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Abstract

Multilingual humans can and do seamlessly001
switch back and forth between languages002
when communicating. However, multilingual003
(machine) translation models are not robust004
to such sudden changes. In this work, we005
explore the robustness of multilingual MT006
models to language switching and propose007
checks to measure switching capability. We008
also investigate simple and effective data aug-009
mentation methods that can enhance robust-010
ness. A glass-box analysis of attention mod-011
ules demonstrates the effectiveness of these012
methods in improving robustness.013

1 Introduction014

Neural machine translation (NMT) (Sutskever015

et al., 2014; Bahdanau et al., 2015; Vaswani et al.,016

2017) has made significant progress, from support-017

ing only a pair of languages per model to now018

simultaneously supporting up to hundreds of lan-019

guages (Johnson et al., 2017; Zhang et al., 2020;020

Tiedemann, 2020; Gowda et al., 2021b). Multi-021

lingual NMT models have been deployed in pro-022

duction systems and are actively used to translate023

across languages in day-to-day settings (Wu et al.,024

2016; Turovsky, 2017; Mohan and Skotdal, 2021).025

A great many metrics for evaluation of machine026

translation have been proposed (Doddington, 2002;027

Banerjee and Lavie, 2005; Snover et al., 2006;028

Gowda et al., 2021a; Popović, 2015); simply citing029

a more comprehensive list would exceed space lim-030

itations, and inevitably the BLEU metric (Papineni031

et al., 2002) remains the most popular choice, how-032

ever nearly all approaches consider translation in033

the context of a single sentence. Even approaches034

that generalize to support translation of multiple035

languages (Zhang et al., 2020; Tiedemann, 2020;036

Gowda et al., 2021b) continue to use the single-037

sentence paradigm. In reality, however, multilin-038

gual environments involve switching between lan-039

guages and scripts. For instance, the European040

Parliament1 and Parliament of India2 hold debates 041

in multilingual environments where speakers seam- 042

lessly switch languages. Figure 1 shows an ex- 043

ample of language switching between two Indian 044

languages. 045

Original: “bandaaginda bari bageeche ke bahar-e iddivi.
kahaani ke andhar bandu bidona. kaam bolo saab."

English Translation: “From the time I’ve reached here,
we’ve stayed outside of the topic. Let’s come into the
matter. Tell me the work, sir."

Figure 1: Demonstration of language switching be-
tween Kannada and Hindi. The original dialogue is
taken from an Indian movie. Such seamless language
switching is common among multilingual speakers.

In this work, we show that, as commonly built, 046

multilingual NMT models are not robust to multi- 047

sentence translation, especially when language 048

switching is involved. The contributions of this 049

work are outlined as follows: Firstly, inspired by 050

CHECKLIST (Ribeiro et al., 2020), a few simple 051

but effective checks for improving the test coverage 052

in multilingual NMT evaluation are described (Sec- 053

tion 2). Secondly, we explore training data augmen- 054

tation techniques such as concatenation and noise 055

addition in the context of multilingual NMT (Sec- 056

tion 3). Third, using a many-to-one multilingual 057

translation task setup (Section 4), we investigate 058

the relationship between training data augmenta- 059

tion methods and their impact on multilingual test 060

cases. Fourth, we conduct a glass-box analysis of 061

cross-attention in the Transformer architecture and 062

show visually as well as quantitatively that the mod- 063

els trained with concatenated training sentences 064

learn a more sharply focused attention mechanism 065

than others. Finally, we examine how our data aug- 066

1https://www.europarl.europa.eu/doceo/
document/CRE-9-2021-11-10_EN.pdf

2https://web.archive.org/web/20220105061052/
http://loksabhadocs.nic.in/debatestextmk/17/VII/
01.12.2021.pdf
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mentation strategies generalize to multi-sentence067

