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ABSTRACT

Methods with adaptive scaling of different features play a key role in solving
saddle point problems, primarily due to Adam’s popularity for solving adversarial
machine learning problems, including GANS training. This paper carries out
a theoretical analysis of the following scaling techniques for solving SPPs: the
well-known Adam and RmsProp scaling and the newer AdaHessian and OASIS
based on Hutchison approximation. We use the Extra Gradient and its improved
version with negative momentum as the basic method. Experimental studies on
GANSs show good applicability not only for Adam, but also for other less popular
methods.

1 INTRODUCTION
In this paper, we focus on the saddle point problem (SPP):

Jin max f(x,y). (1)
It has been of concern to the applied mathematics community for a long time. For example, SPPs
arise in game theory, optimal control and equilibrium search in economics (Neumann & Morgenstern,
1944; Harker & Pang., 1990; Facchinei & Pang, 2003). The problem (1) is now even more widespread
due to the current interest in solving adversarial formulations in machine learning. One of the
brightest representatives of such tasks is Generative Adversarial Networks (GANs) (Goodfellow et al.,
2014). The main and most popular method of training GANs is Adam (Kingma & Ba, 2015).

Since its appearance, Adam has become a cornerstone learning method not only for GANs but also,
for example, for NLPs (Lan et al., 2020) or models with attention (Zhang et al., 2020). There are
two features that distinguish Adam from SGD: a heavy-ball momentum as well as a gradient scaling.
If momentum is more or less the standard acceleration approach, then scaling is precisely the key
of Adam that allows it to be robust. Scaling is often also referred to as adaptivity, but it is different
from classical adaptivity, where we simply recalculate the stepsize using information from previous
iterations. Scaling modifies the entire gradient by multiplying each component by a different value.
Adam was not the first method to use scaling (Duchi et al., 2011; Zeiler, 2012), but the Adam update
is the most popular amongst the community.

While Adam was gaining its practical relevance, it was also explored from a theoretical point of
view for minimization problems (Reddi et al., 2019; Défossez et al., 2020). Moreover, Adam and its
modifications appear in many theoretical papers on SPPs and GANS training. The most famous of
these works follow the same pattern (Daskalakis et al., 2017; Gidel et al., 2018; Mertikopoulos et al.,
2018; Chavdarova et al., 2019; Liang & Stokes, 2019; Peng et al., 2020). The authors propose studies
for methods without scaling, and then without theoretical justifications transfer the new features to
Adam and obtain a new more powerful method. For example, (Gidel et al., 2018) adapts the classical
and optimal method for SPPs, the Extra Gradient method, and obtains Extra Adam. But while Adam
is a good framework into which some theoretical hints and intuitions can be inserted, up to the current
time, other methods with scaling are hardly mentioned in the SPPs literature from a theoretical point
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of view. Recently, papers on scaling algorithms that provide guarantees of convergence have begun
to appear (Liu et al., 2019; Dou & Li, 2021; Barazandeh et al., 2022). Despite the recent progress,
there are still many disadvantages to these methods that should be addressed.

1.1 OUR CONTRIBUTION AND RELATED WORKS

Eight methods with theory. In this paper, we present eight methods with scaling for solving (1). In
fact, we give two general methods in which different types of scaling can be substituted. We analyze
four popular types of scaling in this paper, although the universality of the analysis allows exploring
other scaling approaches. Theoretical convergence guarantees for these methods are provided in the
strongly convex—strongly concave, convex—concave, and non-convex—nhon-concave (Minty) cases of
the problem (1).

Extra Gradient. Our first method (Algorithm 1) is based on the Extra Gradient method (Korpelevich,
1976; Nemirovski, 2004; Juditsky et al., 2008), an optimal and frequently used method for SPPs. The
key feature of this method is the so-called extrapolation/extra step. We add scaling to this method.
Unlike most of the works (Daskalakis et al., 2017; Gidel et al., 2018; Mertikopoulos et al., 2018;
Chavdarova et al., 2019; Liang & Stokes, 2019; Peng et al., 2020) which connect Extra Gradient and
its modifications with Adam-based methods, we use the same scaling in both Extra Gradient steps and
obtain to some extent a method that has not been encountered before. Consequently, the theoretical
analysis for this kind of method is done for the first time and does not coincide, for example, with the
analysis from (Liu et al., 2019; Dou & Li, 2021).

Single call with momentum. Our second algorithm is an improved version of the first one.

Primarily, we solve the global problem of the Extra Gradient method — the double calling of gradients
at each iteration. We use a single call approach that allows us to compute the gradient once. Such
methods without scaling were explored e.g., in (Popov, 1980; Mokhtari et al., 2020; Hsieh et al.,
2019).

Secondly, we add momentum. Methods with momentum have been partially investigated for SPPs.
In paper (Gidel et al., 2019), the authors show that for SPPs (including training GANSs), one should
use negative momentum because classical positive (heavy-ball) momentum can be not only useless
but have a negative effect. One can also note that negative momentum was used in works (Alacaoglu
& Malitsky, 2021) and (Kovalev et al., 2022) to obtain optimal stochastic variance reduced methods
for SPPs.

Scalings. As noted above, we consider different types of scaling approaches: two types of Adam-
based scaling (Adam (Kingma & Ba, 2015) itself, as well as RMSProp (Tieleman et al., 2012)) and
two types of rather new Hutchinson’s approximation (Bekas et al., 2007) scalings (AdaHessian (Yao
et al., 2020) and OASIS (Jahani et al., 2021)). None of these methods have been analyzed theory-wise
for SPPs before. Moreover, methods based on Hutchinson’s approximation are found for the first
time in an application to SPPs. Note that AdaHessian (Yao et al., 2020) does not provide convergence
analysis at all (not even for minimization problems).

Table 1: Comparison of scaled methods with theoretical analysis for SPPs.

Method Reference Scaling Single call? | Momentum Assumptions
OAdaGrad (Liu et al., 2019) AdaGrad yes no bounded gradients
Extra Gradient AMSGrad (Dou & Li, 2021) Adam-based no positive bounded gradients
AMMO (Barazandeh et al., 2022) | Adam-based no positive no theory ")
Extra Adam/RMSProp Ours Adam-based no no bounded gradients
Extra AdaHessian/OASIS Ours Hutchinson no no
SCM Extra Adam/RMSProp Ours Adam-based yes negative bounded gradients
SCM Extra AdaHessian/OASIS Ours Hutchinson yes negative

(D There is a theory in the paper, but it raises serious concerns.

Main competitors. One can highlight three main papers that also deal with the theoretical analysis
of methods with scaling for SPPs. We give a comparison in Table 1.

The work (Liu et al., 2019) presents an analysis of the Optimistic version of AdaGrad. The Optimistic
approach is a single call, making the method more robust and faster in computation. Meanwhile, the
authors do not add momentum to this method. The authors also need gradient boundedness as an
assumption in the theoretical analysis; we do not need to make such an additional assumption for
Hutchinson scaling methods.
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The authors of (Dou & Li, 2021) propose an analysis for the Adam-Based (but not Adam) method.
Their method is based on the Extra Gradient method with the AMSGrad update (Reddi et al., 2019).
Unlike some of our methods and the method from paper (Liu et al., 2019), this method is not single-
call, which in practice can slow down the running time by almost a factor of two. In this paper, the
boundedness of the gradients is assumed.

Finally, both papers (Liu et al., 2019) and (Dou & Li, 2021) give convergence only in the non-convex
case. We give an analysis for the strongly-convex and convex cases as well. It seems that this is
the way to see a more complete picture of how the methods work. This is due to the fact that any
guarantees in the non-convex case (not only for SPPs but also for minimization problems) are just
convergence to some (most likely the nearest) stationary point, but in practice, for neural network
problems, we converge not just to some stationary point, but probably to a good neighborhood
of global solution. The practical behavior of the methods lies somewhere between the general
non-convex and convex cases.

The paper (Barazandeh et al., 2022) presents several Adam-based methods, but its theoretical
foundation is disturbing. We found no proofs in the paper (the authors refer to the arxiv version,
which does not exist at the current moment). Moreover, the theorems postulate convergence but not
the rate of convergence.

Practical performance. In practice, we explore four methods of scaling (RMSProp, Adam, AdaHes-
sian, OASIS) for training GANs. We test how these methods are affected by the extra step technique
that arises from the theory. We further investigate the effect of negative momentum on final learning
results.

2 PROBLEM SETUP AND ASSUMPTION

We write (x,y) = Z?:l x;y; to denote the standard inner product of vectors z,y € R?, where
x; corresponds to the i-th component of z in the standard basis in R%. This induces the standard
{5-norm in R? in the following way: ||z| = \/(x, x). For a given positive definite matrix D € S¢_,
the weighted Euclidean norm is defined to be ||z|%, = (x, Dz), where x € R?%. We also introduce
Amax (D) as the maximum eigenvalue of D, Ap;n (D) as the minimum eigenvalue of D. Using this
notation, for a given matrix A € R%*<, we define the spectral norm as || A|| = \/Amax (AT A), and
the infinity norm as ||Alcc = maxj<;<q4 Z?Il |ai;|, where {a;;};} ;_, are elements of A. The
symbol ® denotes the component-wise product between two vectors, and diag(x) denotes the d x d
diagonal matrix whose diagonal entries are the components of the vector x € RY.

We consider the problem (1) and assume that for the function f(z, y) we have only access to stochastic
oracle f(x,y,&). For example, £ could be the number of the batch for which the loss is computed.
Additionally, only stochastic gradients are available V,, f(z,y,£), V, f(z,y, ). Next, we list the
main assumptions on (1) and stochastic gradients.

Assumption 1 (Convexity-concavity). We consider three cases of convexity-concavity of (1).

(SC) Strong convexity— strong concavity. The function f is p-strongly convex—strongly concave,
i.e. for all 1,25 € R% and y1, y» € R% we have

<vmf(zlayl) - v:cf(an y2)7x1 - IL’2> - <Vyf(l’1,y1) - Vyf(l’z,yQ), Y1 — y2> (2)
> p (1 = x| + llyr — w2ll?) -

(C) Convexity—concavity. The function f is convex—concave, i.e. for all z1,z, € R% and
y1, 72 € R% we have

<fo(x1,y1) - fo(x%yz)a 1 — £C2> - <vyf($1,y1) - Vyf(any2)7yl - y2> > 0. (3)

(NC) Non-convexity—non-concavity (Minty). The function f satisfies the Minty condition, if and
only if there exists * € R% and y* € R% such that for all 2 € R% and y € R% we have

(Vof(z,y),z —2%) = (Vyf(z,9),y —y*) > 0. 4

The last assumption is not a general non-convexity—non-concavity, but it is firmly associated and
regarded in the literature as a good relaxation of non-convexity—non-concavity. (4) can be found
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under the names of the Minty or variational stability condition (Minty, 1962; Liu et al., 2019; Hsieh
et al., 2020; Dou & Li, 2021; Diakonikolas et al., 2021).
Assumption 2 (L-smoothness). For any ¢ the function f(x,y, &) is L-smooth, i.e. for all 21, x5 €
R% and y, 9, € R% we have

vaf(mlayl7£) - me($27y27§)||2 + ||Vyf(xl7y17§) — Vyf(3727y2,f)||2
< L2 (=1 — @2l + llyn — w2l1?) -
(5)

Assumption 3 (Bounded variance). Stochastic gradients of V, f(z,y, &), V, f(z,y,§) are unbi-
ased and their variance are bounded, i.e. there exists o2 > 0 such that for all z € R% and Yy € Ry
we have

E [vxf(xa yvf)} = fo(x, y)r E [Vyf(x,y,é)] = Vyf(x,y),
o? (6)
where the parameter b stands for the size of the batch in the stochastic gradients.

3 SCALED METHODS

Unlike SGD-type methods that use a stochastic gradient g; for an update, scaled methods additionally

compute a so-called preconditioning matrix D, and produce a scaled gradient §; = ﬁ; ' g,. For SPPs,
obtaining preconditioning matrices can be written as follows:

(DP)? = B(Di4)* + (1= B)(HY)?, (DY) = Bu(D}_y)* + (1= B)(HY)?, ()

where 3; € [0;1] is a preconditioning momentum parameter (typically close to 1), (HF)2, (H})?,
(Dg)? and (DY)? are some diagonal matrices. The update (7) is satisfied by Adam-based methods
Wlth (Htw)2 = lag(va:f(xhytagtD) © vzf(xhyhgtD)) and (th)2 = dlag(vyf(mtvyhftD) ©
Vo f (e, y:,&P)) (here &P is an independent random variable specially generated to calculate
HY and HY), e.g. the original Adam (Kingma & Ba, 2015) (3; = %) and the earlier
method, RMSProp (Tieleman et al., 2012) (8; = (). The rule (7) also applies to AdaHes-

sian (Yao et al., 2020) — method with Hutchinson scaling, here one should take §; = %,

(H})? = diag(v; © Vi f (20,31, 67)07)? and (HY)? = diag(v} © Vo f (w1, 3y, £7)v)?, where
v¥, vy are from Rademacher distribution.! Let us stress that despite AdaHessian includes a stochastic
Hessian, it does not need to be calculated explicitly as it needs just Hessian-vector product. Hence,
the matrices H and H} can be computed by performing back-propagation twice: firstly, we compute
the stochastic gradients V. f (24, ¢, &F) and V,, f (24, yt, £P), then compute the gradients of the

functions <vwf(mta Y, 615D)5 Uf> and <vyf(37ta Y, gytD)a U{IEJ>

The following update can be used as an analogue of (7):
Df = BDy_y + (1= B)Hy, D} =Dy +(1—6)H{. ®)

For example, such a rule is augmented by OASIS (Jahani et al., 2021) with 5; = S and
HY = diag(vf © Vauf(@e,ye,&0)0F) and HY = diag(v{ © Vyy f(z1,y:, &P )vY). 1t turns out
that expression (8) can easily be calculated by differentiating twice. Firstly, we find V. f (z¢, ¢, £P),
and then we compute the gradient again, but for (V. f(z¢, y:, &P))Tv¥. As a result, we have
Vo f (x4, yt, EP)vE. Using the component-wise product between v¥ and V... f (x4, y, P )vE, we
get the diagonal of D7.

