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ABSTRACT

Exploratory analysis of time series data can yield a better understanding of com-
plex dynamical systems. Granger causality is a practical framework for analysing
interactions in sequential data, applied in a wide range of domains. In this paper,
we propose a novel framework for inferring multivariate Granger causality un-
der nonlinear dynamics based on an extension of self-explaining neural networks.
This framework is more interpretable than other neural-network-based techniques
for inferring Granger causality, since in addition to relational inference, it also
allows detecting signs of Granger-causal effects and inspecting their variability
over time. In comprehensive experiments on simulated data, we show that our
framework performs on par with several powerful baseline methods at inferring
Granger causality and that it achieves better performance at inferring interaction
signs. The results suggest that our framework is a viable and more interpretable
alternative to sparse-input neural networks for inferring Granger causality.

1 INTRODUCTION

Granger causality (GC) (Granger, 1969) is a popular practical approach for the analysis of multivari-
ate time series and has become instrumental in exploratory analysis (McCracken, 2016) in various
disciplines, such as neuroscience (Roebroeck et al., 2005), economics (Appiah, 2018), and clima-
tology (Charakopoulos et al., 2018). Recently, the focus of the methodological research has been
on inferring GC under nonlinear dynamics (Tank et al., 2018; Nauta et al., 2019; Wu et al., 2020;
Khanna & Tan, 2020; Löwe et al., 2020), causal structures varying across replicates (Löwe et al.,
2020), and unobserved confounding (Nauta et al., 2019; Löwe et al., 2020).

To the best of our knowledge, the latest powerful techniques for inferring GC do not target the effect
sign detection (see Section 2.1 for a formal definition) or exploration of effect variability with time
and, thus, have limited interpretability. This drawback defeats the purpose of GC analysis as an
exploratory statistical tool. In some nonlinear interactions, one variable may have an exclusively
positive or negative effect on another if it consistently drives the other variable up or down, re-
spectively. Negative and positive causal relationships are common in many real-world systems, for
example, gene regulatory networks feature inhibitory effects (Inoue et al., 2011) or in metabolomics,
certain compounds may inhibit or promote synthesis of other metabolites (Rinschen et al., 2019).
Differentiating between the two types of interactions would allow inferring and understanding such
inhibition and promotion relationships in real-world dynamical systems and would facilitate a more
comprehensive and insightful exploratory analysis. Therefore, we see a need for a framework ca-
pable of inferring nonlinear GC which is more amenable to interpretation than previously proposed
methods (Tank et al., 2018; Nauta et al., 2019; Khanna & Tan, 2020). To this end, we introduce
a novel method for detecting nonlinear multivariate Granger causality that is interpretable, in the
sense that it allows detecting effect signs and exploring influences among variables throughout time.
The main contributions of the paper are as follows:

1. We extend self-explaining neural network models (Alvarez-Melis & Jaakkola, 2018) to
time series analysis. The resulting autoregressive model, named generalised vector autore-
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gression (GVAR), is interpretable and allows exploring GC relations between variables,
signs of Granger-causal effects, and their variability through time.

2. We propose a framework for inferring nonlinear multivariate GC that relies on a GVAR
model with sparsity-inducing and time-smoothing penalties. Spurious associations are mit-
igated by finding relationships that are stable across original and time-reversed (Winkler
et al., 2016) time series data.

3. We comprehensively compare the proposed framework and the powerful baseline methods
of Tank et al. (2018), Nauta et al. (2019), and Khanna & Tan (2020) on a range of synthetic
time series datasets with known Granger-causal relationships. We evaluate the ability of
the methods to infer the ground truth GC structure and effect signs.

2 BACKGROUND AND RELATED WORK

2.1 GRANGER CAUSALITY

Granger-causal relationships are given by a set of directed dependencies within multivariate time
series. The classical definition of Granger causality is given, for example, by Lütkepohl (2007). Be-
low we define nonlinear multivariate GC, based on the adaptation by Tank et al. (2018). Consider a
time series with p variables: {xt}t∈Z+ =

{(
x1
t x2t ... xpt

)>}
t∈Z+

. Assume that causal relationships

between variables are given by the following structural equation model:

xit := gi

(
x1
1:(t−1), ..., x

j
1:(t−1), ..., x

p
1:(t−1)

)
+ εit, for 1 ≤ i ≤ p, (1)

where xj1:(t−1) is a shorthand notation for xj1, x
j
2, ..., x

j
t−1; εit are additive innovation terms; and

gi(·) are potentially nonlinear functions, specifying how the future values of variable xi depend on
the past values of x. We then say that variable xj does not Granger-cause variable xi, denoted as
xj 6−→ xi, if and only if gi(·) is constant in xj1:(t−1).

Depending on the form of the functional relationship gi(·), we can also differentiate between positive
and negative Granger-causal effects. In this paper, we define the effect sign as follows: if gi(·) is
increasing in all xj1:(t−1), then we say that variable xj has a positive effect on xi, if gi(·) is decreasing

in xj1:(t−1), then xj has a negative effect on xi. Note that an effect may be neither positive nor
negative. For example, xj can ‘contribute’ both positively and negatively to the future of xi at
different delays, or, for instance, the effect of xj on xi could depend on another variable.

Granger-causal relationships can be summarised by a directed graph G = (V, E), referred to as sum-
mary graph (Peters et al., 2017), where V = {1, ..., p} is a set of vertices corresponding to variables,
and E =

{
(i, j) : xi −→ xj

}
is a set of edges corresponding to Granger-causal relationships. Let

A ∈ {0, 1}p×p denote the adjacency matrix of G. The inference problem is then to estimateA from
observations {xt}Tt=1, where T is the length of the time series observed. In practice, we usually fit a
time series model that explicitly or implicitly infers dependencies between variables. Consequently,
a statistical test for GC is performed. A conventional approach (Lütkepohl, 2007) used to test for
linear Granger causality is the linear vector autoregression (VAR) (see Appendix A).

2.2 RELATED WORK

2.2.1 TECHNIQUES FOR INFERRING NONLINEAR GRANGER CAUSALITY

Relational inference in time series has been studied extensively in statistics and machine learning.
Early techniques for inferring undirected relationships include time-varying dynamic Bayesian net-
works (Song et al., 2009) and time-smoothed, regularised logistic regression with time-varying co-
efficients (Kolar et al., 2010). Recent approaches to inferring Granger-causal relationships leverage
the expressive power of neural networks (Montalto et al., 2015; Wang et al., 2018; Tank et al., 2018;
Nauta et al., 2019; Khanna & Tan, 2020; Wu et al., 2020; Löwe et al., 2020) and are often based on
regularised autoregressive models, reminiscent of the Lasso Granger method (Arnold et al., 2007).
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Tank et al. (2018) propose using sparse-input multilayer perceptron (cMLP) and long short-term
memory (cLSTM) to model nonlinear autoregressive relationships within time series. Building on
this, Khanna & Tan (2020) introduce a more sample efficient economy statistical recurrent unit
(eSRU) architecture with sparse input layer weights. Nauta et al. (2019) propose a temporal causal
discovery framework (TCDF) that leverages attention-based convolutional neural networks to test
for GC. Appendix B contains further details about these and other relevant methods.

Approaches discussed above (Tank et al., 2018; Nauta et al., 2019; Khanna & Tan, 2020) and in
Appendix B (Marinazzo et al., 2008; Ren et al., 2020; Montalto et al., 2015; Wang et al., 2018; Wu
et al., 2020; Löwe et al., 2020) focus almost exclusively on relational inference and do not allow
easily interpreting signs of GC effects and their variability through time. In this paper, we propose a
more interpretable inference framework, building on self explaining-neural networks (Alvarez-Melis
& Jaakkola, 2018), that, as shown by experiments, performs on par with the techniques described
herein.