translation for a variable number of sentences, and068

determine that two-sentence concatenation in train-069

ing is sufficient model many-sentence concatena-070

tion in inference (Section 5.2).071

2 Multilingual Translation Evaluation:072

Additional Checks073

Inspired by the behavior testing paradigm in soft-074

ware engineering, Ribeiro et al. (2020) propose a075

CHECKLIST to test beyond the accuracy of NLP076

models. The central idea of CHECKLIST is that077

given any held-out set, one can improve the cover-078

age of testing by modifying the set in a system-079

atic way designed to test linguistic capabilities080

of natural language processing (NLP) modeling.081

Some of the modifications CHECKLIST employs082

are: synonym replacement, named entity replace-083

ment, negation, etc. Although these checks are084

straightforward in tasks such as sentiment classifi-085

cation, they are non-trivial in machine translation086

between varieties of languages. Nevertheless, the087

principles of behavior testing and their application088

to improve test coverage in machine translation are089

intriguing. We, therefore, explore suitable checks090

in the context of multilingual NMT.091

Definitions: Translation tasks are categorized as092

bilingual if a single source language is translated to093

a single target language, and multilingual if two or094

more languages are on either of the source or target095

side. Multilingual tasks are further sub-classified096

based on the number of languages and the side they097

are on as many-to-one, one-to-many, and many-to-098

many. In this work, we focus on many-to-one (i.e.099

many source, one target) multilingual translation.100

Notation: For simplicity, consider a many-to-101

one model that translates sentences from K source102

languages, {Lk|k = 1, 2, ...K}, to a target lan-103

guage, T . Let x(Lk)
i be a sentence in the source104

language Lk, and let its translation in the target105

language be y(T )
i ; where unambiguous we omit the106

superscripts.107

We propose the following checks to be used for108

multilingual NMT:109

C-SL: Concatenate consecutive sentences in the
same language. It is not always trivial to deter-
mine sentence segmentation in continuous lan-
guage. This check thus tests if the model is in-
variant to a missed segmentation. This check is
possible if and only if held-out set sentence order
preserves the coherency of the original document.

Formally,

x
(Lk)
i + x

(Lk)
i+1 → yi + yi+1

In practice, we use a space character to join sen- 110

tences, indicated by the concatenation operator 111

‘+’.3 112

C-TL: Consecutive sentences in the source and 113

target languages. This check tests if the translator 114

can preserve phrases that are already in the target 115

language, and if the translator can translate in the 116

presence of code and language switching settings. 117

For completeness, we can test both source-to- 118

target and target-to-source language switching, 119

as follows: 120

x
(Lk)
i + yi+1 → yi + yi+1 121

yi + x
(Lk)
i+1 → yi + yi+1 122

Similar to C-SL, this check also requires the held- 123

out set sentence order to preserve the coherency 124

of the original document. 125

C-XL: This check tests if a multilingual translator
is agnostic to language switching. This check is
created by concatenating consecutive sentences
across source languages. This is possible iff the
held-out sets are multi-parallel across languages,
and, similar to the previous two, each preserves
the coherency of the original documents. Given
two languages Lk and Lm, we obtain a test sen-
tence as follows:

x
(Lk)
i + x

(Lm)
i+1 → yi + yi+1

R-XL: This check tests if a multilingual translator
can function in light of a topic switch among its
supported source languages. For any two lan-
guages Lk and Lm and random positions i and j
in their original corpus, we obtain a test segment
by concatenating them as:

x
(Lk)
i + x

(Lm)
j → yi + yj

This method makes the fewest assumptions about 126

the nature of held-out datasets, i.e., unlike pre- 127

vious methods, neither multi-parallelism nor co- 128

herency in sentence order is necessary. 129

3We focus on orthographies that use space as a word-
breaker. In orthographies without a word-breaker, joining
may be performed without any glue character.
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3 Achieving Robustness via Data130

Augmentation Methods131

In the previous section, we described several ways132

of improving test coverage for multilingual trans-133

lation models. In this section, we explore training134

data augmentation techniques to improve robust-135

ness to language switching settings.136

3.1 Concatenation137

Concatenation of training sentences has been138

proven to be a useful data augmentation technique;139

Nguyen et al. (2021) investigate key factors behind140

the usefulness of training segment concatenations141

in bilingual settings. Their experiments reveal that142

concatenating random sentences performs as well143

as consecutive sentence concatenation, which sug-144

gests that discourse coherence is unlikely the driv-145

ing factor behind the gains. They attribute the gains146

to three factors: context diversity, length diversity,147

and position shifting.148

In this work, we investigate training data con-149

catenation under multilingual settings, hypothesiz-150

ing that concatenation helps achieve the robust-151

ness checks that are described in the prior section.152

Our training concatenation approaches are similar153

to our check sets, with the notable exception that154

we do not consider consecutive sentence training155

specifically, both because of Nguyen et al. (2021)’s156

finding and because training data gathering tech-157

niques can often restrict the availability of consec-158

utive data (Bañón et al., 2020). We investigate the159

following sub-settings for concatenations:160

CatSL: Concatenate a pair of source sentences in
the same language, using space whenever ap-
propriate (e.g. languages with space separated
tokens).

x
(Lk)
i + x

(Lk)
j → yi + yj

CatXL: Concatenate a pair of source sentences,
without constraint on language.

x
(Lk)
i + x

(Lm)
j → yi + yj

CatRepeat: The same sentence is repeated and
then concatenated. Although this seems unin-
teresting, it serves a key role in ruling out gains
possibly due to data repetition and modification
of sentence lengths.

