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ABSTRACT

Current unsupervised domain adaptation (UDA) methods for semantic segmen-
tation typically assume identical class labels between the source and target do-
mains. This assumption ignores the label-level domain gap, which is common in
real-world scenarios, thus limiting their ability to identify finer-grained or novel
categories without requiring extensive manual annotation. A promising direc-
tion to address this limitation lies in recent advancements in foundation models,
which exhibit strong generalization abilities due to their rich prior knowledge.
However, these models often struggle with domain-specific nuances and under-
represented fine-grained categories. To address these challenges, we introduce
DynAlign , a framework that integrates UDA with foundation models to bridge
both the image-level and label-level domain gaps. Our approach leverages prior
semantic knowledge to align source categories with target categories that can be
novel, more fine-grained, or named differently (e.g., ‘vehicle’ to {‘car’, ‘truck’,
‘bus’}). Foundation models are then employed for precise segmentation and cate-
gory reassignment. To further enhance accuracy, we propose a knowledge fusion
approach that dynamically adapts to varying scene contexts. DynAlign generates
accurate predictions in a new target label space without requiring any manual an-
notations, allowing seamless adaptation to new taxonomies through either model
retraining or direct inference. Experiments on the street scene semantic segmen-
tation benchmarks GTA→Mapillary Vistas and GTA→IDD validate the effective-
ness of our approach, achieving a significant improvement over existing methods.
Our code will be publically available.

1 INTRODUCTION

Semantic segmentation is a crucial computer vision task that assigns category labels to each pixel in
an image, enabling detailed scene understanding. Driven by advancements in deep learning, the field
has recently seen significant progress, with applications ranging from autonomous driving (Cheng
et al., 2022; Jain et al., 2023) to medical image diagnosis (Cao et al., 2022). Despite this progress,
models trained on labeled source datasets often struggle to generalize to data with different distri-
butions due to variations in weather, illumination, or object appearance, resulting in degraded per-
formance. While re-training or fine-tuning models can address this issue, these approaches require
annotated in-domain data, which is particularly costly for semantic segmentation.

Unsupervised Domain Adaptation (UDA) addresses the challenge of adapting a model trained on a
labeled source domain to an unlabeled target domain by mitigating the adverse effects of domain
shift without requiring costly data annotations. However, most UDA are constrained by domain-
specific knowledge from the available datasets and typically operate under closed-set assumptions,
where the label spaces of the two domains are identical. This assumption limits their applicability
in real-world scenarios, where source and target datasets often exhibit the label-level taxonomy gap
- including variations in class categories, semantic contexts, and category granularity.

To overcome this limitation, open-set Domain Adaptation (DA) methods have been developed to
recognize novel classes in the target domain (Saito & Saenko, 2021; Li et al., 2023). However,
these methods are only capable of distinguishing unknown classes from known ones and do not
provide detailed classifications for new target classes. To solve this, taxonomy-adaptive domain
adaptation has been proposed, enabling UDA in settings where the target domain adopts a label space
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Figure 1: DynAlign and taxonomy adaptation. Current UDA methods focus solely on domain-
specific knowledge transfer and assume consistent class labels across domains, limiting their flexi-
bility in adapting to different taxonomies. Open-vocabulary segmentation models excel with broader
taxonomies through large-scale pretraining but lack the precision of domain-specific models for spe-
cialized tasks. In contrast, DynAlign integrates with any UDA model and flexibly adapts to diverse
taxonomies and scene contexts, leveraging the prior knowledge of foundational models.

different from that of the source domain (Gong et al., 2022; Fan et al., 2023a). These methods aim
to align differing taxonomies by leveraging relationships between source and target classes but still
require prior knowledge about the target labels through annotated samples from the target domain.
These challenges highlight the need for a more flexible approach that can simultaneously manage
domain shifts while accommodating new taxonomies without requiring additional annotations from
the target domain. Despite the significance of this problem, fully unsupervised methods that can
address both domain shifts and taxonomy discrepancies remain largely underexplored.

Recent advancements in foundation models offer a promising direction to overcome these limita-
tions. By leveraging large-scale pretraining on diverse datasets, these models can generalize across
varied domains, tackling the challenges posed by limited domain knowledge and unseen categories.
For instance, recent open-vocabulary semantic segmentation works (Ghiasi et al., 2022; ?) lever-
age the knowledge in foundation models like CLIP (Radford et al., 2021) and Segment Anything
(SAM) (Kirillov et al., 2023), enabling segmentation across a broad range of unbounded class labels.
However, despite their strong generalization ability, foundation models often struggle with inferior
performance compared to domain-specific models trained on in-domain datasets. Their broad focus
can limit their effectiveness in specialized tasks, such as street scene understanding, where fine-
grained segmentation requires detailed, domain-specific knowledge.

To conclude, existing works have been tackling image-level and label-level domain gaps separately,
while the intersection of these two problems remains underexplored. In this work, we propose a
new benchmark of unsupervised taxonomy adaptation, addressing both image-level and label-level
domain gaps without supervision, as shown in Figure 1 (c). To achieve this, we propose DynAlign ,
a novel approach that integrates both domain-specific knowledge and rich open-world prior knowl-
edge from foundation models. The framework first leverages domain-specific knowledge by aligning
the data distributions of the source and target domains within the UDA paradigm. Subsequently, to
incorporate prior knowledge from foundation models, DynAlign dynamically adapts to new scene
contexts by retrieving in-domain predictions and extending the knowledge with foundation models
to generate predictions in the new target label space, accommodating the different taxonomy in the
target domain. In DynAlign , foundational model knowledge is fused in three modules. First, Large
Language Model (LLM) is used for semantic taxonomy mapping and context-aware descriptions.
For instance, the source domain label ‘road’ is mapped to {‘road’, ‘sidewalk’, ‘lane marking’, etc.}
in the target domain, and then each label such as ‘lane marking’ can be further enriched with more
precise descriptions like {‘traffic lane marking’, ‘double lines’} to capture the current context and
improve semantic granularity. Then, SAM is employed to refine the coarse semantic masks gener-
ated by the UDA model, providing more fine-grained masks within precise boundaries (e.g., seg-
menting ‘lane marking’, ‘catch basin’ within the ‘road’ region). Lastly, a knowledge fusion mech-
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anism is introduced, where CLIP is leveraged to extract textual features based on the context-aware
taxonomy provided by LLM and reassign semantic labels to the proposed mask regions, effectively
fusing UDA knowledge with prior knowledge. Predictions from DynAlign can be directly used or
leveraged as pseudo-labels to train an offline segmentation model on the target domain, enabling
instant inference without the need for target domain annotations.

Our approach operates in a fully unsupervised manner, integrating seamlessly with any UDA-based
semantic segmentation model. By leveraging the prior knowledge of foundation models, it strength-
ens in-domain predictions and flexibly adapts to new classes and scene contexts. When the target
label set changes, only the taxonomy mapping needs to be updated to instantly predict on the tar-
get dataset without requiring additional training. This adaptability offers a highly flexible solution
for cross-domain semantic segmentation in dynamic, real-world environments with changing tax-
onomies. We conduct extensive experiments on the GTA→ Mapillary Vistas and GTA → IDD street
scene semantic segmentation benchmarks. The results demonstrate that our method effectively com-
bines domain-specific knowledge with prior knowledge from foundation models, achieving superior
performance in the unsupervised taxonomy-adaptive domain adaptation task.

2 RELATED WORKS

2.1 UNSUPERVISED DOMAIN ADAPTATION

Unsupervised domain adaptation (UDA) aims to minimize the domain gap and transfer knowledge
from a labeled source domain to an unlabeled target domain. Due to the ubiquity of domain gaps,
UDA methods have been widely applied to major computer vision problems including image and
video classification (Zhang et al., 2023; Lai et al., 2023; Zara et al., 2023), object detection (Chen
et al., 2018; Li et al., 2022b;c; Fan et al., 2023b), and semantic segmentation (Tsai et al., 2018;
Hoyer et al., 2022a; 2023). UDA approaches typically minimize domain gaps through methods like
discrepancy minimization (Long et al., 2015), adversarial training (Ganin et al., 2016; Long et al.,
2018; Shi & Liu, 2024), self-training (Pan et al., 2019; Mei et al., 2020; Zhang et al., 2021). Recently,
foundation models have been used to further enhance the adaptation performance by leveraging
large-scale pretraining (Fahes et al., 2023; Tang et al., 2024; Gondal et al., 2024).