2.2.2 STABILITY-BASED SELECTION PROCEDURES

The literature on stability-based model selection is abundant (Ben-Hur et al., 2002; Lange et al.,
2003; Meinshausen & Bühlmann, 2010; Sun et al., 2013). For example, Ben-Hur et al. (2002)
propose measuring stability of clustering solutions under perturbations to assess structure in the
data and select an appropriate number of clusters. Lange et al. (2003) propose a somewhat similar
approach. Meinshausen & Bühlmann (2010) introduce the stability selection procedure applicable
to a wide range of high-dimensional problems: their method guides the choice of the amount of
regularisation based on the error rate control. Sun et al. (2013) investigate a similar procedure in the
context of tuning penalised regression models.

2.2.3 SELF-EXPLAINING NEURAL NETWORKS

Alvarez-Melis & Jaakkola (2018) introduce self-explaining neural networks (SENN) – a class of
intrinsically interpretable models motivated by explicitness, faithfulness, and stability properties. A
SENN with a link function g(·) and interpretable basis concepts h(x) : Rp → Rk follows the form

f(x) = g (θ(x)1h(x)1, ..., θ(x)kh(x)k) , (2)
where x ∈ Rp are predictors; and θ(·) is a neural network with k outputs. We refer to θ(x) as
generalised coefficients for data point x and use them to ‘explain’ contributions of individual basis
concepts to predictions. In the case of g(·) being sum and concepts being raw inputs, Equation 2
simplifies to

f(x) =

p∑
j=1

θ(x)jxj . (3)

Appendix C lists additional properties SENNs need to satisfy, as defined by Alvarez-Melis &
Jaakkola (2018).

A SENN is trained by minimising the following gradient-regularised loss function, which balances
performance with interpretability:

Ly(f(x), y) + λLθ (f(x)) , (4)
where Ly(f(x), y) is a loss term for the ground classification or regression task; λ > 0 is a regular-
isation parameter; and Lθ(f(x)) =

∥∥∇xf(x)− θ(x)>Jhx (x)∥∥2 is the gradient penalty, where Jhx
is the Jacobian of h(·) w.r.t. x. This penalty encourages f(·) to be locally linear.

3 METHOD

We propose an extension of SENNs (Alvarez-Melis & Jaakkola, 2018) to autoregressive time series
modelling, which is essentially a vector autoregression (see Equation 11 in Appendix A) with gen-
eralised coefficient matrices. We refer to this model as generalised vector autoregression (GVAR).
The GVAR model of order K is given by

xt =

K∑
k=1

Ψθk (xt−k)xt−k + εt, (5)
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where Ψθk : Rp → Rp×p is a neural network parameterised by θk. For brevity, we omit the
intercept term here and in following equations. No specific distributional assumptions are made
on the additive innovation terms εt. Ψθk (xt−k) is a matrix whose components correspond to the
generalised coefficients for lag k at time step t. In particular, the component (i, j) of Ψθk (xt−k)

corresponds to the influence of xjt−k on xit. In our implementation, we use K MLPs for Ψθk(·)
with p input units and p2 outputs each, which are then reshaped into an Rp×p matrix. Observe that
the model defined in Equation 5 takes on a form of SENN (see Equation 3) with future time series
values as the response, past values as basis concepts, and sum as a link function.

Relationships between variables x1, ..., xp and their variability throughout time can be explored by
inspecting generalised coefficient matrices. To mitigate spurious inference in multivariate time se-
ries, we train GVAR by minimising the following penalised loss function with the mini-batch gradi-
ent descent:

1

T −K

T∑
t=K+1

‖xt − x̂t‖22 +
λ

T −K

T∑
t=K+1

R (Ψt) +
γ

T −K − 1

T−1∑
t=K+1

‖Ψt+1 −Ψt‖22 , (6)

where {xt}Tt=1 is a single observed replicate of a p-variate time series of length T ; x̂t =∑K
k=1 Ψθ̂k

(xt−k)xt−k is the one-step forecast for the t-th time point by the GVAR model; Ψt is
a shorthand notation for the concatenation of generalised coefficient matrices at the t-th time point:[
Ψθ̂K

(xt−K) Ψθ̂K−1
(xt−K+1) ... Ψθ̂1

(xt−1)
]
∈ Rp×Kp; R (·) is a sparsity-inducing penalty

term; and λ, γ ≥ 0 are regularisation parameters. The loss function (see Equation 6) consists of
three terms: (i) the mean squared error (MSE) loss, (ii) a sparsity-inducing regulariser, and (iii) the
smoothing penalty term. Note, that in presence of categorically-valued variables the MSE term can
be replaced with e.g. the cross-entropy loss.

The sparsity-inducing term R(·) is an appropriate penalty on the norm of the generalised coefficient
matrices. Examples of possible penalties for the linear VAR are provided in Table 4 in Appendix
A. These penalties can be easily adapted to the GVAR model. In the current implementation, we
employ the elastic-net-style penalty term (Zou & Hastie, 2005; Nicholson et al., 2017) R(Ψt) =

α ‖Ψt‖1 + (1− α) ‖Ψt‖22, with α = 0.5.

The smoothing penalty term, given by 1
T−K−1

∑T−1
t=K+1 ‖Ψt+1 −Ψt‖22, is the average norm of the

difference between generalised coefficient matrices for two consecutive time points. This penalty
term encourages smoothness in the evolution of coefficients w.r.t. time and replaces the gradient
penalty Lθ (f (x)) from the original formulation of SENN (see Equation 4). Observe that if the
term is constrained to be 0, then the GVAR model behaves as a penalised linear VAR on the training
data: coefficient matrices are invariant across time steps.

Figure 1: GVAR generalised coeffi-
cients inferred for a time series with
linear dynamics.

Thus, the proposed penalised loss function (see Equation 6)
allows controlling the (i) sparsity and (ii) nonlinearity of in-
ferred autoregressive dependencies. As opposed to the related
approaches of Tank et al. (2018) and Khanna & Tan (2020),
signs of Granger causal effects and their variability in time
can be assessed as well by interpreting matrices Ψθ̂k

(xt),
for K + 1 ≤ t ≤ T . Figure 1 shows a plot of generalised
coefficients versus time in a toy linear time series (see Ap-
pendix L for details). Observe that for causal relationships,
generalised coefficients are large in magnitude, whereas for
non-causal links, coefficients are shrunk towards 0. More-
over, the signs of coefficients agree with the true interaction
signs (ai). We further support these claims with empirical re-
sults in Section 4. In addition, we provide an ablation study

for the loss function in Appendix D.

3.1 INFERENCE FRAMEWORK

Once neural networks Ψθ̂k
, k = 1, ...,K, have been trained, we quantify strengths of Granger-

causal relationships between variables by aggregating matrices Ψθ̂k
(xt) across all time steps into
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summary statistics. We aggregate the obtained generalised coefficients into matrix S ∈ Rp×p as
follows:

Si,j = max
1≤k≤K

{
medianK+1≤t≤T

(∣∣∣∣(Ψθ̂k
(xt)

)
i,j

∣∣∣∣)} , for 1 ≤ i, j ≤ p. (7)

Intuitively, Si,j are statistics that quantify the strength of the Granger-causal effect of xi on xj using
magnitudes of generalised coefficients. We expect Si,j to be close to 0 for non-causal relationships
and Si,j � 0 if xi → xj . Note that in practice S is not binary-valued, as opposed to the ground
truth adjacency matrix A, which we want to infer, because the outputs of Ψθ̂k

(·) are not shrunk to
exact zeros. Therefore, we need a procedure deciding for which variable pairs Si,j are significantly
different from 0.

