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Abstract

We propose Rotate, Clip, and Partition (RCP), a001
Quantization-Aware Training (QAT) approach002
that first realizes extreme compression of LLMs003
with W2A4KV4 (2-bit weight, 4-bit activation,004
and 4-bit KV-cache) configuration. RCP inte-005
grates recent rotation techniques with a novel006
non-uniform weight quantizer design by theo-007
retically and empirically analyzing the impact008
of rotation on the non-uniformity of weight009
distribution. Our weight quantizer, Learnable010
Direct Partitioning (LDP), introduces learnable011
parameters to directly learn non-uniform in-012
tervals jointly with LLM weights. We also013
present a GPU kernel supporting GEMV on014
non-uniform W2A4 as proof of concept. Exper-015
iments show that RCP can compress LLaMA-016
2-7B to W2A4KV4 with a loss of only 2.84017
WikiText2 PPL and 5.29 times reduced mem-018
ory footprint. Furthermore, RCP can quantize019
challenging mobile-targeted LLaMA-3.2 mod-020
els and domain-specific WizardCoder-7B and021
MetaMath-7B with no critical problems such as022
convergence failure and repetition. Code will023
be made available at blind_review.024

1 Introduction025

Large language models (LLMs) have made signifi-026

cant advancements, but their growing size and re-027

source demands create challenges for deployment028

across data centers and mobile devices. To address029

these constraints, extensive research efforts have030

focused on improving quantization algorithms.031

Notably, rotation-based Post-Training Quanti-032

zation (PTQ) (Ashkboos et al., 2024b; Liu et al.,033

2024b; Lin et al., 2024a) showed remarkable im-034

provement on W4A4KV41 quantization, and state-035

of-the-art Quantization-Aware Training (QAT) (Du036

et al., 2024; Chen et al., 2024) made extreme037

weight quantization possible via careful design of038

datasets and training procedures.039

1We call l-bit weight, m-bit activation, and n-bit KV-cache
WlAmKVn like W2A4KV4.
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Figure 1: Bit-Level scaling laws for perplexity for
LLaMA-3 (AI@Meta, 2024) (1B, 3B, 8B).

In this work, we propose Rotate, Clip, and Par- 040

tition (RCP), a rotation-based QAT algorithm, to 041

push the boundaries of extremely low-bit compres- 042

sion. Based on empirical and theoretical analy- 043

sis, we draw our main insight that rotating LLM 044

weights has two effects at once: eliminating out- 045

liers and increasing the non-uniformity of the 046

weight distribution. The key component of RCP 047

is Learnable Direct Partitioning (LDP), which is a 048

fully differentiable non-uniform weight quantizer 049

working in three steps: 1) quantization range setup 050

with learnable clipping parameters (Shao et al., 051

2024); 2) non-uniform quantization via splitting the 052

quantization range with learnable partitioning pa- 053

rameters; 3) non-uniform dequantization that maps 054

the quantized weights to real-valued grids. RCP 055

is the first to enable challenging W2A4KV4 and 056

W3A4KV4 quantization on common LLM mod- 057

els, significantly outperforming QuaRot (Ashkboos 058

et al., 2024b) and BitDistiller (Du et al., 2024). Es- 059

pecially, as we present in Fig. 1, RCP also works 060

on small and mobile-targeted LLaMA-3.2 mod- 061

els (AI@Meta, 2024) that are harder to quantize. 062

Since there is no available hardware that supports 063

both LUT inference for non-uniform quantization 064

and specialized acceleration for 4-bit activation, we 065
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design an accelerated GEMV kernel in CUDA as a066

proof of concept. Our kernel can reduce the mem-067

ory footprint up to 5.29 times with a latency lower068

than the FP16 PyTorch (Paszke et al., 2019) and069

INT4 QuaRot implementation.070

Our contributions are summarized as follows:071

• We provide empirical and theoretical anal-072

ysis on how rotation interacts with weight073

distribution and poses difficulty on extreme074

W2A4KV4 quantization.075

• To address this issue, we introduce RCP, a076

quantization algorithm that takes the best from077

rotation and QAT via LDP, a novel fully learn-078

able non-uniform quantizer.079

• We provide extensive experiments to show080

RCP achieves state-of-the-art W2A4KV4 and081

W3A4KV4 quantization for the first time.082

2 Preliminaries083

2.1 Random Rotation for LLM Quantization084
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Figure 2: A diagram of the rotation process in a trans-
former decoder layer.

QuaRot (Ashkboos et al., 2024b) proposed to085

apply random rotations while keeping the computa-086

tional invariance suggested in SliceGPT (Ashkboos087

et al., 2024a). Random rotation suppresses activa-088

tion outliers and helps quantization, successfully089

achieving W4A4KV4 with minimal performance090

loss.091

As in Fig. 2, R1 rotates each decoder layer’s092

inputs and outputs, with its inverse (RT
1 ) fused into093

adjacent weights. R2 and R4 are required for on-094

line rotation of the MHA and FFN intermediates,095

respectively. We factorize R2 into two orthogonal096

matrices—RH for the V projection and R′
H for the097

self-attention activation—and then apply RT
2 to the098

out-projection. Finally, R3 rotates Q and K vectors099

after RoPE, enabling compression of the KV cache100

without altering attention outputs.101

2.2 Asymmetric Integer Quantizer 102

The commonly used asymmetric integer quantiza- 103

tion function is defined in Eqn. 1. 104

Q(W) = clip(⌊W
s
⌉+ z, 0, 2N − 1),

where h = max(W)−min(W), s =
h

2N − 1

z = −⌊min(W)

h
⌉,

(1) 105

where N is the number of bits, h is the quantiza- 106

tion range, s is the step size, and z is the zero- 107

point. This general formulation is applicable to 108

various settings, including per-tensor, per-channel, 109

and group-wise quantization, via adapting the com- 110

putation of h, s, and z. 111

3 Motivation 112

In this section, we confirm the difficulty of 113

W2A4KV4 quantization by empirical evaluations 114

and justify our key design of non-uniform weight 115

quantizer (in Section 4.3) through theoretical analy- 116

sis on the effect of the rotation technique on weight 117

distribution.

Method R
Language Reasoning

WikiText2↓ Coding↑ Math↑

QuaRot ✓ 12772.03 0 0.002
BitDistiller 17.40 3.5 5.39
BitDistiller ✓ 8.93 6.09 0.16

RCP ✓ 8.31 23.20 40.16

Table 1: Evaluation results on WikiText2, HumanEval,
and GSM8K under W2A4KV4. The evaluations are
conducted using LLaMA-2 7B for WikiText2 (perplex-
ity), WizardCoder 7B for HumanEval (pass@1), and
MetaMath 7B for GSM8K (pass@1). The column R
indicates whether rotation is applied.

118
Existing algorithms can fail on W2A4KV4 As 119

shown in Table 1, we first observe that QuaRot 120

and BitDistiller fail under W2A4KV4, particularly 121

on language modeling and reasoning tasks. This 122

demonstrates their limitations: QuaRot effectively 123

mitigates activation outliers but fails to handle ex- 124

treme low-bit weight quantization. BitDistiller is 125

able to address weight quantization but remains 126

vulnerable to the activation outliers. 127

Naturally, we conceptualized combining rotation 128

and QAT approaches and conducted experiments 129

with all rotation matrices applied to the BitDis- 130

tiller implementation. As indicated in the "Bit- 131

Distiller w/ Rotation" rows in Table 1, language 132

modeling performance was recovered to some ex- 133

tent; however, reasoning capabilities remained non- 134

deployable. 135
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Figure 3: A two-dimensional histogram comparing the
increase in output activation’s quantization error and
the increase in the averaged group-wise weight kurtosis.
The last down-projection layer of the LLaMA-2-7B
model is used. The bright blue horizontal line indicates
the average increase of the quantization error. We use
mean absolute error QErr(W,X) = |X(Q(W) −
W)| and Wrc follows the definition in Eqn. 6.

Relation between rotation and non-uniformity136

To explain why such a naive application of rotation137

to QAT fails, we first theoretically analyze how ro-138

tation affects the excess kurtosis of the weight dis-139

tribution. The excess kurtosis is the shifted fourth140

standardized moment defined as follows:141

Kurt(X) =
µ4

σ4
− 3, (2)142

where µ4 is the fourth moment and σ is the stan-143

dard deviation. Larger excess kurtosis indicates a144

distribution 1) contains numerous outliers and/or145

2) is more peaked around its center (i.e., more non-146

uniform, which is hard to quantize).147

Our claim is that the Hadamard matrix (used as148

rotation) increases the excess kurtosis of a platykur-149

tic distribution2, which we empirically observed to150

be true for most of the LLM weights.151

Lemma 1. Let X = (X1, X2, . . . , Xn)
T be a ran-152

dom vector whose components are i.i.d. with finite153

fourth moment µ4, mean µ, variance σ2, and nega-154

tive excess kurtosis (Kurt(Xi) < 0). Let Hn denote155

the normalized n × n Hadamard matrix with el-156

ements ± 1√
n

. Then, for the transformed vector157

Y = HnX, the following holds:158

Kurt(Yi) > Kurt(Xi)159

for all i ∈ {1, 2, . . . , n}.160
2A distribution X is platykurtic when Kurt(X) < 0

Proof. The proof can be found in Appendix A.2. 161

162

Since it is well known that the Hadamard matrix 163

is highly effective at eliminating outliers (Ashk- 164

boos et al., 2024b; Chee et al., 2024; Tseng et al., 165

2024), rotation is increasing the non-uniformity of 166

the weight distributions. As presented in Fig. 3, we 167

studied an empirical relation between the increase 168

in the quantization error of output activation and 169

the excess kurtosis of weight, after applying rota- 170

tion. Clearly, the quantization error is generally 171

enlarged when the excess kurtosis is increased by 172

rotation. See Appendix A.3 for details and further 173

discussion. 174

4 Methodology 175

Our proposition is a QAT algorithm named Rotate, 176

Clip, and Partition (RCP) that combines the idea 177

of random rotation with our novel Learnable Direct 178

Partitioning (LDP) quantizer. 179

Overall, RCP is a self-knowledge distilla- 180

tion (Hinton et al., 2015) algorithm that solves the 181

following optimization problem: 182

minimize
ΘS

E(x,y)∼D [DCAKLD(PΘT ||PΘS )] ,

DCAKLD(PΘT ||PΘS ) = αDKL(PΘT ||PΘS )