Moreover, (8) is a good approximation of the Hessians’ diagonals. Indeed, it is easy to see that in
the expectation the non-diagonal elements of the matrices DY, DY are equal to 0 and the diagonal
elements are equal the corresponding Hessians’ elements.

To make the matrix positive definite, one can use the following transformation that is common in
literature:

(DF)ii = max {e, |(Df)al},  (D})is = max{e, [(D})l}, ©)

' All components of vectors v, v are independent and equal to &1 with probability 1/2.
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where e is a positive parameter. It was suggested e.g., in the original Adam paper (Kingma &
Ba, 2015). Subsequently, the critical necessity of (9) was shown in (Reddi et al., 2019). One can
alternatively define (D7)y; = |(D¥)i| + e and (DY);; = |(DY)is| + e. It can be seen that all of
the above scaling approaches construct diagonal matrices with positive elements. We formulate the
properties of such matrices via the following lemma.

Lemma 1. Let us assume that DY, Dy and for all ¢ the H, f, H; ¥ are diagonal matrices with elements

not greater than I' in absolute value. Then for matrices Dz, Dy obtained by rules (7) — (9), the
following holds

1) ﬁ"” ﬁty are diagonal matrices with non-negative elements and el < ﬁf <I'I el % ﬁty <I'I;

2) D2, < (1 + M) Dy and DY, | < (1 + %) DY for (7);

2e?
3) Dy < (14 22208 Dy and DY,y < (14 22200 DY for (3)

Let us formally prove that all scalings: Adam, RMSProp, AdaHessian, and OASIS, satisfy the
conditions of Lemma 1.
Lemma 2. Let Assumption 2 be satisfied, then the AdaHessian and OASIS preconditioners
satisfy the conditions of the Lemma 1 with I’ = \/d, +d,L. If |V, f(z,y,§)|| < M and
\Vyf(z,y,8)|| < M for all z,y,&, then the Adam and RMSProp preconditioners satisfy the
conditions of the Lemma 1 with ' = M.

The rule chains (7) + (9) or (8)
+ (9) allow to construct precon-
ditioning matrices. Next, we 1: Input: initial point xo, yo

present Algorithm 1. As men- 2: for¢=0,1,2,...7 —1do

Algorithm 1 Scaled Stochastic Extra Gradient

tioned in Section 1.1, we use the ~ 3: Generate mdependently &P for D;‘, Dy
stochastic Extra Gradient as the  4: Compute D”” and Dy according to (7)—(9)
base algorithm. Such an algo- s5: Generate independently & for

rithm is a modification of SGD Vaf (@6, Y &)y Vi f (e, ye, &)

for SPPs. Its main difference Tep1y2 = Tt — ’Y(bf)flvzf(wt,yt,&)
is the presence of an extrapola-

. _ Y\ —1
tion step (lines 6 and 7) before 7: Yerr/2 = Yo + (DY) TV f (20,96, &)

the main update (lines 9 and 10). & Generate independently &1 /5 for
This complicates the algorithm, Vo f(Zit1/2s yt+1/27§t+1/2) Vyf (@172, Yer1/2,Ee41/2)
because it is necessary to double 9 Ty =z — (DY) ™ Ve f($t+1/27yt+1/27§t+1/2)

count the gradient at each iter- 10: Yer1 = Yt + 7(Dt) yf(g:t+1/2, Yet1/2> §t+1/2)
ation, but meanwhile the origi- 11: end for

nal SGD is not optimal for SPPs.
Moreover, it can perform worse and diverge even on the simplest problems (see Sections 7.2 and 8.2
of (Goodfellow, 2016)). We add the same preconditioners to both steps of the Extra Gradient. These
matrices are computed at the beginning of each iteration (lines 3 and 4).

The following theorem gives a convergence estimate for Algorithm 1.
Theorem 1. Consider the problem (1) under Assumptions 2 and 3 and conditions of Lemma 1. Let
{@¢,y:} and {4 41/2, Ye41/2} be the sequences generated by Algorithm 1 after 7" iterations. Also
assume that the sequence {/3;} is not random and v < ;%. Then,

e under Assumption 1(SC) it holds that

E [R},,] <uE[R7] + 6, (10)
with @ = (1 — 3 + (1 — B41)C) and g, = ST CH(Pe)ON,
e under Assumption 1(C) with ||z¢|| < €, ||y;|| < € for all £ > 0 it holds that

T

e awo_ 3TQ2 20TO2 e
E[gap(xT N g)} < ~T aF ~T Z(l —B) + b
=1

(1)
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e under Assumption 1(NC) with ||z|| < €, |Jy:|| < Q forall ¢ > 0 it holds that

12202  21To? 1207202 &

E(|[Vaf(@r, g0) |2 + |V, fGr, g7)||7] < 1-B,).

e L e - Y
(12)

2 2 _ _ AN g /
Here we use R} = |z, — 2*[|3, + llye — y"[I%y, gap(z.y) = e f ot o) = i ()
Tl =5 ZtT:_Ol Tyy1/2, i = T tho Yit1/2, (T, §r) is picked uniformly from all (¢, y;).

C =L for (7) or C = 2L for (8).

The estimate (11) uses a so-called gap function on some bounded set X x ). Eventhough we solve
the problem (1) on the whole set R% x R% this is permissible, since such a version of the criterion
is valid if the solution z*, y* lies in X x ); for details see (Nesterov, 2007).

Depending on the choice of 3;, we can get convergence for the four methods that are given before. In

particular we can estimate the number of iterations to find a solution with € precision (in the strongly

convex-strongly concave case this means that ||z — 2*||*> + |ly: — y*||*> ~ &, in the convex—concave

that gap(z, y) ~ ¢, and in the non-convex—non-concave that ||V f(z,y)||? + |V, f(z, y)||* ~ £2).
Corollary 1 (RMSProp and OASIS). Under the assumptions of Theorem 1 let additionally take
B¢ = B. Then, the number of iterations to achieve e-solution (in expectation)

. . 2
e in the strongly convex—strongly concave case with § > 1 — & is o (FL log 4F 62 e E);
202
e in the convex—concave case with 3 > 1 — &7 is O (F L ngsg >;

e in the non-convex-non-concave case with 3 > 1 — = and b ~

21202
1s(’)(FLQ>.

662

Corollary 2 (Adam and AdaHessian). Under the assumptions of Theorem 1, let additionally take
t4+1
B = 1__57;:1 Then, the complexities to achieve e-solution (in expectation)

. . 213 122 415 402
e in the str. convex—str. concave case with § = 1 — (W) is O (C P (Gl Tl );

e3uZe e5b2 %3

. . . 2127204 212 404
e in the convex—concave case with 3 =1 — L is O (C R );

e in the non-convex—non-concave case with 5 =1 — = and b~ 1s O (%)
Corollaries 1 and 2 together with of Lemma 2 give a complete picture for the 4 methods based on
Algorithm 1 with Adam, RMSProp, AdaHessian and OASIS scalings.

Discussion. The following is a brief observation of our results.

o In our theoretical estimates, the convergence of methods with time-variable /3; is worse than for
methods with constant /3. This is observed in other papers as well (Reddi et al., 2019; Défossez et al.,
2020; Dou & Li, 2021). Typically, methods with time-variable 3; perform their best in practical
problems. But in our experiments (Appendix 5), the performance is the same; RMSProp outperforms
Adam, and OASIS wins over AdaHessian.

e For all methods, we need to get the [ reasonably close to 1. The same is observed in Adam’s
analysis for minimization problems (Défossez et al., 2020). Moreover, such a choice is confirmed in
the experiments, both in ours and in the classical settings of Adam-based methods (Kingma & Ba,
2015) (recommend 5 = 0.999).

o It is interesting to see how our estimates depend on the dimension d = d + d,. This is relevant
especially for large size problems. The dependence on d appears in the constants I' and C' (Lem-
mas 1,2). For OASIS and AdaHessian, I' ~ v/d, but for Adam and RMSProp there is no dependence
on d. This differs from the results of earlier papers (Défossez et al., 2020; Liu et al., 2019; Dou &
Li, 2021), where the convergence estimate for the Adam-based methods depends on d more often
linearly.
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o As noted earlier, our analysis is universal for any scaled method for which Lemma 1 holds.

e Among the problems of analysis, let us highlight the use of ||x:|| < Q, |ly:]] < Q. Only in the
strongly convex — strongly concave case is it avoided. At the moment this assumption can be found
in the literature on saddle point problems, moreover, all the papers (Liu et al., 2019; Dou & Li, 2021)
on methods with scaling also use it.

4 MAKE SCALED METHODS MORE ROBUST

Algorithm 2 Scaled Stochastic Single Call Extra Gradient with
Momentum

1: Input: initial point o = w¥, yo = wg, learning rate ~, probability p € [0; 1]

2: fort=0,1,2,...T — 1do

3: Compute the preconditioners Dy, /2 and Dil /2 according to (7)—(9)

Tyqp1/2 = Tt — 'Y(ﬁffl/g)ilvzf(xt—l/%yt—l/Qagt—1/2)

Yir1/2 = Yt + ’Y(Dgfug)ilvyf(xt—l/% yt—1/27§t—1/2)

Generate {112 for Vo f(ey1/2, Yev1/2: §e1/2), Vo f (Ter1/2, Yer1/2, €ev1/2) and DYy o, DYy
Tip1 = Tt + n(Df,l/Q)_l(wf —xy) — W(Df,l/g)_lvxf(ivtﬂ/myt+1/27§t+1/2)

Yi+1 =Yt + n(ﬁi’,l/g)‘l(wi’ —Yi) + ’Y(bf,l/g)_lvyf(xt-s-l/z? Yir1/2>Et41/2)

. x y o _
9: wt+1,wt+1—{

10: end for

A A

xy, Yy,  with probability p
wf,wy, with probability 1 — p

Algorithm 1 as well as Extra Gradient has an important disadvantage, two gradient calculations per
iteration. The next method (Algorithm 2) uses the so-called Optimistic approach (Popov, 1980),
which solves the problem of Extra Gradient mentioned above. The difference from Algorithm 1 is
that in the extrapolation step (lines 4 and 5) we use the gradients from the previous main update (lines
7 and 8) instead of the new gradients at point x4, ;. Also Algorithm 2 adds momentum as a useful
tool (lines 7 and 8). We use negative momentum with a random update (line 9). The same momentum
is investigated in (Alacaoglu & Malitsky, 2021; Kovalev et al., 2022). The usefulness of negative
momentum for GANs training is discussed by (Gidel et al., 2019). Both modifications of Algorithm
2 are of a practical nature. From the theoretical point of view, they do not give any improvement
in terms of convergence estimates, including the fact that saddle problems cannot be accelerated in
terms of £ as minimization problems (Ouyang & Xu, 2019).

Similar to Algorithm 1, we give a convergence theorem and its corollaries for Algorithm 2.
Theorem 2. Consider the problem (1) under Assumptions 2 and 3 and conditions of Lemma 1. Let

{x¢,y:} and {2441 /2, Y141/2} be the sequences generated by Algorithm 2 after T iterations. Then,
with v < ﬁ,n <epandp < i

e under Assumption 1(SC) it holds that
120’2 (1 aF (1 - ,81{4.1)0) ")/2

E[Up1] <oyE W] + o , (13)
i — _ e _ (1 _ _wp _ 120%(14+(1=B411)C)°.
with oy = max{(l L4+ (1 5t+1)0) g (1 QWJWH)} and 0; = = ;
e under Assumption 1(C) with ||| < Q and ||y;|| < Q for all ¢ > 0 it holds that
50002 18CTQ? & 55v02
E|gap(z7?, y7?)] < + 1-06)+ ; (14)

eb ’
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e under Assumption 1(NC) with ||z;|| < Q and ||y;|| < Q for all ¢ > 0 it holds that

E[|Vaf(@r—1/2, Gr—1/2)II> + IVy f @r—1/2, Gr—1/2)|I*]

967202 48TL202 3212002 & 105T¢2 (15)
1— .
~¥2T + eT + ~2T Z( B + eb

t=1

Here we use W, defined in (28), (Z7_1 /2, Jr—1/2) is picked uniformly from all (z¢_1 /2, y4—1/2)-
Other notations are similar to Theorem 1.