To infer a binary matrix of GC relationships, we propose a heuristic stability-based procedure that
relies on time-reversed Granger causality (TRGC) (Haufe et al., 2012; Winkler et al., 2016). The in-
tuition behind time reversal is to compare causality scores obtained from original and time-reversed
data: we expect relationships to be flipped on time-reversed data (Haufe et al., 2012; Winkler et al.,
2016). Winkler et al. (2016) prove the validity of time reversal for linear finite-order autoregres-
sive processes. In our work, time reversal is leveraged for inferring stable dependency structures in
nonlinear time series.

Algorithm 1 summarises the proposed stability-based thresholding procedure. During inference,
two separate GVAR models are trained: one on the original time series data, and another on time-
reversed data (lines 3-4 in Algorithm 1). Consequently, we estimate strengths of GC relationships
with these two models, as in Equation 7, and choose a threshold for matrixS which yields the highest
agreement between thresholded GC strengths estimated on original and time-reversed data (lines 5-9
in Algorithm 1). A sequence ofQ thresholds, given by ξ = (ξ1, ..., ξQ), is considered where the i-th
threshold is an ξi-quantile of values in S. The agreement between inferred thresholded structures is
measured (line 7 in Algorithm 1) using balanced accuracy score (Brodersen et al., 2010), denoted by
BA (·, ·), equal-to the average of sensitivity and specificity, to reflect both sensitivity and specificity
of the inference results. Other measures can be used for quantifying the agreement, for example,
graph similarity scores (Zager & Verghese, 2008). In this paper, we utilise BA, because considered
time series have sparse GC summary graphs and BA weighs positives and negatives equally. In
practice, trivial solutions, such as inferring no causal relationships, only self-causal links or all
possible causal links, are very stable. The agreement for such solutions is set to 0. Thus, the
procedure assumes that the true causal structure is different from these trivial cases. Figure 6 in
Appendix E contains an example of stability-based thresholding applied to simulated data.

Algorithm 1: Stability-based thresholding for inferring Granger causality with GVAR.

Input: One replicate of multivariate time series {xt}Tt=1; regularisation parameters λ and
γ ≥ 0; model order K ≥ 1; sequence ξ = (ξ1, ..., ξQ), 0 ≤ ξ1 < ξ2 < ... < ξQ ≤ 1.

Output: Estimate Â of the adjacency matrix of the GC summary graph.
1 Let {x̃t}Tt=1 be the time-reversed version of {xt}Tt=1, i.e. {x̃1, ..., x̃T } ≡ {xT , ...,x1} .
2 Let τ (X, χ) be the elementwise thresholding operator. For each component ofX ,
τ (Xi,j , χ) = 1, if |Xi,j | ≥ χ, and τ (Xi,j , χ) = 0, otherwise.

3 Train an order K GVAR with parameters λ and γ by minimising loss in Equation 6 on
{xt}Tt=1 and compute S as in Equation 7.

4 Train another GVAR on {x̃t}Tt=1 and compute S̃ as in Equation 7.
5 for i = 1 to Q do
6 Let κi = qξi(S) and κ̃i = qξi(S̃), where qξ(X) denotes the ξ-quantile of X .
7 Evaluate agreement

ςi =
1
2

[
BA
(
τ (S, κi) , τ

(
S̃>, κ̃i

))
+ BA

(
τ
(
S̃>, κ̃i

)
, τ (S, κi)

)]
.

8 end
9 Let i∗ = argmax1≤i≤Q ςi and ξ∗ = ξi∗ .

10 Let Â = τ (S, qξ∗(S)).
11 return Â.
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To summarise, this procedure attempts to find a dependency structure that is stable across original
and time-reversed data in order to identify significant Granger-causal relationships. In Section 4, we
demonstrate the efficacy of this inference framework. In particular, we show that it performs on par
with previously proposed approaches mentioned in Section 2.2.

3.1.1 COMPUTATIONAL COMPLEXITY

Our inference framework differs from the previously proposed cMLP, cLSTM (Tank et al., 2018),
TCDF (Nauta et al., 2019), and eSRU (Khanna & Tan, 2020) w.r.t. computational complexity. Men-
tioned methods require training p neural networks, one for each variable separately, whereas our
inference framework trains 2K neural networks. A clear disadvantage of GVAR is its memory com-
plexity: GVAR has many more parameters, since every MLP it trains has p2 outputs. Appendix F
provides a comparison between training times on simulated datasets with p ∈ {4, 15, 20}. In prac-
tice, for a moderate order K and a larger p, we observe that training a GVAR model is faster than a
cLSTM and eSRU.

4 EXPERIMENTS

The purpose of our experiments is twofold: (i) to compare methods in terms of their ability to infer
the underlying GC structure; and (ii) to compare methods in terms of their ability to detect signs of
GC effects. We compare GVAR to 5 baseline techniques: VAR with F -tests for Granger causality1

and the Benjamini-Hochberg procedure (Benjamini & Hochberg, 1995) for controlling the false
discovery rate (FDR) (at q = 0.05); cMLP and cLSTM (Tank et al., 2018)2; TCDF (Nauta et al.,
2019)3; and eSRU (Khanna & Tan, 2020)4. We particularly focus on the baselines that, similarly
to GVAR, leverage sparsity-inducing penalties, namely cMLP, cLSTM, and eSRU. In addition, we
provide a comparison with dynamic Bayesian networks (Murphy & Russell, 2002) in Appendix I.
The code is available in the GitHub repository: https://github.com/i6092467/GVAR.

4.1 INFERRING GRANGER CAUSALITY

Figure 2: GC summary
graph adjacency matrix of
the Lorenz 96 system with
p = 20. Dark cells corre-
spond to the absence of a GC
relationship; light cells de-
note a GC relationship.

We first compare methods w.r.t. their ability to infer GC relationships
correctly on two synthetic datasets. We evaluate inferred dependen-
cies on each independent replicate/simulation separately against the
adjacency matrix of the ground truth GC graph, an example is shown
in Figure 2. Each method is trained only on one sequence. Unless
otherwise mentioned, we use accuracy (ACC) and balanced accu-
racy (BA) scores to evaluate thresholded inference results. For cMLP,
cLSTM, and eSRU, the relevant weight norms are compared to 0. For
TCDF, thresholding is performed within the framework based on the
permutation test described by Nauta et al. (2019). For GVAR, thresh-
olded matrices are obtained by applying Algorithm 1. In addition, we
look at the continuously-valued inference results: norms of relevant
weights, scores, and strengths of GC relationships (see Equation 7).
We compare these scores against the true structure using areas un-
der receiver operating characteristic (AUROC) and precision-recall
(AUPRC) curves. For all evaluation metrics, we only consider off-
diagonal elements of adjacency matrices, ignoring self-causal rela-
tionships, which are usually the easiest to infer. Note that our evalua-
tion approach is different from those of Tank et al. (2018) and Khanna
& Tan (2020); this partially explains some deviations from their re-
sults. Relevant hyperparameters of all models are tuned to maximise the BA score or AUPRC (if a
model fails to shrink any weights to zeros) by performing a grid search (see Appendix H for details
about hyperparameter tuning). In Appendix M, we compare the prediction error of all models on
held-out data.

1As implemented in the statsmodels library (Seabold & Perktold, 2010).
2https://github.com/iancovert/Neural-GC.
3https://github.com/M-Nauta/TCDF.
4https://github.com/sakhanna/SRU_for_GCI.
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4.1.1 LORENZ 96 MODEL

A standard benchmark for the evaluation of GC inference techniques is the Lorenz 96 model
(Lorenz, 1995). This continuous time dynamical system in p variables is given by the following
nonlinear differential equations:

dxi

dt
=
(
xi+1 − xi−2

)
xi−1 − xi + F, for 1 ≤ i ≤ p, (8)

where x0 := xp, x−1 := xp−1, and xp+1 := x1; and F is a forcing constant that, in combination
with p, controls the nonlinearity of the system (Tank et al., 2018; Karimi & Paul, 2010). As can
be seen from Equation 8, the true causal structure is quite sparse. Figure 2 shows the adjacency
matrix of the summary graph for this dataset (for other datasets, adjacency matrices are visualised
in Appendix G). We numerically simulate R = 5 replicates with p = 20 variables and T = 500
observations under F = 10 and F = 40. The setting is similar to the experiments of Tank et al.
(2018) and Khanna & Tan (2020), but includes more variables.