+(1− α)DKL(PΘT ||PΘS ),

(3) 183

where ΘT is the frozen full-precision teacher 184

model, ΘS is the student model quantized with 185

LDP, PΘ is the logit distribution produced by a 186

model Θ, D is the training dataset containing pairs 187

of input text x and label text y. The DCAKLD is 188

the confidence-aware KL divergence loss adopted 189

from BitDistiller (Du et al., 2024) with the empiri- 190

cal confidence α measured on ΘT . 191

4.1 Rotate: Applying Hadamard Transforms 192

The first step of our method is to apply (random- 193

ized) Hadamard transforms to model weights, fol- 194

lowing rotation-based PTQ algorithms (Ashkboos 195

et al., 2024b; Liu et al., 2024b; Lin et al., 2024a). 196

We formulate this procedure as follows: 197

Wr = RT
frontWRrear, (4) 198

where RT
front and Rrear are Hadamard matrices 199

multiplied to the front and rear side of a model 200

weight W, respectively. The choice of RT
front and 201

Rrear can be identified in Fig. 2. 202

Note that the Wr is pre-computed before any 203

optimization to increase memory efficiency and 204

3
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(b) A diagram of Learnable Direct Partition-
ing.

Figure 4: Illustration of Learnable Direct Partitioning (LDP) with rotation-aware clipping.

better QAT performance. For further details and205

ablation, see Appendix A.5.206

4.2 Clip: Learnable Clipping with207

Grid-Search Initialization208

Clipping is an essential technique to limit quanti-209

zation range via clamping out extreme values from210

the maximum and minimum sides of the model211

weights (Lin et al., 2024b; Shao et al., 2024; Choi212

et al., 2018; Esser et al., 2020).213

OmniQuant (Shao et al., 2024) introduces learn-214

able weight clipping (LWC) to dynamically deter-215

mine the optimal quantization range by modifying216

the static quantization range h in Eqn. 1 as follows:217

hlwc = σ(γ)max(Wr)− σ(β)min(Wr), (5)218

where β and γ are learnable parameters allocated219

for each quantization unit and σ is the sigmoid220

function.221

To enhance stability of RCP, we find the ini-222

tial point of the clipping parameters β∗, γ∗ in a223

rotation-aware manner, based on the grid-search224

strategy (Lin et al., 2024b) that solves the following225

problem on a small calibration dataset Dcal:226

β∗, γ∗ = argminβ,γ ∥Q(Wrc)Xr −WrcXr∥2,
Wrc = clip(Wr, σ(β)min(Wr), σ(γ)max(Wr)),

(6)227

where Q is the quantization function defined in Eqn.228

1, Wrc is the rotated and clipped weight, and XR229

is the rotated activation. In subsequent procedures,230

β and γ are learned via backpropagation, constantly231

searching for optimal dynamic quantization range232

on given data and updated model weights.233

4.3 Partition: Learnable Direct Partitioning234

The main goal of this work is to design a method to235

realize a non-uniform integer quantizer that learns236

from data. Prior arts such as N2UQ (Liu et al.,237

2022) and LLT (Wang et al., 2022) combine non- 238

uniform quantization and uniform dequantization 239

schemes to benefit from increased representational 240

capability while being hardware friendly, however, 241

we find this scheme results in suboptimal perfor- 242

mance. Instead, LDP performs both steps in a non- 243

uniform fashion to minimize the impact of errors 244

from extreme weight quantization. 245

Non-uniform quantization via partitioning 246

The core idea of LDP is to partition the dynamic 247

quantization range in a differentiable way by in- 248

troducing two learnable parameters s1 and s2 per 249

quantization unit. By applying sigmoid function to 250

them, LDP directly splits hlwc into three partitions: 251

p1 = σ(s1),

p2 = (1− p1)σ(s2),

p3 = (1− p1)(1− σ(s2)),

(7) 252

where s1 takes the left σ(s1) ∗ 100% of hlwc, s2 253

takes the left σ(s2) ∗ 100% of the remaining range 254

(1 − p1)hlwc, and the last partition is determined 255

trivially. 256

We set the quantization grid {ti|i ∈ 257

{1, 2, . . . , 2N − 1}} at the center of each 258

partition as follows: 259

ti = ti−1 +
pi−1 + pi

2
, where t1 = p1/2. (8) 260

This obtains the quantization function of LDP as 261

follows: 262

QLDP (Wrc) = u(
Wrc

hlwc
−t1)+u(

Wrc

hlwc
−t2)+u(

Wrc

hlwc
−t3),

(9) 263

where u(x) is the step function. 264

We rationalize this formulation in three points: 265

1) the dynamic range hlwc is seamlessly filled out 266

since
∑3

i=1 pi = 1 is guaranteed; 2) each partition 267

is constrained between 0% and 100% as the sig- 268

moid re-parametrization ensures each pi ∈ [0, 1]; 269
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3) no matter how the partitioning parameters are270

updated, the ordering of the partitions stays the271

same by the construction of pi.272

The initialization of s1 and s2 is set to σ−1(1/3)273

and σ−1(1/2), respectively (i.e., the dynamic range274

is uniformly partitioned at the beginning). Tech-275

nically, the grid-search strategy (Lin et al., 2024b)276

can also be employed to jointly find the optimal par-277

titioning parameters; however, the computational278

cost will grow exponentially since we have to iter-279

ate over a four-dimensional optimization loop (two280

for LWC and two for LDP).281

Non-uniform dequantization The overall de-282

sign of the quantization function in Eqn. 9 is im-283

ported, and the dequantization function of LDP is284

given by:285

DQLDP (Wrc) =σ(β)min(Wrc)

+hlwc

(
u(

Wrc

hlwc
− t1)(w1 − w0)

+u(
Wrc

hlwc
− t2)(w2 − w1)

+u(
Wrc

hlwc
− t3)(w3 − w2)

)
,

(10)286

where the dequantization grid {wi|i ∈ {0, 1, 2, 3}}287

is additionally introduced in Eqn. 11.288

wi =


0, if i = 0
ti+ti+1

2
, if 0 < i < 3

1, if i = 3.

(11)289

This means that the full-precision weight elements290

whose normalized value is smaller than the first291

quantization grid (i.e., W/hlwc < t1) are mapped292

to the minimum possible value in the dynamic293

range σ(β)min(Wrc). Likewise, the elements that294

satisfy W/hlwc > t3 are mapped to the maximum295

value σ(γ)max(Wrc)
3. The others in the middle296

are mapped to the center of the second and third297

quantization bin, realizing non-uniform dequanti-298

zation.299

Finally, when computing the loss function in300

Eqn. 3, each weight θS ∈ ΘS is fake-quantized by301

Eqn. 10 as θS ← DQLDP (θs). We note that dur-302

ing the fake quantization, every step function u(·)303

is applied with the straight-through estimator so304

that every parameter (including LLM weights, clip-305

ping, and partitioning parameters) can be updated306

via backpropagation.307

3Since σ(β)min(Wrc) + hlwc = σ(γ)max(Wrc)

Application of LDP on NF3 format We apply 308

not only 2-bit integer weight quantization but also 309

3-bit quantization using the asymmetric NF for- 310

mat of AFPQ (Zhang et al., 2023) where sepa- 311

rate scale values are computed for the negative 312

and positive weights (sneg = max(|Wrc,neg|), 313

spos = max(Wrc,pos)). Although shown to be 314

effective, such an NF3 quantizer can lead to sub- 315

optimal performance when the distribution is not 316

zero-centered. Therefore, we make a further im- 317

provement by applying the LDP to this situation. 318

The idea is to employ the same learnable clip- 319

ping parameters (β, γ) to obtain the dynamic quan- 320

tization range hlwc and one partitioning param- 321

eter s1 to express the learnable center point as 322

c = σ(β)min(W) + h · σ(s1). Then, the two scale 323

values are updated as follows: 324

sneg = |c− σ(β)min(Wrc)|,
spos = |σ(γ)max(Wrc)− c|,

(12) 325

and the quantization process is derived as follows: 326

Wq =

{
⌊Wrc−c

spos
⌉, if Wrc > c

⌊Wrc−c
sneg

⌉, otherwise.
(13) 327

The dequantization is done simply by multiplying 328

the scales to Wq and adding c. 329

4.4 Look-up Table (LUT) Inference for 330

Non-uniform W2A4 GEMV 331

To implement the non-uniform W2A4 inference 332

on modern GPUs, LUT-based GEMM and GEMV 333

kernels are designed. The quantized INT2 weights 334

Wq and the FP16 dequantization LUT Ŵ are pre- 335

computed from LDP using Eqn. 9 and 10 without 336

incurring any runtime overhead as follows: 337

Wq = QLDP (Wrc),

Ŵ = {Ŵ0, Ŵ1, Ŵ2, Ŵ3}
where Ŵi = σ(β)min(Wrc) + hlwc · wi.