Corollary 3 (RMSProp and OASIS). Under the assumptions of Theorem 2 let additionally take
B¢ = B. Then, the number of iterations to achieve e-solution (in expectation)

e in the strongly convex—strongly concave case with § > 1 — % is ) ({p L } log + eb“ E);

202
e in the convex—concave case with 3 > 1 — &5 is O (FLQ 4 L0 );

ebe?
: : r2r2o?
e in the non-convex—non-concave case with 3 > 1 — = and b ~ is O .

ee 2 e2e2

Corollary 4 (Adam and AdaHessian). Under the assumptions of Theorem 2, let additionally take
t+1
B = 1:*57,:1 Then, the complexities to achieve e-solution (in expectation)

C’r3r20? C?’r?L20?
e3ule e2ue

e in the str. convex-str. concave case with 3 = 1 — ( 4}“0) is O(

C2F2LQ2 C4Fo 402 C4F2 492 COF4 ‘ZQ4 1/2
e2pue + uAb2ed + e2i%b2e3 +(e 1.2 psbgs) )

. . . 21275204 212 404
e in the convex—concave case with § =1 — % is O (C 1;252 L Cel;bgefz >;

. 0 2rdrdn4d
¢ in the non-convex—non-concave case with § =1 — =+ and b~ =% is O (%)

The estimates obtained are very similar to Section 3. The same observations can be made about these
results as those given in Section 3 after Corollary 2.

5 EXPERIMENTS

This section provides extensive experiments and compares the considered optimization methods for
training GANS.

5.1 SETUP

Datasets. We use the standard dataset for training GANs, CIFAR-10 (Krizhevsky et al., 2009) that
has 50k of 32x32 resolution images in the training set and 10k images in the test.

Metrics. We use Inception score (IS) (Salimans et al., 2016) and Frechet Inception distance (FID)
(Heusel et al., 2017) as the most common metrics for assessing image synthesis models.

GAN architectures. We implemented ResNet architectures for the generator and the discriminator
from (Miyato et al., 2018). See details in Appendix A.

Optimization methods. We employ RMSProp, Adam, AdaHessian, and OASIS, its extragradient
versions Extra RMSProp, Extra Adam, Extra AdaHessian, and Extra OASIS. Additionally, we
implement OASIS with momentum and Extra OASIS with momentum. We compute the uniform
average and exponential moving average (EMA) of weights as well-known techniques to yield faster
convergence. The hyperparameter settings of the methods are given in Appendices A.

5.2 RESULTS

The goal of the first experiment is to investigate the four methods for which we give a theory.
These include the popular and one of the best-known methods, Adam (the benchmark for the other
competitors), the known, but less popular RMSProp, and the very new and never used for GANs
training methods with scaling (OASIS and AdaHessian).

For each of the optimizers, we have implemented two versions: classical and with extra step (both
Algorithm 1 and Algorithm 2 have extra steps). We compare how the qualities of the four different
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scaling approaches relate to each other and also verify the popular idea in the community that using
extra step is a necessary trick to increase the learning quality (Mertikopoulos et al., 2018; Gidel et al.,
2018; Chavdarova et al., 2019; Liu et al., 2019; Dou & Li, 2021). See results in Table 2 and Figure 1.

We see that three optimiz-
ers out of four performed
well. The not very popu-
lar scaling techniques OA-
SIS and RMSProp perform
better than state-of-the-art
Adam. The use of the extra
step technique can provide
improvement but is not an
important element for the
optimizer.

FID FID_ema FID_avg

—— rmsprop
— adam
— oasis

-+ extra_rmsprop
---- extra_adam

-+ extra_oasis
— oasis-m

8.50
8.25
8.00
7.75
7.50
7.25

7.00

6.75

In the second group of ex- O 100 200 30 40 00 0 10 200 300 40 50
periments, we decided to in-
vestigate the OASIS scaling
technique in more detail, as
it is new to GANs in comparison to Adam and RMSProp, and also showed good results in the first
group of experiments. In particular, we explore how OASIS is affected by negative momentum and
the combination of extra step and negative momentum (Algorithm 2). See results in Table 3 and
Figure 1.

Figure 1: Averaged dynamics of FID and IS change by epoch number
for different optimizers from Tables 2 and 3.

We can see that negative momentum can indeed increase the quality of learning, sometimes its
combination with extra step is also useful.

Table 2: Comparisons of the considered optimization methods and their extragradient versions using
FID and IS, scores obtained at the end of training. EMA and uniform avg denote as exponential
moving average and uniform averaging, respectively. Results are averaged over 5 runs. We run each
experiment for 500k iterations. For each column the best score is in bold along with any score within
its standard deviation reach.

Fréchet Inception distance | Inception score 1

CIFAR-10 no avg EMA uniform avg no avg EMA uniform avg
RMSProp 1454 +£055 1242+0.08 11.14+0.10 8.15+0.07 827+0.03 8.87 £0.03
Adam 1457 £0.96 1227 £0.07 10.87 £0.05 8.05+0.12 820+0.05 8.77+0.06
AdaHessian 3954 +£4.43 37.71+£020 5396+0.19 692+0.06 685+006 6.52=+0.05
OASIS 1576 £0.28 1393 £0.13 1496+ 0.08 8.26+0.05 8.41+0.02 8.74+0.03
Extra RMSProp ~ 13.68 +0.37 12.08 £ 0.07 11.42+0.05 8.14+0.09 830+0.02 8.80+0.02
Extra Adam 1441 £0.36 12.87+£0.10 11.09+0.03 8.024+0.05 8.13+0.04 8.72+0.04
Extra AdaHessian 40.11 £0.50 40.51 £043 5546+038 6.72+0.06 6.66+0.04 5.98+0.03
Extra OASIS 1551 +£025 13.79+0.09 1395+0.09 8.11+0.06 820+0.01 8.73+0.03

Table 3: Comparisons of the OASIS and OASIS with momentum (OASIS-M) optimization methods
and their extragradient versions using FID and IS, scores obtained at the end of training. EMA and
uniform avg denote as exponential moving average and uniform averaging, respectively. Results are
averaged over 5 runs. We run each experiment for 500k iterations. For each column the best score is
in bold along with any score within its standard deviation reach.

Fréchet Inception distance | Inception score 1

CIFAR-10 no avg EMA uniform avg no avg EMA uniform avg
OASIS 1576 £0.28 1393 4+0.13 14.96 +£0.08 8.26+0.05 8.41+0.02 8.74+0.03
OASIS-M 1538 +0.23 13.54 £0.10 1391 +0.17 8.14+0.04 831+£003 87740.02
Extra OASIS ~ 1551+0.25 13.79+£0.09 13.95+0.09 8.11+£0.06 820+0.01 8.73+0.03
Extra OASIS-M  16.10 £0.70 14.32+£0.22 17704+ 0.27 826+ 0.06 8.35+0.04 8.86+0.03
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A  EXPERIMENTS

A.1 IMPLEMENTATION DETAILS

In our implementation of experiments we use the PyTorch? framework. For the computation of the
FID and IS metrics we utilize the the package pytorch_gan_metrics’ that reproduces the original
Tensorflow implementation in PyTorch. We provide all source code of our experiments as a part of
supplementary material. We also attach configuration files for each model to run its training with
specified hyperparameters.

A.2 ARCHITECTURES

We replicate the experimental setup as in (Miyato et al., 2018; Chavdarova et al., 2019). We use
ResNet architectures for the generator G and the discriminator D as described in Table 4.

Table 4: ResNet architectures for CIFAR10 dataset. We use similar architec-
tures to the ones used in (Miyato et al., 2018).

RGB image x € R32x32x3

[ > ]
z € R128 ~ N(0,1) ResBlock down 128
— dense, 4 x 4 x 256 ResBlock down 128
— ResBlock up 256 ResBlock 128
ResBlock up 256 ResBlock 128
v ResBlock up 256 ReLU
Figure 2: ResBlock BN, ReLLU, 3% 3 conv, 3 Tanh Global sum pooling
architecture. For the
discriminator we re- (a) Generator dense — 1
moved BN layers in
ResBlock. (b) Discriminator

A.3 TRAINING LOSSES

For training we use the hinge version of the non-saturating adversarial loss as in (Miyato et al., 2018):

£0 = Ean gy min (0, ~1 + D(@))] + Exnpi) [min (0, -1 - D(G(2)))]  (16)
L6 = ~Barpie [D (G(2))], an

A.4 HYPERPARAMETERS

Table 5 lists the hyperparameters we used to obtain the reported results on CIFAR-10 dataset. These
values were tuned for each method independently. D_steps means the number of the discriminator
steps per one generator step. eps denotes the threshold in OASIS algorithm that is used to clip the
diagonal elements of the Hessian. hess_upd_each means how often we update the diagonal elements
of the Hessian.

2https://pytorch.org
3https://pypi.org/project/pytorch-gan-metrics/

13
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Table 5: Hyperparameters we used for CIFAR-10 dataset.

Hyperparameters

Method lra lrp 51 B2 D_steps Dbatchsize eps hess_upd_each
RMSProp 0.0002 0.0002 -  0.999 5 64 - -
Adam 0.0002 0.0002 0.0 0.999 5 64 - -
AdaHessian 0.0002 0.0002 0.0 0.999 5 64 - 20
OASIS 0.0002 0.0002 0.0 0.999 5 64 0.01 20
Extra RMSProp ~ 0.0002 0.0002 - 0.999 5 64 - -
Extra Adam 0.0002 0.0002 0.0 0.999 5 64 - -
Extra AdaHessian 0.0002 0.0002 0.0 0.999 5 64 - 20
Extra OASIS 0.0002 0.0002 0.0 0.999 5 64 0.01 20
OASIS-M 0.0002 0.0002 0.1 0.999 5 64 0.01 20
Extra OASIS-M  0.0002 0.0002 0.1 0.999 5 64 0.01 20

A.5 TotAL AMOUNT OF COMPUTE RESOURCES

We run our experiments on Tesla V100 GPUs. We used approximately 2500 GPU hours to obtain the
reported results.

A.6 SAMPLES OF THE TRAINED GENERATORS

We show random samples of the trained generators for each method. We chose the best averaging
strategy for each algorithm based on the visual quality. The provided samples are in Figures 3-12.

Figure 3: Samples produced by the generator trained by the RMSProp algorithm using uniform
average on the weights.

14
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Figure 4: Samples produced by the generator trained by the Adam algorithm using uniform average
on the weights.

Figure 5: Samples produced by the generator trained by the AdaHessian algorithm using exponential
moving average on the weights.

icae, | L,
P i OBy

Figure 6: Samples produced by the generator trained by the OASIS algorithm using exponential
moving average on the weights.

Figure 7: Samples produced by the generator trained by the Extra RMSProp algorithm using uniform
average on the weights.
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Figure 8: Samples produced by the generator trained by the Extra Adam algorithm using uniform
average on the weights.

Figure 9: Samples produced by the generator trained by the Extra AdaHessian algorithm using
exponential moving average on the weights.

Figure 10: Samples produced by the generator trained by the Extra OASIS algorithm using exponential
moving average on the weights.

Figure 11: Samples produced by the generator trained by the OASIS-M algorithm using exponential
moving average on the weights.
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Figure 12: Samples produced by the generator trained by the Extra OASIS-M algorithm using
exponential moving average on the weights.
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B TECHNICAL LEMMA

Lemma 3. For any T' € N, we get
VT
1 1
1-—= <1——. 18

Proof: We start from the inequality that for all x € R it holds 1 + x < exp(«). Hence, for z = —

we have vr
1\ T 1
(1 . T> < exp (‘?) = exp <\/T) . (19)

1
VT’

Sl

o0

Using the Taylor expansion of exp(z) = >~ %L with x = we obtain

. < 1) ) 1+ 1 1 +i (—1)"
o) =1 — ¢ = AT
VT VI T GIVT | Al T

=4

One can note that for 7" > 1:

1 1 +§: y* _ 1 _ 1
2T 6TVT “—n!-T"2 = 2T ~ 2T’
Therefore,
1 1 1 1
exp|—— ) <1—-—+ =1- . 20
p( ﬁ)— NNy 2T 0

Combining the inequalities (19) and (20), we have:

()" o) <1

This finishes the proof. [

C MISSING PROOFS

C.1 PROOF OF LEMMA 1

1) It is easy to see that due to the fact that all matrices H;® and Dj are diagonal, then based on rules
(7) and (8), we can conclude that all matrices Dy are also diagonal. Again from rules (7), (8) and
B € [0;1], we get that all elements of D¥ matrices are not greater than I in absolute value. (9) gives

that DY matrices are diagonal and their elements from e to I'. This completes the proof. Similar
proof for the variable y. [

2) We start from simple steps:
el < Djyy = Df + Diy — Df = D + (Dfyy — Df)(Diyy + DP) (D + DP) ™
Since matrices D;”H and Df are diagonal, we have that b;’;lf)f = Df ﬁ;"ﬂ and then
el < Dipy = Df + (Di1)* — (DY) (D + D)~
< DF +1(DF)? = (D7)l l(Dfy + DY) ™oL

All diagonal elements of D, and D7 are positive from e to T', it means that || (D, ; + D¥)~!||o <
2—16. Hence,

AT AT 1 AT AT
el X Dy < Dy + %H(Dt-&-1)2 — (D )2”00[-

One can note the following:
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o if (( t+1) )ii
(DF)?
if

iil:
if ((D t+1) )ii
((D )?)iil;
f( t+1) )u
Jiil;

(
)

((Df)?
o if (D
((Df)?