Table 1 summarises the performance of the inference techniques on the Lorenz 96 time series under
F = 10 and F = 40. For F = 10, all of the methods apart from TCDF are very successful at
inferring GC relationships, even linear VAR. On average, GVAR outperforms all baselines, although
performance differences are not considerable. For F = 40, the inference problem appears to be more
difficult (Appendix J investigates performance of VAR and GVAR across a range of forcing constant
values). In this case, TCDF and cLSTM perform surprisingly poorly, whereas cMLP, eSRU, and
GVAR achieve somewhat comparable performance levels. GVAR attains the best combination of
accuracy and BA scores, whereas cMLP has the highest AUROC and AUPRC. Thus, on Lorenz 96
data, the performance of GVAR is competitive with the other methods.

Table 1: Performance comparison on the Lorenz 96 model with F = 10 and 40. Inference is
performed on each replicate separately, standard deviations (SD) are evaluated across 5 replicates.

F Model ACC(±SD) BA(±SD) AUROC(±SD) AUPRC(±SD)

10

VAR 0.918(±0.012) 0.838(±0.016) 0.940(±0.016) 0.825(±0.029)
cMLP 0.972(±0.005) 0.956(±0.016) 0.963(±0.018) 0.908(±0.049)
cLSTM 0.970(±0.010) 0.950(±0.028) 0.958(±0.029) 0.925(±0.050)
TCDF 0.871(±0.012) 0.709(±0.044) 0.857(±0.027) 0.601(±0.053)
eSRU 0.966(±0.011) 0.951(±0.021) 0.963(±0.020) 0.936(±0.034)
GVAR (ours) 0.982(±0.003) 0.982(±0.006) 0.997(±0.001) 0.976(±0.016)

40

VAR 0.864(±0.008) 0.585(±0.028) 0.745(±0.047) 0.474(±0.036)
cMLP 0.683(±0.027) 0.805(±0.017) 0.979(±0.016) 0.956(±0.033)
cLSTM 0.844(±0.012) 0.656(±0.037) 0.661(±0.038) 0.385(±0.063)
TCDF 0.775(±0.023) 0.597(±0.029) 0.679(±0.021) 0.314(±0.050)
eSRU 0.867(±0.009) 0.886(±0.016) 0.934(±0.021) 0.834(±0.033)
GVAR (ours) 0.945(±0.010) 0.885(±0.046) 0.970(±0.009) 0.916(±0.024)

4.1.2 SIMULATED FMRI TIME SERIES

Another dataset we consider consists of rich and realistic simulations of blood-oxygen-level-
dependent (BOLD) time series (Smith et al., 2011) that were generated using the dynamic causal
modelling functional magnetic resonance imaging (fMRI) forward model. In these time series, vari-
ables represent ‘activity’ in different spatial regions of interest within the brain. Herein, we consider
R = 5 replicates from the simulation no. 3 of the original dataset. These time series contain p = 15
variables and only T = 200 observations. The ground truth causal structure is very sparse (see Ap-
pendix G). Details about hyperparameter tuning performed for this dataset can be found in Appendix
H.2. This experiment is similar to one presented by Khanna & Tan (2020).

Table 2 provides a comparison of the inference techniques. Surprisingly, TCDF outperforms other
methods by a considerable margin (cf. Table 1). It is followed by our method that, on average,
outperforms cMLP, cLSTM, and eSRU in terms of both AUROC and AUPRC. GVAR attains a
BA score comparable to cLSTM. Importantly, eSRU fails to shrink any weights to exact zeros, thus,
hindering the evaluation of accuracy and balanced accuracy scores (marked as ‘NA’ in Table 2). This
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experiment demonstrates that the proximal gradient descent (Parikh & Boyd, 2014), as implemented
by eSRU (Khanna & Tan, 2020), may fail to shrink any weights to 0 or shrinks all of them, even
in relatively simple datasets. cMLP seems to provide little improvement over simple VAR w.r.t.
AUROC or AUPRC. In general, this experiment promisingly shows that GVAR performs on par
with the techniques proposed by Tank et al. (2018) and Khanna & Tan (2020) in a more realistic and
data-scarce scenario than the Lorenz 96 experiment.

Table 2: Performance comparison on simulated fMRI time series. eSRU fails to shrink any weights
to exact zeros, therefore, we have omitted accuracy and balanced accuracy score for it.

Model ACC(±SD) BA(±SD) AUROC(±SD) AUPRC(±SD)
VAR 0.910(±0.006) 0.513(±0.015) 0.615(±0.044) 0.175(±0.054)
cMLP 0.846(±0.025) 0.614(±0.068) 0.616(±0.068) 0.191(±0.058)
cLSTM 0.830(±0.022) 0.655(±0.053) 0.663(±0.051) 0.234(±0.058)
TCDF 0.899(±0.023) 0.728(±0.063) 0.812(±0.041) 0.368(±0.126)
eSRU NA NA 0.654(±0.057) 0.190(±0.095)
GVAR (ours) 0.806(±0.070) 0.652(±0.045) 0.687(±0.066) 0.289(±0.116)

4.2 INFERRING EFFECT SIGN

So far, we have only considered inferring GC relationships, but not the signs of Granger-causal
effects. Such information can yield a better understanding of relations among variables. To this end,
we consider the Lotka–Volterra model with multiple species

(
Bacaër (2011) provides a definition of

the original two-species system
)
, given by the following differential equations:

dxi

dt
= αxi − βxi

∑
j∈Pa(xi)

yj − η
(
xi
)2
, for 1 ≤ i ≤ p, (9)

dyj

dt
= δyj

∑
k∈Pa(yj)

xk − ρyj , for 1 ≤ j ≤ p, (10)

where xi correspond to population sizes of prey species; yj denote population sizes of predator
species; α, β, η, δ, ρ > 0 are fixed parameters controlling strengths of interactions; and Pa(xi),
Pa(yj) are sets of Granger-causes of xi and yj , respectively. According to Equations 9 and 10,

Figure 3: Simulated two-species
Lotka–Volterra time series (top)
and generalised coefficients (bot-
tom). Prey have a positive effect on
predators, and vice versa.

the population size of each prey species xi is driven down
by
∣∣Pa(xi)∣∣ predator species (negative effects), whereas each

predator species yj is driven up by
∣∣Pa(yj)∣∣ prey populations

(positive effects).

We simulate the multi-species Lotka–Volterra system numer-
ically. Appendix K contains details about simulations and the
summary graph of the time series. To infer effect directions,
we inspect signs of median generalised coefficients for trained
GVAR models. For cMLP, cLSTM, TCDF, and eSRU, we in-
spect signs of averaged weights in relevant layers. For VAR,
we examine coefficient signs. For the sake of fair compar-
ison, we restrict all models to a maximum lag of K = 1
(where applicable). In this experiment, we focus on BA scores
for positive

(
BApos

)
and negative

(
BAneg

)
relationships. Ap-

pendix L provides another example of detecting effect signs
with GVAR, on a trivial benchmark with linear dynamics.

Table 3 shows the results for this experiment. Linear VAR does not perform well at inferring the
GC structure, however, its coefficient signs are strongly associated with true signs of relationships.
cMLP provides a considerable improvement in GC inference, and surprisingly its input weights are
informative about the signs of GC effects. cLSTM fails to shrink any of the relevant weights to zero;
furthermore, the signs of its weights are not associated with the true signs. Although eSRU performs
better than VAR at inferring the summary graph, its weights are not associated with effect signs at

8



Published as a conference paper at ICLR 2021

all. TCDF performs poorly in this experiment, failing to infer any relationships apart from self-
causation. Our model considerably outperforms all baselines in detecting effect signs, achieving
nearly perfect scores: it infers more meaningful and interpretable parameter values than all other
models.