x
(Lk)
i + x

(Lk)
i → yi + yi

3.2 Adding Noise 161

We hypothesize that introducing noise during train- 162

ing might help achieve robustness and investigate 163

two approaches that rely on noise addition: 164

DenoiseTgt: Form the source side of a target 165

segment by adding noise to it. Formally, 166

noise(y; r)→ y, where hyperparameter r con- 167

trols the noise ratio. Denoising is an important 168

technique in unsupervised NMT (Artetxe et al., 169

2018; Lample et al., 2018). 170

NoisySrc: Add noise to the source side of a 171

translation pair. Formally, noise(x; r) → y. 172

This resembles back-translation (Sennrich et al., 173

2016a) where augmented data is formed by pair- 174

ing noisy source sentences with clean target sen- 175

tences. 176

The function noise(...; r) is implemented as fol- 177

lows: (i) r% of random tokens are dropped, (ii) r% 178

of random tokens are replaced with random types 179

uniformly sampled from vocabulary, and (iii) r% 180

of random tokens’ positions are displaced within a 181

sequence. We use r = 10% in this work. 182

Language In-domain All-data
Bengali (BN) 23.3k/0.4M/0.4M 1.3M/19.5M/21.3M
Gujarati (GU) 41.6k/0.7M/0.8M 0.5M/07.2M/09.5M
Hindi (HI) 50.3k/1.1M/1.0M 3.1M/54.7M/51.8M
Kannada (KN) 28.9k/0.4M/0.6M 0.4M/04.6M/08.7M
Malayalam(ML) 26.9k/0.3M/0.5M 1.1M/11.6M/19.0M
Marathi (MR) 29.0k/0.4M/0.5M 0.6M/09.2M/13.1M
Oriya (OR) 32.0k/0.5M/0.6M 0.3M/04.4M/05.1M
Punjabi (PA) 28.3k/0.6M/0.5M 0.5M/10.1M/10.9M
Tamil (TA) 32.6k/0.4M/0.6M 1.4M/16.0M/27.0M
Telugu (TE) 33.4k/0.5M/0.6M 0.5M/05.7M/09.1M
All 326k/5.3M/6.1M 9.6M/143M/175M

Table 1: Training dataset statistics: segments / source /
target tokens, before tokenization.

Name Dev Test
Orig 10k/140.5k/163.2k 23.9k/331.1k/385.1k
C-SL 10k/281.0k/326.4k 23.9k/662.1k/770.1k
C-TL 10k/303.7k/326.4k 23.9k/716.1k/770.1k
C-XL 10k/283.9k/326.4k 23.9k/670.7k/770.1k
R-XL 10k/216.0k/251.2k 23.9k/514.5k/600.5k

Table 2: Development and test set statistics: segments /
source / target tokens, before tokenization. The row
named ‘Orig’ is the union of all ten individual lan-
guages’ datasets, and the rest are created as per defi-
nitions in Section 2. Dev-Orig set is used for validation
and early stopping in all our multilingual models.
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C-SL

BN-1 + 
BN-2

আগামী ২০২২ সােলর মেধƟ এই কাজ সɑূণŪ করার লǘƟমাƯা িʆর হেয়েছ। 
Ƶধানমȫী বেলন, সরকার সুিনিদŪɳ লǘƟমাƯা এবং সময়সীমার মেধƟিবিভȵ 
ধরেনর Ƶকɤ ˚পায়েণর কাজ কের যােǱ।

EN-1 + 
EN-2

He said the aim is to complete this task by 2022. The Prime 
Minister said that the Government is working on various schemes 
with clear targets and timelines.

C-XL

BN-1 + 
GU-2

আগামী ২০২২ সােলর মেধƟ এই কাজ সɑূণŪ করার লǘƟমাƯা িʆর হেয়েছ। 
̆ધાનમં́ ીએ જણાƥȻુ ંક° સરકાર ƨપƧટ લǛયો અને સમયɅચૂકતા 
સાથે અનેક યોજનાઓ પર કામ કર� રહ� છે.

EN-1 + 
EN-2

He said the aim is to complete this task by 2022. The Prime 
Minister said that the Government is working on various schemes 
with clear targets and timelines.

C-TL

BN-1 + 
EN-2

আগামী ২০২২ সােলর মেধƟ এই কাজ সɑূণŪ করার লǘƟমাƯা িʆর হেয়েছ। 
The Prime Minister said that the Government is working on 
various schemes with clear targets and timelines.

EN-1 + 
EN-2

He said the aim is to complete this task by 2022. The Prime 
Minister said that the Government is working on various schemes 
with clear targets and timelines.