While traditional UDA methods assume a consistent label space between the source and target do-
mains , this assumption is often violated in real-world scenarios. To address this, several specialized
UDA methods have been developed to handle different label shift scenarios (Tachet des Combes
et al., 2020; Garg et al., 2023; Westfechtel et al., 2023). Partial DA (Cao et al., 2018; Guo et al.,
2022) addresses situations where the target domain contains a subset of the source domain’s classes.
Open-set DA (Saito & Saenko, 2021; Li et al., 2023) handles cases where the target domain includes
unknown classes not present in the source domain. Universal DA (You et al., 2019; Qu et al., 2024)
aims to adapt to target domains with any combination of known and unknown classes.

Typically, In the field of cross-domain semantic segmentation, various UDA approaches have been
proposed to address the challenges posed by the fine-grained task. Class-incremental DA (Kundu
et al., 2020) focuses on adding new classes while preserving knowledge of previously learned ones.
Open-set adaptation methods (Bucher et al., 2021; Choe et al., 2024) aim to predict the boundaries of
unknown classes. However, these works can only distinguish between the unknown classes and the
known ones and do not perform further classification on the unknown classes. Taxonomy adaptive
DA (Gong et al., 2022; Fan et al., 2023a) utilizes a more flexible taxonomy mapping where the target
label space differs from the source domain. Despite being able to distinguish novel target classes
further, these methods cannot be applied in a fully unsupervised DA setting as they rely on few-shot
labeled samples from the target domain to gain knowledge on novel classes. Instead, DynAlign
leverage prior knowledge from foundation models for unsupervised adaptation.

2.2 OPEN-VOCABULARY SEMANTIC SEGMENTATION

Open-vocabulary semantic segmentation aims to assign a semantic label to each pixel of an im-
age using an arbitrary open-vocabulary label set (Xian et al., 2019; Bucher et al., 2019). Recent
advancements in vision-language models like CLIP (Radford et al., 2021) have enabled zero-shot
classification with enhanced generalization ability from large-scale pretraining, leading to their wide
application in open-vocabulary tasks, including semantic segmentation (Li et al., 2022a).
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To adapt CLIP for better performance in dense prediction tasks, different approaches have been
explored, including fine-tuning CLIP (Liang et al., 2023; Cho et al., 2024) and modifying CLIP’s
model architecture (Wang et al., 2023; Yu et al., 2024). For finer segmentation boundaries, two-
stage frameworks involving mask proposal generation followed by classification remain prominent
in open-vocabulary semantic segmentation (Kirillov et al., 2023; Wu et al., 2023a; Ding et al., 2022).
The recent advent of Segment Anything Model (SAM) (Kirillov et al., 2023) provides a free and
precise mask proposal generation approach and thus integrated by several works to enhance the
performance (Shi & Yang, 2024; Li et al., 2024; Yuan et al., 2024). Despite these advancements,
open-vocabulary methods struggle with domain-specific nuances and fine-grained categories (Zhou
& Beyerer, 2023; Wu et al., 2023b). Wei et al. (2024) leverages vision foundation models to improve
the generalization ability of task-specific semantic segmentation models. Yilmaz et al. (2024) incor-
porates domain-specific knowledge into the open-vocabulary framework through supervised prompt
fine-tuning, whereas our work focuses on fully unsupervised adaptation.

3 PROBLEM DEFINITION

We formulate the problem of unsupervised taxonomy adaptive cross-domain semantic segmentation
as follows: given a labeled source domain Ds with a label set Cs, our goal is to achieve semantic
segmentation on an unlabeled target domain Dt with a known label set Ct. Specifically, we have:

• a labeled source domain Ds = {Xs, Ys}, where Xs ∈ RH×W×3 represents RGB images and
Ys denotes pixel-wise annotations in the source label set Cs = {c1s, c2s, . . . , cms }.

• an unlabeled target domain Dt = {Xt}. The ground truth pixel-wise annotations belong to the
known target label space Ct = {c1t , c2t , ..., cnt } and are not available during training.

• Cs and Ct may have inconsistent taxonomies. This inconsistency may involve differences
in label granularity, hierarchical class structures (such as subclasses), or the introduction of
entirely new categories in Ct, as illustrated in Figure 1 (d).

Formally: Let Ps and Pt represent the distributions of source domain data Xs and target domain
data Xt, respectively. In the context of taxonomy-adaptive cross-domain semantic segmentation,
three primary challenges need to be addressed:

• Image-level domain gap: the source and target data have distinct data distributions (Ps ̸= Pt).
• Label-level taxonomy inconsistency: the source and target label sets are different (Cs ̸= Ct).
• Absence of target domain annotations: no labeled data is available for the target domain.

We aim to train a model using both the labeled source domain Ds and the unlabeled target domain
Dt, and evaluate the performance on the target dataset Dt within the label space Ct.

4 METHOD

Method Overview In this work, we propose DynAlign, a novel framework for unsupervised
taxonomy-adaptive cross-domain semantic segmentation that fuses domain-specific knowledge with
text and visual prior knowledge. Our method comprises three main stages: incorporating domain
knowledge, incorporating prior knowledge, and combining them through a knowledge fusion mech-
anism, as illustrated in Figure 2. In the first stage, we integrate domain-specific knowledge by
training a domain-specific model on the available labeled source domain and unlabeled target do-
main, which generates predictions within the source label space (Section 4.1). In the second stage,
we incorporate both text & vision prior knowledge to address the label-level taxonomy inconsis-
tency. Specifically, we use LLM to construct a taxonomy mapping to link the source labels with the
target labels and further enrich the target labels with context descriptions (see Section 4.2). Then we
utilize SAM to generate mask proposals that segment the image into fine-grained semantic regions
and extract multi-scale visual information for each region (see Section 4.3). In the final stage, we
introduce knowledge fusion mechanism (see Section 4.4), where the domain-specific predictions
and prior knowledge are integrated based on CLIP. As shown in Figure 3, for each mask proposal
from SAM, we take the majority pixel label of in-domain prediction as the initial source label and
retrieve the correlated target classes from the taxonomy mapping. CLIP is then used to extract the
multi-scale regional visual features and the context-aware text features for the mapped target classes.
Finally, each fine-grained mask region is reclassified based on CLIP feature similarity.
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Figure 2: DynAlign overview. DynAlign integrates with any UDA model, leveraging its domain-
specific knowledge and enhancing it with prior knowledge from foundation models. DynAlign starts
with coarse UDA model predictions, followed by: 1) LLM constructing taxonomy mappings to align
source and target domains; 2) SAM generating fine-grained masks. CLIP is deployed to fuse the
visual knowledge from SAM with the semantic knowledge from LLM to reassign accurate labels.
The CLIP-fused predictions can be used as pseudo-labels to further fine-tune the UDA model.

4.1 DOMAIN-SPECIFIC KNOWLEDGE

To gain domain-specific knowledge, given a labeled source domain Ds and an unlabeled target do-
main Dt, we train a domain-specific model fs→t by leveraging data from both domains. Specifically,
we follow the UDA paradigm, which aligns the data distribution of the source and target domains.
This adapted model integrates supervised knowledge from the source domain with visual informa-
tion from the target domain, enabling it to generate accurate predictions on the unlabeled target
dataset Dt within the source label space Cs.

In our experiments, we develop an UDA model inspired by the architecture proposed by Hoyer et al.
(2022b). The model comprises a hierarchical transformer encoder, based on the design of Xie et al.
(2021), combined with a multi-scale decoder that effectively integrates contextual information from
low-level features. Initially, the model is trained using a supervised cross-entropy loss on the labeled
source domain Ds. Then, we adapt it to the unlabeled target domain Dt through an unsupervised
self-training. This adaptation process incorporates a teacher network that generates pseudo-labels
for the target domain, which are then weighted based on confidence estimates to account for uncer-
tainty. These weighted pseudo-labels are used to further refine the model’s performance on the target
domain. The adapted model learns shared feature representations for both domains, enabling it to
effectively handle image-level domain shifts. Detailed model architecture and training procedures
are provided in the Appendix A.1. We leverage the knowledge learned by fs→t to generate initial
predictions ŷt for the target images within the source label set Cs.

