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Abstract001

Effective query expansion for web search ben-002
efits from promoting both exploration and di-003
versity to capture multiple interpretations and004
facets of a query. While recent LLM-based005
methods improved retrieval performance and006
demonstrate strong domain generalization abil-007
ity without additional training, they often gener-008
ate narrowly focused expansions that overlook009
these properties due to knowledge anchoring010
within the model. We propose ThinkQE, a test-011
time query expansion framework addressing012
this limitation through two key components: a013
thinking-based expansion process that encour-014
ages deeper and comprehensive semantic explo-015
ration, and an evolving interaction strategy that016
iteratively refines expansions using retrieval017
feedback from the corpus. Experiments on di-018
verse web search benchmarks (DL19, DL20,019
and BRIGHT) show ThinkQE consistently out-020
performs prior approaches, including training-021
intensive dense retrievers and rerankers.1022

1 Introduction023

Query expansion (QE) is a common practice in024

web search scenarios (Qiu and Frei, 1993; Robert-025

son, 1990), particularly for first-stage retrievers026

such as BM25 (Robertson et al., 1995). Effective027

expansion involves not only reinforcing the core028

intent of the query but also introducing terms that029

capture different facets or interpretations of the in-030

formation need, broadening semantic context and031

improving retrieval coverage, which leads to mul-032

tifaceted coverage when retrieving. Prior studies033

have shown that such broad-coverage expansion034

strategies lead to substantial improvements in re-035

trieval quality (Bouchoucha et al., 2013).036

Recent advances in large language models037

(LLMs) have led to strong performance in query ex-038

pansion (Gao et al., 2022; Wang et al., 2023; Jager-039

man et al., 2023; Mackie et al., 2023; Shen et al.,040

1Our anonymous code is available at https://anonymous.
4open.science/r/ThinkQE.

Query: Who is robert gray

Expansion w/o. Thinking:
Robert Gray is best known as the American captain who discovered the
Columbia River in 1792. He named the river after his ship, the Columbia
Rediviva, and explored it up to Grays Bay. His discovery was later
documented by Lieutenant William Broughton during the Vancouver
expedition.

ThinkQE:
Robert Gray is best known as Captain Robert Gray, an American explorer
who played a significant role in the exploration of the Pacific Northwest.
In 1792, he captained the ship Columbia Rediviva and became the first
American to navigate the Columbia River, which he named after his
vessel. On May 11, 1792, he entered the mouth of the river and explored
approximately 20 miles upstream as far as Grays Bay, which was later
named in his honor by Lieutenant William Broughton of the Vancouver
expedition. This expedition contributed to the mapping and understand-
ing of the region, highlighting Gray’s importance in early American
exploration.

Table 1: Examples comparing a standard expansion with
ThinkQE, our proposed query expansion method with thinking-
augmentation. ThinkQE encourages deeper reasoning and
multifaceted contextualization.

2024), particularly due to their ability to rapidly 041

adapt to new domains without requiring additional 042

training. However, existing LLM-based methods 043

often pay limited attention to exploration and di- 044

versity. As illustrated in Table 1, we observe that 045

current approaches – such as HyDE – tend to gener- 046

ate overly confident expansions that focus narrowly 047

on a single interpretation of the input query. This 048

behavior can be attributed to the model’s reliance 049

on its internal knowledge and high-probability com- 050

pletions (Sun et al., 2025; Yona et al., 2024; Ohi 051

et al., 2024), which may suppress alternative formu- 052

lations or less common aspects of the query. This 053

lack of breadth limits the retrieval of documents 054

reflecting alternative scenarios or requiring more 055

nuanced reasoning. 056

To address these limitations, we propose 057

ThinkQE, a new framework that improves explo- 058

ration and diversity along two complementary di- 059

mensions. First, we introduce a thinking-based 060

expansion process, where the model explicitly ac- 061

cumulates intermediate thoughts and hypotheses 062

before producing final expansions. This encourages 063
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the emergence of new and more exploratory terms064