R-XL

KN-m + 
HI-n

£ಾನು ±ಾವ�ಜĪಕರನುÇ ಉ¡ೆÅೕļľ §ಾಷಣ ¨ಾಡĹ¡ೆÅೕ£ೆ. राÏयांना 

सुĤशासनाÍया आधारावर मानांकन देÖयात येत.े

EN-m + 
EN-n

I will also address a public meeting. States are being rated on 
parameters of Good Governance.

Table 3: Concatenated sentence examples from the de-
velopment set. Bengali (BN), Gujarati (GU), Kannada
(KN), and Hindi (HI) are chosen for illustrations; simi-
lar augmentations are performed for all other languages
in the corpus. Indices 1 and 2 indicate consecutive po-
sitions, and m and n indicate random positions.

4 Setup183

4.1 Dataset184

We use publicly available datasets from The Work-185

shop on Asian Translation 2021 (WAT21)’s Mul-186

tiIndicMT (Nakazawa et al., 2021)4 shared task.187

This task involves translation between English(EN)188

and 10 Indic Languages, namely: Bengali(BN),189

Gujarati(GU), Hindi(HI), Kannada(KN), Malay-190

alam(ML), Marathi(MR), Oriya(OR), Punjabi(PA),191

Tamil(TA) and Telugu(TE). The development and192

held-out test sets are multi-parallel and contain193

1,000 and 2,390 sentences, respectively. The train-194

ing set contains a small portion of data from the195

same domain as the held-out sets, as well as addi-196

tional datasets from other domains. All the training197

data statistics are given in Table 1. We focus on the198

Indic )English (many-to-one) translation direction199

in this work.200

Following the definitions in Section 2, we create201

C-SL, C-TL, C-XL, and R-XL versions of devel-202

opment and test sets; statistics are given in Table 2.203

An example demonstrating the nuances in all these204

four methods is shown in Table 3. Following the205

definitions in Section 3, we create CatSL, CatXL,206

CatRpeat, DenoiseTgt, and NoisySrc augmented207

4http://lotus.kuee.kyoto-u.ac.jp/WAT/
indic-multilingual/

training segments. For each of these training cor- 208

pus augmentation methods, we restrict the total 209

augmented sentences to be roughly the same num- 210

ber of segments as the original corpus, i.e., 326k 211

and 9.6M segments in the in-domain and the all- 212

data setup, respectively. 213

4.2 Model and Training Process 214

We use a Transformer base model (Vaswani et al., 215

2017) which has 512 hidden dimensions, 6 encoder 216

and decoder layers, 8 attention heads, and inter- 217

mediate feedforward layers of 2048 dimensions. 218

We use a Pytorch based NMT toolkit.5 Tuning 219

the vocabulary size and batch size are important 220

to achieve competitive performance. We use byte- 221

pair-encoding (BPE) (Sennrich et al., 2016b), with 222

vocabulary size adjusted as per the recommenda- 223

tions from Gowda and May (2020). Since the 224

source side has many languages and the target side 225

has only a single language, we use a larger source 226

vocabulary than that of the target. The source side 227

vocabulary contains BPE types from all 11 lan- 228

guages (i.e., ten source languages and English), 229

whereas to improve the efficiency in the decoder’s 230

softmax layer, the target vocabulary is restricted to 231

contain English only. Our in-domain limited-data 232

setup learns BPE vocabularies of 30.4k and 4.8k 233

types for source and target languages. Similarly, 234

the all-data setup learns 230.4k and 63.4k types. 235

The training batch size used for all our multilingual 236

models is 10k tokens for the in-domain limited-data 237

setup, and 25k tokens for the larger all-data setup. 238

The batch size for the baseline bilingual models is 239

adjusted as per data sizes using ‘a thousand per 240

million tokens’ rule of thumb that we have come 241

to devise with a maximum of 25k tokens. The 242

median sequence lengths in training after subword 243

segmentation but before sentence concatenation are 244

15 on the Indic side and 17 on the English side. We 245

model sequence lengths up to 512 time steps during 246

training. We use the same learning rate schedule as 247

Vaswani et al. (2017). We train our models until a 248

maximum of 200k optimizer steps, and use early 249

stopping with a patience of 10 validations. Vali- 250

dations are performed after every 1000 optimizer 251

steps. All our models are trained using one Nvidia 252

A40 GPU per setting. The smaller in-domain setup 253

takes less than 24 hours per run, whereas the larger 254

all-data setup takes at most 48 hours per run (or less 255

5Additional details are withheld at the moment to preserve
the anonymity of authors. All code, data, and models will be
publicly released.
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when early stopping criteria are reached). We run256