(14) 338

However, designing such kernels poses a big 339

challenge. First, efficient INT tensor cores cannot 340

be utilized since accumulating the multiplication re- 341

sults in INT quantized space makes it impossible to 342

dequantize the weights back to correct non-uniform 343

real values in the LUT Ŵ. Second, both weights 344

and activations must undergo online dequantiza- 345

tion to support dynamic quantization, which adds a 346

large amount of computation overhead. 347

Therefore, we focus on designing GEMV ker- 348

nel for LUT decoding predominantly bounded by 349

5
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memory bandwidth, which is ideal for featuring350

the advantage of extreme W2A4KV4 compression.351

We report our exploratory results on GEMM design352

in Section A.6.353

Fast GEMV via Latency Hiding We define the354

input channel dimension as C, the output channel355

dimension as H, and the number of groups per chan-356

nel as N. The quantized activation tensor Xq has a357

shape of 1 × C/2 and is INT8, with each element358

holding two INT4 activation elements. The activa-359

tion scale S is an FP16 scalar. The quantized weight360

tensor Wq has a shape of H × C/4 and is INT8, with361

each element holding four UINT2 weights. The362

dequantization grid Ŵ has a shape of H × N·4 and363

is FP16. The output activation O is an FP16 tensor364

of shape 1 × H.365

As demonstrated in Fig. 5, we store the dequan-366

tized input activation sX (1 × C, FP16), the quan-367

tized weight tile sWq (BH × C/4, INT8), the corre-368

sponding dequantization grid tile sŴ (BH × N·4,369

FP16), and a shared output array sO (1 × 8, FP16)370

in shared memory.371

To make our kernel efficient via latency hiding,372

we design a pipelining strategy where a thread373

block handles a half of the output elements (BH/2)374

and iterates twice. At the beginning, an asyn-375

chronous copy of Ŵ and the first Wq chunk (of376

size BH/2 × C/4) is issued using cp.async instruc-377

tion (1-1 in Fig. 5). Simultaneously, Xq is syn-378

chronously loaded from global memory and de-379

quantized to be stored into sX (1-2), overlapping380

activation dequantization latency with loading the381

first weight chunk.382

Subsequently, while we bring in the second Wq383

chunk using cp.async (2-1), we perform dequanti-384

zation, inner product, and warp reduce on the first 385

Wq chunk at the same time (2-2), thereby hiding 386

the second chunk loading latency with computa- 387

tion of the first chunk. Finally, the computation on 388

the second chunk is performed (3) and the shared 389

output array is reduced once more if necessary. 390

Additional details (e.g., dequantization imple- 391

mentation, shared output) not mentioned here are 392

provided in Section A.7. 393

5 Experiments 394

5.1 Experimental Settings 395

Models and Tasks We evaluate RCP on LLaMA- 396

1 (Touvron et al., 2023a) 7B, LLaMA-2 (Touvron 397

et al., 2023b)(7B, 13B), LLaMA-3 (AI@Meta, 398

2024)(1B, 3B, 8B). Our evaluation of RCP was 399

carried out on PIQA (Bisk et al., 2020), Hel- 400

laSwag (Zellers et al., 2019), WinoGrande (Sak- 401

aguchi et al., 2021), ARC-c (Clark et al., 2018), 402

MMLU (Hendrycks et al., 2020) and Long- 403

Bench (Bai et al., 2024). We use LLM- 404

Humaneval-Benchmarks (Chen et al., 2021) and 405

GSM8K (Cobbe et al., 2021) for reasoning task 406

evaluation. We also report the perplexity score on 407

WikiText2 (Merity et al., 2016) for our evaluation. 408

Training Data For a fair comparison with our 409

baseline, we use the instruction-tuning data from 410

Alpaca (Taori et al., 2023) and the training set of 411

WikiText2 for general language tasks. For un- 412

derstanding and generating code, we use Evol- 413

Instruct-Code4. For math reasoning we use Meta- 414

MathQA (Yu et al., 2023). 415

4https://github.com/nickrosh/evol-teacher
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#Bits (W-A-KV)
Configuration LLAMA-1 7B LLAMA-2 7B LLAMA-2 13B LLAMA-3 8B LLAMA-3.2 1B LLAMA-3.2 3B

Method Rotation LDP MMLU 0-shot† Wiki↓ MMLU 0-shot† Wiki↓ MMLU 0-shot† Wiki↓ MMLU 0-shot† Wiki↓ MMLU 0-shot† Wiki↓ MMLU 0-shot† Wiki↓

16-16-16 BF16 35.10 68.40 5.68 46.45 61.67 5.47 55.54 63.02 4.88 68.40 72.93 6.10 32.20 58.90 13.40 58.00 65.30 10.70

2-4-16

BitDistiller 25.88 42.56 23.19 26.24 43.36 16.47 26.05 39.66 23.16 23.11 39.46 Inf 25.00 36.82 Inf 24.41 37.89 Inf

BitDistiller ✓ 26.75 52.28 8.79 26.04 51.49 8.93 29.97 48.48 7.55 29.80 50.59 13.68 25.00 41.08 31.32 29.60 45.29 18.79

RCP ✓ ✓ 27.34 52.29 8.28 28.04 51.10 8.18 37.27 51.71 7.27 31.87 50.86 12.48 26.30 41.35 27.46 31.40 45.71 16.96

2-4-4

BitDistiller 24.45 43.08 19.98 26.59 44.93 17.40 24.72 36.73 32.43 23.29 39.75 Inf 24.66 37.55 Inf 24.26 37.26 Inf

BitDistiller ✓ 26.98 52.21 8.92 26.41 51.10 8.93 24.18 43.55 11.45 29.66 49.80 14.05 24.74 40.77 33.86 31.44 44.26 19.58

RCP ✓ ✓ 27.34 52.29 8.28 26.92 51.22 8.31 35.49 48.18 7.95 31.01 50.41 12.69 25.62 41.80 29.30 30.33 45.56 17.52

3-4-16

BitDistiller 26.88 55.68 7.47 31.72 56.15 7.04 42.68 54.59 6.99 42.24 55.39 10.19 26.06 37.53 Inf 25.22 37.32 Inf

BitDistiller ✓ 28.70 58.52 6.44 34.30 59.28 6.25 46.91 58.99 5.62 54.16 61.06 7.92 26.45 47.88 13.75 47.34 55.66 9.82

RCP ✓ ✓ 29.46 59.39 6.39 37.33 59.74 6.23 50.84 60.52 5.49 55.33 61.53 7.80 27.77 48.18 13.68 47.31 55.87 9.74

3-4-4

BitDistiller 27.04 56.05 7.54 30.19 55.51 7.15 40.58 54.57 9.02 40.70 56.35 10.46 25.48 38.75 Inf 25.91 37.27 Inf

BitDistiller ✓ 28.80 58.48 6.45 33.46 58.53 6.36 47.86 58.78 6.06 51.74 59.69 8.04 26.11 47.14 14.58 46.08 55.08 10.05

RCP ✓ ✓ 30.00 58.55 6.39 36.07 59.27 6.33 48.47 58.83 5.57 52.55 61.11 7.95 26.54 47.71 14.44 46.40 55.12 9.99

Table 2: Comparison of the perplexity score on WikiText2, MMLU (5s) and averaged accuracy on four Zero-shot
Common Sense Reasoning tasks. We show the perplexity results >100 by Inf. Full results of Zero-shot tasks are in
the Appendix.

5.2 Results416

We compare our proposed RCP with the state-of-417

the-art QAT method, BitDistiller (Du et al., 2024).418

Details on training cost and implementation are419

provided in Appendix A.4.420

Language Modeling Tasks The results are sum-421

marized in Table 2. From the perspective of general422

language tasks, our method demonstrates the abil-423

ity to quantize activations and KV-cache under the424

W2 settings to 4-bit, which was previously unattain-425

able using existing QAT methods. The application426

of rotation effectively addresses the outlier issues,427

a common bottleneck in quantization, enabling sta-428

ble performance even in extremely low-bit quan-429

tization scenarios. Furthermore, the addition of430

LDP improves performance on general language431

tasks across the board, and generally enhances the432

accuracy of zero/few-shot tasks, which were not ad-433

equately addressed by rotation alone. For example,434

the addition of LDP contributes to a performance435

gain from 11.45 to 7.95 on LLaMA-2 13B, demon-436

strating its effectiveness across model scales.437

Reasoning Tasks The results of the reasoning438

tasks are summarized in Table 3. We evaluate rea-439

soning capabilities in the domains of coding and440

mathematics.441

For the coding domain-specific model, Wizard-442

Coder (Luo et al., 2023), BitDistiller failed to of-443

fer the functional quantized models in both W3444

and W2 settings. In our method, applying rotation445

alone was not effective in W2 settings and recov-446

ered some output quality in W3 settings. By incor-447

porating LDP, we achieved up to a threefold im-448

provement in performance, with accuracy increas-449

#Bits (W-A-KV) Configuration WizardCoder 7B MetaMath 7B

Method Rotation LDP HumanEval GSM8K

16-16-16 BF16 54.88 66.41

2-4-16
BitDistiller 2.43 0.0
BitDistiller ✓ 14.63 1.25

RCP ✓ ✓ 27.44 41.64

2-4-4
BitDistiller 3.50 5.39
BitDistiller ✓ 6.09 0.16

RCP ✓ ✓ 23.20 40.16

3-4-16
BitDistiller 0.0 0.0
BitDistiller ✓ 39.02 0.0

RCP ✓ ✓ 40.85 54.69

3-4-4
BitDistiller 0.0 0.0
BitDistiller ✓ 41.46 0.0

RCP ✓ ✓ 43.29 52.73

Table 3: Reasoning task results of RCP on domain-
specific LLMs.

ing from 6.09% to 23.20% under the W2A4KV4. 450

As shown in Fig. 9 with the application of LDP, 451

we were able to produce logically correct code out- 452

puts and eliminate repetition of meaningless code 453

generation. 454

For the mathematical reasoning model, Meta- 455

Math (Yu et al., 2023), the baseline BitDistiller 456

failed to offer functional quantized models while 457

ours with LDP could produce working quantized 458

models. These results highlight the critical role of 459

LDP in enabling proper task performance for rea- 460

soning models under extreme low-bit quantization. 461

The output comparison for this task is summarized 462

in Fig. 10. 463

Long-Context Benchmarks We conduct experi- 464

ments on a subset of the LongBench dataset to eval- 465

uate the effectiveness of our method under various 466

context lengths. Specifically, we test both LLaMA- 467

2 7B-chat-4k and LLaMA-2 7B-Instruct-32k mod- 468

els across eight benchmark tasks. As shown in 469

Table 4, our proposed RCP with W2A4KV4 con- 470

7



LLaMA-2 7B Method Avg.