4.2 SEMANTIC TAXONOMY MAPPING

The acquired domain-specific model is constrained by the in-domain knowledge, thus limiting their
ability to generalize beyond the learned source label space to a new target label space. To bridge
this gap, we introduce a taxonomy reasoning process that adapts the label space from Cs to Ct. This
taxonomy mapping enables the model to semantically link source domain labels to the known target
domain label set Ct. For instance, the source label ‘road’ can be mapped to more granular target
domain labels such as {‘road’, ‘sidewalk’, ‘curb’, ‘lane marking’, ‘rail track’, etc.}. We construct a
taxonomy mapping for each source label to connect the source and target label spaces. This mapping
is flexibly defined, allowing for differences in label granularity, hierarchical class structures (such as
subclasses), or the introduction of entirely new categories, as shown in Figure 1 (d).

Formally, given the source domain label set Cs = {c1s, c2s, . . . , cms } and the target domain label set
Ct = {c1t , c2t , ..., cnt }, we define the taxonomy mapping for each source domain label cis as:

cis → Ci
t ⊆ Ct, 1 ≤ i ≤ m (1)
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where Ci
t represents an arbitrary subset of Ct that semantically correlates with the source domain

label cis. For novel classes that are not present in the source domain, we map them to each source
label, enabling better discovery of these new classes. Further details about the taxonomy mapping
can be found in the Appendix A.7.

To extract meaningful semantic features, we use the CLIP text encoder to encode text features for
each target label. Original class labels often lack sufficient context and semantic richness, leading to
ambiguity and imprecision. For example, the label ‘bridge’ in street scene segmentation datasets is
too generic and might be interpreted as a bridge over a river rather than a pedestrian bridge in urban
environments. This lack of specificity can cause confusion and misclassification in the segmentation
process, resulting in inferior performance. To address this, we enhance the semantic clarity of each
target class label by expanding it with contextually relevant synonyms or related phrases. For each
target class label, we use GPT-4 (Achiam et al., 2023) to generate a set of contextually relevant
terms, such as ‘bridge’ → {‘road bridge’, ‘footbridge’, ‘pedestrian bridge’, etc.}. These terms are
generated by prompting GPT-4 with descriptions of the dataset context and the original class label.
More details are provided in the appendix A.8. This additional contextual information helps reduce
ambiguity and improve the accuracy of mask region classification. We then compute the context-
aware text feature for each target domain label. Specifically, for each target domain label cjt ∈ Ct,
we generate a context description set Cj

context and compute the CLIP encoded text feature for each
description ccontext ∈ Cj

context. The text feature for class label cjt is then obtained by averaging all
the contextual description features, as follows:

F j
t = averageΦT (ccontext), ccontext ∈ Cj

context (2)

where ΦT (·) represents CLIP text encoder. We then aggregate these features to form the final text
feature representations of the target domain label space denoted as Ftarget = {F 1

t , F
2
t , ..., F

n
t }.

For each source label cis, we retrieve its mapped target labels Ci
t and the corresponding feature

representation set Fi
T ⊆ Ftarget as the semantic representation.

4.3 VISUAL PRIOR KNOWLEDGE

To identify new labels in the target domain, it is essential to align visual information with the target
domain label set and its novel semantic categories. Therefore, we incorporate prior knowledge from
general-purpose foundation models to enhance visual understanding. We first generate mask pro-
posals using the Segment-Anything-Model (SAM) (Kirillov et al., 2023), which is renowned for its
zero-shot capability to produce high-quality, fine-grained masks with precise segmentation bound-
aries. With SAM, we are able to obtain a set of mask regions that likely correspond to semantically
meaningful object boundaries.

Next, we capture semantic visual information for each mask region by extracting visual embeddings
using CLIP, which requires capturing both fine-grained details and broader contextual information.
To obtain more representative features, we propose multi-scale visual feature extraction, which
concatenates local and multi-scale global features. Given a target domain image xt, and a binary
mask proposal m from SAM, we obtain the masked local region r = xt ⊙m and a bounding box b
that crops the masked region. The local feature is extracted with CLIP vision encoder ΦV (·), as:

Fl = ΦV (b) (3)

Specifically, we use ConvCLIP (Yu et al., 2024) vision encoder due to its advantage in dense predic-
tion tasks. To capture broader contextual information, we incorporate global features by averaging
embeddings across multiple scales. This is achieved by adding multi-scale padding around each
local bounding box region b, as illustrated in Figure 3. The padding size is adjusted based on the
class labels, with larger objects like ‘road’ assigned larger padding sizes, and smaller objects like
‘bicycle’ assigned smaller padding sizes. For each bounding box b, we create a set of padded global
regions B and extract the corresponding global feature:

Fg = {ΦV (bk)}, bk ∈ B (4)

To combine both local and global visual information, we extract the final visual feature FV as the
weighted sum of Fg and Fl. Specifically, we calculate the cosine similarity between the local feature
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Fl and each global feature Fgk ∈ Fg . The similarity scores ϕk are computed as follows:

ϕk = ⟨Fl, Fgk⟩ =
(Fl)

T
Fgk

∥Fl∥ ∥Fgk∥+ ϵ
, Fgk ∈ Fg. (5)

where ϵ is a small constant. Subsequently, we derive the final multi-scale visual feature FV for the
current mask region by aggregating the local feature Fl with the global features Fg , weighted by
their respective cosine similarities ϕk. This aggregation ensures that both local details and broader
contextual information contribute effectively to the visual feature representation:

FV =
Σ(ϕkFgk + (1− ϕk)Fl)

|Fg|
, Fgk ∈ Fg. (6)
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Figure 3: Foundational models and knowledge fusion. The fine-grained mask proposals from
SAM are encoded into multi-scale visual features using CLIP’s vision encoder, while the enriched
target domain taxonomies from LLM are encoded as context-aware text features via CLIP’s text
encoder. The similarity between these visual and text embeddings is then calculated to reassign
semantic taxonomies accurately to the fine-grained masks in the target domain. Here, ΦV (·) and
ΦT (·) denote the CLIP vision and text encoders, respectively. Fl and Fg represent the local and
global features, while FV denotes their weighted sum, forming the final extracted multi-scale visual
feature to represent the mask region. FT refers to the extracted text feature set of candidate classes.

4.4 KNOWLEDGE FUSION

Given the domain-specific knowledge and prior knowledge from foundation models, we aim to
fuse them to bridge both image-level and label-level domain gaps. The general fusion process of
DynAlign is shown in Figure 3.

Given a target image xt, we generate mask proposals that segment the image into fine-grained re-
gions using SAM. For each mask region m, we first associate it with the source domain label space
by retrieving in-domain knowledge from the label prediction ŷt generated by model fs→t (as de-
scribed in Section 4.1) The initial label cis for mask region m is determined by the majority of
predicted pixel labels within that mask area. To reassign each mask region with new target labels,
given the source label cis, we retrieve its related target domain label subsets cis → Ci

t ⊆ Ct and the
corresponding feature representation set FT ⊆ Ftarget using prior knowledge from the taxonomy
mapping (see Section 4.2). Additionally, based on the initial label cis, we adjust the appropriate
padding size of the global region B (see Section 4.3) accordingly to enrich the visual context and
extract the multi-scale visual feature FV , serving as the regional visual feature representation. Fi-
nally, each mask region is reassigned a new target label based on the largest similarity between the
context-aware text features FT and multi-scale visual feature FV as:

ϕ = ⟨FV ,FT ⟩ , ỹt = argmax(ϕ) (7)

We reassign the label of each mask region from ŷs to the newly estimated ỹt when the confidence
exceeds 0.5. This reassignment is applied to every mask proposal within the image sample xt,
thereby updating the pixel-wise semantic pseudo-labels in the target domain.

DynAlign generates predictions for new classes in the target domain that were not present in the
source domain, eliminating the need for manual annotations. This capability allows the model to
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adapt flexibly to new target classes and when the target label set changes, we simply redefine the
taxonomy mapping to generate new predictions for the target domain dataset. This two-step process–
mapping known classes and discovering new ones – enables our framework to effectively adapt to
the target domain’s taxonomy in a fully unsupervised manner.