each experiment two times and report the average.257

During inference, we average the last 5 checkpoints258

and use a beam decoder of size 4 and length penalty259

of α = 0.6 (Vaswani et al., 2017; Wu et al., 2016).260

5 Results and Analysis261

First, to test our setup with its various hyperpa-262

rameters such as vocabulary and batch size, we263

train bilingual models using in-domain data, sim-264

ilar to WAT21 organizer baselines. As shown in265

Table 4, our baselines achieve competitive BLEU266

scores (Papineni et al., 2002).6 Next, we train mul-267

tilingual many-to-one models for both in-domain268

and all data.269

Table 5 presents our results from a limited quan-270

tity in-domain dataset. The baseline model (#I1)271

has strong performance on individual sentences,272

but degrades on held-out sets involving missed sen-273

tence segmentation and language switching. Ex-274

periments with concatenated data, namely CatXL275

(#I3) and CatSL (#I4), while they appear to make276

no improvements on regular held-out sets, make277

a significant improvement in BLEU scores on C-278

SL, C-XL, and R-XL. Furthermore, both CatSL279

and CatXL show a similar trend. While they also280

make a small gain on the C-TL setting, DenoiseTgt281

method is clearly an out-performer on C-TL. The282

model that includes both concatenation and denois-283

ing (#I7) achieves consistent gains across all the284

robustness check columns. In contrast, the CatRe-285

peat (#I2) and NoisySrc (#I5) methods do not show286

any gains.287

Our results from the all-data setup are provided288

in Table 6. While none of the augmentation meth-289

ods appear to surpass baseline BLEU on the regu-290

lar held-out sets (i.e., Avg column), their improve-291

ments to robustness can be witnessed similar to the292

in-domain setup. We show a qualitative example in293

Table 8.294

5.1 Attention Bleed295

Figures 2 and 3 visualize cross-attention7 from our
baseline model without augmentation as well as

6WAT21 baseline scores are obtained from
http://lotus.kuee.kyoto-u.ac.jp/WAT/evaluation/,
which reports BLEU using an external tokenizer script
(moses-tokenizer.perl). Apart from the row tagged
‡ in Table 4, which is intended to provide direct com-
parison to baselines, all other BLEU scores are obtained
using SACREBLEU with signature: BLEU+case.mixed
+numrefs.1+smooth.exp+tok.13a+version.1.4.13.

7Also known as encoder-decoder attention.

models trained with augmentation. Generally, the
NMT decoder is run autoregressively; however,
to facilitate the analysis described in this section,
we force-decode reference translations and extract
cross-attention tensors from all models. The cross-
attention visualization between a pair of concate-
nated sentences, say (xi1+xi2 → yi1+yi2), shows
that models trained on augmented datasets appear
to have less cross-attention mass across sentences,
i.e. in the attention grid regions representing xi2 ←
yi1, and xi1 ← yi2. We call attention mass in such
regions attention bleed. This observation confirms
some of the findings suggested by Nguyen et al.
(2021). We quantify attention bleed as follows:
consider a Transformer NMT model with L lay-
ers, each having H attention heads and a held-out
dataset of {(xi yi)|i = 1, 2, ...N} segments. Fur-
ther more, let each segment (xi, yi) be a concate-
nation of two sentences i.e. (xi1 + xi2, yi1 + yi2),
with known sentence boundaries. Let |xi| and |yi|
be the sequence lengths after BPE segmentation,
and |xi1| and |yi1| be the indices of the end of the
first sentence (i.e., the sentence boundary) on the
source and target sides, respectively. The average
attention bleed across all the segments, layers, and
heads is defined as:

B̄ =
1

N × L×H

N∑
i=1

L∑
l=1

H∑
h=1

bi,l,h

where bi,l,h is the attention bleed rate in an at- 296

tention head h ∈ [1, H], in layer l ∈ [1, L], for 297

a single record at i ∈ [1, N ]. To compute bi,l,h, 298

consider that an attention grid A(i,l,h) is of size 299

|yi| × |xi|. Then 300

301

bi,l,h =
1

|yi|

[ |yi1|∑
t=1

|xi|∑
s=|xi1|+1

A
(i,l,h)
t,s + 302

|yi|∑
t=|yi1|+1

|xi1|∑
s=1

A
(i,l,h)
t,s

]
303

where A(i,l,h)
t,s is the percent of attention paid to 304

source position s by target position t at decoder 305

layer l and head h in record i. Intuitively, a lower 306

value of B̄ is better, as it indicates that the model 307

has learned to pay attention to appropriate regions. 308

As shown in Table 7, the models trained on aug- 309

mented sentences achieve lower attention bleed. 310

5

http://lotus.kuee.kyoto-u.ac.jp/WAT/evaluation/


Dev Test BN GU HI KN ML MR OR PA TA TE
WAT21 biling indomain ‡ 18.6 11.3 26.2 28.2 20.3 13.6 15.1 16.4 23.7 16.1 14.7
Biling; indomain ‡ 24.1 21.6 13.2 29.3 32.9 22.7 17.9 16.9 16.4 27.4 18.1 21.0
Biling; indomain 23.9 21.5 13.1 29.2 32.6 22.5 17.7 16.8 16.4 27.3 18.0 20.9
Many-to-one; indomain 26.5 22.7 18.7 25.7 27.8 23.1 21.2 20.8 21.1 25.8 20.6 22.4
Many-to-one; all data 35.0 32.4 26.2 36.8 40.1 31.7 30.0 29.8 30.5 38.8 29.1 30.8