Chat-4k
BF16 32.53

BitDistiller 4.37
RCP 19.32

Instruct-32k
BF16 27.13

BitDistiller 5.16
RCP 12.29

Table 4: Comparison of LongBench results of RCP
under W2A4KV4 across different models and methods.

sistently outperforms BitDistiller with W2A4KV4471

across all tasks. For instance, on the LLaMA-2472

7B-chat-4k model, RCP achieved an average score473

of 19.32, significantly higher than BitDistiller’s474

4.37. Similarly, on the LLaMA-2 7B-Instruct-32k475

model, RCP yields 12.29 compared to BitDistiller’s476

5.16, demonstrating robustness to extended context477

lengths. These findings further support the effec-478

tiveness of RCP-based quantization in preserving479

reasoning capability under constrained precision480

and longer context. The detailed results for each481

benchmark are presented in Table 13 and Table 14.482

Layer Size (2048, 2048) (3072, 3072) (4096, 4096)
FP16 0.042 0.047 0.051
QuaRot 0.077 0.057 0.078
QuaRot+FP16Had 0.158 0.210 0.159
QuaRot+FP32Had 0.194 0.238 0.191
RCP 0.028 0.03 0.040
RCP+FP16Had 0.114 0.167 0.110
RCP+FP32Had 0.136 0.204 0.148

Table 5: GEMV latency without activation quantiza-
tion overhead. The layer size is composed as (input
channel, output channel). All latency numbers are in
milliseconds. Full results are in the Appendix.

3.2-1B 3.2-3B 1.2-7B 3-8B 2-13B

FP16 2.47GB 6.43GB 13.48GB 16.06GB 26.03GB

BD W3 0.92GB (2.68x) 1.93GB (3.33x) 3.16GB (4.26x) 4.94GB (3.25x) 5.81GB (4.48x)
RCP W3 1.46GB (1.69x) 2.77GB (2.32x) 3.26GB (4.14x) 5.05GB (3.18x) 6.01GB (4.33x)
BD W2 0.80GB (3.08x) 1.58GB (4.06x) 2.35GB (5.73x) 4.07GB (3.94x) 4.22GB (6.17x)

RCP W2 1.35GB (1.82x) 2.46GB (2.62x) 2.55GB (5.29x) 4.28GB (3.75x) 4.62GB (5.63x)

Table 6: Memory footprint comparison for different
weight precisions. Note that 1.2-7B refers to LLaMA-1
and LLaMA-2.

Inference Table 5 and 6 present the results for483

GEMV in terms of latency and memory comsump-484

tion. The latency of GEMV, excluding the activa-485

tion quantization overhead, is faster compared to486

FP16 and QuaRot (Ashkboos et al., 2024b). This487

improvement can be attributed to the lower bit pre-488

cision, which enhances computational efficiency.489

Table 6 measures the peak memory footprint for490

W2A4 and W3A4. Although RCP incurs memory491

overhead due to additional parameters per quantiza-492

tion group beyond the BitDistiller, the performance 493

gain from RCP compensates for this cost. For 494

W2A4, a significant reduction on 5.29x in memory 495

footprint was achieved compared to FP16. Note 496

that in the LLaMA-3.2 series, it is necessary to 497

separate the embedding table and head modules 498

to satisfy the invariance arising from their tying. 499

Furthermore, as the size of the embedding table 500

has increased compared to previous models, the 501

compression ratio has decreased accordingly. 502

5.3 Ablation Studies 503

#Bits Rotation LWC LDP PPL↓

2-4-4
17.40

✓ 8.93
✓ ✓ 10.59
✓ ✓ ✓ 8.31

Table 7: Ablation study on the impact of each compo-
nent of RCP on performance for LLaMA-2 7B.

Impact of RCP Components As shown in Ta- 504

ble 7, we conducted an ablation study to analyze 505

the impact of removing each component of RCP 506

on model performance. In 4-bit activation quanti- 507

zation, addressing the outliers in activations was 508

crucial, and this was effectively resolved using ro- 509

tation, which led to the largest performance gain 510

compared to the baseline. This demonstrates that 511

rotation is a viable solution when quantizing acti- 512

vations to low bit-width. 513

However, we found that the narrow weight dis- 514

tribution caused by rotation hindered successful 515

training of LWC. Specifically, when examining the 516

training process with rotation applied during LWC 517

training, the training loss curve exhibited instabil- 518

ity. The combination of low bit-width quantization 519

challenges and the difficulty in finding an optimal 520

LWC required training stabilization, which was 521

achieved by LDP. LDP reduced PPL from 10.59 to 522

8.31, demonstrating a clear advantage. Additional 523

ablation results can be found in Appendix A.5 524

6 Conclusion 525

RCP enables weights to be quantized to extreme 526

low-bit precision through learnable non-uniform 527

quantization while harmonizing with rotation to op- 528

timize both activations and KV-cache to 4-bit. RCP 529

has achieved the first W2A4KV4 configuration and 530

implemented optimized kernels for inference, facil- 531

itating LLM serving even in resource-constrained 532

environments. 533
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Limitations534

Although our proposed RCP first enables challeng-535

ing W2A4KV4 quantization of commonly used536

LLM models, we report key limitations of our537

work.538

First, the online rotation operators (R2 through539

R4) inevitably introduce additional latency for540

training and evaluation. Custom CUDA kernels541

or FlashAttention3 (Shah et al., 2024) can mini-542

mize such speed-down, however, it might not be543

a viable option for many edge application scenar-544

ios where no hardware support for fast Hadamard545

transform is available.546

Second, RCP requires heavier hyperparameter547

tuning than BitDistiller since rotation tends to make548

the model weights more sensitive to the choice of549

learning rate. This can be prohibitive when a user550

is under a strict budget limit.551

In future work, we could explore applying an552

optimized rotation matrix that achieves comparable553

performance to Cayley-optimized rotation matrices554

used in SpinQuant (Liu et al., 2024b) while555

maintaining similar computational costs to the556

Random Hadamard rotation matrices employed in557

QuaRot (Ashkboos et al., 2024b).558

559
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A Appendix757

A.1 Related Works758

PTQ and QAT GPTQ (Frantar et al., 2022) intro-759

duced an accurate post-training quantization (PTQ)760

method based on approximate second-order in-761

formation that enables weight-only quantization762

down to 3-4 bits through block-wise reconstruction.763

SmoothQuant (Xiao et al., 2023) proposed smooth-764

ing activation outliers by offline migrating quantiza-765

tion difficulty from activations to weights through766

equivalent transformation, enabling accurate 8-bit767

weight-activation quantization. AWQ (Lin et al.,768

2024b) built upon SmoothQuant’s equivalent trans-769

formation concept but introduced activation-aware770

channel-wise scaling to protect salient weights dur-771

ing weight-only quantization. OmniQuant (Shao772

et al., 2024) enhanced quantization by introduc-773

ing learnable weight clipping and equivalent trans-774

formation parameters that are jointly optimized775

through block-wise reconstruction.776

LLM-QAT (Liu et al., 2024a) was the first to ex-777

plore quantization-aware training (QAT) for LLMs778

using data-free knowledge distillation from the full-779

precision model to guide low-bit quantization. Bit-780

Distiller (Du et al., 2024) improved upon LLM-781

QAT by introducing a self-distillation framework782

with confidence-aware KL divergence to enable783

sub-4-bit quantization while maintaining efficiency.784

EfficientQAT (Chen et al., 2024) made QAT more785

practical by introducing block-wise training of786

all parameters followed by end-to-end training of787

quantization parameters.788

Rotation QuaRot (Ashkboos et al., 2024b) intro-789

duced a rotation-based approach using Hadamard790

transforms to eliminate outliers in activations and791

KV-cache, enabling end-to-end 4-bit quantization792

including weights, activations and KV-cache. Spin-793

Quant (Liu et al., 2024b) enhanced this rotation-794

based approach by learning optimal rotation matri-795

ces instead of using random ones.796

Non-uniform Quantization PACT (Choi et al.,797

2018) introduced a learnable clipping parameter798

for activation quantization during training to help799

preserve model accuracy. SqueezeLLM (Kim et al.,800

2024) took a different direction by focusing on iden- 801

tifying and extracting outlier values into a sparse 802

format while quantizing the remaining dense val- 803

ues. NU2U (Liu et al., 2022) proposed learning 804

flexible non-uniform input thresholds while main- 805

taining uniform output levels to balance quantiza- 806

tion accuracy with hardware efficiency. 807

Serving Optimization Atom (Zhao et al., 2024) 808

first introduced W4A4 quantization for LLM serv- 809

ing but faced performance challenges from dequan- 810

tization overhead. QServe (Lin et al., 2024c) ad- 811

dressed the challenges by introducing W4A8KV4 812

quantization with progressive group quantization 813

FLUTE (Guo et al., 2024) focused on developing 814

efficient GPU kernels for flexible lookup table- 815

based quantization methods that can support ar- 816

bitrary bit widths including 3-bit and 4-bit quanti- 817

zation. 818

A.2 Proof of Lemma 1 819

Proof of Lemma 1. The proof follows directly 820

from Sub-lemmas 1.1–1.4. Specifically, Sub- 821

lemma 1.4 shows that for all components Yi of 822

the transformed vector: 823

Kurt(Yi) =
Kurt(X)

n
824

Since Kurt(X) < 0 for platykurtic distributions 825

and n > 1: 826

Kurt(X)

n
> Kurt(X) 827

Therefore: 828

Kurt(Yi) > Kurt(X) 829

for all i ∈ {1, 2, . . . , n}, which completes the 830

proof. 831

Definition. The n× n normalized Hadamard ma- 832

trix Hn, where n = 2k for some non-negative 833

integer k, is defined as: 834

Hn =
1√
n
H′

n 835

where H′
n is the unnormalized Hadamard matrix 836

with elements H ′
ij ∈ {−1, 1} constructed recur- 837

sively as: 838

H′
1 = [1], H′

2k+1 =

[
H′

2k
H′

2k

H′
2k
−H′

2k

]
839
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Note that the first row of H′
n consists entirely of 1s,840