These results are not surprising, because the baseline methods, apart from linear VAR, rely on in-
terpreting weights of relevant layers that, in general, do not need to be associated with effect signs
and are only informative about the presence or absence of GC interactions. Since the GVAR model
follows a form of SENNs (see Equation 2), its generalised coefficients shed more light into how the
future of the target variable depends on the past of its predictors. This restricted structure is more
intelligible and yet is sufficiently flexible to perform on par with sparse-input neural networks.

Table 3: Performance comparison on the multi-species Lotka–Volterra system. Next to accuracy and
balanced accuracy scores, we evaluate BA scores for detecting positive and negative interactions.

Model ACC(±SD) BA(±SD) BApos(±SD) BAneg(±SD)
VAR 0.383(±0.095) 0.635(±0.060) 0.845(±0.024) 0.781(±0.042)
cMLP 0.825(±0.035) 0.834(±0.043) 0.889(±0.031) 0.846(±0.084)
cLSTM NA NA 0.491(±0.026) 0.604(±0.042)
TCDF 0.832(±0.013) 0.500(±0.012) 0.538(±0.045) 0.504(±0.090)
eSRU 0.703(±0.048) 0.755(±0.010) 0.501(±0.025) 0.650(±0.078)
GVAR (ours) 0.977(±0.005) 0.961(±0.014) 0.932(±0.027) 0.999(±0.001)

In addition to inferring the summary graph, GVAR allows inspecting variability of generalised coef-
ficients. Figure 3 provides an example of generalised coefficients inferred for a two-species Lotka–
Volterra system. Although coefficients vary with time, GVAR consistently infers that the predator
population is driven up by prey and the prey population is driven down by predators. For the multi-
species system used to produce the quantitative results, inferred coefficients behave similarly (see
Figure 12 in Appendix K).

5 CONCLUSION

In this paper, we focused on two problems: (i) inferring Granger-causal relationships in multivari-
ate time series under nonlinear dynamics and (ii) inferring signs of Granger-causal relationships.
We proposed a novel framework for GC inference based on autoregressive modelling with self-
explaining neural networks and demonstrated that, on simulated data, its performance is promisingly
competitive with the related methods of Tank et al. (2018) and Khanna & Tan (2020). Proximal gra-
dient descent employed by cMLP, cLSTM, and eSRU often does not shrink weights to exact zeros
and, thus, prevents treating the inference technique as a statistical hypothesis test. Our framework
mitigates this problem by performing a stability-based selection of significant relationships, find-
ing a GC structure that is stable on original and time-reversed data. Additionally, proposed GVAR
model is more amenable to interpretation, since relationships between variables can be explored by
inspecting generalised coefficients, which, as we showed empirically, are more informative than in-
put layer weights. To conclude, the proposed model and inference framework are a viable alternative
to previous techniques and are better suited for exploratory analysis of multivariate time series data.

In future research, we plan a thorough investigation of the stability-based thresholding procedure
(see Algorithm 1) and of time-reversal for inferring GC. Furthermore, we would like to facilitate
a more comprehensive comparison with the baselines on real-world data sets. It would also be
interesting to consider better-informed link functions and basis concepts (see Equation 2). Last but
not least, we plan to tackle the problem of inferring time-varying GC structures with the introduced
framework.
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N. Bacaër. Lotka, Volterra and the predator–prey system (1920–1926). In A Short History of Math-
ematical Population Dynamics, pp. 71–76. Springer London, 2011.

A. Ben-Hur, A. Elisseeff, and I. Guyon. A stability based method for discovering structure in
clustered data. Pacific Symposium on Biocomputing, pp. 6–17, 2002.

Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: A practical and powerful
approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological),
57(1):289–300, 1995.

K. H. Brodersen, C. S. Ong, K. E. Stephan, and J. M. Buhmann. The balanced accuracy and its
posterior distribution. In 2010 20th International Conference on Pattern Recognition, pp. 3121–
3124, 2010.

A. K. Charakopoulos, G. A. Katsouli, and T. E. Karakasidis. Dynamics and causalities of atmo-
spheric and oceanic data identified by complex networks and Granger causality analysis. Physica
A: Statistical Mechanics and its Applications, 495:436–453, 2018.

C. W. J. Granger. Investigating causal relations by econometric models and cross-spectral methods.
Econometrica, 37(3):424–438, August 1969.

S. Haufe, V. V. Nikulin, and G. Nolte. Alleviating the influence of weak data asymmetries on
Granger-Causal analyses. In Latent Variable Analysis and Signal Separation, pp. 25–33. Springer
Berlin Heidelberg, 2012.

K. Inoue, A. Doncescu, and H. Nabeshima. Hypothesizing about causal networks with positive and
negative effects by meta-level abduction. In Inductive Logic Programming, pp. 114–129. Springer
Berlin Heidelberg, 2011.

A. Karimi and M. R. Paul. Extensive chaos in the Lorenz-96 model. Chaos: An interdisciplinary
journal of nonlinear science, 20(4):043105, 2010.

S. Khanna and V. Y. F. Tan. Economy statistical recurrent units for inferring nonlinear Granger
causality. In International Conference on Learning Representations, 2020.

T. Kipf, E. Fetaya, K.-C. Wang, M. Welling, and R. Zemel. Neural relational inference for interacting
systems. In Proceedings of the 35th International Conference on Machine Learning, volume 80,
pp. 2688–2697. PMLR, 2018.

M. Kolar, L. Song, A. Ahmed, and E. P. Xing. Estimating time-varying networks. Annals of Applied
Statistics, 4(1):94–123, 03 2010.

T. Lange, M. L. Braun, V. Roth, and J. M. Buhmann. Stability-based model selection. In Advances
in Neural Information Processing Systems, pp. 633–642, 2003.

E. N. Lorenz. Predictability: a problem partly solved. In Seminar on Predictability, volume 1, pp.
1–18, Shinfield Park, Reading, 1995.
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A LINEAR VECTOR AUTOREGRESSION

Linear vector autoregression (VAR) (Lütkepohl, 2007) is a time series model conventionally used
to test for Granger causality (see Section 2.1). VAR assumes that functions gi(·) in Equation 1 are
linear:

xt = ν +

K∑
k=1

Ψkxt−k + εt, (11)

where ν ∈ Rp is the intercept vector; Ψk ∈ Rp×p are coefficient matrices; and εt ∼ Np (0,Σε)
are Gaussian innovation terms. Parameter K is the order of the VAR model and determines the
maximum lag at which Granger-causal interactions occur. In VAR, Granger causality is defined by
zero constraints on the coefficients, in particular, xi does not Granger-cause xj if and only if, for all
lags k ∈ {1, 2, ...,K}, (Ψk)j,i = 0. These constraints can be tested by performing, for example,
F -test or Wald test.

Usually a VAR model is fitted using multivariate least squares. In high-dimensional time series,
regularisation can be introduced to avoid inferring spurious associations. Table 4 shows various
sparsity-inducing penalties for a linear VAR model of order K (see Equation 11), described by
Nicholson et al. (2017). Different penalties induce different sparsity patterns in coefficient matrices
Ψ1,Ψ2, ...,ΨK . These penalties can be adapted to the GVAR model for the sparsity-inducing term
R(·) in Equation 6.

Table 4: Various sparsity-inducing penalty terms, described by Nicholson et al. (2017), for a lin-
ear VAR of order K. Herein, Ψ = [Ψ1 Ψ2 ... ΨK ] ∈ Rp×Kp (cf. Equation 11), and
Ψk:K = [Ψk Ψk+1 ... ΨK ]. Different penalties induce different sparsity patterns in coef-
ficient matrices.