Hence,

Jiil-

Y

v

<

62 and ((th)2)”
82 and ((D?)Q)”

62 and ((Df)2)21

t+1) )ii < e? and ((D )2)11 <

elﬁf)f

Di +

DZ

> €2 then |((D7,1)?)i — (D7)l = |((DF1)?)ii —

< €? then [((DF1)?)i — (DF)Diil < [(DF1)?)ii —
> €2 then |((D7,1)?)i — (D7)l < ((DF1)?)ii —

e2 then |((DF1)%)i —

1 T x
S l(Df1)?* = (DF)? |1

2e
L2 () — (DF) o]

All diagonal elements of (H)? and (Df{’)2 are from 0 to I'?, then

Finally, using that I <

el < D¥,., < Df +

L and get

Similar proof for the variable y. [J

3) We start from simple steps:

(]' - ﬁt+1)P2I
2e '

el % Dfyy = Df + Dfy - Dy

Then,

el < Df., < Df +||D?,; — D¥|| ool
One can note the following:
o if (DFy1)is > eand (Df)s; > e then (D7 )i — (DF)ial = [(DFer)as — (DF il:
eif (Df1)ii = e and (Df);; < e then (D7 fr1)ii — (DF)ul < |(D¥y1)is = (DF)iils
o if (Df;1)ii < e and (Df)s; > e then |(Dfyy)ii — (DF)usl < [(Dfy)ii — (DF il
o if (Df;1)ii < e and (Df)y; < e then [(Df,1)ii — (DF)iil = 0 < [(Dfy1)ii — (D il
Hence,

el < Dfy; < Dz +1Dfa —
=D+

Dot

+ (1= Bes )| HY — Df[lood

All diagonal elements of H and Dy are from —1I" to I, then

Finally, using that I <

el < Dy < DY +2(1

1
- and get

el < Dy

Similar proof for the variable y. [

= Bey)I'T

< <1+ 2(1 —ftﬂ)F) pr.
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C.2 PROOF OF LEMMA 2

1) OASIS: H” = diag(q®), where ¢© = (v® ® V2, f(x,y, £)v®) with Rademacher vector v. H is
diagonal from the definition. Moreover,

2
dTE

1% = oI5 < | max | Y 1(V3, f(2,9,€))ss]

2

< max Z |(V§xf($, yvf))iﬂ
(2,9,)3;

X | dy
j
d,
<dy Z(VQ f(z,y,6)%

=dy ||V @y, €3 < do L.
Finally, we have | H*|| oo < v/d,L = T. Similar proof for the variable y.

2) AdaHessian: (H*)? = diag(v® ® v®). The proof can be given in a similar way to the previous
point.

3) Adam: (H®)? = diag(V, f(z,y,£) © V. f(x,y,£)). H is diagonal from the definition. More-
over, using diagonal structure of H® and (H?)?,

V2, = () oo = |diag(Vaf (2,5, ) © T f (5,5, )1
=IVaf(2,5,£) © Vo f (2, 9,8l
= Ve (2,5, 0)1%
< |IVef(z,y,6)I° < M.
Finally, we have ||H*||oc < M =T. Similar proof for the variable y.
4) RMSProp: (H®)? = diag(V,f(z,y,&) ® Vof(z,y,£)). The proof can be given in a similar

way to the previous point. [

C.3 PROOF OF THEOREM 1

‘We start with additional notation:

Fz0) = Flag,y) = ( Vaf (@4, yt) )7 g = ( Vo f (e ye: &) )7

*Vyf(xtvyt) *Vyf(xt»ytvft)

. DF 0
Vi = ]
0 D!

For the matrices {Vt} we can prove an analogue of Lemma 1. With new notation Algorithm 1 can be
rewritten as follows:

Ziy1/2 = 2t — (Vi) gt
2t41 = 2t — vt(‘%)‘lgm/z.

This is the notation we will use in the proof. Before prove Theorem, we consider the following
lemma:
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Lemmad. Letz,y € R"and D € SjirJr. We set 2T = 2z — y, then for all u € R™:
Iz = wllp = llz = ullb — 2(y, 2" —uhp — [l2* — 2|3
Proof of Lemma: Let us consider the following chain:

I —ullp = =" — 2+ 2 —ullp

= llz—ulp +2(* — 22 —u)p + |27 — 2lIp

=z —ullp +2(* =227 —w)p ~ [l 2[5
= llz —ullp +2(=* = (2 —y), 2" —w)p = 2{y, 2" —w)p — ||l2* — [}
=z —ullp = 2(y, 2" —w)p — [z — 2D

d

Proof of Theorem 1: Applymg the previous Lemma with z¥ = 24,1, 2 = 2, u = 2,y =
’)’V giy1/2 and D = Vi, we get

llzt41 — Z”w = |z — Z||?/t - 2'7<‘/t_1gt+1/2>zt+1 - Z>Vt — [lzt41 — ZtHf/t

= llze = 213, = 27{ger1/2 2001 — 2) = 21 — 2ll3,

and with 2% = 2,19, 2 = 2z, u =z, y =7V, g D = Vi

Ize4172 = 26101, = llze = 261, — 29(Vi ' grs zeg1y2 — 241) v, — 2es1y2 — zlI3,
=z — Zt+1||%7t = 299t 214172 — Ze41) — || Ze41/2 — Zt||%/t'
Next, we sum up the two previous equalities
l[2t41 — Z||‘2/t + [2t41/2 — Zt+1\|%/t =z — Z||%/t — 24172 — Zt”%/t
- 27<9t+1/2, Zep1 — 2) — 27(gt, Zt41/2 — Zty1)-
A small rearrangement gives
lze41 = 2013, +llze+1/2 — 241,
=llze = 213, = llze41/2 — 2lI3,
- 2’Y<gt+1/2a Rt+1/2 — Z> —27(gt — Gt41/25 Ft+1/2 — Zi41)
<z — Z||%/t - ||Zt+1/2 - Zt”%/t - 2’Y<9t+1/27 Zt41/2 — z)
+ YN ges1/2 — gtH?}t—l + |2t 41/2 — Zt+1H%/t-
And then

t4+1/2

lze41 = 2l13, <llze = 2l3, = 204172 = 213, — 209" Y2, 2041y2 — 2)

+ 72 ge41/2 — gtn%/fl'
Next, we use that V[l < é] and get

2
v
2641 — Z||2} <zt — Z||%7t - ||Zt+1/2 - Zt||%7t - 27<9t+1/2,zt+1/2 —2)+ ?Hgt+1/2 - 9t||2

t4+1/2
/ y Rt4+1/2 z)

<llze = 213, — llzerje — 2, — 2vig
372 37?
+ 7HF(Zt+1/2) — F(z)|* + 7||9t+1/2 — F(zg41)9)|?
3v? 9
+ 7\|F(Zt) gell”.
Smoothness of function f (Assumption 2) gives

l[2e41 — Z||‘2/t <llz - Z||%/t = llze41/2 — Zt||%/t - 27<9t+1/2;2t+1/2 —2)
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372 L2
gl

372
2e41/2 — 21> + 7||9t+1/2 — F(zi112)|I?

3 2
+ =P () — gl

=||z: — Z||%/ — llzt41/2 — Zt||?7 = 29(F(2t41/2)s 2t4172 — 2)

3y 212 3
+ I Ze11/2 — 2el* + 7||9t+1/2 — F(zi4172) |17

+ 7||F(Zt) - 9t||2 + 27<F(Zt+1/2) — Gt+1/25 Ft4+1/2 — Z> (21)

Strongly convex—strongly concave case. We substitute z = z* and take the total expectation of both
sides of the equation

E (201 — 2° 13, <E [l = 2*12,] —E [lz0412 — 213, | = 29E [(F(zu31/2), 200172 — 27)]

37212
il

R
E [||ze41/2 — 2e]1*] + 715 [lge1/2 — F(zeg1/2)|1°]

3’72 *
7]E [HF(Zt) - gt||2] + 29E [<F(zt+1/2) — Jt4+1/25 Ft41/2 — % ﬂ .
Next, using the property of the solution z*: (F'(2*), z;41/2 — 2*) = 0, and get
E[llze01 = 212, ] <E [z = 2*12,] = E [lze41/2 = 13

—27E [(F(th/g) — F(2%), 20412 — z*)]
32 L?

372
+ E [Hzt+1/2 - Ztm =+ 7E [||9t+1/2 - F(Zt+1/2)\|2]
372 2 *
+ o E [|F(zt) — gill?] + 29E [(F(2151/2) — Gt+1/2 Ze41/2 — 27)]

~E |||z

U12] —E [leesrj — 2l
3v2L2

- 27E [<F(Zt+1/2) - F(2"), 2t41/2 — Z*>] + E [||Zt+1/2 - Zt||2]

3y* 2 37° 2
+—E [Etv1/2 (1904172 = F(2e1172)II°]] + - [Ee [1F(21) — ge1*]]
+ 29E [(Eeq1/2 [F(zi41/2) = Gis1/2] 2412 — 2%)] -
Assumptions 1 and 3 on strongly convexity - strongly concavity and on stochastisity give

E[llzer1 = 213, | <E [llz = 2*12,] —E [lz001/2 — 2l

3’72L2

— 2yuE [||ze41/2 — 2°I1°] + E [llze+1/2 — 2]

6’72 2

<E [|zt = 212 =B [lresas — 20l | = v [ll2e - 2]
3v2L? 67202
+ ( 7 ) [H2t+1/2 - Zt\m =+ 2
eb
With %Vt <I< éf/ we get

* TH *
E o1 = 2113, | < (1= 25)E [z — 21,
2 2

2yu  3y2L? 6vo
- <1_€_ e? E{Hztﬂm_zt"a + eb

22
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1 3 e ._¢e
The choice of v < min { i 37} move us to

.2 i .2 67202
2l <13 < (1~ 2) 2 -1 + 22

Lemma 1 with C' = % for (7) and C' = % for (8) gives

2 ] <0+ (- B)OE [l - 13,

E [||z41
Then we have

[||zt+1 -z HVH} < (1 - ?) (1+ (1= pB41)O)E [”zt - Z*”%/J

6202

7 (1+ (1= Bt41)C) .

This completes the proof of the strongly convex-strongly concave case. [

+

Convex—concave case. We start from (21) with small rearrangement
29(F(2e41/2) 2t41/2 — 2) <|lzt — ZH%/t = |lzt+1 — Z”%/,, —[2t41/2 — Zt||$7t

372L?
L3

2 3? 2
264172 — 2] + T”gt+1/2 = F(2i1172) |l
R 9
+ 7||F(Zt) Gell” + 29(F (2t 41/2) — Gey1/2: 2t1172 — 2)-
With I < é‘?} and Lemma 1 with C = QF? for (7) and C = 2L for (8), we get
29(F (241/2), 2172 = 2) Sllze = 2[1F, = (14 (1= B31)C) ™ llzear — 213,

372 L? 372
- (1 T T2 ||Zt+1/2 - Zt||v e ||9t+1/2 - F(Zt+1/2)H2

3 2
+ %HF(%) — 9tl* + 2v(F(251/2) — Gea1/2) 24172 — 2)-

Next, we sum over all ¢ from O to 7" — 1 and take maximum on Z

T-1
1
2y mexT g(F(ZtJrl/Z)v Zip1)2 — 2)
=
—1
Smax g 3 (s =2l = (L (1= Bu)C) ™ e = 21 |
372‘[/2 — 2 3'}/ 1 9
—(1- o2 Z [||Zt+1/2 - Zt||‘>t] + T Z [lge41/2 — Fze11,2) 7]
t=0 t=0
- =
+ TT ;0 ||F Zt - gt” ] + I;lea‘%(f ; [2"}/<F(2’t+1/2) — 9t+1/272t+1/2 — Zﬂ .