while every other row contains exactly n/2 entries841

of 1 and n/2 entries of −1.842

Furthermore, the normalized Hadamard matrix843

Hn is orthogonal:844

HnH
T
n = In845

where In is the n × n identity matrix. For any846

random vector X with independent components of847

identical variance σ2, the transformed vector Y =848

HnX has the same component-wise variance:849

Var(Yi) = σ2 for all i ∈ {1, 2, . . . , n} (15)850

This follows from the fact that for a covariance851

matrix ΣX = σ2In, the transformed covariance is852

ΣY = HnΣXHT
n = σ2HnH

T
n = σ2In = ΣX .853

Sublemma 1.1. Each component Yi of the trans-854

formed vector can be expressed as a linear combi-855

nation of the original variables:856

Yi =
1√
n

n∑
j=1

H ′
ijXj (16)857

where H ′
ij ∈ {−1, 1} are the elements of the un-858

normalized Hadamard matrix.859

Proof. By definition of matrix multiplication, each860

component Yi of the transformed vector Y =861

HnX is given by:862

Yi =

n∑
j=1

hijXj =
1√
n

n∑
j=1

H ′
ijXj863

where hij =
H′

ij√
n

are the elements of the normal-864

ized Hadamard matrix.865

Sublemma 1.2. If Xi has mean µ and variance σ2,866

then Yi has mean µY and variance σ2
Y where:867

µY =

{√
nµ if i = 1

0 if i ̸= 1
868

869
σ2
Y = σ2870

Proof. Let’s calculate the mean of each trans-871

formed component Yi:872

E[Yi] = E

 1√
n

n∑
j=1

H ′
ijXj


=

1√
n

n∑
j=1

H ′
ijE[Xj ] =

µ√
n

n∑
j=1

H ′
ij

873

For i = 1, the first row of the unnormalized 874

Hadamard matrix consists entirely of 1s. There- 875

fore: 876

E[Y1] =
µ√
n
· n =

√
nµ 877

For all other rows i > 1, the Hadamard matrix 878

has the property that each row contains exactly n
2 879

entries of 1 and n
2 entries of -1. This gives: 880

E[Yi] =
µ√
n

(n
2
− n

2

)
= 0 for i > 1 881

For the variance, assuming independence of Xj : 882

Var(Yi) = Var

 1√
n

n∑
j=1

H ′
ijXj


=

1

n

n∑
j=1

(H ′
ij)

2 · Var(Xj)

883

Since (H ′
ij)

2 = 1 for all i, j and all Xj have 884

variance σ2: 885

Var(Yi) =
σ2

n
· n = σ2 for all i 886

887

Sublemma 1.3 (Relationship Between Fourth Mo- 888

ments). For a sum of independent random vari- 889

ables with identical distributions, the standardized 890

fourth cumulant (excess kurtosis) of the sum relates 891

to the individual excess kurtosis by: 892

Kurt

 1√
n

n∑
j=1

ϵjXj

 =
Kurt(X)

n
893

where ϵj ∈ {−1, 1} and Xj are i.i.d. with the same 894

distribution as X . 895

Proof. Let Z = 1√
n

∑n
j=1 ϵjXj where ϵj ∈ 896

{−1, 1} and Xj are i.i.d. with the same distribution 897

as X . 898

The excess kurtosis of a random variable W is 899

defined as: 900

Kurt(W ) =
E[(W − E[W ])4]

(Var(W ))2
− 3 901

For independent random variables, the cumu- 902

lants of a sum equal the sum of the cumulants. The 903

fourth cumulant κ4 corresponds to: 904

κ4(W ) = E[(W − E[W ])4]− 3(E[(W − E[W ])2])2

= Var(W )2 · Kurt(W )
905
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For our sum Z, the fourth cumulant is:906

κ4(Z) =

n∑
j=1

κ4

(
ϵjXj√

n

)
907

Since κ4(αX) = α4κ4(X) for any scalar α:908

κ4(Z) =
n∑

j=1

ϵ4j
n2

κ4(Xj) =
1

n2

n∑
j=1

κ4(Xj)909

Given that ϵ4j = 1 and all Xj have the same910

distribution:911

κ4(Z) =
n

n2
κ4(X) =

κ4(X)

n
912

Since κ4(X) = Var(X)2 · Kurt(X) and913

Var(Z) = Var(X) (as shown in Sublemma 1.2):914

Var(Z)2 · Kurt(Z) =
Var(X)2 · Kurt(X)

n
915

Therefore:916

Kurt(Z) =
Kurt(X)

n
917

918

Sublemma 1.4 (Application to Hadamard Trans-919

form). For a random vector with i.i.d. components920

having negative excess kurtosis (Kurt(X) < 0), af-921

ter applying the normalized Hadamard transform:922

Kurt(Yi) =
Kurt(X)

n
923

Since Kurt(X) < 0 and n > 1, we have Kurt(X)
n >924

Kurt(X), which implies Kurt(Yi) > Kurt(X).925

Proof. From Sublemma 1.1, each component Yi of926

the Hadamard transform can be written as:927

Yi =
1√
n

n∑
j=1

H ′
ijXj928

This is precisely the form analyzed in Sub-929

lemma 1.3, with ϵj = H ′
ij .930

For i > 1 (where the mean is 0), applying Sub-931

lemma 1.3 directly:932

Kurt(Yi) =
Kurt(X)

n
933

For i = 1, we need to account for the non-zero934

mean. We can center the variable:935

Y1 − E[Y1] =
1√
n

n∑
j=1

(Xj − µ)936

Applying the same cumulant analysis to this cen- 937

tered variable: 938

Kurt(Y1) =
Kurt(X)

n
939

Since we assumed Kurt(X) < 0 for a platykurtic 940

distribution, and n > 1: 941

Kurt(X)

n
> Kurt(X) 942

Therefore, for all components i ∈ {1, 2, . . . , n}: 943

Kurt(Yi) > Kurt(X) 944

945

A.3 Additional Results on the Kurtosis 946

Analysis 947

Details on Fig. 3 Let T , C, and H denote the 948

sequence length of an input, the input channel of 949

weight, and the output channel of weight, respec- 950

tively. Since RCP works on group-wise quantiza- 951

tion, we additionally denote the group size as G and 952

the number of groups as N so that C = NG. The 953

input activation X and its rotated version Xr both 954

have a dimension of (T,C), and the weight W and 955

its rotated & clipped version Wrc a dimension of 956

(C,H). 957

We compute the group-wise excess kurto- 958

sis Kurtgroup by reshaping the weights into 959

(N,G,H), and computing the excess kurto- 960

sis along the second dimension, resulting in a 961

shape (N,H). For the mean absolute error 962

QErr(W,X), the shape of the output activation 963

XW and the quantized version XQ(W) is (T,H). 964

Then, we average Kurtgroup along the N dimen- 965

sion so that the excess kurtosis values of the quan- 966

tization groups contributing to a single output ac- 967

tivation element are averaged. The mean absolute 968

error of the output activation is averaged along 969

the T dimension to measure the mean increase of 970

the quantization error in each output activation ele- 971

ment. 972

In all two-dimensional histogram plots, the range 973

is limited to [−1.5σ, 1.5σ] for both axes to prevent 974

outliers from occupying most of the space. 975

More Plots and Discussion We repeat the same 976

experiments as in Section 3 on three different 977

transformer layers (0, 15, and 31) and three dif- 978

ferent types of weights (q_proj , o_proj, and 979

down_proj) and the plots are presented in Fig. 980

8. In each subplot’s title, we specify the ratio 981
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of quantization groups that are platykurtic (i.e.,982

pplaty = Kurt(Wgroup) < 0. When pplaty ≪ 0.5983

(Fig. 8d and 8g), the Hadamard transform de-984

creases the excess kurtosis, possibly reducing the985

average quantization error 8d. When pplaty ≈ 0.5,986

the excess kurtosis is increased in almost all cases,987

with the average quantization error also enlarged.988

This supports our claim in Lemma 1 and Section 3989

empirically.990

Figure 6: Comparison of training loss curves for
LLaMA-2 7B between BitDistiller with rotatation and
RCP under W2A4KV4. Orange lne

W2A4KV4 Loss Curve Comparison Figure 6991

presents the loss curves of RCP and BitDis-992

tiller with rotation during W2A4KV4 quantization.993

While both methods eventually converge, a notable994

performance gap originates from the early stages995

of training. As highlighted in the magnified region996

(≤ 100 steps), BitDistiller with rotation exhibits997

from pronounced loss spikes, indicating unstable998

optimization. This instability leads to suboptimal999

final performance.1000

In contrast, RCP, which incorporates Learnable1001

Direct Partitioning (LDP), demonstrates signifi-1002

cantly more stable loss curve from the beginning1003

of training. These results provide evidence for the1004

necessity of LDP when applying extreme low-bit1005

quantization with rotation and clipping.1006

A.4 Additional Experimental Results1007

Implementation Details All model parameters1008

are in BF16 format throughout training and eval-1009

uation since we observe overflow in the hidden1010

activation of the last two FFNs on several models1011

set to FP16.1012

In existing rotation-based PTQ methods (Ashk-1013

boos et al., 2024b; Liu et al., 2024b), rotations are1014

done in FP32 to avoid precision issues. However,1015

this leads to computational overhead due to a large1016

number of typecasting. When fusing rotations to 1017

model weights, they are temporarily promoted to 1018

FP32, multiplied by an appropriate rotation matrix, 1019

and then demoted back to their original precision. 1020

For online rotations (R2, R3, and R4), all tensors 1021

are processed in BF16. 1022

We employ a symmetric uniform quantizer for 1023

activations and an asymmetric uniform quantizer 1024

with a group size of 128 for KV-cache. Clipping 1025

ratio is set to 0.9 and 0.95 for activations and KV- 1026

cache, respectively. 1027

Training Configuration and Cost Table 8 sum- 1028

marizes the training configurations and training 1029

costs.