that can help retrieve documents beyond the initial065

query scope. Second, inspired by pseudo-relevance066

feedback (Amati and Van Rijsbergen, 2002), we067

propose an evolving interactive expansion strategy,068

where query expansions are progressively refined069

using feedback from the documents retrieved at070

each stage. This dynamic interaction with the cor-071

pus allows the query to evolve in a context-aware072

manner, adapting to newly retrieved evidence.073

By combining both, we develop ThinkQE, a074

test-time query expansion method that achieves075

strong performance on web search benchmarks076

of the DL19, DL20, and BRIGHT. Remarkably,077

ThinkQE requires no additional training, yet sur-078

passes recent training-intensive reranking methods,079

including those based on reinforcement learning080

and distillation from DeepSeek-R1. Our analysis081

reveals that: (1) explicitly modeling a thinking pro-082

cess enhances expansion quality, and (2) iteratively083

refining queries with evolving retrieval feedback is084

more effective than generating static expansions,085

even under the same compute budget.086

2 Method087

We introduce ThinkQE, a query expansion frame-088

work that tightly integrates LLM-based thinking089

process with evolving corpus interaction. The over-090

all process proceeds in multiple rounds. At each091

round, an LLM performs thinking-augmented ex-092

pansion based on the original query and newly re-093

trieved documents from the corpus, which in turn094

informs subsequent retrieval and expansion steps.095

2.1 Retrieving Initial Evidence from Corpus096

Let q0 denote the original user query. To ground097

the expansion process in corpus evidence, we be-098

gin by retrieving an initial set of documents from099

the corpus C using a first-stage lexical retriever. In100

our implementation, we employ BM25. Specif-101

ically, we retrieve the top-K documents: D0 =102

TopK(BM25(q0, C)).103

Here, D0 denotes the ranked list of top-K docu-104

ments retrieved for q0, ordered by their BM25 rele-105

vance scores. This list serves as the initial feedback106

signal for expansion, providing retrieval-grounded107

context to the LLM in the first expansion step.108

2.2 Expansion via Thinking Process109

To produce an initial expansion, we use R1-distilled110

LLM, which is trained to naturally generate a think-111

ing chain before answering. Given the original112

ThinkQE Prompt

Given a question "{q}" and its possible answering passages (most of these
passages are wrong) enumerated as:
1. {d1}; 2. {d2}; 3. {d3} . . .
please write a correct answering passage. Use your own knowledge, not
just the example passages!

Table 2: Prompt used in ThinkQE for the thinking-based
expansion process. {·} denotes the placeholder for the corre-
sponding query and top-K documents.

query q0 and top-K retrieved documents D0, the 113

model follows a two-phase process: 114

1. Thinking Phase: The model reflects on q0 115

and D0 to identify latent concepts, resolve ambi- 116

guities, and surfacing alternative interpretations or 117

missing aspects of the information need. 118

2. Expansion Phase: Based on the thinking 119

output, the model generates a query expansion seg- 120

ment e1 that builds upon the original query by in- 121

troducing novel yet relevant terms and concepts. 122

Leveraging the R1-distilled model’s natural sep- 123

aration of thought and answer allows us to imple- 124

ment the reasoning-expansion workflow without 125

additional scaffolding or prompt engineering. The 126

prompt shown in Table 2 guides the model to gen- 127

erate expansions by thinking over the input query 128

and the top-retrieved documents. 129

2.3 Evolution via Corpus Interaction 130

We propose to iterate the above thinking-based ex- 131

pansion by evolving. At each round t = 1, . . . , T , 132

the method performs the following steps: 133

1. Retrieval: The current query qt is used to 134

retrieve a ranked list of documents from the corpus: 135

Rt = BM25(qt, C). 136

2. Redundancy Filtering: To promote diversity 137

and avoid repetition, we exclude documents that (a) 138

appear in the blacklist Bt, or (b) were among the 139

top-K results in the previous round Dt−1. We then 140

select the top-K documents from the remaining 141

candidates: Dnew
t = TopK(Rt \ (Bt ∪Dt−1)). The 142

blacklist is updated to include all documents that 143

were filtered out in this round. 144

3. Expansion via Thinking: The LLM is 145

prompted with the original query q0 and the filtered 146

document set Dnew
t to generate the next expansion 147

et+1, using the same two-phase expansion process 148

described in Section 2.2. 149

4. Query Update: The query is iteratively up- 150

dated by concatenating the new expansion: qt+1 = 151

qt ⊕ et+1. 152

This loop can be repeated for any number of 153

rounds T , depending on resource constraints or 154

desired depth. 155
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Notably, as the query grows longer, successive156