(22)

Then, by 279 = ZZ:Ol Tip1/2 and yg'd = & ZZ:Ol Yt+1/2, Jensen’s inequality and convexity-
concavity of f:

T-1 T-1
av 1
gap(239) < Zr/lgii{f (T (tz_; $t+1/2> ,y/) — min, f ( (Z yt+1/2>>

~

f(xtJrl/Za — min — Z f@ Yer1/2)-

1
T zex T

IN
B

a.
‘e

<
<M

t

Il
o
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Given the fact of linear independence of ' and 3/:
T-1

(f($t+1/2»y/) - f(xlvyt+1/2)) .
t=0

ap(z779) < max —
gap(er ™) < (@ y)ez T

Using convexity and concavity of the function f:

T—1
@ 1
gap(z7?) < X T tz; (f(@es1/2,9") = F(@ yeq1/2))

T Z (f($t+1/27y/) - f($t+1/2,yt+1/2) + f($t+1/2; Z/t+1/2) - f(i’?/»ytﬂ/z))
t=0

T-1

1
< = (V : Y = + (Ve : : —z
> (x}g?b)éz T £ ( yf($t+1/2 yt+1/2) Y yt+1/2> { f(fft+1/2 Z/t+1/2) Tiy1/2 — T >)

T-1
1
< max - Z<F(zt+1/2), Ztr1/2 = Z)- (23)
t=0

Combining (22) and (23), we get
=
Zigap(:4) Smax g, 3 [z = 212, = (L4 (1= Bi)CO) ™ Nz

)

3v2L2\ 1 fy R —~
- <1 T2 7 [||Zt+1/2 - Zt”%/t} o T Zg llges1/2 — (Zt+1/2)||2]

€ =0
392 1 T—1 T—1
+ T [HF(Zt) gtl| ] + max — Z [Q’Y<F(2t+1/2) Gt+1/2, Zt+1/2 — Zﬂ
t=0 t=0

The choice of v < 57 gives

T-1
av 1 —1
27 gap(4") <max 7 > [zt = 2lI%, = (1 + (1= Bir)O) "z — 21, |
t=0
9 . T—1 T—
+ 371 [||9t+1/2 - F(Zt+1/2 H ||F 2t) gt||2]
e T e
t=0 t=0

zEZ
t=
lz0 — 2|13,
W _ _ _ 12
< max T + (141 =811)0) " (1= Bi1)C Z (|21 zH
T-1 T-1
3’72 1 3’y2 1
+ =7 2 Moy = FGap) P + = -7 3 [IF () = aill’]
t=0 t=0

T-1
1
+ T E : [29(F (z141/2) = Gt41/25 Z141/2)]
t=0

2v(= Z (2t41/2) = Gev1/2]; Z>] .

t=0

+ max
zEZ

One can note that (1 + (1 — B;11)C) > 1, and get

2o =22, 1% :
2y - gap(4") Smax |~ + = (1= )l - 21,
t=1
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3 2 1 T-1 2 T—1
+ - T (lge+1/2 = F(zt51/2)|I] T [IF(z¢) — gell?]
Py Py
1 T—1
7 [2Y(F (z141/2) — Ge+1/2> Zt41/2)]
P
1 T—1
+ max 2%? 2 [F(2t41/2) = 9t+1/2], —Z>] .

Next, we use V; < I'J and the fact that iterations and the set Z are bounded: ||z, ||z|| < Q

2v - gap(z7"?) <max M Z (1= Be41)CT |2 — 2|7
z2€Z =1
3721 — 3721
+ L3 llorsse = Pl + 5 3 [IFGo - ol
t=0 =0
=
+ T [2’7<F(Zt+1/2) — 9t+1/25 Zt+1/2>]
t=0
=
+ max 27(T 2 [F'(2041/2) = 9ev1/2], —Z>]
oz 1= 2
< T + T tz::l 4(1 = B11)CTQ
3,2 1 T=1 372 1 T-1
e T ges1/2 — F(Zt+1/2)m + o T Z [I1F () — 9t||2]
t=0 t=0
=
+ T ; [2’Y<F(Zt+1/2) — Gt+1/25 Zt+1/2>]
=
+ max 27<T 2 [F(2t41/2) — Gev1/2)s —2)
Next, we take a full expectation and use Assumption 3
arQ? 1
avg
2v - E[gap(27"7)] < T tT ; A(1 = Br41)CTQ?
T—1
3y 1
+ S B llgesse — Flan2)]]
t=0
3,2 1 T=1
A E [||F(2) — g4
+ 2 ST B IFG) - )]
t=0
=
+ 7 E [27(F(zt+1/2) — gt+1/2, Zt+1/2>]
t=0
=
+E I;leaé( 2’y<? 2 [F(Zt+1/2) - 9t+1/2}7 Z>H
a2 1= 67%0
< —) 41— CTrQ?
S + T ; ( /Bt—H) +
=
+E max 27<T 2 [F'(2041/2) = Gev1/2], —Z>H
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arQ? 1 6202
< — ) 41— CTrQ?
<= +T;( Bri1)CTQ + =
2
e 3: 212,
Zt+1/2 — gt+1/2 ) T
t=0 ‘/1,71
e = 6202
<— Z (1 — Bi1)CTQ% +
= A
+E max | = |17 ; F(zi41/2) = Gig1/2|| + -7 (24)
With unbiasedness and independence of all F'(z¢y1/2) — gi41/2, We get
4F§22 — 6v202
2v-E 79 (1— YOTO? 4+ ———
v - Elgap(2777)] < Z:: Bt+1) ob
INES ’Y . 2
+Izneazx 7 ZO [HF(ZtJrl/Q) _gt+1/2H }
5702 - 77252

1
7 Z 4(1 = B111)CTO? +

Here we additionally use Assumption 3. Finally,

E [gap(27"7)] <

3F92 2C’FQ2 Z (1-B8)+ 470
t=

This completes the proof of the convex-concave case. [

Non-convex-non-concave case. We start from (21), substitute z = z* and take the total expectation
of both sides of the equation

Ellzee1 — =1, <B [Nz = =13 ] =B [lzt412 = 3] = 20E [(Fe41/2); 20172 = 2]
3v2L2
ksl

372
E [[lze41/2 — 2 /°] + — E [lge+1/2 — F(ze41/2) 7]
37 *
—E[||F(zt) — gel1?] + 29E [(F(z141/2) — Ge41/2 24172 — 2°)]
:Ewnfzwa}fEM%ngwma}
. 3 2L2
- 27E [(F(Zt+1/2)azt+1/2 -z >] + ’YTE [Hzt+1/2 - ZtHﬂ
3? 2 3’7 2
+ 7E [Eiv1y2 [lge4172 — F(zia12) 1] + —E [Eq [[|F(20) — 9:lI?]]

+ 2’Y]E [<]Et+1/2 [F(Zt+1/2) - 9t+1/2] s R2t41/2 — % >] .

Assumptions 1 and 3 on non-convexity—non-concavity and on stochastisity give

E 201 — 212, <E [l = 2" 12,] = E [lz41/2 = I3 ]

3’}/2L2 6’)/20'2
+ E [llzt41/2 — 2e)*] + ——
eb
With el < \775, we get
) ) 372 L2 6v0
E |||lzt41 — 2 ||%/J <E [Hzt —z ||%/J - (1 T T2 E [”zt“/Q - Zt”?/z} + eb
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2 .2

. 3v2L? 6720
& [l - 1] - (1= 255 ) 28 [l ] + 2

With v < 3% we get

" X 272 6202
ol 2l ] el ] 22

Lemma 1 with C = % for (7) and C' = % for (8) gives
_ . " 27 6720
L+ (1 = Bs1)O) " E llzta = 21, | <E[llze = 2113, ] = S [loel3 - | + 2

" 27 6720
<E[llzn— 13, | - S-E [lonl3 ] + 2

20.2

<E[ll2 - 2|2, _7E [lgell®] +

In the last step we use that %I < Vfl. Then, using Assumption 3, we have

(1+ (1= Bi1)C) ' E [Jass — #'113,,, | <E [Hztfz*n%]f— (17 (o)1)

6720
eb

2
<E [llz - =*112,] = 35E [I1F (0112

7,}/202
eb

+ —E [lge — F(z)II?] +

+

Small rearrangement gives

7y 02

LZE[|F))?] g]E[Hzt—z*H@J—(1+(1—6t+1)c) [Ilzm—zllmh o

Summing over all ¢ from 0 to 7" — 1 and averaging, we get

T eb

Ellzo-213] 74202
ZIIF ||2] oy 7

1 T—1 B
#3200 800 (= B O [z = =1

<FHzo — 2*|? n 77202
- T eb
T-1

+ % ; (1+ (1= B11)C) ™" (1 = Bey1)CTE [[|ze — 27])%] .

Here we use V; < I'I. With the fact that iterations are bounded: ||z|| < 2, we obtain

Z IF(z0)]?| <

t=0

4FQ 77202
eb

T-1

+ % Z (1 + (1 - ﬁt+1)c)71 . 4(1 — ﬂt+1)CPQQ.

t=1
One can note that (1 + (1 — 8;41)C) > 1, and get

T-1

LS R

t=0

4AarQ? 7920 1
< ro?. — § 1-— .
S + o +4CTQ T t:1( Biy1)

2
gl
I E
I'

@
N
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Finally,

’ﬂ

12r292 21T 52 120r292 1 <&
|3 S iror| <P L RO L5,
=1

?

If we choose z randomly and uniformly, then E [||F(z7)||?] < E {% | F(2) |2} and
0

o~
Il

121202  21I'e? 1207202 1
E _ <
[”1 (ZT)” ] = ’YQT eb 72 T

(1—ﬂt)~

M=

This completes the proof of the non-convex-non-concave case. [

C.4 PROOF OF COROLLARY 1

Strongly convex—strongly concave case. With 3; = § > 1 — 5%, we have (10) in the following
form

ol 129%0°
el = (1- )]+ 2

Running the recursion, we have

T 129202 = Y\t
]E[R(Q)]—i— eb Z (l_ﬁ)

(*-3r)
<(1- 27 ming + 257 S 1
(t-3r)

ol o1 | 24I0°
<(1-— R
- 2T [ O] ebu
ypuT 9 24T o2
< —— |E|R .
=P < 2 ) [ 0] + ebu

Finally, we need tuning of v < ;5

2T In(max{2,ebu’ R3T/ (4870 >)})
pnT

olf £ > 2T In(max{2,ebu’ R3T/(48T%c*)})

A 2 p2 2 2 ) I%0® 5 [ IP0
O (exp (—In (max{2, ebp” RGT/(481°0°)})) Ry + €M2T> =0 (eb,u2T> .

then v = gives

2T ln(max{Z,eb,u,QRST/(48F202)})
uT

~ euI’ 5  Iyo? ~ euI , I?02
7 < 7 .
© (eXp ( 8FL) Ro+ =5 ) <O\ ~5rr ) ot o

What in the end gives that

~ T 22
E[R}] = SR ——).
(R3] =0 (exp ( 8I‘L> Ry + eb;ﬂT)

This completes the proof of the strongly convex—strongly concave case. [J

then v = ;5 gives

Convex—concave case. With 3, = 5> 1 — CT, we have (11) in the following form
Q2 2r0?  4y0?
E avg  avg\] - )
[gap(z7?,y7r )] < AT + AT + ob

vazmin{ﬁ; VJF\;T } then

wva an I'LO?  ToQ
E [gap(x7’?,y7?)] =O ( T + \/elTT> .

28



Published as a conference paper at ICOMP 2024

This completes the proof of the convex—concave case. [
Non-convex-non-concave case. With 3, = 3 > 1 — CT, we have (12) in the following form

_ o 241202 21T0?
E[IV2 f (e, 5) I + IV @r 5m)P) €= g7+ 5

The choice of v = 57 gives
24021202 n 2102
e2T eb

E [[|Vaf (@r,50)I1 + IVy f (@, 5r) 1] <

The batch size —non-concave case. []

C.5 PROOF OF COROLLARY 2

Strongly convex-strongly concave case. We start from (10) with the small rearrangement

6 2 .2
T [RY] < (1- 25+ (1 - B1)C) E[RY] B[R] + 2 (1+ (1 = Be)C).

