivan. Currents, flows and diffeomorphisms. Topology, 14(4):319–327,
1975.

[47] R. Santa Cruz, L. Lebrat, D. Fu, P. Bourgeat, J. Fripp, C. Fookes, and O. Salvado. Corti-
calFlow++: Boosting cortical surface reconstruction accuracy, regularity, and interoperability.
In International Conference on Medical Image Computing and Computer Assisted Intervention,
pages 496–505. Springer, 2022.

[48] D. W. Shattuck and R. M. Leahy. Brainsuite: an automated cortical surface identification tool.
Medical Image Analysis, 6(2):129–142, 2002.

[49] A. Sinha, A. Unmesh, Q. Huang, and K. Ramani. Surfnet: Generating 3d shape surfaces using
deep residual networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 6040–6049, 2017.

[50] A. A. Taha and A. Hanbury. Metrics for evaluating 3D medical image segmentation: analysis,
selection, and tool. BMC Medical Imaging, 15(1):1–28, 2015.

[51] T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache. Diffeomorphic demons: Efficient
non-parametric image registration. NeuroImage, 45(1):S61–S72, 2009.

[52] N. Wang, Y. Zhang, Z. Li, Y. Fu, H. Yu, W. Liu, X. Xue, and Y.-G. Jiang. Pixel2Mesh: 3D
mesh model generation via image guided deformation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 43(10):3600–3613, 2020.

[53] C. Wen, Y. Zhang, C. Cao, Z. Li, X. Xue, and Y. Fu. Pixel2Mesh++: 3D mesh generation
and refinement from multi-view images. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(02):2166–2180, 2023.

13



[54] X. Wen, J. Zhou, Y.-S. Liu, H. Su, Z. Dong, and Z. Han. 3d shape reconstruction from 2d images
with disentangled attribute flow. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 3803–3813, 2022.

[55] U. Wickramasinghe, E. Remelli, G. Knott, and P. Fua. Voxel2Mesh: 3D mesh model generation
from volumetric data. In International Conference on Medical Image Computing and Computer-
Assisted Intervention, pages 299–308. Springer, 2020.

[56] Z. Wu, F. Zhao, F. Wang, W. Lin, L. Wang, D. Shen, and G. Li. Surface-based analysis of the
developing cerebral cortex. In Advances in Magnetic Resonance Technology and Applications,
volume 2, pages 287–307. Elsevier, 2021.

[57] H. Xie, H. Yao, S. Zhang, S. Zhou, and W. Sun. Pix2Vox++: Multi-scale context-aware 3d
object reconstruction from single and multiple images. International Journal of Computer
Vision, 128(12):2919–2935, 2020.

[58] S. Yang, M. Xu, H. Xie, S. Perry, and J. Xia. Single-view 3d object reconstruction from shape
priors in memory. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3152–3161, 2021.

[59] H. Zheng, H. Li, and Y. Fan. Surf NN: Joint reconstruction of multiple cortical surfaces from
magnetic resonance images. In International Symposium on Biomedical Imaging, pages 1–4,
2023.

14


	Introduction
	Related Works
	Learning-based Cortical Surface Reconstruction
	Diffeomorphic Deformation

	Methodology
	Midthickness Surface Initialization
	Coupled Reconstruction of Cortical Surfaces 
	Loss Functions 

	Experiments 
	Comparison with Related Works 
	Ablation Studies
	Reproducibility
	Cortical Thickness

	Limitations and Future Directions
	Conclusion
	Acknowledgements