5 EXPERIMENT

5.1 IMPLEMENTATION DETAILS

Datasets We evaluate our method using the synthetic dataset GTA as the source domain and two real-
world datasets, Mapillary Vistas and India Driving Dataset (IDD), as target domains. GTA (Richter
et al., 2016) is a synthetic dataset with pixel-level annotations for 19 semantic classes. It serves as
the labeled source domain in our experiments. Mapillary Vistas (Neuhold et al., 2017) contains
25k high-resolution images collected from a wide variety of environments, weather conditions, and
geographical locations. It is annotated with 66 object categories, providing a highly challenging real-
world target domain. IDD dataset (Varma et al., 2019), captured from Indian urban driving scenes, is
characterized by complex and varied road environments. It contains 10,003 images annotated with
25 semantic classes at level 3 granularity. For evaluation, we focus on 45 classes from Mapillary
Vistas and 24 from IDD, excluding small-scale or less informative categories.

Experimental setup For the unsupervised taxonomy-adaptive domain adaptation task, we use the
GTA training set as the labeled source domain and the training sets of Mapillary Vistas and IDD
as the unlabeled target domains. No target domain annotations are used during training, ensuring
a fully unsupervised domain adaptation setup. We perform image-level adaptation by training the
model fs→t on the labeled source domain and each of the unlabeled target domains separately,
following the default training parameters in Hoyer et al. (2022b). For label-level adaptation, we
define a taxonomy mapping between the source and target labels (see Appendix A.7) and context
descriptions for target labels (see Appendix A.8). Performance is reported on the validation set of
each target dataset. We employ the ViT-L SAM model (?) and the ConvNeXt-Large CLIP model (Yu
et al., 2024) by default. More experimental details are provided in the appendix A.1.

Evaluation metrics We evaluate the performance using two standard semantic segmentation met-
rics. Mean Intersection over Union (mIoU) calculates the average intersection over union for each
class and then averages across all classes. Mean Accuracy (mAcc) calculates the percentage of
correctly predicted pixels for each class and then averages the results across all classes.

5.2 EXPERIMENTAL RESULTS

To the best of our knowledge, our work is the first to investigate the fully unsupervised taxonomy-
adaptive domain adaptation problem. Traditional DA methods are limited to fixed label spaces,
making them inapplicable to our problem setting. Therefore, we compare our proposed method,
DynAlign , with open-vocabulary segmentation methods, Grounded-SAM (Ren et al., 2024) and
OWL-VIT (Matthias Minderer, 2023). Additionally, we evaluate the naive combination of these
methods with HRDA, where HRDA generates predictions for classes matching the source labels,
while open-vocabulary methods are employed to predict new classes (see Appendix A.3 for more
illustration). The comparative results are summarized in Table 1.

Table 1: Open-vocabulary semantic segmentation comparisons on Mapillary Vistas and IDD

Mapillary Vistas IDD

Methods all known unknown all known unknown
mACC mIoU mACC mIoU mACC mIoU mACC mIoU mACC mIoU mACC mIoU

Grounded-SAM 33.1 28.6 46.7 43.0 24.0 18.3 36.0 30.8 43.7 37.2 16.1 14.1
OwlVIT-SAM 29.6 19.5 32.7 26.7 27.5 14.7 31.6 20.9 33.3 23.1 27.3 15.2

HRDA - - 75.8 65.8 - - - - 68.9 61.3 - -
HRDA + Grounded-SAM 40.4 32.9 63.6 53.1 25.0 19.4 51.7 39.4 65.6 49.3 16.1 14.1
HRDA + OwlVIT-SAM 40.2 28.8 56.1 48.4 29.5 15.6 55.9 40.2 67.1 49.9 27.3 15.2

Ours 53.0 36.7 72.6 62.4 39.9 19.6 57.7 41.7 66.8 50.9 34.3 18.1

On the Mapillary dataset, open-vocabulary methods, which relies solely on foundation models,
demonstrate limited performance. By integrating domain-specific knowledge through HRDA,
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the performance improves, with HRDA + Grounded-SAM reaching 32.9% and HRDA + OWL-
ViT-SAM achieving 28.8% mIoU. Notably, our method, DynAlign , significantly outperforms
all baselines, achieving the highest mIoU of 36.7%. Results on IDD show consistent trends.
Open-vocabulary methods alone perform modestly with mIoUs of 30.8% for Grounded-SAM and
20.9% for OWL-ViT-SAM. When combined with HRDA, performance improves to 39.4% and
40.2%, respectively. DynAlign demonstrates again superior performance with the highest mIoU
of 41.7%. Notably, for unknown classes, DynAlign achieves an mIoU of 18.1%, surpassing HRDA
+ Grounded-SAM at 14.1% and HRDA + OWL-ViT-SAM at 15.2%, showing a substantial im-
provement in accurately segmenting unseen categories. The results demonstrate that incorporating
domain-specific knowledge through UDA significantly enhances performance, even when leverag-
ing strong foundation models for open-vocabulary tasks. DynAlign not only preserves the domain
knowledge from the UDA baseline but also retains the flexibility to accommodate new classes. This
highlights its advantages in effectively integrating both domain knowledge and prior knowledge,
highlighting its advantage over traditional UDA methods and open-vocabulary approaches.

We present qualitative comparison results on the Mapillary Vistas dataset in Figure 5. The key new
classes are highlighted under each set of results. Our method clearly outperforms the baselines by
producing more precise boundaries, better detection of new classes, and more accurate predictions.

5.3 PSEUDO-LABEL TRAINING FOR SEGMENTATION MODEL

mACC mIoU
Metric

20

25

30

35

40

45

50

55

60
Pe

rc
en

ta
ge

 (%
)

53.0

36.7

56.2
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DynAlign (Direct inference)
DynAlign (Pseudo-labels)

Figure 4: Performance comparison between di-
rect inference and pseudo-label training using Dy-
nAlign on the Mapillary Vistas dataset.

While DynAlign demonstrated superior perfor-
mance over baseline open-vocabulary methods
during inference, we also explored its capabil-
ity to generate pseudo-labels for training a new
segmentation model on the target domain’s tax-
onomy. This approach aims to reduce infer-
ence time and potentially boost segmentation
accuracy. By generating pseudo-labels on the
Mapillary Vistas training set using DynAlign
, we train a semantic segmentation model in
the new label space (details provided in Ap-
pendix A.1). Figure 4 compares direct infer-
ence using DynAlign and performance of the
trained segmentation model on the validation
set. The pseudo-label trained model outper-
forms direct inference, with mACC improving
from 53.0% to 56.2% and mIoU from 36.7%
to 38.9%. These results suggest that DynAlign
can generate high-quality pseudo-labels, en-
abling the training of segmentation models that can greatly boost the efficiency and maintain im-
proved performance on the target domain. We report the memory usage and computational efficiency
of DynAlign in both direct inference and pseudo-labeling in the appendix A.2.

Table 2: Ablations on multi-scale visual
feature and context-aware text feature

Modules Mapillary Vistas IDD
MS (vision) CA (text) mACC mIoU mACC mIoU

% % 44.0 29.0 52.9 37.9
% ! 45.4 29.4 52.5 38.0
! % 50.2 35.6 57.0 39.9
! ! 53.0 36.7 57.7 41.7

Table 3: Ablations on CLIP vision en-
coders

model Mapillary Vistas IDD
mACC mIoU mACC mIoU

CLIP 50.8 35.0 54.7 38.0
MaskCLIP 50.5 34.7 54.1 37.5

SCLIP 50.9 36.0 56.8 39.4
ConvCLIP 53.0 36.7 57.7 41.7

5.4 ABLATION STUDIES

Multi-scale visual feature & context-aware text feature ablation In contrast to the basic CLIP
features, we enhance feature representations by introducing context-aware text feature (CA-Text)
and multi-scale visual feature (MS-vision). As shown in Table 2, these two strategies have distinct
impacts on the performance. Incorporating multi-scale visual features improves the Mapillary mIoU
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from 29.0% to 35.6% and the IDD mIoU from 37.9% to 39.9%. The context-aware text feature
shows modest gains, particularly on Mapillary, where mIoU rises from 29.0% to 29.4%. Combining
both components yields the best results (Mapillary mIoU: 36.7%, IDD mIoU: 41.7%).