Model Structure Penalty
Basic Lasso ‖Ψ‖1
Elastic net α ‖Ψ‖1 + (1− α) ‖Ψ‖22 , α ∈ (0, 1)

Lag group
∑K
k=1 ‖Ψk‖F

Componentwise
∑p
i=1

∑K
k=1

∥∥(Ψk:K)i
∥∥
2

Elementwise
∑p
i=1

∑p
j=1

∑K
k=1

∥∥∥(Ψk:K)i,j

∥∥∥
2

Lag-weighted Lasso
∑K
k=1 k

α ‖Ψk‖1 , α ∈ (0, 1)

B INFERRING GRANGER CAUSALITY UNDER NONLINEAR DYNAMICS

Below we provide a more detailed overview of the related work on inferring nonlinear multivariate
Granger causality, focusing on the recent machine learning techniques that tackle this problem.

Kernel-based Methods. Kernel-based GC inference techniques provide a natural extension of the
VAR model, described in Appendix A, to nonlinear dynamics. Marinazzo et al. (2008) leverage
reproducing kernel Hilbert spaces to infer linear Granger causality in an appropriate transformed
feature space. Ren et al. (2020) introduce a kernel-based GC inference technique that relies on
regularisation – Hilbert–Schmidt independence criterion (HSIC) Lasso GC.

Neural Networks with Non-uniform Embedding. Montalto et al. (2015) propose neural networks
with non-uniform embedding (NUE). Significant Granger causes are identified using the NUE, a
feature selection procedure. An MLP is ‘grown’ iteratively by greedily adding lagged predictor
components as inputs. Once stopping conditions are satisfied, a predictor time series is claimed a
significant cause of the target if at least one of its lagged components was added as an input. This
technique is prohibitively costly, especially, in a high-dimensional setting, since it requires training
and comparing many candidate models. Wang et al. (2018) extend the NUE by replacing MLPs with
LSTMs.

Neural Granger Causality. Tank et al. (2018) propose inferring nonlinear Granger causality using
structured multilayer perceptron and long short-term memory with sparse input layer weights, cMLP
and cLSTM. To infer GC, p models need to be trained with each variable as a response. cMLP and
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cLSTM leverage the group Lasso penalty and proximal gradient descent (Parikh & Boyd, 2014) to
infer GC relationships from trained input layer weights.

Attention-based Convolutional Neural Networks. Nauta et al. (2019) introduce the temporal
causal discovery framework (TCDF) that utilises attention-based convolutional neural networks
(CNN). Similarly to cMLP and cLSTM (Tank et al., 2018), the TCDF requires training p neural
network models to forecast each variable. Key distinctions of the TCDF are (i) the choice of the
temporal convolutional network architecture over MLPs or LSTMs for time series forecasting and
(ii) the use of the attention mechanism to perform attribution. In addition to the GC inference, the
TCDF can detect time delays at which Granger-causal interactions occur. Furthermore, Nauta et al.
(2019) provide a permutation-based procedure for evaluating variable importance and identifying
significant causal links.

Economy Statistical Recurrent Units. Khanna & Tan (2020) propose an approach for inferring
nonlinear Granger causality similar to cMLP and cLSTM (Tank et al., 2018). Likewise, they penalise
norms of weights in some layers to induce sparsity. The key difference from the work of Tank et al.
(2018) is the use of statistical recurrent units (SRUs) as a predictive model. Khanna & Tan (2020)
propose a new sample-efficient architecture – economy-SRU (eSRU).

Minimum Predictive Information Regularisation. Wu et al. (2020) adopt an information-
theoretic approach to Granger-causal discovery. They introduce learnable corruption, e.g. additive
Gaussian noise with learnable variances, for predictor variables and minimise a loss function with
minimum predictive information regularisation that encourages the corruption of predictor time se-
ries. Similarly to the approaches of Tank et al. (2018); Nauta et al. (2019); Khanna & Tan (2020),
this framework requires training p models separately.

Amortised Causal Discovery & Neural Relational Inference. Kipf et al. (2018) introduce the neu-
ral relational inference (NRI) model based on graph neural networks and variational autoencoders.
The NRI model disentangles the dynamics and the undirected relational structure represented explic-
itly as a discrete latent graph variable. This allows pooling time series data with shared dynamics,
but varying relational structures. Löwe et al. (2020) provide a natural extension of the NRI model
to the Granger-causal discovery. They introduce a more general framework of the amortised causal
discovery wherein time series replicates have a varying causal structure, but share dynamics. In con-
trast to the previous methods (Tank et al., 2018; Nauta et al., 2019; Khanna & Tan, 2020; Wu et al.,
2020), which in this setting, have to be retrained separately for each replicate, the NRI is trained on
the pooled dataset, leveraging shared dynamics.

C PROPERTIES OF SELF-EXPLAINING NEURAL NETWORKS

As defined by Alvarez-Melis & Jaakkola (2018), g(·), θ(·), and h(·) in Equation 2 need to satisfy:

1. g(·) is monotonic and additively separable in its arguments;

2. ∂g
∂zi

> 0 with zi = θ(x)ih(x)i, for all i;

3. θ(·) is locally difference-bounded by h(·), i.e. for every x0, there exist δ > 0 and L ∈ R
s.t. if ‖x− x0‖ < δ, then ‖θ(x)− θ(x0)‖ ≤ L ‖h(x)− h(x0)‖;

4. {h(x)i}ki=1 are interpretable representations of x;
5. k is small.

D ABLATION STUDY OF THE LOSS FUNCTION

We inspect hyperparameter tuning results for the GVAR model on Lorenz 96 (see Section 4.1.1)
and synthetic fMRI time series (Smith et al., 2011) (see Section 4.1.2) as an ablation study for
the loss function proposed (see Equation 6). Figures 4 and 5 show heat maps of BA scores (left)
and AUPRCs (right) for different values of parameters λ and γ for Lorenz 96 and fMRI datasets,
respectively. For the Lorenz 96 system, sparsity-inducing regularisation appears to be particularly
important, nevertheless, there is also an increase in BA and AUPRC from a moderate smoothing
penalty. For fMRI, we observe considerable performance gains from introducing both the sparsity-
inducing and smoothing penalty terms. Given the sparsity of the ground truth GC structure and
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the scarce number of observations (T = 200), these gains are not unexpected. During preliminary
experiments, we ran grid search across wider ranges of λ and γ values, however, did not observe
further improvements from stronger regularisation. In summary, these results empirically motivate
the need for two different forms of regularisation leveraged by the GVAR loss function: the sparsity-
inducing and smoothing penalty terms.

Figure 4: GVAR hyperparameter grid search results for Lorenz 96 time series (under F = 40)
across 5 values of λ ∈ [0.0, 3.0] and γ ∈ [0.0, 0.02]. Each cell shows average balanced accuracy
(left) and AUPRC (right) across 5 replicates (darker colours correspond to lower performance) for
one hyperparameter configuration.

Figure 5: GVAR hyperparameter grid search results for simulated fMRI time series across 5 values
of λ ∈ [0.0, 3.0] and γ ∈ [0.0, 0.1]. The heat map on the left shows average BA scores, and the heat
map on the right – average AUPRCs.
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E STABILITY-BASED THRESHOLDING: EXAMPLE

Figure 6 shows an example of agreement between dependency structures inferred on original and
time-reversed synthetic sequences across a range of thresholds (see Algorithm 1). In addition, we
plot the BA score for resulting thresholded matrices evaluated against the true adjacency matrix. As
can be seen, the peak of stability agrees with the highest BA achieved. In both cases, the procedure
described by Algorithm 1 chooses the optimal threshold, which results in the highest agreement with
the true dependency structure (unknown at the time of inference).

(a) Lorenz 96, F = 10. (b) Multi-species Lotka–Volterra.