Table 4: Indic )English BLEU scores. Rows indicated by ‡ match the evaluation settings used by WAT21 shared
task (i.e., tokenized BLEU). The rows without ‡ are detokenized BLEU obtained from SACREBLEU (Post, 2018).
Dev and Test are average across 10 languages.

Dev Test
ID In-domain Avg C-TL C-SL C-XL R-XL Avg C-TL C-SL C-XL R-XL
#I1 Baseline (B) 26.5 10.8 17.0 16.9 15.9 22.7 9.4 14.9 14.7 13.6
#I2 B+CatRepeat 25.3 9.9 14.5 14.7 13.3 21.6 8.6 13 13 11.4
#I3 B+CatXL 26.2 12.6 26.1 25.9 26.5 22.6 11.1 22.7 22.5 22.3
#I4 B+CatSL 26.1 13.2 26.1 25.9 26.5 22.6 11.4 22.9 22.6 22.3
#I5 B+NoisySrc 25.2 10.5 16.2 16.0 15.2 21.2 9.1 14.3 14.1 12.9
#I6 B+DenoiseTgt 26.7 40.4 17.9 17.7 16.6 23.2 39.7 15.7 15.4 14.1
#I7 B+CatXL+DenoiseTgt 26.1 55.2 26.3 26.0 26.4 22.6 53.4 23.0 22.6 22.4

Table 5: Indic )English BLEU scores for models trained on in-domain training data only.

Dev Test
ID All-data Avg C-TL C-SL C-XL R-XL Avg C-TL C-SL C-XL R-XL
#A1 Baseline (B) 35.0 43.1 30.0 29.5 28.2 32.4 42.2 27.8 27.3 26.1
#A2 B+CatRepeat 34.5 43.7 30.3 29.9 28.8 32.0 42.9 28.0 27.6 26.3
#A3 B+CatXL 34.1 53.3 31.9 33.7 34.4 31.6 52.4 29.7 31.0 31.2
#A4 B+CatSL 33.6 54.0 32.5 32.2 34.3 31.3 53.3 30.4 29.9 31.1
#A5 B+NoisySrc 34.9 42.1 29.8 29.2 27.8 32.3 41.7 27.6 27.1 25.8
#A6 B+DenoiseTgt 33.3 60.0 28.9 28.4 27.3 31.3 59.4 27.1 26.5 25.4
#A7 B+CatXL+DenoiseTgt 33.3 65.8 31.1 33.0 33.6 31.0 64.7 28.9 30.4 30.3

Table 6: Indic )English BLEU scores for models trained on all data. Abbreviations: Avg: average across ten lan-
guages, C-: consecutive sentences, R-: random sentences, TL: target-language (i.e, English), SL: same-language,
XL: cross-language.

Dev Test
ID C-TL C-SL C-XL R-XL C-TL C-SL C-XL R-XL
#A1 Baseline (B) 14.3 10.4 10.3 10.1 14.3 10.6 10.5 10.3
#A2 B+CatRepeat 12.3 8.9 8.9 8.6 12.5 9.0 9.0 8.7
#A3 B+CatXL 5.8 7.2 4.3 4.3 5.8 7.2 4.4 4.3
#A4 B+CatSL 5.3 6.2 6.1 5.2 5.4 6.2 6.2 5.2
#A5 B+NoisySrc 17.4 16.1 16.1 15.8 17.5 16.2 16.2 15.9
#A6 B+DenoiseTgt 7.9 8.3 8.4 8.0 8.1 8.5 8.5 8.1
#A7 B+CatXL+DenoiseTgt 4.3 6.8 3.9 4.1 4.4 7.0 4.0 4.1

Table 7: Cross-attention bleed rate (lower is better); all numbers have been scaled from [0, 1] to [0, 100] range for
easier interpretation. Models trained on concatenated sentences have lower attention bleed rate. Denoising is better
than baseline, but not as much as concatenation. The lowest bleed rate is achieved by using both concatenation and
denoising methods.