Method Metric 1B 3B 7B 8B 13B

BitDistiller

VRAM (GB) 35.1 42.2 32.0 77.4 130.2
Time (h) 64.0 64.8 68.4 93.6 29.6
Epoch 16 8 8 8 8
Batch 4 4 8 4 32

RCP

VRAM (GB) 35.3 42.9 33.1 78.2 132.3
Time (h) 67.2 69.6 73.3 96.8 32.0
Epoch 16 8 8 8 8
Batch 4 4 8 4 32

Table 8: Comparison of VRAM and GPU usage for
BitDistiller and RCP.

1030

The VRAM usage denotes the memory con- 1031

sumed on a single GPU and the GPU-hours were 1032

calculated by multiplying the training time by the 1033

total number of GPUs used. In our experiments, 1034

we conducted experiments on LLaMA-1, LLaMA- 1035

2 7B and LLaMA-3.2 (1B and 3B) on 8 RTX 1036

A6000 GPUs (48 GB each). For larger-scale mod- 1037

els, LLaMA-3 8B was trained on 8 A100 GPUs 1038

(80GB each), and LLaMA-2 13B was trained on 8 1039

GPUs (141GB each) within a DGX H200 system. 1040

The enlarged vocabulary in LLaMA-3 and later 1041

models increases gradient-computation demands, 1042

resulting in higher VRAM usage. To ensure train- 1043

ing stability under these constraints, we set the 1044

training batch size to 4. 1045

We set the weight learning rate to 8e-7 for WlA4 1046

and 1e-6 for WlA4KV4, while the learning rate for 1047

LWC and LDP was set to 1e-5. We set the training 1048

sequence length to 1k and the evaluation sequence 1049

length to 2k. 1050

Our proposed RCP incurs approximately 10% 1051

additional training cost compared to the baseline. 1052

However, on LLaMA-2 7B, it improves perplexity 1053

from 17.40 to 8.31-nearly a twofold improvement. 1054

Furthermore, for LLaMA-3.2 3B, RCP improves 1055

the PPL by up to 42 times compared to the baseline. 1056
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Considering these significant performance gains,1057

the 10% additional training cost is a worthwhile1058

investment.1059

Additional GEMV Benchmarks To compare1060

the gain solely attributed to our non-uniform W2A41061

GEMV kernel, we also apply the inefficient quan-1062

tizer and the online transform to FP16 weights so1063

that the W16A4 model is simulated, and the mea-1064

sured latency values are listed in Table 15. Using1065

online FP16 Hadamard transform, our RCP GEMV1066

is faster than PyTorch nn.Linear kernel, which1067

indicates that our GEMV implementation is faster1068

and can successfully hide its latency to the follow-1069

ing activation quantization.1070

A.5 Additional Ablation Studies1071

W2A4KV4 PPL↓

RCP 8.31
-R3 8.48
-[R2,R3] 8.83
-[R3,R4] 12.24
-[R2,R3,R4] 12.76
-[R1,R2,R3,R4] 25.05

Table 9: Ablation study on the impact of rotation con-
figuration for LLaMA-2 7B.

Impact of Rotation Configuration Since the1072

rotation requires additional processes before and1073

after inference, we investigated the performance1074

trend by incrementally adding rotation matrices1075

(R1,R2,R3,R4) to different components to find an1076

appropriate balance between accuracy and over-1077

head. The results are presented in Table 9. The ta-1078

ble demonstrates that the impact of the rotation was1079

most significant with R1 and R4. Especially, R1,1080

which applies rotation matrix to the input weight1081

and input activation of all modules thereby hav-1082

ing the largest impact on quantization performance.1083

Additionally, our analysis revealed that in LLaMA-1084

2 7B, the input to the down projection layer (of the1085

MLP) exhibited a significant number of outliers,1086

which was effectively addressed through R4 online1087

rotation to activation.1088

#Bits Factorized Batch Epoch PPL↓

W2
8 8 7.6

✓ 1 64 12.5

Table 10: Comparison of factorized configurations.

Factorized Rotation In our algorithm, rotation1089

serves as a pre-conditioning tool for reducing out-1090

liers in activation and KV-cache. All rotations ex- 1091

cept the matrices that should be applied online (R3 1092

and R4) are fused into the corresponding model 1093

weight at the beginning of the QAT process. This 1094

means their orthogonality is not guaranteed during 1095

backpropagation steps with AdamW optimizer. 1096

We investigate the impact of preserving the 1097

orthogonality of the rotations by modifying the 1098

LLaMA-2 model implementation to apply all ro- 1099

tation operators online while freezing the rotation 1100

matrices. Table 10 presents the results. Applying 1101

factorized rotation prevents the fusion of the rota- 1102

tion matrix into the weight tensor, resulting in an 1103

increase in the number of intermediate tensors (ro- 1104

tation matrix and intermediate activation), which 1105

significantly raises VRAM requirements. For in- 1106

stance, applying only R1 needs to reduce the train- 1107

ing batch size from 8 to 1. Under the condition 1108

of maintaining an equal total number of tokens 1109

processed by the model, we compared the perfor- 1110

mance of W2A16KV16 with only R1 applied. The 1111

perplexity of BitDistiller with R1 fused was 7.6, 1112

whereas applying QAT with factorized rotation re- 1113

sulted in a PPL of 12.5. This indicates that perform- 1114

ing weight updates through QAT while preserving 1115

R1 orthogonality hinders QAT optimization. This 1116

is because the factorization constrains the weight 1117

updates to a restricted space defined by the fac- 1118

torized condition, requiring the backpropagation 1119

process to maintain within this space. This limi- 1120

tation reduces the flexibility of optimization, mak- 1121

ing it challenging to efficiently adjust the weights. 1122

Consequently, this leads to suboptimal training dy- 1123

namics and ultimately results in degraded model 1124

performance. Furthermore, extending factorization 1125

to R2 and R4 would lead to an even greater in- 1126

crease in VRAM usage. In contrast, training fused 1127

weight effectively alters only the distribution and 1128

is analogous to standard LLM training, which is 1129

well-known to perform effectively. In summary, 1130

given that resource consumption increases while 1131

performance degrades, we have decided not to ex- 1132

plicitly preserve orthogonality and instead allow 1133

the algorithm to handle this aspect. 1134

Layerwise vs. End-to-end QAT Recent work in- 1135

troduced layerwise QAT (Chen et al., 2024), which 1136

updates one layer at a time while freezing others, 1137

allowing training on a single GPU. We extended 1138

this approach by applying rotation but observed 1139

significant performance degradation. The main is- 1140

sue stemmed from fusing rotation matrices in the 1141
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weights; layerwise updates disrupted orthogonality,1142

preventing the activation space from restoring its1143

original space, leading to cumulative errors and1144

reduced accuracy. In contrast, end-to-end meth-1145

ods like BitDistiller naturally mitigate this issue1146

during updates. While factorized rotation could1147

help, its high GPU memory requirements for hold-1148

ing rotation matrices and intermediate tensors on1149

GPU memory offsets the advantage. Despite these1150

challenges, exploring single GPU training using1151

rotation matrix remains a promising direction for1152

future work.1153

A.6 GEMM Kernel Design for Non-uniform1154

W2A4 Quantization1155

In our initial GEMM implementation, we at-1156

tempted to leverage the asynchronous copy to per-1157

form dequantization and MMA operations while1158

loading quantized weights and activations, which1159

resulted in slower performance compared to half-1160

precision PyTorch kernel (approx. 480µs versus1161

330µs on a single (4,096 × 4,096) linear layer1162

with 2,048 tokens as input). We suggest two un-1163

derlying reasons; 1) dequantization requires mul-1164

tiple iterations of shifting, masking, and casting1165

to half-precision instruction, and these are typi-1166

cally expensive on the GPU, further deepening the1167

compute-bound nature of the GEMM problem and1168

2) packing four quantized weights into a single1169

UINT8 and two quantized activation elements into1170

a single INT8 reduces the width of per-block global1171

memory loads, thereby narrowing the chance for1172

latency hiding. Therefore, we decided to leave1173

the prefill acceleration as future work and instead1174

focus on designing a GEMV kernel to accelerate1175

decoding.1176

A.7 Details and More Results on GEMV1177

Block Tiling Each thread block consists of 1281178

threads (4 warps), and we only tile along the output1179

dimension and define the tile size as BH. The rea-1180

son we do not follow the traditional 2-dimensional1181

tiling is that both the input tokens and weights1182

are stored in row-major format and have sub-byte1183

packing along the column direction, which makes1184

it hard to efficiently use high-bandwidth memory1185

that performs best when reading 128B data consec-1186

utively. Also, global loads with small transactions1187

and repeated shared stores complicate the pipeline1188

design for latency hiding and degrade overall per-1189

formance.1190
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Figure 7: Online dequantization of INT4 activations and
UINT2 weights.