Figure 6: Agreement (N) between GC structures inferred on the original and time-reversed data
across a range of thresholds for one simulation of the Lorenz 96 (a) and multi-species Lotka–Volterra
(b) systems. BA score (×) is evaluated against the ground truth adjacency matrix.

F COMPARISON OF TRAINING & INFERENCE TIME

To compare the considered methods in terms of their computational complexity, we measure training
and inference time across three simulated datasets with p ∈ {4, 15, 20} variables and varying time
series lengths. This experiment was performed on an Intel Core i7-7500U CPU (2.70 GHz × 4) with
a GeForce GTX 950M GPU. All models were trained for 1000 epochs with a mini-batch size of 64.
In each dataset, the same numbers of hidden layers and hidden units were used across all models.
When applicable, models were restricted to the same order (K). Table 5 contains average training
and inference time in seconds with standard deviations. Observe that for the fMRI and Lorenz 96
datasets, GVAR is substantially faster than cLSTM and eSRU.

Table 5: Average training and inference time, in seconds, for the methods. Inference was performed
on time series generated from the linear model (see Appendix L), simulated fMRI time series (see
Section 4.1.2), and the Lorenz 96 system (see Section 4.1.1).

Model
Linear

(p = 4, T = 500,
K = 1)

fMRI
(p = 15, T = 200,

K = 1)

Lorenz 96, F = 10
(p = 20, T = 500,

K = 5)
VAR 0.018(±0.001) 0.27(±0.01) 8.5(±0.6)
cMLP 19.7(±3.5) 55.1(±4.0) 94.7(±2.4)
cLSTM 999.2(±177.2) 1763.3(±235.3) 2023.8(±12.0)
TCDF 11.4(±1.6) 24.6(±1.7) 50.1(±2.1)
eSRU 62.9(±2.6) 258.3(±31.1) 671.4(±9.7)
GVAR (ours) 75.5(±8.3) 20.4(±0.7) 197.7(±24.8)
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G GC SUMMARY GRAPHS OF SIMULATED TIME SERIES

(a) Lorenz 96. (b) fMRI.

(c) Multi-species Lotka–Volterra.

Figure 7: Adjacency matrices of Granger-causal summary graphs for Lorenz 96 (see Section 4.1.1),
simulated fMRI (see Section 4.1.2), and multi-species Lotka–Volterra (see Section 4.2) time series.
Dark cells correspond to the absence of a GC relationship, i.e. Ai,j = 0; light cells denote a GC
relationship, i.e. Ai,j = 1.

H HYPERPARAMETER TUNING

In our experiments (see Section 4), for all of the inference techniques compared, we searched across
a grid of hyperparameters that control the sparsity of inferred GC structures. Other hyperparameters
were fine-tuned manually. Final results reported in the paper correspond to the best hyperparameter
configurations. With this testing setup, our goal was to fairly compare best achievable inferential
performance of the techniques.

Tables 6, 7, and 8 provide ranges for hyperparameter values considered in each experiment. For
cMLP and cLSTM (Tank et al., 2018), parameter λ is the weight of the group Lasso penalty; for
TCDF (Nauta et al., 2019), significance parameter α is used to decide which potential GC relation-
ships are significant; eSRU (Khanna & Tan, 2020) has three different penalties weighted by λ1:3. For
the stability-based thresholding (see Algorithm 1) in GVAR, we used Q = 20 equally spaced values
in [0, 1] as sequence ξ5. For Lorenz 96 and fMRI experiments, grid search results are plotted in
Figures 4, 8, and 5. Figure 9 contains GVAR grid search results for the Lotka–Volterra experiment.

5We did not observe high sensitivity of performance w.r.t. ξ, as long as sufficiently many evenly spaced
sparsity levels are considered.
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H.1 LORENZ 96

Table 6: Hyperparameter values for Lorenz 96 datasets with F = 10 and 40. Herein, K denotes
model order (maximum lag). If a hyperparameter is not applicable to a model, the corresponding
entry is marked by ‘NA’.

Model K
# hidden

layers
# hidden

units
# training

epochs
Learning

rate
Mini-batch

size
Sparsity

hyperparam-s
VAR 5 NA NA NA NA NA NA

cMLP 5 2 50 1,000 1.0e-2 NA

F = 10:
λ ∈ [0.5, 2.0];
F = 40:
λ ∈ [0.0, 1.0]

cLSTM NA 2 50 1,000 5.0e-3 NA

F = 10:
λ ∈ [0.1, 0.6];
F = 40:
λ ∈ [0.2, 0.25]

TCDF 5 2 50 1,000 1.0e-2 64 F = 10, 40:
α ∈ [0.0, 2.5]

eSRU NA 2 10 2,000 5.0e-3 64 F = 10, 40:
λ1:3 ∈ [0.01, 0.1]

GVAR 5 2 50 1,000 1.0e-4 64
F = 10, 40:
λ ∈ [0.0, 3.0],
γ ∈ [0.0, 0.025]

Figure 8: GVAR hyperparameter grid search results for Lorenz 96 time series, under F = 10, across
5 values of λ ∈ [0.0, 3.0] and γ ∈ [0.0, 0.02]. Each cell shows average balanced accuracy (left) and
AUPRC (right) across 5 replicates.
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H.2 FMRI

Table 7: Hyperparameter values for simulated fMRI time series.

Model K
# hidden

layers
# hidden

units
# training

epochs
Learning

rate
Mini-batch

size
Sparsity

hyperparam-s
VAR 1 NA NA NA NA NA NA
cMLP 1 1 50 2,000 1.0e-2 NA λ ∈ [0.001, 0.75]
cLSTM NA 1 50 1,000 1.0e-2 NA λ ∈ [0.05, 0.3]
TCDF 1 1 50 2,000 1.0e-3 64 α ∈ [0.0, 2.0]

eSRU NA 2 10 2,000 1.0e-3 64
λ1 ∈ [0.01, 0.05],
λ2 ∈ [0.01, 0.05],
λ3 ∈ [0.01, 1.0]

GVAR 1 1 50 1,000 1.0e-4 64 λ ∈ [0.0, 3.0],
γ ∈ [0.0, 0.1]

H.3 LOTKA-VOLTERRA

Table 8: Hyperparameter values for multi-species Lotka–Volterra time series.

Model K
# hidden

layers
# hidden

units
# training

epochs
Learning

rate
Mini-batch

size
Sparsity

hyperparam-s
VAR 1 NA NA NA NA NA NA
cMLP 1 2 50 2,000 5.0e-3 NA λ ∈ [0.2, 0.4]
cLSTM NA 2 50 1,000 5.0e-3 NA λ ∈ [0.0, 1.0]
TCDF 1 2 50 2,000 1.0e-2 256 α ∈ [0.0, 2.0]

eSRU NA 2 10 2,000 1.0e-3 256
λ1 ∈ [0.01, 0.05],
λ2 ∈ [0.01, 0.05],
λ3 ∈ [0.01, 1.0]

GVAR 1 2 50 500 1.0e-4 256 λ ∈ [0.0, 1.0],
γ ∈ [0.0, 0.01]
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(a) BA (b) AUPRC

(c) BApos (d) BAneg

Figure 9: GVAR hyperparameter grid search results for multi-species Lotka–Volterra time series
across 5 values of λ ∈ [0.0, 1.0] and γ ∈ [0.0, 0.01]. Heat maps above show balanced accuracies
(a), AUPRCs (b), and balanced accuracies for positive (c) and negative (d) effects.