5.2 Sentence Concatenation Generalization311

In the previous sections, only two-segment con-312

catenation has been explored; here, we investi-313

gate whether more concatenation further improves314

model performance and whether models trained315

on two segments generalize to more than two at316

test time. We prepare a training dataset having up 317

to four sentence concatenations and evaluate on 318

datasets having up to four sentences. As shown in 319

Table 9, the model trained with just two segment 320

concatenation achieves a similar BLEU as model 321

trained with up to four concatenations. 322
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Source

আগামী ২০২২ সােলর মেধƟ এই কাজ সɑূণŪ করার লǘƟমাƯা িʆর হেয়েছ। 
̆ધાનમં́ ીએ જણાƥȻુ ંક° સરકાર ƨપƧટ લǛયો અને સમયɅચૂકતા સાથે 
અનેક યોજનાઓ પર કામ કર� રહ� છે.

Reference
He said the aim is to complete this task by 2022. The Prime Minister 
said that the Government is working on various schemes with clear 
targets and timelines.

Baseline He said the Government is working on several schemes with clear 
objectives and timelines.

B+CatRepeat
The target is to be completed by 2022, the Prime Minister said that the 
Government is working on several schemes with clear targets and 
timelines. is the of of of of of of of of of of of of of

B+CatXL
The target is to complete it by 2022. The Prime Minister said that the 
Government is working on a number of schemes with clear targets 
and timelines.

B+CatSL
We have set a target to complete this task by 2022. The Prime 
Minister said that the Government is working on a number of schemes 
with clear objectives and timelines.

B+NoisySrc The Prime Minister said that the Government is working on several 
schemes with clear objectives and timelines.

B+DenoiseTgt He said the Government is working on several schemes with clear 
objectives and timelines.

B+CatXL 
+DenoiseTgt

We have set a target of completing it by 2022. The Prime Minister 
said that the Government is working on a number of schemes with 
clear targets and timelines.

Table 8: Example translations from the models trained
on all-data setup. See Table 6 for quantitative scores of
these models, and Figures 2 and 3 for a visualization of
cross-attention.

Dev Test
C-SL C-4SL C-SL C-4SL

Baseline / no join 30.0 27.8 27.8 25.7
Up to two joins 31.9 28.9 29.7 26.7
Up to four joins 31.0 28.9 28.8 26.8

Table 9: Indic )English BLEU on held out sets con-
taining up to 4 consecutive sentence concatenations in
same language (C-4SL). The two sentences dataset (C-
SL) is also given for comparison. The model trained
on two concatenated sentences achieves comparable re-
sults on C-4SL, indicating that no further gains are ob-
tained from increasing concatenation in training.

6 Related Work323

Machine Translation Robustness: MT robust-324

ness has been investigated before within the scope325

of bilingual translation settings. Some of those326

efforts include robustness against input perturba-327

tions (Cheng et al., 2018), naturally occurring noise328

(Vaibhav et al., 2019), and domain shift (Müller329

et al., 2020). However, as we have shown in this330

work, multilingual translation models can introduce331

new aspects of robustness to be desired and evalu-332

ated. The robustness checklist proposed by Ribeiro333

et al. (2020) for NLP modeling in general does not334

cover translation tasks, whereas our work focuses335

entirely on the multilingual translation task.336

Augmentation Through Concatenation: Con-337

catenation has been used before as a simple-to-338

incorporate augmentation method. Concatenation339

can be limited to consecutive sentences as a means340
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(a) Baseline model without sentence concatenation (#A1)
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(b) Model trained with concatenated sentences (#A3)

Figure 2: Cross-attention visualization from baseline
model and concatenated (cross-language) model. For
each position in the grid, only the maximum value
across all attention-heads from all the layers is visual-
ized. The darker color implies more attention weight,
and the black bars indicate sentence boundaries. The
model trained on concatenated sentences has more pro-
nounced cross-attention boundaries than the baseline,
indicating less mass is bled across sentences.

to provide extended context for translation (Tiede- 341

mann and Scherrer, 2017; Agrawal et al., 2018), 342

or additionally include putting random sentences 343

together, which has been shown to result in gains 344

under low resource settings (Nguyen et al., 2021; 345

7



� �
�V!

+H
VDLG
WKH
DLP
LV
WR

FRPSOHWH
WKLV
WDVN
E\

����
�

7KH
3ULPH

0LQLVWHU
VDLG �
WKDW
WKH �

RYHUQPHQW
LV �

ZRUNLQJ
RQ

YDULRXV
VFKHPHV

ZLWK
FOHDU

WDUJHWV
DQG

WLPHOLQHV
� �

��V!

�

���

���

���

���

�

&URVV�$WWHQWLRQ��/D\HU�>0D[@��+HDG�>0D[@

,QSXW

2
XW
SX

W

(a) Model trained with DenoiseTgt augmentation (#A6)
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(b) Model trained with both CatXL and DenoiseTgt augmen-
tations (#A7)

Figure 3: Cross-attention visualization (... continuation
from Figure 2) The model trained on both concatenated
and denoising sentences has least attention mass across
sentences.