expansions may dilute or override the original in-157

tent. To mitigate this, we follow Zhang et al. (2024)158

and repeat the original query n times in the final159

reformulation, with n = len(expansions)
len(q0)×λ , λ = 3.160

Here, len(expansions) refers to the total word161

count of all expansion segments, and len(q0) is162

the word count of the original query. This repeti-163

tion reinforces the core semantics of the original164

query during iterative refinement.165

Remark. Within this evolving process, we design166

two essential components – redundancy filtering167

and expansion accumulation – both of which play168

a critical role in the effectiveness of ThinkQE, as169

demonstrated in our results in Section 3.4.170

3 Experiments171

Datasets. We evaluate ThinkQE on two cate-172

gories of web search datasets: (1) Factoid-style173

retrieval: TREC DL19 (Craswell et al., 2020) and174

DL20 (Craswell et al., 2021), widely used bench-175

marks based on the MS MARCO document col-176

lections (Bajaj et al., 2016); and (2) Reasoning-177

oriented datasets: The StackExchange domain of178

the BRIGHT benchmark (Su et al., 2025), covering179

seven diverse sub-domains.180

Implementation. We use the QWEN-R1-Distill-181

14B model (DeepSeek-AI, 2025) to generate182

thinking-based query expansions, sampling outputs183

with a temperature of 0.7. The BM25 retrieval is184

performed using Pyserini (Lin et al., 2021) with185

default hyperparameters. At each round, ThinkQE186

uses the top-5 retrieved documents (truncated to187

128 tokens for DL benchmarks and 512 tokens for188

BRIGHT) to prompt the LLM, and samples 2 can-189

didate expansions to enhance diversity.190

Baselines. On DL19 and DL20, we compare191

ThinkQE to recent SOTA zero-shot query expan-192

sion methods including HyDE (Gao et al., 2022),193

Query2doc (Wang et al., 2023), MILL (Jia et al.,194

2024), and LameR (Shen et al., 2024), which use195

strong LLMs like text-davinci-003-175B, GPT-3.5-196

turbo and LLaMA2-13B-Chat. For reference, we197

also report results from supervised dense retriev-198

ers trained on MS MARCO: DPR (Karpukhin199

et al., 2020), ANCE (Xiong et al., 2021), and200

ContrieverFT (Izacard et al., 2022).201

On the BRIGHT benchmark, we consider three202

categories of baselines: (1) LLM-based embed-203

ding models such as GritLM-7B (Muennighoff204

DL19 DL20

mAP ndcg@10 R@1k mAP ndcg@10 R@1k

BM25 30.1 50.6 75.0 28.6 48.0 78.6

Supervised Fine-Tuned Dense retrievers
DPR 36.5 62.2 76.9 41.8 65.3 81.4
ANCE 37.1 64.5 75.5 40.8 64.6 77.6
ContrieverFT 41.7 62.1 83.6 43.6 63.2 85.8

Zero-shot Query expansions with BM25
HyDE 41.8 61.3 88.0 38.2 57.9 84.4
Query2doc - 66.2 - - 62.9 -
MILL - 63.8 85.9 - 61.8 85.3
LameR 42.8 64.9 84.2 - - -
ThinkQE-14B 45.9 68.8 89.3 43.9 64.7 87.8

Table 3: Results on TREC DL19 and DL20 datasets. In-
domain supervised models DPR, ANCE and ContrieverFT are
trained on the MS-MARCO dataset and listed for reference.
Bold indicates the best result across all models.