Online Dequantization and Vectorization Fig. 1191

7 illustrates how the activations and weights are 1192

dequantized in our GEMV kernel. For activa- 1193

tions, there are two INT4 elements (Xhi,Xlow) in 1194

a packed INT8 Xq. For Xhi, Xq is copied to an 1195

INT8 register, and the register is right-shifted by 4 1196

bits with sign-filling. For Xlow, Xq is also copied 1197

to an INT8 register, which is left-shifted by 4 bits 1198

first to put the sign bit of Xlow to the MSB and 1199

then right-shifted by 4 bits with sign filling. This 1200

process is shown in Fig. 7a. 1201

For weights, there are four UINT2 elements 1202

(Wq0,Wq1,Wq2,Wq3) in a packed UINT8 Wq. Wq 1203

is copied to 4 UINT8 registers (for each UINT2 1204

element) that are used as indices to look up the 1205

LUT Ŵ. For Wq0, the register is right-shifted by 6 1206

bits. For Wq1, the register is right-shifted by 4 bits, 1207

and a logical AND operation with a bit mask 0x03 1208

is applied to select only two LSBs. For Wq2, the 1209

register is right-shifted by 2 bits and also performs 1210

logical AND with a bit mask 0x03. For Wq3, the 1211

register only does a logical AND with a bit mask 1212

0x03. 1213

The unit dequantization operations can be 1214

vectorized to increase memory throughput so 1215

that each thread writes 16B of data to shared 1216

memory. For activations, 4 Xqs are loaded 1217

from global memory at once by type casting 1218

via reinterpret_cast<char4 *>, which pro- 1219

duces 8 FP16 dequantized activations to be writ- 1220
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ten in sX. The dequantization is performed1221

the same on each Xq in a char4 struct. For1222

weights, 2 Wqs are loaded from memory via1223

reinterpret_cast<uint16_t *>. Unlike the ac-1224

tivation case, the right-shift and logical AND oper-1225

ation can be naturally iterated 8 times to generate1226

8 FP16 dequantized weights that are directly multi-1227

plied to the corresponding activation from sX.1228

Shared Epilogue As mentioned in Section 4.4, a1229

shared output can be necessary due to our chunk-1230

ing strategy. For example, if BH is 4, then two1231

warps will compute one output element to process1232

a weight chunk of size BH/2 × C/4, and after warp-1233

level sum reduction, the reduced values from the1234

two warps must be summed once again. To imple-1235

ment this, we allocate a shared output buffer sO1236

with twice the number of warps.1237

After the inner product stage for the first weight1238

chunk, each thread in a block will have an FP321239

accumulator with a shape of (4, 32). Applying the1240

warp-shuffle primitive __shfl_xor_sync 5 times1241

allows us to sum all accumulations to the first1242

thread of each warp without any global nor shared1243

memory access, producing 4 FP32 values to be cast1244

to FP16 and stored in sO[0 : 4]. The first and the1245

last two values are summed up as the first and the1246

second output elements, respectively. Repeating1247

the same process on the second weight chunk will1248

produce the next 4 FP32 values for sO[4 : 8] to1249

compute the third and the fourth output elements1250

accordingly.1251

Latency Benchmark Our GEMV kernel is fully1252

written in CUDA 12.1 and compiled for Nvidia1253

A100 SXM 40GB model. We build our benchmark-1254

ing framework upon QuaRot’s (Ashkboos et al.,1255

2024b) implementation that provides proper Py-1256

Torch bindings and a basic activation quantizer that1257

combines a max reduction function written in Py-1258

Torch and a symmetric INT quantizer with INT41259

sub-byte data handler from CUTLASS5.1260

Since the reduction part is neither a specialized1261

implementation nor compiler-optimized, a huge1262

overhead induced by the QuaRot’s activation quan-1263

tizer is observed (about 100µs on average). There-1264

fore in the main results, we assume that the sym-1265

metric quantization is natively supported by hard-1266

ware and replace the quantizer with a dummy class1267

that outputs random quantized activation and scale1268

tensors. The results with the inefficient quantizer1269

5https://github.com/NVIDIA/cutlass

implementation are listed in Table 17 and 18 for 1270

value and down projection weight, respectively. We 1271

also report the latency values without activation 1272

overhead for the down projection weight in Table 1273

16. 1274

A.8 Reasoning Task Example: HumanEval 1275

We evaluate the capability of the WizardCoder 7B 1276

model to generate solutions for coding problems. 1277

The results are presented in Fig. 9. The orange box 1278

in Fig. 9 represent the model output after applying 1279

rotation and quantizing the weights to W2A4KV4 1280

using a uniform asymmetric quantizer. Under uni- 1281

form quantization, it is evident that the model fails 1282

to perform logical generation tasks even applying 1283

rotation; it merely produces the structural template 1284

of code without generating functionality correct 1285

code. In contrast, the green box shows the results 1286

when the weights are quantized to W2A4KV4 us- 1287

ing LDP. Unlike the uniform quantizer, the LDP ap- 1288

proach yields code that not only adheres faithfully 1289

to the given instructions and generates a functional- 1290

ity correct algorithm, but also provides detailed ex- 1291

planatory comments. While perplexity on standard 1292

language modeling tasks did not reveal significant 1293

differences between the two cases, these findings 1294

suggest that LDP plays a crucial role in enabling 1295

logical reasoning tasks under extreme low-bit quan- 1296

tization. 1297

A.9 Information About Use of AI Assistants 1298

AI assistance was strictly limited to linguistic per- 1299

spectives, such as grammar and spell checking, and 1300

finding synonyms. 1301
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Figure 8: Additional two-dimensional histogram plots with pplaty = P (Kurt(W) < 0) specified in each title.

[Programming Quiz] 
Write a Python script for the following problem:
def choose_num(x, y):

""" This function takes two positive 
numbers x and y and returns the biggest 
even integer number that is in the range 
[x, y] inclusive. If there's no such 
number, then the function should return 
-1.

For example:
choose_num(12, 15) = 14
choose_num(13, 12) = -1
"""

[Input]: The Python function takes two integers, 
a and b, as input.
[Output]: Print an integer number.

[Sample Input]: 12, 15
[Sample Output]: 14

def choose_num(x, y):
if x >= y:

return x
else:

return -1

def choose_num(x, y):
# Initialize max_even to -1 (default 

return value if no even numbers found)
max_even = -1
# Loop through the range [x, y] to 

find the largest even number
for i in range(x, y + 1):

# Check if the number is even
if i % 2 == 0:

# Update max_even if the 
current number is larger

max_even = max(max_even, i)
# Return the largest even number or 

-1 if none found
return max_even

In: x=12 y=15

Out: -1 Out: 14

In: x=12 y=15

❌ Logical error
❌ Zero understanding on 
the problem

👍 Correct algorithm
👍 Detailed comments
👍 Follows the problem description

Naive
W2 Quantizer

Our Non-uniform 
W2 Quantizer

Figure 9: A reasoning task example from HumanEval (Chen et al., 2021) benchmark, conducted by two differently
quantized WizardCoder 7B (Luo et al., 2023) models. The results in the orange box is from state-of-the-art QAT
method BitDistiller (Du et al., 2024) with applying rotation. In the green box, our proposed RCP is applied. Both
methods employ exactly the same 4-bit quantization setting for activation and KV-cache.
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Model #Bits (W-A-KV)
Configuration

PIQA Hella. Wino. ARC-c Avg.
Method Rotation LDP

1-7B

16-16-16 79.80 76.10 70.10 47.60 68.4

2-4-16
BitDistiller 61.53 35.98 49.25 23.46 43.56
BitDistiller ✓ 70.67 45.86 62.03 30.54 52.28

RCP ✓ ✓ 70.62 46.41 61.48 31.32 52.46

2-4-4
BitDistiller 63.38 34.32 50.82 23.80 43.08
BitDistiller ✓ 71.10 45.91 59.82 32.00 52.21

RCP ✓ ✓ 72.36 45.91 58.64 32.25 52.29

3-4-16
BitDistiller 73.34 50.94 63.61 34.81 55.68
BitDistiller ✓ 76.71 53.96 68.19 35.23 58.52

RCP ✓ ✓ 77.20 53.11 68.43 38.82 59.39

3-4-4
BitDistiller 73.06 50.78 65.03 35.32 56.05
BitDistiller ✓ 76.98 53.12 66.77 37.03 58.48

RCP ✓ ✓ 75.46 53.06 67.88 37.80 58.55

2-7B

16-16-16 77.86 57.14 68.35 43.34 61.67

2-4-16
BitDistiller 62.95 37.33 50.20 22.95 43.36
BitDistiller ✓ 70.13 45.02 60.77 30.03 51.49

RCP ✓ ✓ 69.48 45.22 59.75 29.95 51.10

2-4-4
BitDistiller 62.70 37.18 53.91 25.93 44.93
BitDistiller ✓ 69.53 45.67 59.35 29.86 51.10

RCP ✓ ✓ 69.91 44.58 59.70 30.69 51.22

3-4-16
BitDistiller 74.42 51.36 62.66 36.17 56.15
BitDistiller ✓ 76.06 54.26 66.45 40.35 59.28

RCP ✓ ✓ 76.65 54.25 67.80 40.35 59.74

3-4-4
BitDistiller 72.41 50.51 63.29 35.83 55.51
BitDistiller ✓ 76.55 53.55 65.90 39.33 58.83

RCP ✓ ✓ 76.71 53.88 65.43 41.04 59.27

2-13B

16-16-16 79.16 60.13 72.14 48.12 64.89

2-4-16
BitDistiller 61.86 33.40 53.51 23.46 43.06
BitDistiller ✓ 72.14 44.77 59.67 35.84 53.11

RCP ✓ ✓ 73.55 49.94 63.14 34.64 55.32

2-4-4
BitDistiller 57.45 30.73 50.35 20.39 39.73
BitDistiller ✓ 67.68 41.58 54.62 29.69 48.39

RCP ✓ ✓ 71.65 43.79 57.30 32.68 51.36

3-4-16
BitDistiller 75.29 53.91 62.50 38.56 57.57
BitDistiller ✓ 77.09 56.53 70.24 44.19 62.01

RCP ✓ ✓ 77.69 57.67 70.86 45.56 62.95

3-4-4
BitDistiller 75.68 49.94 64.00 39.50 58.07
BitDistiller ✓ 76.71 57.11 68.03 44.19 61.51

RCP ✓ ✓ 77.42 56.13 69.46 42.66 61.42

Table 11: Complete comparison of accuracy on Zero-shot Common Sense Reasoning tasks on LLaMA models.
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Model #Bits (W-A-KV)
Configuration

PIQA Hella. Wino. ARC-c Avg.
Method Rotation LDP

3.2-1B

16-16-16 75.30 60.70 60.90 38.70 58.90

2-4-16
BitDistiller 51.95 27.41 48.46 19.45 36.82
BitDistiller ✓ 61.15 30.66 50.67 21.84 41.08