Summing over all ¢ from 0 to 7" — 1 and averaging, we get

W o [ | E “'ZO _Z*||%7J 1 T 2
B | o= | S+ = 3 (1= Bu)C = JE)E Iz — 273
t=0 t=0
67202 1 =
a0 T > 1+ (1= Bi41)0).
t=0

Using el < V; < I'T and || || < ©, we have

ey | = ATO? 1 & o
ey — 2P| < - (1— C——)]E[ [k
AT | & Iz == <=7 +T;( € = o5 ) B [l ="y,
67202 1
=N (14+(1-8)C
eb thl( +(1=4)C)

2
Let us define o = (%) . Then, 1 — gB; = 1_157511 with g =1— é (18) gives

NIRRT
gV <1 NG

And hence, for all t > /&

Then we get

g
T

4m2 1 f

Z e — 2%

<

eb

1
ATO?  4CTQ? 2TC 69202 1
< . - E 1 1—
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12021202 120202
< =+ .

= T eb
Then,
T—1
1 . 24C°T302  24T'Cyo?
]ETZHZt_ZHQ S 3.3 27 :
. evy2u?T e?ub

. . 202 .
Finally, v = min {ﬁ; Y CEU?TC”} gives

T-1 2 T-1 5 1/3
1 . 1 2 C?T3L20? C4T50402
T;Zt—z T;O”Zt—z [ ] —O< 32T + S puth2T )

This completes the proof of the strongly convex—strongly concave case. [J

E <E

Convex—concave case. With 5, = % we get (11) in the following form

T

0% dyo?  2(1— B)CTO? 1
E avg , avgy]
[gap(mT y Y )} — ’YT + eb + ’YT tZZl 1— ﬁt+1
39 4yo?
— AT eb
2 VT 9 T
L2BCTRIE 1 20— pere g
T t=1 1-5 T t=1 1_Bﬁ
2 2
<3FQ n 4vyo
— AT eb
20TQ2  2(1 - B)CTN% < 1
+ + (1=5) > .
WT T 1 - VT
Next, we substitute 3 = 1 — 1. From (18) we get that BVT <1 — ﬁ Then, we get
E [gap(z7?,y7"?)] < T T
2CTQ%  4(1 — B)CTQ*T
+
wWT Y

AT o’ | 2CTQ? | ACTQ?
AT e WT T

It means that

crQO? 702)

E [gap(z§'?, y3"?)] =O ( VT e

: 3 . VCTebd
Wlth’y:mln{i, e }

av av CFLQQ V CF@bO'Q
E [gap(z7?, y7p?)] =O ( > :

VT el
This completes the proof of the convex—concave case. [

1
Non-convex-non-concave case. With 3, = 'f:gi:l we get (12) in the following form

120202 21To” | 12(1 - 5)CT?0? |

_ _ 2 = — 2
E[[IVef @z, gr)lI* + |Vyf(@r,g0)]7] < T T e 2T 2 7= g
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1220 | 21T0®  12(1 - B)CT20? YT

82T + eb ~2T —~1-p
| 1201 - poree? ET: 1
~2T — - gYT

121202 21T'0? 1207202
ST et VT
N 12(1 - B)CT?Q* 1
72 1-p8vVT’

Next, we substitute § = 1 — % From (18) we get that 3 vT <1-— ﬁ Then, we get

121202  21T¢? 1207202  24CT202
2T e 2T - 2T
48CT2%202 2102
2T e

. 2
The batch size b ~ 1;% and v = 57 complete the proof of the non-convex—non-concave case. [

E [|IVof @z, g)II” + 1Vy f (@, 50) %] <
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C.6 PROOF OF THEOREM 2

We start the same way as in the proof of Theorem 1. Applying Lemma 4 with 2+ = 2,1, 2 = z,
w=2z9y=—1Vic12) " (wr — 2z) + VVt:ll/ggtHﬂ and D = V,_y /5, we get

l2¢41 — z||$/ =||z — z||%/t71/2 + 2n(we — 24, 24172 — 2)

t—1/2

= 29(Gev1/2, 241 — 2) — ||Ze41 — 2 ‘2%_1/2,

and with 2T = Zt41/2, 2 = 2t U = 2441, Y = 71/;111/2%_1/2, D= X7t_1/2;

26172 — Zt+1||%7t71/2 = ||z — Zt+1||%7t71/2 =29t —1/2, Zey1/2 — #t+1) — 204172 — Zt||‘27t71/2~
Next, we sum up the two previous equalities
2041 — Z||%/H/2 + 24172 — Zt+1||%/t71/2 =z - Z||%>H/2 = llzt41/2 - Zt||%>tfl/2
- 27<9t+1/27 241 — 2)
- 27<9t—1/2, Zt41/2 — Z11)
+ 20wy — 24, Ze41/2 — 2)-

A small rearrangement gives
2641 — Z||%7t71/2+||zt+1/2 - Zt+1||%/tfl/2

— 24172 — Zt||%7

=z — 2]|2
=}z — I3

t—1/2
- 27<9t+1/2, Rt+1/2 — z) — 2’Y<9t—1/2 — Ot+1/2, Zt4+1/2 — Zt41)
+ 20wy — 2, 204172 — 2) +20(2 — 28, 241172 — 2)

t+1/2

<lz — =I5,

—1/2 y Rt41/2 — z)

ez — =l ~ g
2 2 2

+ 77 Ge41/2 — gt—1/2||‘}t:11/2 + |ze41/2 — Zt+1||“/t_l/2

+ nllwe — 2] + nllze41/2 — 2| - Nl z¢41/2 — we |

—nllz = zl* = nllzesry2 — 207 + 0llzesry2 — 2l

t+1/2

<|lz¢ — ZH%/FW = [[2t41/2 — Zt||2\)7t71/2 —2v(g s Zt1/2 = Z)

2 — 2 — 2
+ 7N gt11/2 gt71/2||v;11/2+”zt+1/2 Zt+1||‘/171/2
+llwe = zlI* = nllz = zell? + 0llzepayz — 20 = nllzee12 — wel*.
And then,

t+1/2
/ y Rt+1/2 — Z>

leear —2l%,_ | <llze =213, = llzeraye = 2l},_ | —2v(g
2 - 2
+ v ||9t+1/2 gt71/2||vt—711/2
+nllwe = 2l” = nllz = z* + nllzee 2 — 2l = nllze2 — wl?

<llz: — ZH%/H/Q = lze41/2 = ZtH%/t_l/2 —29(¢"?, z141/0 — 2)

’72 2
+ o 94172 — ge—1/21l

+nllwe — 2|* = nllz — 21> + nllze41/2 — z|® - nllze41/2 — wy ||
<z — 2113, tH1/2

—1/2 y Rt+1/2 — z)

— 24172 — ZtH%/t,l/z —27(g
3y? 3y?
+ 7||F(2t+1/2) - F(Zt71/2)||2 + 7H9t+1/2 - F(zt+1/2)||2

372
+ 7||F(2t71/2) - gt71/2H2
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+nllwe — 21> = nllz = 21> + nll 212 — 2l = nllzes12 — wel > (25)
Using smoothness of f and the update of Algorithm 2
1F(ze41/2) = F(2i-172)|°
§L2H3t+1/2 - Zt71/2H2
<2L2||zi41/2 = 2e)|* + 2L% |20 — 21 o1

2 ) 207 2
<2L%|2p412 — 2° + T”Zt - Zt—1/2||‘”/t_3/2

§2L2||Zt+1/2 — z|?

21?2 o L o
+ Mz +0(Viez/2) Nwioy — 2-1) = Y (Vics o) gemy2 — 21+ 7(Vi5)0) 19t—3/2\|%,t73/2

§2L2||Zt+1/2 — z|?
212 ,
+ 7||77(wt 1= Zt-1) = V9t-1/2 +79t—3/2||‘7{—_13/2-

Hence,

IF(ze41/2) — F(zi—12) 1> <2L7||2041/2 — 2

212 9
+ eTHﬁ(wt—l — 2t-1) = YGi—1/2 + VGt-3/2|l

<2L%||z41/2 — 2)* +

2.2

+ ge—1/2 — ge—3/2I”

4L17

<2L%||zp41/2 — 2))” +
12L2 2

| F(21—1/2) — F(z1—3/2) |17
12L2 2

||9t 1/2 — (Zt—1/2)||2
12L2 2
_|_

| F(21—3/2) — ge—3/21°- (26)
Combining (25) and (26), we have
32 M

| ze41 — ZH%/H/Z (ze41/2) — Fzem1)9)|I?

t+1/2

<|lz — Z||%7t71/2 — 24172 — Zt||%7t71/2 —2v(g sZt41/2 — 2)

37° 3v?

+ 7“F(Zt+1/2) — F(zi_12) I + T||gt+1/2 — F(z11,2))1°
3 2

+ %HF(th/z) —gi—1,2”

+nllwe — 2[1* = nllz — 21> + nll2eg1/2 — 2e)* = nllzes1/2 — wel?

+ @H%H/z — z))* + mzjﬂ“wkl =z
?ﬁtﬂuﬂzt,l/z) — F(z_32)|”
e i+ M ey ) — gl
Here M is some positive constant, which we will define later. Next, we get
241 — ZH%/H/Z + 372M||F(Zt+1/2) Flzap)l?
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<|lzs — Z”%/t_l/z —ze41/2 — zt||%/t_1/2 — 27<gt+1/2’zt+1/2 —2)
+ ?HF(ZH-UQ) - F(Zt—1/2)||2 + ?%2”9&1/2 - F(Zt“/Q)”Q
s ) gl

- wt||2

n
+nllwe — 2|* = nllz — 2> + nllze41/2 — 2| — 5\\%

+ |21 /2 — ze|)?

6v2L*M 1292 L2 M

e = P+ T o =z

36+ L2M

T”F(Zt—lﬂ) - F(Zt—3/2)||2

367 LM 36v*L2M

+ 2 g1 — Flamay) P+ =05 1 Gimag2) = geayal™

Small rearrangement gives

37*(M - 1) n
lzt41 — Z||2 L1 7\|F(zt+1/2) - F(Zt—1/2)||2 + §||Zt - wt||2
<|lzt — Z||2 e nllze — 2|2 + nllwe — 2l — 27(g"2, 211170 — 2)
1292L2M  3+v3(M —1) 12920202 M
D 1P (eer2) = Flzmyo) |2+ == 5 et = wia
6v2L2M
+ T||zt+1/2 = zl” + 2llze4172 — 2l — 204172 — ZtH%/t_l/2
3,}/2 3,}/2
+ 7||9t+1/2 - F(Zt+1/2)||2 + 7”F(2t71/2) - g:s71/2||2
3674L2M 36v4L2M
+ engt 1/2 — F(Z1t71/2)||2 7||F(2t 3/2) gt—B/QHQ-
272
With M =2,y < 1& andn < ep < £, we have W < 1and W < 1. Then,

3’72 F F 2 n 2
ze41 — Z||V e T 7” (2t41/2) = Fz—12) " + §Hzt — w|

<llzt =25, , —nllze — 2 + nllwr - Z||2 —29(g"™% 24170 — 2)
1 37
ty I1F(2¢—1/2) — F(zi—32)|I* + 5 2||Zt 1 — wi—1?
+f|\z — 2l + Sllzerryz — 2l — lzea1/z — 22
4 t+1/2 t D) t+1/2 t t+1/2 1V, s

372 372
+ 7||9t+1/2 — F(Zt+1/2)H2 + 7||F(Zt71/2) - 9%1/2“2

3y2L? 37
||9t71/2 - F(Zt71/2)”

(Zt 3/2) 9t—3/2||2-

J’_
Using I < %V 1/2, we obtain

37? Ui
lzera =215, , + = 1F(zrr172) = Fzoap)l® + 5 llze — wil?

<llze =212, = llee = 21+ nlhwe = 2] = 210G 2, 22— 2)

1 3 1
2 B Cy) — a4 2 Dl =

+ Z||Zt+1/2 - thVH/Q + §||Zt+1/2 - Zt||%/H/2 = llze41/2 = Zt||%>H/2
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R R
+ ?||9t+1/2 — F(zpp12) I + ?”F(Zt—lﬂ) — gi—1/2|?

372 R
+ l||9t—1/2 - F(Zt—1/2)||2 + %”F(Zt—?,m) - gt—3/2||2

t+1/2

<llze =25, |, —nllze = 20 + wllwe = 20 = 299" 12, 2012 — 2)

1 3 1
T3 7||F(Zt71/2) — F(z—32)|I? t3 *Hzt 1 —wia |
1 372
4 ||Zt+1/2 |%/t71/2 + 7”gt+1/2 — F(zg1.2)|?
2, 3 2
+ ?”F(thlﬂ) —gi—12|I” + 7||F(Zt73/2) — gi—3/2|I"- (27)

Strongly convex—strongly concave case. We substitute z = z* and take the total expectation of both
sides of the equation

3
E [l = =12, ]+ SE [P Guarja) - Flams)l?) + 2 [l — i)
<E [nzt =213, ] — B [llze = 212) +nE [luwy - 2*))?]
—27E [<Et+1/2 [9 1/2} s Rt41/2 — z*>}

1 342

1
5 B [IF(am12) = Flaap)lP] + 5 - 3E [ll2e-1 — wiea ]

1 2 32 2
—7E {|\Zt+1/2 - Zt||\7H/2] + —E[llgrs1/2 = Flz11/2) ]
67 2 3y? 2
—E [HF(Zt 1/2) = Ge—1,2l| ] + 7E U|F(Zt73/2) — gi—3/2|l ] .
Next, using the property of the solution 2*: (F'(2*), 24412 — 2*) = 0, and get
372]}5 F F 2 nE 2
E |24 — 2|3, el T I (ze41/2) = F(zi-12) 7] + 3 [z — well?]
<E [nzt =212, = B (= 1) o [l — )]
—29E K (Zt+1/2) - Z*, RZt41/2 — Z*>]

1 342

1
5 B [IF(ao12) = Flaap)lP] + 5 - 3E [ll2e-1 — wiea ]

1 2 3y? 2
—7E {Hztﬂ/z - Zt||\7tfl/2] +—E [ges1/2 = Fzes1/2)]
67 37
—E [HF(Zt 1/2) — 975—1/2”2] =+ 7E U|F(Zt—3/2) - gt—3/2||2] .
Assumptions 1 and 3 on strongly convexity - strongly concavity and on stochastisity give
372]E F F 2 77]E 2
E |[[zt41 — 2 ”% L + —E [|F(z141/2) — F(ze-172)|I*] + 5 [z — we|?]

<E [nzt =213, ] — B [llze = 212) + nE [Juwy — 2*))?]