et al., 2025) and GTE-Qwen-7B (Li et al., 2023), 205

both trained on massive amounts of retrieval data; 206

(2) LLM-based rerankers, including RankGPT4 207

(zero-shot) (Sun et al., 2023), RankZephyr-7B (dis- 208

tilled from GPT-4) (Pradeep et al., 2023), Rank1- 209

14B (distilled from DeepSeek-R1-685B) (Weller 210

et al., 2025), and Rank-R1-14B (trained via rein- 211

forcement learning) (Zhuang et al., 2025). Rank1- 212

14B and Rank-R1-14B explicitly incorporate a 213

thinking process during reranking; and (3) Query 214

expansion methods such as HyDE and LameR, 215

use the same underlying model as ThinkQE but 216

do not incorporate any explicit thinking process.2 217

Our method ThinkQE is evaluated in a zero-shot 218

configuration across all datasets. 219

3.1 Main Results 220

Results are presented in Tables 3 and 4. On DL19 221

and DL20, ThinkQE consistently outperforms all 222

other zero-shot query expansion methods, achiev- 223

ing the highest scores across all metrics. Notably, 224

it performs competitively with supervised dense 225

retrievers such as ContrieverFT, despite requiring 226

no additional training. 227

On the BRIGHT benchmark, ThinkQE achieves 228

the highest average nDCG@10 (34.9), outperform- 229

ing rerankers like RankGPT4 (24.7), and Rank1- 230

14B (31.7), despite the latter relying on large- 231

scale distillation and also a thinking process. Be- 232

yond strong overall performance, ThinkQE demon- 233

strates consistent gains across all seven domains in 234

BRIGHT, achieving the best results in three sub- 235

domains. 236

2We provide a detailed analysis of the no-thinking setting
for fair comparison with ThinkQE in Section 3.2.

3



Training Bio. Earth. Econ. Psy. Rob. Stack. Sus. Avg.
BM25 Zero-shot 18.2 27.9 16.4 13.4 10.9 16.3 16.1 17.0
BM25 + GPT-4o COT Zero-shot 53.6 53.6 24.3 38.6 18.8 22.7 25.9 33.9
LLM-based dense retrievers
GritLM-7B SFT 24.8 32.3 18.9 19.8 17.1 13.6 17.8 20.6
GTE-QWEN-7B SFT 30.6 36.4 17.8 24.6 13.2 22.2 14.8 22.8
Rerankers on BM25 Top-100 docs
RankGPT4 Zeroshot 33.8 34.2 16.7 27.0 22.3 27.7 11.1 24.7
RankZephyr-7b GPT4-distill 21.9 23.7 14.4 10.3 7.6 13.7 16.6 15.5
Rank1-14B R1-distill 49.3 37.7 22.6 35.2 22.5 20.8 33.6 31.7
Rank-R1-14B GRPO (RL) 31.2 38.5 21.2 26.4 22.6 18.9 27.5 26.6
Query expansions with BM25
HyDE-14B Zero-shot 33.3 44.9 21.1 29.8 16.3 24.1 21.0 27.2
LameR-14B Zero-shot 35.1 46.1 23.7 31.0 17.7 26.4 25.3 29.3
ThinkQE-14B (Ours) Zero-shot 47.3 52.5 29.2 40.0 19.3 28.0 27.9 34.9

Table 4: Results on BRIGHT benchmark in terms of nDCG@10. Bold indicates the best result across all models. BM25+GPT-
4o-CoT refers to applying BM25 to queries rewritten by GPT-4o with CoT reasoning traces included.

Model BRIGHT Avg.

QWEN-14B 27.6
QWEN-R1-14B w/o. thinking 29.8

QWEN-R1-14B w. thinking 32.5

Table 5: Impact on the thinking process.

3.2 Impact of the Thinking Process237

To evaluate the impact of the thinking process,238

we conduct two ablation studies on ThinkQE:239

(1) replacing the used model with its base ver-240

sion, QWEN-14B-Base, which do not have in-241

herent thinking ability, and (2) applying the No-242

Thinking (Ma et al., 2025) method, where we pre-243

fill the response with a fabricated thinking block244

(i.e., <think>Okay, I think I have finished think-245

ing.</think>) and allow the model to generate the246

answer directly from that point. As shown in Ta-247

ble 5, ThinkQE with thinking significantly outper-248

forms both variants, underscoring the importance249

of thinking process. We use the NoThinking variant250

as the main baseline.251

3.3 Impact of Evolving Corpus Interaction252

To evaluate the evolving corpus interaction process,253

we compare ThinkQE to a baseline that performs254

all LLM expansions in a single round – referred255

to as parallel scaling. In contrast, ThinkQE uses256

corpus-interaction scaling, distributing expansions257

across multiple rounds with retrieval feedback. As258

shown in Figure 1, this evolving interaction strat-259

egy consistently outperforms the static baseline,260

indicating that iterative refinement with evolving261

context is more effective than isolated expansions.262

3.4 Impact on Expansion Accumulation and263

Redundancy Filter Mechanisms264

We conduct a final ablation study on the two core265

components of the evolving interaction process in266

Figure 1: Impact of evolving corpus interaction process.

Accum. Filter BRIGHT Avg.

✓ ✗ 34.2
✗ ✓ 33.4

✓ ✓ 34.9

Table 6: Impact of the expansion accumulation and redun-
dancy filtering mechanisms.