Kondo et al., 2021). While in a multilingual setting346

such as ours, data scarcity is less of a concern as347

a result of combining multiple corpora, concatena-348

tion is still helpful to prepare the model for scenar-349

ios where language switching is plausible. Besides350

data augmentation, concatenation has also been351

used to train multi-source NMT models. Multi-352

source models (Och and Ney, 2001) translate multi-353

ple semantically-equivalent source sentences into a354

single target sentence. Dabre et al. (2017) show that 355

by concatenating the source sentences (equivalent 356

sentences from different languages), they are able 357

to train a single-encoder NMT model that is com- 358

petitive with models that use separate encoders for 359

different source languages. Backtranslation (Sen- 360

nrich et al., 2016a) is another useful method for 361

data augmentation, however it is more expensive 362

when the source side has many languages, and does 363

not focus on language switching. 364

Attention Weights: Attention mechanism (Bah- 365

danau et al., 2015) enables the NMT decoder to 366

choose which part of the input to focus on during 367

its stepped generation. The attention distributions 368

learned while training a machine translation model, 369

as an indicator of the context on which the decoder 370

is focusing, have been used to obtain word align- 371

ments (Garg et al., 2019; Zenkel et al., 2019, 2020; 372

Chen et al., 2020). In this work, by visualizing 373

attention weights, we depict how augmenting the 374

training data guides attention to more neatly focus 375

on the sentence of interest while decoding its cor- 376

responding target sentence. We are also able to 377

quantify this by the introduction of the attention 378

bleed metric. 379

7 Conclusion 380

We have described simple but effective checks for 381

improving test coverage in multilingual NMT (Sec- 382

tion 2), and have explored training data augmenta- 383

tion methods such as sentence concatenation and 384

noise addition (Section 3). Using a many-to-one 385

multilingual setup, we have investigated the rela- 386

tionship between these augmentation methods and 387

their impact on robustness in multilingual trans- 388

lation. While the methods are useful in limited 389

training data settings, their impact may not be visi- 390

ble on single-sentence test sets in a high resource 391

setting. However, our proposed checklist evalua- 392

tion reveals the robustness improvement in both 393

the low resource as well as high resource settings. 394

We have conducted a glass-box analysis of cross- 395

attention in Transformer NMT showing both vi- 396

sually as well as quantitatively that the models 397

trained with augmentations, specifically, sentence 398

concatenation and target sentence denoising, learn 399

a more sharply focused attention mechanism (Sec- 400

tion 5.1). Finally, we have determined that two- 401

sentence concatenation in training corpora gener- 402

alizes sufficiently to many-sentence concatenation 403

inference (Section 5.2). 404
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8 Ethical Consideration405

Limitations: As mentioned in Section 2, some406

of the multilingual evaluation checks require407

the datasets to have multi-parallelism, and co-408

herency in the sentence order. When neither multi-409

parallelism nor coherency in the held-out set sen-410

tence order is available, we recommend R-XL. The411

data augmentation methods proposed in this paper412

do not require any specialized hardware or software.413

Our model and training pipeline can be rerun on414

a variety of GPU models, including the ones with415

lesser memory. However, some of the large dataset,416

large vocabulary models may require multiple dis-417

tributed training processes, and/or multiple gradi-418

ent accumulation steps to achieve the described419

batch size.420

Scientific Artifacts: This work uses a dataset421

from The Workshop on Asian Translation 2021422

(WAT21)’s MultiIndicMT shared task (Nakazawa423

et al., 2021), which is available for free download at424

the public URL: http://lotus.kuee.kyoto-u.425

ac.jp/WAT/indic-multilingual/; we do not re-426

distribute this dataset from our servers.427

Our NMT pipeline is already publicly avail-428

able under a license approved by https://429

opensource.org, and will be referenced in the fi-430

nal copy. Our code and scripts used for data prepa-431

ration, augmentation, as well as model training432

and evaluation will be made available via a public433

GitHub repository with an open source-friendly li-434

cense after the end of the author anonymity period.435

Only a subset of checks on robustness in multi-436

lingual settings have been discussed. While they437

serve as starting points for improving robustness,438

we do not claim that the proposed checks are ex-439

haustive. We have investigated robustness under440

Indic-English translation task where all languages441

use space characters as word-breakers; we have442

not investigated other languages such as Chinese,443

Japanese etc. The term Indic language to collec-444

tively reference 10 Indian languages only, similar445

to MultiIndicMT shared task. While the remaining446

Indian languages and their dialects are not covered,447

we believe that the approaches discussed in this448

work generalize to other languages in the same449

family.450
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