DynAlign modules. Table 3 compares the performance of various CLIP backbones in DynAlign
framework. ConvCLIP (Yu et al., 2024), the only convolution-based model, outperforms ViT-based
models including CLIP (Radford et al., 2021), MaskCLIP (Dong et al., 2023), and SCLIP (Wang
et al., 2023), and achieves the best results, with a Mapillary Vistas mIoU of 36.7% and an IDD mIoU
of 41.7%. The result shows its advantage in dense prediction tasks when input sizes scale up.

Table 4: Ablations on DynAlign modules

Method mIoU mAcc
HRDA → MIC 37.7 54.4

SAM → MobileSAM 35.2 51.5
GPT-4 → Llama 37.5 52.1
DynAlign (Ours) 36.7 53.0

Table 4 shows shows the performance on the Mapillary
Vistas dataset when replacing corresponding modules
in DynAlign with MIC (Hoyer et al., 2023), Mobile-
SAM (Zhang et al.), and Llama (Touvron et al., 2023).
The results demonstrate consistently strong perfor-
mance across various model integrations, emphasiz-
ing DynAlign ’s flexibility in seamlessly incorporating
foundation models into domain-specific tasks.

(b) Ground Truth

road sidewalk sky vegetation terrain
buildingperson traffic sign traffic light pole

lane-marking general lane-marking crosswalk billboard street light

(a) Image (c) DynAlign (ours) (d) HRDA 
+ Grounded-SAM

4pc

(e) HRDA 
+ OwlVIT-SAM

lane-marking general street light curb

lane-marking general street light curb bridge

wall

utility pole

utility polemanhole

unlabeled

Figure 5: Qualitative comparisons on Mapillary Vistas dataset. DynAlign effectively segments
new and fine-grained classes on the target domain, showing strong taxonomy adaptation capabilities.

6 CONCLUSION

In this paper, we propose DynAlign to address the challenge of unsupervised taxonomy-adaptive
cross-domain semantic segmentation, effectively segmenting images across domains with differ-
ent taxonomies without requiring target domain annotations. DynAlign integrates domain-specific
knowledge by utilizing UDA models to bridge the image-level domain gap, and leverages foundation
models to resolve label-level taxonomy inconsistencies between domains. The approach demon-
strates significant improvements over existing methods on the Mapillary Vistas and IDD street scene
datasets, consistently achieving higher mIoU scores for both known and unknown classes.

To the best of our knowledge, we are the first to define and address the unsupervised taxonomy-
adaptive domain adaptation problem. Our results demonstrate that DynAlign outperforms not only
open-vocabulary segmentation methods but also their naive combinations with domain adaptation
techniques. While our research focuses on road scene understanding, the framework has the poten-
tial to be extended to other domains with evolving taxonomies.
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A APPENDIX

OVERVIEW

The supplementary material presents the following sections to strengthen the main manuscript:

— Sec. A.1 includes more implementation details.
— Sec. A.2 presents memory usage and computational efficiency comparison.
— Sec. A.3 provides examples and further explanation of naive combination of HRDA with

open-vocabulary approaches, as mentioned in Table 1
— Sec. A.4 presents ablations on CLIP confidence thresholding.
— Sec. A.5 provides additional experimental results under different DA settings.
— Sec. A.6 provides detailed per-class experimental results in Table 1.
— Sec. A.7 and Sec. A.8 provides details of building taxonomy mapping and context descrip-

tions for each target label.

A.1 MODEL ARCHITECTURE AND TRAINING

HRDA for UDA segmentation model For the UDA segmentation model, we follow HRDA (Hoyer
et al., 2022b). We follow the HRDA framework, which combines large low-resolution (LR) crops
for capturing scene context with small high-resolution (HR) crops for fine detail. These two types
of inputs are combined using a learned scale attention mechanism, which enables the model to
effectively handle multi-resolution information. In addition, HRDA uses overlapping slide inference
to refine the generated pseudo-labels, ensuring that the context and details of the images are well-
represented in the segmentation maps. The HRDA framework builds on the DAFormer (Hoyer et al.,
2022a) architecture, which incorporates a domain-robust transformer backbone to extract features
and perform segmentation. A self-training strategy with a teacher-student model is used, where the
teacher generates pseudo-labels for the target domain, and these pseudo-labels are weighted based on
a confidence score to prevent error accumulation during training. The teacher model is updated using
an exponential moving average (EMA) of the student model’s weights, ensuring stable pseudo-labels
over time. In our experiments, we follow the default training parameters in the GTA → CityScapes
setting and adapt from the labeled GTA dataset to the unlabeled Mapillary Vistas/IDD respectively.
The labeled GTA training set and unlabeled Mapillary Vistas/IDD training set are used to train the
UDA Framework.

Mask2Former for target domain segmentation To train a domain-specific model on the target
domain, we utilize the Mask2Former architecture. The model comprises a backbone network that
extracts low-resolution features, a pixel decoder that upscales these features, and a transformer de-
coder for processing object queries. It deploys masked attention, which focuses on local regions
of the predicted mask, improving convergence and handling small objects. In our experiment, we
generate pseudo-labels on the target training set using DynAlign and train Mask2Former with these
labels on the target dataset to improve segmentation performance.

All experiments are conducted on NVIDIA A100-SXM4-80GB GPU.

A.2 COMPUTATIONAL EFFICIENCY

Our method comprises three main components: the UDA semantic segmentation model (HRDA),
SAM, and CLIP. For semantic segmentation on high-resolution images, the memory usage primarily
depends on the semantic segmentation model (HRDA), while the inference time is influenced by the
reassignment of novel class labels. We provide detailed information on memory usage, inference
time, and model parameters in table 5.

The total model parameter count of our method includes the UDA model parameters, plus 308M for
SAM (ViT-L) and 351M for CLIP (ConvNeXt-Large). The reported total memory usage corresponds
to the memory allocated during the complete inference process for a single image. Overall, our
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Table 5: Computational efficiency and memory usage of DynAlign

Model Memory Usage Inference Time Model Parameters
HRDA 23.9 GB 1.9 s 86 M
Ours (HRDA) 34.8 GB 64.1 s 668 M
DAFormer 10.5 GB 0.7 s 86 M
Ours (DAFormer) 21.7 GB 64.1 s 668 M
Ours (pseudo-label, HRDA) 23.9 GB 1.9 s 86 M
Ours (pseudo-label, DAFormer) 10.5 GB 0.7 s 86 M
Ours (pseudo-label, Mask2Former) 3.7 GB 0.3 s 215 M

framework requires reasonable computational resources. Moreover, the UDA framework can be
flexibly substituted to accommodate memory limitations. As shown in the table, replacing HRDA
with DAFormer significantly reduces memory consumption. For efficient inference, a segmentation
model can also be trained using pseudo-labels generated by our framework, as described in *Section
5.3*. For example, a trained Mask2Former model using our inference pseudo labels, indicated as
Ours (pseudo-label, Mask2Former), achieves inference in just 0.3 seconds per single image, offering
a significant efficiency boost while maintaining high performance.

A.3 EXAMPLES OF NAIVE COMBINATION OF HRDA WITH OPEN-VOCABULARY
APPROACHES

For a naive combination of in-domain predictions with prior knowledge as baseline methods, we
take the in-domain segmentation results produced by HRDA and layer them with the new class
predictions from open-vocabulary models. As demonstrated in Figure 6, the open-vocabulary pre-
dictions for known classes in the source domain label space are discarded. This ensures that only
novel class predictions from the open-vocabulary model are added on top of the HRDA predictions,
preserving in-domain knowledge from HRDA.