ThinkQE: expansion accumulation, where query 267

expansions from different rounds are concatenated 268

to form the new query, and the semantic filter, 269

which excludes top-retrieved documents from the 270

previous round to encourage the introduction of 271

novel information. As shown in Table 6, both com- 272

ponents are essential for maximizing performance. 273

Disabling either mechanism leads to a noticeable 274

performance drop, highlighting their complemen- 275

tary roles in refining the query and diversifying 276

retrieved evidence across rounds. 277

4 Conclusion 278

We presented ThinkQE, a query expansion method 279

that enhances exploration and diversity through a 280

thinking-based expansion process and an evolving 281

interaction with the corpus. Without requiring any 282

training, ThinkQE consistently improves retrieval 283

performance across multiple benchmarks by en- 284

couraging deeper coverage and adaptive refinement, 285

offering a lightweight yet effective alternative to 286

training-based dense retrievers and rerankers. 287
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Limitations288

We acknowledge the following limitations of289

ThinkQE. First, the thinking process and evolv-290

ing interaction process introduce higher inference-291

time latency and computational cost compared to292

single-shot expansion methods, which may limit its293

practicality in latency-sensitive or large-scale de-294

ployment scenarios. Second, since our experiments295

focus exclusively on English web search tasks, the296

effectiveness of ThinkQE in multilingual settings297

remains unexplored.298
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A Appendix462

A.1 Dataset Statistics463

Details about the retrieval datasets are shown in464

Table 7.465

Dataset #Test #Corpus

DL19 43 8,841,823
DL20 50 8,841,823
Biology 103 57,359
Earth Science 116 121,249
Economics 103 50,220
Psychology 101 52,835
Robotics 101 61,961
Stack Overflow 117 107,081
Sustainable Living 108 60,792

Table 7: Dataset Statistics

A.2 Detailed Results on the Impact of the466

Thinking Process467

The detailed results across all domains on the im-468

pact of the thinking process are provided in Table 8.469

A.3 Detailed Results on the Impact of470

Evolving Corpus Interaction471

The detailed results across all domains on the im-472

pact of the evolving corpus interaction are provided473

in Table 9.474

A.4 Detailed Results on the Core Components475

of the Evolving Interaction Process476

The detailed results across all domains on the im-477

pact of the expansion accumulation and redundancy478

filter mechanisms are provided in Table 10.479
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Bio. Earth. Econ. Psy. Rob. Stack. Sus. Avg.
QWEN-BASE-14B 36.7 45.1 21.9 27.7 16.8 23.3 21.7 27.6
QWEN-R1-14B w/o. thinking 39.1 45.6 25.0 30.0 18.0 26.5 24.4 29.8

QWEN-R1-14B w. thinking 42.6 50.6 26.2 35.8 18.8 28.4 25.1 32.5

Table 8: Detailed results on the impact of the thinking process.

#LLM calls Bio. Earth. Econ. Psy. Rob. Stack. Sus. Avg.
Parallel scaling
1 42.6 47.3 25.1 30.3 18.1 24.8 25.2 30.5
2 42.6 50.6 26.2 35.8 18.8 28.4 25.1 32.5
3 44.2 50.4 26.6 33.6 18.0 26.5 26.5 32.3
4 42.4 49.8 27.7 35.5 17.8 28.0 27.4 32.7
5 41.7 50.7 26.7 35.2 19.3 27.5 27.4 32.6
6 45.3 50.3 26.4 34.5 19.0 28.2 28.0 33.1
Corpus-interaction scaling
2 42.6 50.6 26.2 35.8 18.8 28.4 25.1 32.5
4 45.9 52.6 28.3 39.0 18.7 28.5 28.0 32.4
6 47.3 52.5 29.2 40.0 19.3 28.0 27.9 34.9

Table 9: Detailed results on the impact of the evolving corpus interaction.

Accum. Filter Bio. Earth. Econ. Psy. Rob. Stack. Sus. Avg.
✓ ✗ 46.4 51.5 27.8 39.5 17.9 28.2 28.0 34.2
✗ ✓ 47.5 50.7 27.9 34.8 17.7 26.5 28.4 33.4
✓ ✓ 47.3 52.5 29.2 40.0 19.3 28.0 27.9 34.9

Table 10: Detailed results on the impact of the expansion accumulation and redundancy filter mechanism.
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