Vi 1/2
— 2yuE [||Zt+1/2 - Z*”z]
1 342 1
5 B [IF(so12) = Flamsp)lP] + 5 - 3E [ll2e-1 — weea ]
1 9 12202
B Z]E “‘Ztﬂ/z B ZtHVtA/J eb

<E [z - 2" 2, ] = 7B llzn = 2*11%] + nE [Jlw, — *]1°]

—yuE [Hzt — 2" ] + 2vulE [||Zt+1/2 - ZtHQ]
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1 342
t5- %E [1F(ze-1/2) — F(ze—3p2) 1] + 5 - 5E [ll2-1 — we-1]?]
1

12+%52
2
Z]E [Hzt+1/2 B Zt||‘7t—1/2} + eb

Using I < %V 1/2, We obtain

37 n
Ellzers =213, ] + "B [1FGes1/2) = Foim/2)l2] + 2B [l — well?]

<E [IIZt ’ %H/J — (0 +y)E ||z — 2"

]+77]E[|wt—2 I ]
1 3 1
b2 BB (1P Grnage) = Fleraya)l?) + 5 - DB [lims — i ]

1 2’7M 9 127202
(DM g [ — 2|2 } o
<4 e ) leta/e ththlm L

With v < &,

39 U
Elllze41 — 2 ”v 1/2} + 7E [1E (ze41/2) = Fze-172)IIP] + §E [z — well?]
<E [nzt =22, ] = G [z — 212 + o [ - 27)?)
37 L n
+ 5 —E IF(zi-12) = F(zi-32)I°] + 5 5P [l2e—1 = we—1]?]

124202
eb

The update of w; gives

TR (s - 1P = T2 (B, [l - 2°P)]
_ ("7"" %) E [||zt _ Z*HQ} + (1 _p)(U-F'Y“/?)E [”wt _ Z*||2] .

p
Connecting with the previous equation, we get

U
p

E [z - 23, ]+ lwepr — 27|

3 2
"B [IF(z41/2) = FGeor o)) + 5B [z — wil?]
<t [l 1, ] - 28 e 1)

+ x *
+ (=) L [y — 22 4 o — 2|
1 3’7 21,1 7 _ 2
5 —E[[|F(2i-1/2) — F(zi—32)II’] + 5 2]E [llze-1 — we]?]
12W202
eb
<E [llz = =13, _, ] = 5E 2 — 2"

—+ /2 .
+(1- g2} T [l ]
277+w P

1 3
T E[HF(zf 12) = Flzeapa) 2] +

12’7
eb

-E [”th1 - wt71||2]
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Using th 12 = I, we get

n+ k2

E [z - 2712, ] [leweer = =*]1]
37 n
—EK [||F(Zt+1/2) (Zt—1/2)||2] + §E [Hzt - wt||2}

Y 2 pyw O\ A4 w2 2
(1= )8l 1 L () R e

20+ yp P
1 3 1
b2 B R [IFGrage) ~ Flerago)?) + 5 - DB [lzics — i ]
12+%02
eb

Lemma 1 with C = I for (7), C = 2L for (8) and Byy1 = (1 + (1 — B11)C) gives

1 .
HE [HZH_I —c ||Vf+1/J +

+vm .
N (g — 2*]7]

3y° U
+—_E (1F (ze11/2) = F(zio1y2) %] + S [ll2¢ — wil?]

N+ T8/2

<E [z -1, ] + E [[lwis1 - 2]

3
+ LB (1 Gy j2) - Flea/)?) + 2E [0 — i)

w> [ 2 ] pyp \ n+m/2 a2
1- = - 1— E -
( 2r et = 2 H ~1/2 +( 277+7,u> P [Hwt Zl }

1 3 1
e i) — Flaa)?] + & - T [l — wea )
2 e 2 2
12+%02
eb
And then,
(n+74/2)Byys *
E|[lze+1 — 2 ||Vf+1/2} %E[Hwﬂrl —2*|?]
3v’B B
+ ﬁE |:||F(Zt+1/2) — F(Zt_1/2)||2] + n 2t+1E [”Zt - ’LUtHz}
+ v1/2)B N
(1**) it [l =]+ (1o 5 ) R =)
1/2 2n+yp P
1 3v’B 1 nB
5 - T EE [P (ie12) = Flagp) ) + 5 - TE [y — we ]
1272028
4 V0 P

eb

t
One can note that in Section 3 we use 3; = B or B; = f:gt .

it holds that By, < B;.

Then,
Bl — 1, ] W}%E [lwesr — 2*17]
+ i ftH [IF(2t41/2) — F(ze—12)II’] + %E [llze — will?]
< ( ) B,E [Ilzt — 22 1/2] + (1 _ QUPFV;L) (n+ Z/2)BtE [Jwe — 2*|1%]
+ ; 37€Bt IF (ze-1/2) = F(ze-32)|I7] + % UTBtE (221 = wea ]
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+ 12’}/20—23t+1 '
eb
The notation

Vi1 =[lze41 — 27| wir — 2

Vt+1/2 p
3v?B nB
+ %HHF(ZHIM) = Flz12)|” + TtHHZt —wy”
gives
Y . 1 ! 127202 By 14
E[W41] < max [(1 - ﬁ) 1+ (1= Be1)0); <1 - m) ) E[W] b

This completes the proof of the strongly convex—strongly concave case. [J
Convex—concave case. We start from (27) with small rearrangement

29(F(2441/2), Zt41/2 — 2) <|lzt — ZH%/

2
t—1/2 - H2t+1 - Z”Vt—l/z

+ D, — 2|2 - gnwm —2|?

77 U
+ lwegr = 2l* = nllze — 2)* = (1 —p)Z;Hwt —z||?

p
1 392 37?2
+ 9 : 7||F(Zt—1/2) - F(Zt—3/2)H2 - 7||F(Zt+1/2) - F(Zt—1/2)||2
1
5 - allz-1 = wea | = 20 — w?

+ 29(F (241/2) = Gev1/2: 2112 — 2)

+ ¥”9t+1/2 - F(Zt+1/2)||2

B m2) — gl + 2 UF Gacago) - gl
With I < if/t and Lemma 1 with C = % for (7) and C = 2L for (8), we get
2v(F (2141/2)s 24172 — 2) <2 — ZH%/FI/2 — (14 (1= Ber1)O) 241 — z||%/t+l/2

n n
+ = flwe = 2]* — v = 2|

n Ui
+ = fwer = 21 = nllze — 2l = (1 =)l = 2|

p
1 32 372
T3 7||F(Zt—1/2) — F(zi_sp)|I” - T”F(Zt-&-l/Z) — F(z-12)?
1
5~ allzo1 = wea | = 2z - wi?

+ 29(F (2¢41/2) — Ge41/2> Zt41/2 — 2)
372

+ 7”975-&-1/2 — F(ze41)2) I
6+ 3y?

+ 7||F(Zt—1/2) - 9t—1/2\|2 + 7||F(Zt—3/2) - 9t—3/2H2~

Next, we sum over all t from Oto 7" — 1
L T2
2y % ;<F(2t+1/2), Ziy1/2 — 2)

[lz0 — ZH%/ 1 =
—Z oy - Z(l — Be41)C| 2 — z||%/.til/2

< Tmie
- T T
t=1
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+7pT ||F(Z 1/2) — (2—3/2)“ Jr*HZ 1 —w_q]?
T—1
n
T ur |26 — we|
=1
T—1
n 1 2 2 2
+;E'T [[[wir1 = 21* = pllze — 2[|* = (1 = p)Jw: — 2|1?]

T
t27- 5 D AF(zir1/2) = Gevryzs zipaje = 2)

37 1
t+—= Z 1914172 = F(ze41/2)|I°

t=0

S*y 1
"'7*2”1’ (21-1/2) = g1—1y2|I> + — ZHF Zi—s3/2) — Ge-32]”

The fact V, < T'T gives

7T Z (2t41/2)s 2t41/2 — 2)
t=0

r
7 Z (1= Bex1)Cllze — 2|

['llzo *Z||2

IN

nllwo —=|* | 37°
2

+ | F(2-1/2) — F(2_3/2) |17 +*HZ 1 —w_q?

o0

T

ﬂ l _ 2 _ _ 2 1— - 2

g 2 e = 2l = pllae = 2I* = (1= p)jws — 2]
t=0

1
+t2v- 5 Z<F(Zt+1/2) = Ge+1/2: Zek1/2 2

3 2 1 T-1 )
t—7 > Nges1s2 = Fzigr2)l
=0
672 1 37 1
o T IF(z1-1/2) = ge—1p2ll> + —= Z 1F(21—3/2) — g1—3/2|*.
=0

Taking maximum on Z, using (23) and taking the full expectation, we obtain

FT

av I||zo — 2]
2vE [gap(27"7)] §maxM max — Z (1= Bey1)Cll2e — 2|2

zEZ

2
n z 3’}/
+ max M

max 1 NP (y2) = PP + llem — wo P

-E
P

T—1
1
max ; [lwerr = 217 = pllze = 2lI* = (1 = p)[Jwe — leﬂ

+2v-E

max — Z Zt+1/2 — Gt41/25 Ft+1/2 — Z)]
37 1
Z E [lge41/2 — F(ze51/2) 7]
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T-1 -
672 1
t 7 2 E [|F(z-1/2) — ge—1/2II’] + 7? ; [I1F(ze—3/2) — ge—3/2l°] -

Next, we use Assumption 3 and the fact that iterations and the set Z are bounded: | z¢||, ||z]] < ©

ArQ?  40r02 12 N2 6420202 Q% 124202
T + T (1= Beg1) + il + " +77 re

29 [gap(= ‘“’9)] = pT el T eb
t=1

T-1
n 1
+o ‘E lrzﬂeagT > [lwesr = 211 = pllze — 21> = (1 = p)|Jws — lez]]

=0
1 T-—1
+2v-E max Z Zt+1/2 — 9t+1/2> Zt41/2 — Z>] -
=
T—1
One can estimate £ [mazx Z (F(zt41/2) = Gt4+1/2> Zt4+1/2 — z>} the same way as (24)
z€ t=0
29E [gap(z7")]
A% 40TQ2 02 6920202 02 124202
< 1-— —
=7t Z; ﬁt+1)+pT+eT+T+eb
n 1 T-—1
+ ]; -E max - Z [wisr = 2] = pllze = 2[* = (1 = p)lw — Z||2]]
t=
. o2 . 202
T eb
5002 40TO2? & 4nQ? 6720202 Q2 134202
< — P
—T+T;( 6t+1)+pT+eT+T+eb
. L 11
+ 2B w7 ; (e = 22 = pllz = 212 = (1= p) s — znﬂ
5002 40T02 & 4nQ? 6720202 Q2 134202
= 1 _ —_—
T T ;( thHHpTJr T T eb
. =
+ P B YT Z [=2(pze + (1 — p)wy — wirr, 2) = pllzel* — (1= p)[Jwe]l* + ||wt+1||2]]
t=0
502 40T0% 2 02 6920202 02 134202
— 1 . P
T+T;( 5t+1)+pT+eT+T+eb
. =
+ » (B jmax o 2 [—2(pz + (1 — p)wr — wit1, Z>]]
. L 11
+=-E |5 ) [ollzl? = (= p)lwel® + wea 7] | -
p T =
One can note that by definition wy41: E [p||z[|> 4+ (1 — p)[|we||* = w1 [?] =0
5m2 4cm = 47792 6720202 nQ% 134202
29E avg (1- L
VE [gap(27)] < Z b))+t =t g

p 2€z2 T

T—1
1
+ i -E lmax — [—2(pz: + (1 — p)ws — wii1, z)]] .
t=0
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With v < 457 and n < ep <e < T, we get

woon 11702 4cm2 = 13~202
29E [gap(z77)] < T (1= Beg1) + Vb
t=1 €
T—1
—|— — mag [ (wir1 — pze — (1 — plwy), z)H
ze =0
1ITO2  40TQ2 2 13~202
< 1—
<=7 + T tz:;( Bit1) + o
o T—1 2
+ T -E max (w1 —pze — (L=plwy)|| + [|2]?
t=0
Again with the fact that E [pz; + (1 — p)w; — weq1] = 0.
1ITQ2  4CTO? = 134202 2
2+E 27N < 1— =n 2
TE [gap (7)) <—— + — ;( Brn) + —— + —pmax|z]
o T—1
T E Z |wer —pze — (1 p)thIQ]
t=0
13702 40TQ? 2 13+202
< 1—
=7 T t:l( ) + =5
2 T—1
T B D lweer —pz— (1 —p)thQ]
t=0
13702 40TQ2 13~202
= + T tz:;( — Bey1) b
21 — 2
ToT pT ‘B ZEth {Hw“rl Ewt+1[wt+1]H H
_13re? 4cTe? Ti(l Beon) + 137%0*
T T & o eb
T—1 9
2
ZEwt+l {”wt+1” ] - HEwwrl[thrl]H ‘|
t=0
13702 40TQ2 = 13+202
T 7T ;(_Bt“H eb
277 T—1
B[ [ el +p ]~ lpze+ (1 p)wﬂ]
t=0
_13re> | 4cTe? T‘l(l Bo) + 137%0
T T e eb
T—
Z p)p 12 — we|?
=0
13702 40TQ2 13+202
< —
ST + T tz:;( Bit1) b
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T-1
n Z 2
+8 -E E i ||Zt —wt” ] . (29)

T-1
It remains to estimate E [4’,} > llze — we ||2} . For this, we substitute z = z* and take the expectation

2y = ZE Zt+1/2 Rt41/2 — Z*>]