(a) Image (b) HRDA (c) Grounded-SAM (d) HRDA 
+ Grounded-SAM

+ =

+ =

Figure 6: Illutration on HRDA+Grounded-SAM baseline

A.4 ABLATIONS ON CLIP CONFIDENCE THRESHOLD

In our experiments, we set the confidence threshold to 0.5 by default for reassigning the class label.
We conduct ablation studies with varying confidence thresholds, as presented in Table 6. The results
show that while the mAcc improves with a lower confidence threshold for assigning new class labels,
the mIoU may decrease correspondingly. Overall, DynAlign demonstrates robustness and is not very
sensitive to the confidence threshold within a certain value range.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 6: Ablations on CLIP confidence threshold

Threshold 0.4 0.5 0.6 0.7 0.8 0.9
mIoU 35.9 36.7 37.6 36.5 36.6 36.5
mAcc 54.3 53.0 52.1 50.3 47.3 46.5

A.5 EXPERIMENTS UNDER MORE DA SETTINGS

To validate the effectiveness of our methods in diverse practical scenarios, we implement additional
experiments under the following settings: 1) Traditional UDA Setting: In this case, the target label
space is identical to the source label space. We adapt from GTA to Cityscapes, both using the
same label space. 2) Fine-to-Coarse Setting: Here, the target domain labels are coarser than the
source domain labels. For this, we adapt from Mapillary (45 classes) to Cityscapes (19 classes). As
shown in Table 7, in both the traditional UDA and fine-to-coarse settings, where sufficient domain
knowledge about the label space is available, our framework preserves the in-domain performance
and provides slight improvements when adequate in-domain knowledge is already present.

In Table 8, we present results under taxonomy-adaptive domain adaptation with a smaller label-
space domain gap. Specifically, we adapt from Synthia (16 classes) to Cityscapes (19 classes).
These results highlight that our method not only maintains strong performance on known classes
but also predicts effectively for unknown classes.

Table 7: Semantic segmentation comparison on Mapillary under traditional UDA and fine-to-coarse
setting

Setting mIoU mAcc
GTA to Cityscapes (HRDA, 19 → 19) 74.9 82.0
GTA to Cityscapes (Ours, 19 → 19) 75.9 83.7

Mapillary to Cityscapes (Ours, 45 → 19) 70.4 81.5

Table 8: Semantic segmentation comparison on Mapillary under coarse-to-fine setting with small
label domain gap

Settings all classes known classes unknown classes
mIoU mAcc mIoU mAcc mIoU mAcc

Synthia to Cityscapes (HRDA, 16 → 16) N/A N/A 66.8 73.7 N/A N/A
Synthia to Cityscapes (Ours, 16 → 19) 61.6 72.7 68.8 77.5 23.2 47.0

A.6 PER-CLASS EVALUATION RESULTS

For experimental results in Table 1, we provide the corresponding per-class evaluation in Table 9
and Table 10.

A.7 TAXONOMY MAPPING

We provide the detailed taxonomy mapping that maps each source label to its correlated target labels
in Table 11 and Table 12. We utilizes GPT-4 to generate an initial proposal for potentially correlated
taxonomy mappings between the source and target domains and introduce human intervention to
refine these mappings due to the differing definitions of classes across datasets. For example, in the
Mapillary dataset, the term ”guard rail” specifically refers to roadside guard rails, whereas in other
datasets or in general usage, it may represent a broader guarding fence. For the same reason, we
exclude labels with inherent ambiguity, which we refer to classes that are broad or highly context-
dependent. (For example, the class ”other vehicles” may encompass various types of vehicles that
are not explicitly defined in the dataset, making precise labeling a challenge. Similarly, the class
”ego vehicle” refers specifically to the vehicle equipped with the camera, which often appears only
partially in the image.) We examine the generated taxonomy mapping to ensure that the mappings
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Table 9: Per-class semantic segmentation evaluation results on Mapillary. (lane marking is refered
as lm).

Grounded-
SAM

Grounded-
SAM + HRDA

OwlVIT-
SAM

OwlVIT-SAM
+ HRDA Ours

IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc
curb 1.6 1.6 1.6 1.6 18.7 27.0 18.7 27.0 16.3 44.9
fence 30.3 33.3 40.0 48.1 18.9 22.3 32.9 37.8 45.6 53.2

guard rail 21.3 28.8 21.3 28.8 17.9 36.1 17.9 36.1 15.3 21.1
wall 1.3 1.4 35.5 55.2 11.4 19.3 30.4 41.8 39.3 59.0

rail track 10.7 12.0 10.7 12.0 2.2 4.3 2.2 4.3 17.0 18.1
road 81.9 93.7 79.0 93.5 54.0 58.6 58.5 65.9 70.2 77.1

sidewalk 33.0 34.6 42.7 64.0 32.2 43.0 40.3 53.7 27.8 33.3
bridge 41.7 46.8 41.7 46.8 30.7 43.6 30.7 43.6 20.8 23.3

building 70.1 81.6 80.3 94.5 44.0 52.8 71.8 81.1 76.5 85.6
tunnel 0.0 0.0 0.0 0.0 1.2 3.6 1.2 3.6 13.4 79.5
person 67.9 78.6 74.9 85.6 29.5 33.3 69.0 78.3 77.7 89.3

bicyclist 8.3 9.4 21.6 36.4 10.6 12.6 35.1 66.8 53.8 72.0
motorcyclist 13.9 32.1 13.9 32.1 9.9 11.7 9.9 11.7 51.6 58.3

lm - crosswalk 20.3 24.4 20.3 24.4 8.9 14.8 8.9 14.8 20.0 56.6
lm - general 1.6 1.6 1.6 1.6 12.4 19.8 12.4 19.8 18.0 41.8

mountain 29.1 32.9 29.1 32.9 16.1 37.8 16.1 37.8 43.8 56.5
sand 29.6 35.7 29.6 35.7 24.1 38.1 24.1 38.1 18.4 49.2
sky 91.7 92.9 94.8 99.0 69.0 70.5 73.2 76.1 95.1 97.8

snow 34.1 34.5 34.1 34.5 26.9 38.9 26.9 38.9 40.9 77.5
terrain 12.3 12.5 48.1 93.1 0.3 0.3 47.6 82.7 48.5 84.4

vegetation 28.0 28.3 81.2 85.3 19.1 20.3 72.3 75.5 82.0 85.7
water 81.1 81.7 81.1 81.7 72.2 87.9 72.2 87.9 47.3 56.0

banner 5.3 5.4 5.3 5.4 6.8 10.0 6.8 10.0 0.5 0.7
bench 44.3 48.7 44.3 48.7 23.7 46.4 23.7 46.4 1.2 78.9

billboard 12.9 15.1 12.9 15.1 15.3 32.1 15.3 32.1 28.1 55.8
catch basin 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.9 18.1

manhole 19.3 19.8 19.3 19.8 20.4 40.5 20.4 40.5 23.7 25.3
phone booth 12.8 26.6 12.8 26.6 1.9 35.7 1.9 35.7 0.8 57.8
street light 8.0 46.4 8.0 46.4 3.0 32.6 3.0 32.6 15.2 21.2

pole 22.4 24.9 33.0 43.6 15.5 16.6 29.1 37.2 41.9 57.6
traffic sign frame 0.4 0.9 0.4 0.9 3.2 7.6 3.2 7.6 0.1 0.1

utility pole 27.0 31.1 27.0 31.1 23.2 29.5 23.2 29.5 23.8 25.2
traffic light 60.3 64.5 56.4 65.1 26.2 28.1 53.5 61.0 59.8 73.0

traffic sign (back) 0.0 0.0 0.0 0.0 7.8 19.9 7.8 19.9 3.4 5.1
traffic sign (front) 30.7 32.5 40.4 43.1 29.2 32.0 45.8 48.1 61.8 66.8

trash can 48.5 49.8 48.5 49.8 28.0 42.9 28.0 42.9 15.0 19.4
bicycle 57.1 63.6 49.9 54.3 28.1 58.1 49.0 53.3 57.1 62.9

boat 40.0 62.9 40.0 62.9 12.4 63.8 12.4 63.8 7.4 12.8
bus 76.0 81.7 60.9 67.1 39.7 60.6 51.8 56.7 68.3 73.1
car 62.1 64.5 65.1 68.1 26.9 34.6 49.6 51.7 88.1 92.0

caravan 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.2 24.1 82.6
motorcycle 49.2 52.8 53.2 61.4 37.2 39.7 54.9 62.9 65.1 76.6

on rails 0.0 0.0 9.0 10.2 0.0 0.0 28.1 30.4 53.3 59.3
trailer 0.0 0.0 0.0 0.0 0.1 5.7 0.1 5.7 1.4 20.0
truck 0.0 0.0 11.5 13.5 0.0 0.0 14.3 16.5 65.0 80.4

Average 28.6 33.1 32.9 40.4 19.5 29.6 28.8 40.2 36.7 53.0

are accurate and contextually appropriate. The taxonomy mapping significantly reduces effort com-
pared to tasks such as pixel-wise manual annotation and only needs to be defined once per dataset
pair. We highlight the identical classes in source and target domains in blue.