RCP ✓ ✓ 61.42 31.55 51.78 20.65 41.08

2-4-4
BitDistiller 55.33 26.62 48.46 19.79 37.55
BitDistiller ✓ 61.75 30.05 51.22 20.05 40.77

RCP ✓ ✓ 60.71 31.54 53.51 21.42 41.80

3-4-16
BitDistiller 53.53 28.35 48.61 19.62 37.53
BitDistiller ✓ 69.53 40.31 55.40 26.27 47.88

RCP ✓ ✓ 69.64 40.57 56.12 26.37 48.18

3-4-4
BitDistiller 54.18 28.26 50.90 21.67 38.75
BitDistiller ✓ 68.98 37.80 55.40 26.36 47.14

RCP ✓ ✓ 68.12 39.30 56.12 26.11 47.41

3.2-3B

16-16-16 76.00 71.00 66.60 47.60 65.30

2-4-16
BitDistiller 54.02 26.80 52.48 18.25 37.89
BitDistiller ✓ 65.99 36.51 52.48 26.19 45.29

RCP ✓ ✓ 65.43 37.35 54.70 25.43 45.71

2-4-4
BitDistiller 51.84 26.70 51.38 19.11 37.26
BitDistiller ✓ 64.30 36.26 51.38 25.08 44.26

RCP ✓ ✓ 65.45 36.66 53.75 26.37 45.56

3-4-16
BitDistiller 52.72 26.66 50.43 19.45 37.32
BitDistiller ✓ 74.04 49.56 63.22 35.83 55.66

RCP ✓ ✓ 73.77 49.52 62.65 37.54 55.87

3-4-4
BitDistiller 53.91 26.82 48.03 20.30 37.27
BitDistiller ✓ 74.31 49.19 60.06 36.77 55.08

RCP ✓ ✓ 73.18 48.87 62.43 36.01 55.12

3-8B

16-16-16 80.70 79.60 73.70 57.70 72.93

2-4-16
BitDistiller 57.23 29.96 49.48 21.16 39.46
BitDistiller ✓ 69.96 44.30 59.43 28.66 50.59

RCP ✓ ✓ 69.16 44.67 59.91 29.69 50.86

2-4-4
BitDistiller 56.42 29.57 52.09 20.90 39.75
BitDistiller ✓ 69.15 43.62 57.85 28.58 49.80

RCP ✓ ✓ 69.97 44.32 59.51 27.82 50.41

3-4-16
BitDistiller 72.47 49.72 62.43 36.94 55.39
BitDistiller ✓ 77.25 55.18 68.90 42.91 61.06

RCP ✓ ✓ 77.64 55.21 69.93 43.34 61.53

3-4-4
BitDistiller 73.32 49.97 64.87 37.45 56.35
BitDistiller ✓ 75.35 53.95 67.64 41.80 59.69

RCP ✓ ✓ 76.16 54.35 71.19 42.75 61.11

Table 12: Complete comparison of accuracy on Zero-shot Common Sense Reasoning tasks on LLaMA models.
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hotpotqa mqa_en triviaqa 2wikimqa musique samsum passage_count Avg.
FP16 30.45 33.76 85.72 26.32 9.74 37.74 4.0 32.53

BitDistiller 2.95 11.09 7.28 4.42 2.03 1.97 0.86 4.37
RCP 10.42 26.73 41.77 17.48 4.12 33.31 1.43 19.32

Table 13: Performance comparison on the LongBench dataset. W2A4KV4 quantization is applied to the LLaMA-2-
7B-chat-4k model.

hotpotqa mqa_en triviaqa 2wikimqa musique samsum passage_count Avg.
FP16 15.74 24.07 84.67 13.8 8.81 42.73 0.07 27.13

BitDisitller 2.18 9.72 11.82 5.18 1.09 5.65 0.48 5.16
RCP 5.97 13.58 33.07 10.81 2.1 19.34 1.13 12.29

Table 14: Performance comparison on the LongBench dataset. W2A4KV4 quantization is applied to the LLaMA-2-
7B-Instruct-32k model.

Layer Size W16A4 W16A4+FP32Had W16A4+FP16Had RCP RCP+FP32Had RCP+FP16Had
(2048, 2048) 0.168 0.274 0.248 0.131 0.248 0.214
(2048, 8192) 0.327 0.387 0.348 0.143 0.240 0.218
(3072, 3072) 0.228 0.483 0.373 0.131 0.295 0.265
(3072, 8192) 0.526 0.773 0.661 0.140 0.294 0.271
(4096, 4096) 0.369 0.510 0.398 0.133 0.250 0.221
(4096, 11008) 0.866 1.014 0.902 0.143 0.250 0.223
(4096, 14336) 1.108 1.255 1.146 0.142 0.247 0.226

Table 15: GEMV latency for the value projection is measured with the overhead from activation quantization. The
layer size is composed as (input channel, output channel). All latency numbers are in milliseconds.

Layer Size FP16 RCP RCP+FP16Had RCP+FP32Had QuaRot QuaRot+FP16Had QuaRot+FP32Had
(2048, 8192) 0.054 0.036 0.110 0.146 0.073 0.155 0.186
(3072, 8192) 0.054 0.035 0.169 0.198 0.074 0.212 0.237
(4096, 11008) 0.077 0.048 0.120 0.148 0.088 0.157 0.186
(4096, 14336) 0.110 0.059 0.121 0.149 0.079 0.157 0.183

Table 16: GEMV latency for the down projection is measured except activation quantization overhead. The layer
size is composed as (input channel, output channel). All latency numbers are in milliseconds.

Layer Size RCP RCP+FP16Had RCP+FP32Had QuaRot QuaRot+FP16Had QuaRot+FP32Had
(2048, 2048) 0.131 0.214 0.248 0.170 0.248 0.276
(3072, 3072) 0.131 0.265 0.295 0.168 0.304 0.331
(4096, 4096) 0.133 0.221 0.250 0.174 0.250 0.282

Table 17: GEMV latency for the value projection is measured including activation quantization overhead. The layer
size is composed as (input channel, output channel). All latency numbers are in milliseconds.

Layer Size RCP RCP+FP16Had RCP+FP32Had QuaRot QuaRot+FP16Had QuaRot+FP32Had
(2048, 8192) 0.143 0.218 0.240 0.186 0.261 0.289
(3072, 8192) 0.140 0.271 0.294 0.177 0.318 0.340
(4096, 11008) 0.143 0.223 0.250 0.177 0.264 0.288
(4096, 14336) 0.142 0.226 0.247 0.177 0.259 0.285

Table 18: GEMV latency for the down projection is measured including activation quantization overhead. The layer
size is composed as (input channel, output channel). All latency numbers are in milliseconds.
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User: Below is an instruction that describes a task. Write a response that appropriately completes the request.

Q. Janet\u2019s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her friends 
every day with four. She sells the remainder at the farmers' market daily for $2 per fresh duck egg. How much in dollars 
does she make every day at the farmers' market?

[BitDistiller + Rotate W2A4KV4]
Answer: Let's think step by step.
The total of the the first 2 * 2 = 20.
The total of the the pes is 20 * 2 = 20.
The total of the the total of the ces is 20 + 20 = 10.
Therefore, the total of the p has 20 * 20 = 100.
Therefore, the total of the pes is 20 * 20 = 100.
Therefore, the value of the les is 20.
The value of the the the total of the p is 20 + 20 = 10.
The value of the the number of the p is 20.
The answer is: 2 [Wrong]

[RCP W2A4KV4]
Answer: Let's think step by step.
Janet's ducks lay 16 eggs per day.
She eats three eggs for breakfast every morning, so she has 16 - 3 = 13 eggs left.
She bakes muffins for her friends every day with four eggs, so she has 13 - 4 = 9 eggs left.
She sells the remainder at the farmers' market daily for $2 per fresh duck egg.
So, she makes 9 * $2 = $18 every day at the farmers' market.
The answer is: 18 [Correct]

Q. Poppy is solving a 1000-piece jigsaw puzzle. She places a quarter of the pieces on the board, then her mom places a 
third of the remaining pieces. How many jigsaw pieces are left to be placed?

[BitDistiller + Rotate W2A4KV4]
Answer: Let's think step by step.
If the total of the number of the first 1000, so the total of the p-1000 * 100 = 10000.
The total of the the total of the f-10000 + 1000 = 10000.
The total of the the total of the the number of the number of the number of the number of the the number of the number of 
the number of the number of the number of the number of the number of the number of the number of the number of the 
number of the number of the number of the number of the number of the number of the number of the number of the the 
number of the number of the number of .. <Repetition> [Wrong]

[RCP W2A4KV4]
Answer: Let's think step by step.
Poppy places a quarter of the pieces on the board, so she places 1000/4 = 250 pieces on the board.
This means there are 1000 - 250 = 750 pieces left to be placed.
Her mom then places a third of the remaining pieces, so she places 750/3 = 250 pieces on the board.
This means there are 750 - 250 = 500 pieces left to be placed.
The answer is: 500 [Correct]

Q. Jade bought a new cell phone with an incredible camera, so she spent all week taking pictures of her daily life. At the 
end of the week, she had taken 210 photos. She wants to upload all her photos on her Instagram. If she uploads 7 photos 
in one batch and she uploads 6 batches each day, how many days will she need to upload all of her photos?

[BitDistiller + Rotate W2A4KV4]
Answer: Let's think step by step.
The total of the first 10 - 10 = 100.
The total of the pes is 100 + 10 = 100.
The total of the the remaining is 100. [Wrong]

[RCP W2A4KV4]
Answer: Let's think step by step.
Jade took 210 photos in total.
She wants to upload all her photos on Instagram.
She uploads 7 photos in one batch.
She uploads 6 batches each day.
So, she needs to upload 210 photos / 7 photos per batch = 3 batches.
Since she uploads 6 batches each day, she will need 3 batches / 6 batches per day = 5 days to upload all of her photos.
The answer is: 5 [Correct]

Figure 10: Comparison of reasoning ouptut on GSM8K using MetaMath 7B under W2A4KV4.
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