Ello-212 | ;72
< _ vl 2 Z 1= B11)CE ||l — "I}, »
t=1

nE [[lwo —2*[?] | 3
+W S (e12) = Fepo)|I? + -1 — woal

AT Z Iz — welf?

no1N . "
T S (s — =717 =l — 717 = (1= )~ P
=0

672 1 372 1
+ 2 S E[IFGio2) — gl + 2 Z E [|1F(1-a/2) = g1-s/2l"]
Assumptions 1 (convexity), 3 and the fact: E [p||z[|* + (1 — )Hth2 — [lwe1[1?] = 0, give
T-1

p 12 ] Ello—=12 ] 4
17 2 =l < - 7 2= e CE [l = =1,

Bl ] | 37
+ 2L b B P e ja) = Pemal + 2hems —

pT
129202
eb
ATO?  40TQ2 02 3920202 02 124202
< 1- o
D A A7 I
(30)
Combining (29) and (30), we get
13702 4CTO? = 137202
29E 7N < 1—
VE [gap(z7 )] s——+ — t=1( Be) + ——
ATO?  40TQ2 02 3920202 0% 124202
. 1— Ak
LA t:l( R Y L )
100092 36CTN2 = 1107202
< 1— 17
<—7F t—7 t:l( Bis1) + b

Finally, we have
T

50I'Q2  18CTN? 550>
Blgap(+"")] <=7~ + — 7 D A=)+ —

t=1
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This completes the proof of the convex—concave case. [

Non-convex—non-concave case. We start from (27), substitute z = z* and take the total expectation
of both sides of the equation

37 U
E|llzt+1 — 2 ”Vt 1/2} +—E I (ze41/2) = Fze-172)IIP] + o [z — well?]
<E [nzt — 23] = 7B [l = 2] + o [y = 2*)]
— 2’)/E |:<F(Zt+ /2 )7Zt+1/2 - Z*>:|

1 342 1
+ 5 LE[IF (i)~ Flaosp)l?] + 5 - 3E [l = wiea ]

_ E]E ?iQE _F 2
I 2t41/2 — Zt||‘4 el T [ge+1/2 = F(zer1/2)|17]

67 R
—E [HF(Zt 1/2) 9t-1/2||2] + TE U|F(Zt—3/2) - gt—3/2||2] .

Assumptions | and 3 on non-convexity—non-concavity and on stochastisity give

37 7
E|{llz41 = 2*3, s } +—_E IE(ze41/2) = Fze-172)IIP] + ZE [z — well?]
<E |z — "2, , ] = 7B [llzn = 2*11%] + nE [Jlwe — =[]

1 3
L B[ F(z-1/2) = Fla-sp)IP] +

2
o 5 127202
— LB | |gi1sal%-
4 ['gt 1/2|Vt11/2:| + eb

<E |z — "2, , ] = 7B llzn = =*11%] + nE [Jlw, — =*]1*]

1
5 2E -1 — wea ]

1 3
5 I [P re) — Feasy2?] + 5 3E -1 — wea ]
12 2
- *]E [||9t—1/2||2] + Zba
<E [nzt =25 ] =B [z — 22 + [||wt — |17
1 3"y 2
+ 5 —E[|F(z-1/2) — F(Zt—3/2)|| %] + 5 *]E [llze-1 — we]?]
12 2 2
- *]E [”F(Zt 1/2)H ] FE [Hgt—1/2 - F(Zt—1/2)||2] + Zba

<E [nzt =213, ] — B [llze = 2112) +nE [y — =)

1 3'y
+ 5 —E [”F(zt 1/2) — F(Zt—3/2)||2] + 5 g]E [”thl - U’t71||2]
137202
e [||F<zt o)) + BT

Here we additionally use %I < Vt:ll /2 Lemma 1 with C = % for (7), C = % for (8) and
Bii1 = (1+ (1= Be41)C) gives

1 372 21 . 1 2
BE 1 = 2712, ]+ =B [1F Griaj2) = Flaoayo)2] + 2B 120 = wil?]

<E [z - 2", | = 7B [llze = 2" 1] + nE [Jlw, — =*]1°]

—1/2
1 3

s ”E[HF@ 1/2) = Flaspa)[’] +

3 E [|lz¢-1 _wt71||2]

=
2 2
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2
LB [IF(zi-12)l7] +

Next, after small rearrangement, we obtain

131202
eb

2
Y . 1 *
TE [I1F(zem/2)|?) <E [z = 213, | = 5—E Iz =213, ]

By

—nE [lze — 2*|1?] + 1E [[lw; — 2*||?]

1 32 3
+ 9 l]E [||F(Zt—1/2) - F(Zt—3/2)||2] - lE [||F(Zt+1/2) - F(Zt—1/2)||2]

1
5 5E mal—wtm]—gEm%—wm]

1320

eb

The update of w;y; gives
JE (s = 27P] = DB [Buy, (o = 2"I7])

Emafzwﬂ+li;@ﬂEmw4wﬂﬂ.

Connecting with the previous equation, we get

2

gl - ! :
sEE PG <E [lo= =1, | = 5 —F [len = 1%,

+7Eﬂmr—fu]—gEUmH4—zwﬂ

p
1 32 37?2
tg —E [1F (z21/2) = F(ze—s/2) 1] — — B (1F (ze41/2) = F(zi-1/2)117]
1
-+5g (1721 = wea|] - gEma—wm]
13 2 2
L 139%
eb
Summing over all ¢ from 0 to 7" — 1 and averaging, we get
T Ell-212 | 1T2p
L
F Wl | e 5 B ]
=0 t=1

7 2
+ 2B [lwo = =" IF] + B [1F(e-12) — Feaya) ]

137202
eb

+ gE [||z_1 — w_1||2] —+
With the fact that iterations are bounded: ||z:|| < €2, we obtain

Z 1F(ze-12) |7

4FQ2 877(22 12920202 134202
pT 2eT eb

ArQ2 N (1-B,)C
T = 1+(1-5)C
rao? 02 129210202 134202
<4 n 8n o n 3yo

- T pT 2eT eb
4arcn?
t=1
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Here we use (1 + (1 — §;)C) > 1. With 5 < ep, we get

1—
eT * ~2T (1= 5) + eb

) 96r292 A8TL2Q?  32I2C02 105T'c2
Z | (zt—1/2)l + :

t=1

T-1
If we choose Zr_1 /o randomly and uniformly, then E [||F(27_1,2)[]*] <E [% > IF(z—1/2)|1?
=0

and
2 T—-1

960202  48T'L?Q?  32I2C0Q 105I'c?
_ 2 < - .
E[IFGr-1)lI’] <=+~ + 7 2 (=B + =5

This completes the proof of the non-convex—non-concave case. [

C.7 PROOF OF COROLLARY 3

Strongly convex—strongly concave case. With 3; = § > 1 — %, we have (13) in the following

form
E[Pi41] <max (1 — w) 1-— #
- 4T 21 +
Yip

w,] 24~202
¢ eb

Running the recursion, we have

Y 1
E[¥7] <max (1fﬁ) (12;+1> W,
YHP p
t
12920% = Q% 1
+ b Zmax (I—E), —277]4_1
t=0 YHp P

48Tvo?  48nyo?  24~%0?
+ o + no + o
ebu epub epb

< T\ 1
S max |exp | — f yexXp | — E

1
yep P

Finally,

10L

ar ln(max{2,ebp,2\IJOT/(48F202)})
IOL — uT

A 2 p2 2 2 », I?o? 5 ([ T20°
O (eXp (—In (max{2, ebp” RET/(48T°0°)})) R§ + e,u2T> =0 (eb;ﬂT) .

2T In(max{2,ebu’ R3T /(48720 *)})
puT

then v = gives

4T In(max{2,ebu” R3T/(48T%07)})
oL uT

~ euT epuT Ivyo?
@) —— |V v v
(exp( 40FL) o+eXP( 10 L) o +exp(—p) Yo + cbys )
~ epd eppd I?g?
<O —— |V ——— |V v
< (exp ( 4OI‘L> 0+ exp ( 4077L> o +exp(—p)¥o+ ——— bpeT

then v = 157 gives

~ eudT wl 202
E [\I]T] =0 (eXp (_m> \IIO + exp (_40L> \IIO + exp (—p) \IIO + ebll/TT .

This completes the proof of the strongly convex—strongly concave case. [J
Convex—concave case. With 3, = 3 > 1 — CT , we have (14) in the following form

68702 5502
avg , avg\] )

E [gap(z7 .
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If ¥ = min { oL VUFebTQ } then

E [gap(z77, y7- T + N

This completes the proof of the convex—concave case. []

wo o o) (I‘L92 ﬁm)

Non-convex—non-concave case. With 5, = 3 > 1 — %, we have (15) in the following form
E|Vaf (@172, Gr—1,2)° + IVy f (@r-1/2, Fr-1/2)|*]

1287202  48T'L?0?  105T'¢2
< + + .
42T eT eb

The choice of v = 151 gives

, _ _ _ 120°T2L%Q%  105I02
E[[|Vef(Zr_1/2, yT—l/Z)H2 + Hvyf(CUT—l/2>yT—1/2)||2] < 2T + o
The batch size b ~ %‘; completes the proof of the non-convex—non-concave case. [

C.8 PROOF OF COROLLARY 4

Strongly convex-strongly concave case. We start from (13) with small rearrangement

| 1 T 1
yup T p yup T p
127202 (1 + (1 — C
o) [\Ilt-',-l] + i ( ( Bt-‘rl) )7
eb
Summing over all ¢ from 0 to 7" — 1 and averaging, we get
T-1
e 1 1
min lm oz |Blr X ‘I’t]
YHp P t=0
SLILUNE Ti (1= Bi)C = R ) Elw)
S T 2 t+1 uT t
124202 1 2
e 14 (1- C
G 7 2 1+ 1= 6u)0)

Using el < V; < I'T and ||z|| < €, we have

T—1 9
. |evi e 1 w112 20I'Q 1 o
mln[4r’m+§ T§||zt—z|]§ T+ 72 (180 - J5) Bl

E

2
Let us define o = (@) . Then, 1 — §, = 1255 with § = 1 — L. (18) gives

e
1
(R
NG
And hence, for all t > \/a
2 2
g a2
! Va o ATC
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Then we get

. [efy,u e
min
) 477
4T YHp +

Va T
20rQ% 1 127202 1
< — ) 20CTO? - 1+ (1-38)C
<= +T; + = 2 1+ (1=5)C)

t=1

20002 20CTN? ATC 127 1 &

< . — (1 1—
S + T ” T; + (1= :)C)
100C2T2Q2  24CH20>

< =+ .

- ul eb

Then,

t=0

1 Ti:IIZ—z*IIQ _o (TP | CTyo®  CT°Q2  Cro® O’ oo
K N ey2u?T e2ub ~2u2T eub epyuT e2pb )’

. o e . 3/CI'2Q2eb
Finally, v = min { oL 2T }

T—1 2

15

t=0

1 T-1
72l —z*n?]
t=0

C2T3L202  C2T?L2Q2  C2T2LO2 ([ C'T9q%02\'/°
=0
e3u?T + e2u?T + e2puT ( e utb2T )

. CAT25402 1/3+ C5T452Q4 1/3
21 402T 412 p3bT2 :

This completes the proof of the strongly convex—strongly concave case. []

Convex—concave case. With 3; = 7 gt+1 we get (14) in the following form

E [gap(a29, y29)] S5071;{22 n 55;)0
, 18(1—g)ere? zﬁi 1L, 180T ¢ !
T _11—5 ~T t:11_5ﬁ
<50F92 55v0?
- AT eb
| 18CTQ? | 18(1 — B)CTO? o .
WT VT L1 VT

Next, we substitute 5 = 1 — % From (18) we get that 8 vT <1-— ﬁ Then, we get

av av 50FQ2 55')/0'2 54OFQ2
E [gap(z?, y7?)] < T + T

47



Published as a conference paper at ICOMP 2024

It means that

crQO? 702>

E [gap(z7?, y7'?)] =0 ( WT T

3 : . VCTebQ
WlthV:mm{lgqum}

E [gap(z7 7, yr T + eT1/4

This completes the proof of the convex—concave case. [

ava ooy _o (crmz mm).

t+1
Non-convex—non-concave case. With 3, = fjgiz:l we get (15) in the following form

El||Vaf(@r_12: Gr—1/2)|I* + IV f @Er_1/2: Gr—1/2)|I*]
960202  48T'L202  32(1 — B)T2CN2 <~ 1 10502
+ ( 5) Z g

v2T + el v2T —~1-p + eb
9010  4SI'L?Q®  105T0”
- 2T eT eb
L 320 - preee? VI1 3201 p)r2cn? ZT: 1
7T t=1 1-5 VT = - BYT

Next, we substitute 5 = 1 — % From (18) we get that 3 VT <1 — ﬁ Then, we get

ElIVaf(@r—1/2:Ur-172) I + IVy f (@r—1/2, G7—12) 7]
<961—‘2Q2 n 48T 202 n 105T¢2 n 9612002
42T eT eb 2VT

. 2
The batch size b ~ % and v = 157 complete the proof of the non-convex-non-concave case. [J
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