A.8 CONTEXT NAMES

We provide the context names used to describe the target names under the scene context in Table 13,
14, and 15. We generate those names by providing GPT-4 with the instruction:
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Table 10: Per-class semantic segmentation evaluation results on IDD

Grounded-
SAM

Grounded-
SAM + HRDA

OwlVIT-
SAM

OwlVIT-SAM
+ HRDA Ours

IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc
road 83.5 88.9 84.6 94.5 76.0 81.9 84.9 96.4 85.9 99.1

drivable fallback 17.2 23.9 17.2 23.9 0.0 0.0 0.0 0.0 2.9 3.4
sidewalk 15.8 18.8 12.8 68.9 3.6 17.7 15.6 74.6 17.0 72.2

non-drivable fallback 13.8 18.8 13.7 14.2 1.9 2.4 14.1 14.6 4.9 5.1
person 25.1 71.8 57.3 72.7 13.6 27.4 56.8 71.8 59.5 74.6
rider 0.2 0.2 64.4 78.4 0.6 0.6 63.5 77.2 67.7 80.3

motorcycle 57.4 62.9 64.4 77.4 34.2 36.4 64.1 77.0 67.2 80.1
bicycle 33.7 36.2 15.2 38.5 2.6 34.0 16.2 38.4 15.8 39.5

autorickshaw 0.0 0.0 0.0 0.0 34.7 46.0 34.7 46.0 36.5 81.4
car 84.5 88.9 63.8 96.8 22.8 23.1 69.0 96.0 70.2 80.9

truck 72.3 77.8 86.2 91.7 31.6 35.2 80.7 84.9 86.8 91.9
bus 74.8 81.6 68.4 71.4 42.8 47.8 63.6 66.1 68.8 71.9
curb 6.8 7.3 6.8 7.3 14.9 30.6 14.9 30.6 14.7 18.2
wall 4.7 4.7 40.8 66.5 8.0 8.9 40.8 59.8 41.9 67.6
fence 8.3 21.2 20.2 33.8 5.5 13.4 21.5 34.9 22.3 35.1

guard rail 8.2 13.0 8.2 13.0 9.3 28.5 9.3 28.5 13.9 22.1
billboard 22.3 23.7 22.3 23.7 16.1 25.8 16.1 25.8 43.9 60.7

traffic sign 14.8 16.0 10.3 33.1 16.3 70.4 23.3 78.2 31.0 80.3
traffic light 23.7 24.5 19.5 22.5 6.4 13.1 19.3 22.3 23.9 27.2

pole 8.7 8.8 34.1 39.4 19.2 21.5 33.8 38.9 35.4 41.0
obs-str-bar-fallback 0.9 0.9 0.9 0.9 0.0 0.0 0.0 0.0 6.4 9.5

building 45.3 60.0 51.8 87.1 26.1 49.0 52.0 83.9 54.3 82.6
bridge 43.3 44.2 43.3 44.2 31.6 60.4 31.6 60.4 8.1 44.7

vegetation 12.4 12.4 84.5 94.5 21.5 22.6 84.3 94.0 80.6 87.0
sky 91.4 92.8 94.6 98.8 84.1 93.8 94.7 98.7 82.3 85.3

Average 30.8 36.0 39.4 51.7 20.9 31.6 40.2 55.9 41.7 57.7

Table 11: Taxonomy mapping from GTA to Mapillary

Source Label Target Label Set

road road, sidewalk, snow, sand, water, catch basin, manhole,
rail track, lane marking-crosswalk, lane marking-general

sidewalk sidewalk, curb, snow, sand, water
building building, bridge, tunnel, phone booth, billboard,

wall wall, bridge, tunnel, trash can, banner, billboard
fence fence, guard rail
pole pole, utility pole, trash can, banner, street light, traffic sign frame

traffic light traffic light, street light
traffic sign traffic sign (front), traffic sign (back), billboard, banner
vegetation vegetation, snow

terrain terrain, mountain, snow, sand, water
sky sky

person person
rider bicyclist, motorcyclist
car car, trailer, boat

truck truck, caravan
bus bus
train on rails

motorcycle motorcycle
bicycle bicycle

unlabeled bench, billboard, bridge, tunnel

Generate new class names within the context of street scene semantic segmentation, using the orig-
inal class name as the head noun. Use synonyms or subcategories of the original class that make
sense within this context, and if the class has multiple meanings, add specific context to avoid ambi-
guity. Please provide the original class names along with context names.

20



1080
1081
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1085
1086
1087
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1110
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1119
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1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
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Table 12: Taxonomy mapping from GTA to IDD

Source Label Target Label Set

road road, sidewalk, drivable fallback
sidewalk sidewalk, curb, drivable fallback, non-drivable fallback
building building, bridge, billboard,

wall wall, obs-str-bar-fallback, bridge, billboard
fence fence, guard rail, obs-str-bar-fallback
pole pole

traffic light traffic light
traffic sign traffic sign, billboard, banner
vegetation vegetation, obs-str-bar-fallback

terrain terrain, non-drivable fallback, obs-str-bar-fallback
sky sky

person person
rider bicyclist, motorcyclist
car car, autorickshaw

truck truck, caravan
bus bus
train other vehicles

motorcycle motorcycle
bicycle bicycle

unlabeled billboard, bridge

For each label, we generate 10 context names. For labels without ambiguity, e.g. sky, we only use
the original label for the text feature extraction.
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Table 13: Context names for IDD labels

Target Label Context Names

road road, main road, driving lane, paved road, highway, residential street, arterial road, rural road, city
road, thoroughfare

drivable fallback drivable terrain, traffic lane, vehicle lane, driveable path, car lane, driveable street, urban roadway,
paved path, driveable surface, roadway

sidewalk sidewalk, pavement, footpath, walkway, pedestrian path, side path, sidewalk pavement, urban side-
walk, street sidewalk, sidewalk lane, sidewalk area

non-drivable fall-
back

non-drivable terrain, pedestrian area, park path, garden path, bike lane, footpath, public plaza, grass
area, green space, pedestrian walkway, non-driveable zone

person person
rider rider
motorcycle motorcycle
bicycle bicycle
autorickshaw autorickshaw, three-wheeler, tuk-tuk, auto-rickshaw, motorized rickshaw, auto taxi, rickshaw, three-

wheeled taxi, auto, motor tricycle, auto rickshaw
car car, sedan, hatchback, coupe, convertible, SUV, sports car, station wagon, compact car, electric car,

luxury car
truck truck, pickup truck, semi-truck, delivery truck, dump truck, fire truck, tow truck, box truck, flatbed

truck, garbage truck, tanker truck
bus bus
vehicle fallback other vehicles, train, tram, metro, trolleybus, light rail, cable car
curb curb, road curb, sidewalk curb, curbside, street curb, pavement curb, curb edge, curb line, curb

boundary, urban curb, curb strip
wall wall, barrier wall, protective wall, retaining wall, boundary wall, perimeter wall, dividing wall,

sound barrier wall, security wall, freestanding wall, partition wall
fence fence, building fence, road fence, vehicle separation fence, pedestrian fence, safety fence, boundary

fence, traffic fence, divider fence, protective fence, barrier fence
guard rail guard rail, road guard rail, highway guard rail, safety guard rail, traffic guard rail, barrier guard rail,

roadside guard rail, protective guard rail, metal guard rail, crash barrier, median guard rail
billboard billboard, advertising billboard, roadside billboard, digital billboard, outdoor billboard, highway

billboard, commercial billboard, urban billboard, street billboard, electronic billboard, large bill-
board

traffic sign traffic sign, road sign, highway sign, street sign, regulatory sign, warning sign, directional sign,
informational sign, traffic control sign, signpost, traffic marker

traffic light traffic light, traffic signal, stoplight, traffic control light, intersection signal, traffic lamp, signal light,
road signal, street light, traffic signal light, traffic control signal

pole pole, street pole, lamp pole, traffic pole, sign pole, light pole, support pole, signal pole, flag pole,
decorative pole, banner pole

obs-str-bar-
fallback

obstructive structures and barriers, construction barrier, roadblock, traffic cone, temporary fence,
safety barrier, barricade, obstruction, traffic barricade, road barrier, construction zone marker

building building, structure, edifice, construction, residential building, commercial building, office building,
apartment building, skyscraper, public building, urban building

bridge road bridge, footbridge, pedestrian bridge, walking bridge, footpath bridge, foot crossing, small
bridge, pedestrian crossing, walkway bridge, urban footbridge, trail bridge

vegetation vegetation, urban vegetation, city greenery, roadside plants, street vegetation, urban foliage, city
flora, park vegetation, public greenery, urban plants, green space

sky sky

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 14: Context names for Mapillary labels (Part 1)

Target Label Context Names

Road road, main road, driving lane, paved road, highway, residential street, arterial road, rural road, city
road, thoroughfare

Snow snow, snow pile, street snow, roadside snow, accumulated snow, snowbank, plowed snow, urban
snow, compacted snow, snow drift, snow on pavement

Sand sand, sand pile, street sand, roadside sand, piled sand, sandbank, accumulated sand, urban sand,
sand on pavement, construction sand, loose sand

Catch Basin catch basin, road catch basin, street catch basin, roadside catch basin, storm drain, drainage basin,
sewer catch basin, street drain, gutter catch basin, road drain, stormwater basin

Manhole manhole, road manhole, street manhole, sewer manhole, manhole cover, utility manhole, drainage
manhole, storm drain manhole, roadside manhole, underground access, inspection manhole

Pothole pothole, road pothole, street pothole, asphalt pothole, pavement pothole, highway pothole, surface
pothole, pothole damage, roadway pothole, pothole crater, pothole on pavement

Bike Lane bike lane, marked bike lane, roadside bike lane, main road bike lane, dedicated bike lane, paved bike
lane, urban bike lane, bike path, protected bike lane, street bike lane, lane-marked bike lane

Rail Track rail track, tram rail track, train rail track, street rail track, road rail track, urban rail track, tramway
track, railroad track, commuter rail track, embedded rail track, rail track on pavement

Lane Marking -
Crosswalk

crosswalk lane marking, street crosswalk marking, pedestrian crosswalk marking, zebra crossing
marking, road crosswalk marking, intersection crosswalk marking, painted crosswalk, crosswalk
lines, crosswalk road marking, sidewalk crosswalk marking

Lane Marking -
General

general lane marking, road lane marking, street lane marking, highway lane marking, pavement lane
marking, lane divider marking, traffic lane marking, lane line marking, roadway lane marking, lane
boundary marking, asphalt lane marking

Water water, urban water, river water, lake water, city river, roadside pond, street water, urban pond, city
lake, small urban river, stormwater

Sidewalk sidewalk, pavement, footpath, walkway, pedestrian path, side path, sidewalk pavement, urban side-
walk, street sidewalk, sidewalk lane, sidewalk area

Curb curb, road curb, sidewalk curb, curbside, street curb, pavement curb, curb edge, curb line, curb
boundary, urban curb, curb strip

Pedestrian Area pedestrian area, street pedestrian area, pedestrian zone, pedestrian walkway, pedestrian street, urban
pedestrian area, pedestrian plaza, pedestrian path, sidewalk pedestrian area, pedestrian crossing area,
designated pedestrian area

Building building, structure, edifice, construction, residential building, commercial building, office building,
apartment building, skyscraper, public building, urban building

Bridge road bridge, footbridge, pedestrian bridge, walking bridge, footpath bridge, foot crossing, small
bridge, pedestrian crossing, walkway bridge, urban footbridge, trail bridge

Billboard billboard, advertising billboard, roadside billboard, digital billboard, outdoor billboard, highway
billboard, commercial billboard, urban billboard, street billboard, electronic billboard, large bill-
board

Tunnel tunnel, road tunnel, tunnel entrance, highway tunnel, urban tunnel, vehicle tunnel, tunnel passage,
tunnel opening, subway tunnel, underground tunnel, traffic tunnel

Wall wall, barrier wall, protective wall, retaining wall, boundary wall, perimeter wall, dividing wall,
sound barrier wall, security wall, freestanding wall, partition wall

Traffic Sign Frame traffic sign frame, signpost frame, traffic sign holder, sign frame, sign support frame, road sign
frame, traffic sign structure, sign mounting frame, sign frame support, traffic sign bracket

Trash Can trash can, street trash can, public trash can, roadside trash can, outdoor trash can, urban trash can,
sidewalk trash can, street garbage can, public waste bin, street litter bin, municipal trash can

Banner banner, advertising banner, promotional banner, street banner, event banner, hanging banner, outdoor
banner, banner sign, vertical banner, display banner, publicity banner

Fence fence, building fence, road fence, vehicle separation fence, pedestrian fence, safety fence, boundary
fence, traffic fence, divider fence, protective fence, barrier fence

Guard Rail guard rail, road guard rail, highway guard rail, safety guard rail, traffic guard rail, barrier guard rail,
roadside guard rail, protective guard rail, metal guard rail, crash barrier, median guard rail

Pole pole, street pole, lamp pole, traffic pole, sign pole, light pole, support pole, signal pole, flag pole,
decorative pole, banner pole

Utility Pole utility pole, electric pole, telephone pole, power pole, transmission pole, cable pole, utility line pole,
utility post, service pole, communication pole, distribution pole

Street Light street light, street lamp, road light, streetlight, lamp post, street lighting, urban street light, sidewalk
light, public street light, street lantern, street illumination

Front Side Of
Traffic Sign

front side of traffic sign, traffic sign front, front face of traffic sign, sign front, traffic sign face, front
panel of traffic sign, signboard front, traffic sign display, front view of traffic sign, sign front side,
traffic sign surface

Back Side Of
Traffic Sign

back side of traffic sign, traffic sign back, back face of traffic sign, sign back, rear of traffic sign,
signboard back, traffic sign reverse, sign back panel, back side of sign, traffic sign rear view, reverse
side of traffic sign

Traffic Light traffic light, traffic signal, stoplight, traffic control light, intersection signal, traffic lamp, signal light,
road signal, street light, traffic signal light, traffic control signal

Vegetation vegetation, urban vegetation, city greenery, street vegetation, roadside vegetation, urban plants, city
foliage, urban flora, street greenery, public vegetation, cityscape vegetation
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Table 15: Context names for Mapillary labels (Part 2)

Target Label Context Names

Terrain terrain, urban terrain, city landscape, street terrain, roadside terrain, urban ground, cityscape terrain,
urban land, urban surface, city terrain, urban topography

Mountain mountain, mountain peak, mountain range, mountain slope, rocky mountain, highland mountain,
mountain summit, alpine mountain, mountain ridge, forest mountain, mountain terrain

Sky sky
Person person
Bicyclist bicyclist, bike rider, cyclist, bicycle rider, bicycle commuter, mountain biker, road cyclist
Motorcyclist motorcyclist, motorcycle rider, motorcycle driver, motorbike rider, motorcycle commuter, road mo-

torcyclist
Car car, sedan, hatchback, coupe, convertible, SUV, sports car, station wagon, compact car, electric car,

luxury car
Trailer trailer, utility trailer, travel trailer, cargo trailer, flatbed trailer, camper trailer, enclosed trailer, live-

stock trailer, dump trailer
Boat boat, sailboat, motorboat, fishing boat, speedboat, yacht, canoe, kayak, pontoon boat, dinghy, house-

boat
Truck truck, pickup truck, semi-truck, delivery truck, dump truck, fire truck, tow truck, box truck, flatbed

truck, garbage truck, tanker truck
Caravan caravan, travel caravan, camper caravan, motorhome, touring caravan, RV (recreational vehicle),

fifth-wheel caravan, pop-up caravan, teardrop caravan, static caravan, off-road caravan
Bus bus
On Rails on rails
Motorcycle motorcycle
Bicycle bicycle
Bench bench, street bench, public bench, park bench, sidewalk bench, outdoor bench, urban bench, pave-

ment bench, city bench, public seating bench, roadside bench
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