I COMPARISON WITH DYNAMIC BAYESIAN NETWORKS

We provide a comparison between GVAR and linear Gaussian dynamic Bayesian networks (DBN).
DBNs are a classical approach to temporal structure learning (Murphy & Russell, 2002). We use R
(R Core Team, 2020) package dbnR (Quesada, 2020) to fit DBNs on all datasets considered in Sec-
tion 4. We use two structure learning algorithms: the max-min hill-climbing (MMHC) (Tsamardinos
et al., 2006) and the particle swarm optimisation (Xing-Chen et al., 2007). Table 9 contains average
balanced accuracies achieved by DBNs and GVAR for inferring the GC structure. Not surprisingly,
DBNs outperform GVAR on the time series with linear dynamics, but fail to infer the true structure
on Lorenz 96, fMRI, and Lotka–Volterra datasets.

Table 9: Comparison of balanced accuracy scores for GVAR and DBNs. Standard deviations (SD)
are taken across 5 independent replicates.

Model Linear Lorenz 96,
F = 10

Lorenz 96,
F = 40

fMRI Lotka–Volterra

GVAR (ours) 0.938(±0.084) 0.982(±0.006) 0.885(±0.046) 0.652(±0.045) 0.961(±0.014)
DBN (MMHC) 0.900(±0.105) 0.821(±0.009) 0.687(±0.033) 0.522(±0.023) 0.586(±0.037)
DBN (PSO) 0.950(±0.028) 0.627(±0.011) 0.514(±0.025) 0.473(±0.066) 0.534(±0.027)
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J THE LORENZ 96 SYSTEM: FURTHER EXPERIMENTS

Figure 10: Inferential performance of
GVAR across a range of forcing constant
values.

In addition to the experiments in Section 4.1.1, we
examine the performance of VAR and GVAR mod-
els across a range of forcing constant values F =
0, 5, 10, 25, 50 for the Lorenz 96 system with p = 20
variables. Figure 10 shows average AUPRCs with
bands corresponding to the 95% CI for the mean. It
appears that for both models, inference is more chal-
lenging for lower (< 10) and higher values of F
(> 20). This observation is in agreement with the re-
sults in Section 4.1.1, where all inference techniques
performed worse under F = 40 than under F = 10.
Note that herein same GVAR hyperparameters were
used across all values of F . It is possible that better
inferential performance could be achieved with GVAR
after comprehensive hyperparameter tuning.

K THE LOTKA–VOLTERRA SYSTEM

The original Lotka–Volterra system (Bacaër, 2011) includes only one predator and one prey species,
population sizes of which are denoted by x and y, respectively. Population dynamics are given by
the following coupled differential equations:

dx
dt

= αx− βxy, (12)

dy
dt

= δyx− ρy, (13)

where α, β, δ, ρ > 0 are fixed parameters determining strengths of interactions.

In this paper, we consider a multiple species version of the system, given by Equations 9 and 10
in Section 4.2. We simulate the system under α = ρ = 1.1, β = δ = 0.2, η = 2.75 × 10−5,∣∣Pa(xi)∣∣ = ∣∣Pa(yj)∣∣ = 2, p = 10, i.e. 2p = 20 variables in total, with T = 2000 observations.
Figure 11 depicts signs of GC effects between variables in a multi-species Lotka–Volterra with 2p =
20 species and 2 parents per variable. We simulate this system numerically by using the Runge-Kutta
method6. We make a few adjustments to the state transition equations, in particular: we introduce
normally-distributed innovation terms to make simulated data noisy; during state transitions, we clip
all population sizes below 0. Figure 12 shows traces of generalised coefficients inferred by GVAR:
magnitudes and signs of coefficients reflect the true dependency structure.

Figure 11: Signs of GC relationships between variables in the Lotka–Volterra system given by Equa-
tions 9 and 10, with p = 10. First ten columns correspond to prey species, whereas the last ten corre-
spond to predators. Each prey species is ‘hunted’ by two predator species, and each predator species
‘hunts’ two prey species. Similarly to the other experiments, we ignore self-causal relationships.

6Simulations are based on the implementation available at https://github.com/smkalami/
lotka-volterra-in-python.
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Figure 12: Variability of GVAR generalised coefficients throughout time for a simulation of the
multi-species Lotka–Volterra system. Coefficients for Granger non-causal relationships fluctuate
around 0; for Granger-causal relationships, coefficients are consistently different from 0: positive
for prey→ predator interactions and negative for predator→ prey.

L EFFECT SIGN DETECTION IN A LINEAR VAR

Herein we provide results for the evaluation of GVAR and our inference framework on a very simple
synthetic time series dataset. We simulate time series with p = 4 variables and linear interaction
dynamics given by the following equations:

xt = a1xt−1 + εx
t ,

wt = a2wt−1 + a3xt−1 + εw
t ,

yt = a4yt−1 + a5wt−1 + εyt ,

zt = a6zt−1 + a7wt−1 + a8yt−1 + εz
t,

(14)

where coefficients ai ∼ U ([−0.8,−0.2] ∪ [0.2, 0.8]) are sampled independently in each simulation;
and ε·t ∼ N (0, 0.16) are additive innovation terms. This is an adapted version of one of artificial
datasets described by Peters et al. (2013), but without instantaneous effects.

The GC summary graph of the system is visualised in Figure 13. It is considerably denser
than for the Lorenz 96, fMRI, and Lotka–Volterra time series investigated in Section 4.

Figure 13: The adjacency
matrix of the GC summary
graph for the model given by
Equation 14.

Similarly to the experiment described in Section 4.2, we infer GC
relationships with the proposed framework and evaluate inference
results against the true dependency structure and effect signs. Table
10 contains average performance across 10 simulations achieved by
GVAR with hyperparameter values K = 1, λ = 0.2, and γ = 0.5. In
addition, we provide results for some of the baselines (no systematic
hyperparameter tuning was performed for this experiment).

GVAR attains perfect AUROC and AUPRC in all 10 simulations. In
some cases, stability-based thresholding fails to recover a completely
correct GC structure, nevertheless, average accuracy and balanced
accuracy scores are satisfactory. Signs of inferred generalised coef-
ficients mostly agree with the ground truth effect signs, as given by
coefficients a1:8 in Equation 14.

Not surprisingly, linear VAR performs the best on this dataset w.r.t.
all evaluation metrics. Both cMLP and eSRU successfully infer GC
relationships, achieving results comparable to GVAR. However, neither infers effect signs as well as
GVAR. Thus, similarly to the experiment in Section 4.2, we conclude that generalised coefficients
are more interpretable than neural network weights leveraged by cMLP, TCDF, and eSRU.

To summarise, this simple experiment serves as a sanity check and shows that our GC inference
framework performs reasonably in low-dimensional time series with linear dynamics and a rela-
tively dense GC summary graph (cf. Figure 7). Generally, the method successfully infers both the
dependency structure and interaction signs.
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Table 10: Performance on synthetic time series with linear dynamics, given by Equation 14. Aver-
ages and standard deviations are evaluated across 10 independent simulations. eSRU failed to shrink
weights to exact 0s, therefore, we omit accuracy and BA scores for it.

VAR cMLP TCDF eSRU GVAR (ours)
ACC 0.975(±0.038) 0.867(±0.085) 0.791(±0.056) NA 0.950(±0.067)
BA 0.981(±0.029) 0.900(±0.064) 0.688(±0.169) NA 0.938(±0.084)
AUROC 1.000(±0.000) 1.000(±0.000) 0.866(±0.114) 0.972(±0.043) 1.000(±0.000)
AUPRC 1.000(±0.000) 1.000(±0.000) 0.812(±0.128) 0.967(±0.046) 1.000(±0.000)
BApos 0.995(±0.014) 0.761(±0.206) 0.574(±0.235) 0.613(±0.168) 0.920(±0.158)
BAneg 0.990(±0.019) 0.746(±0.232) 0.550(±0.169) 0.622(±0.215) 0.928(±0.151)

M PREDICTION ERROR

Herein we evaluate the prediction error of models on held-out data. Last 20% of time series points
were held out to perform prediction on Lorenz 96, fMRI, and Lotka–Volterra datasets. Root-mean-
square error (RMSE) was computed for predictions across R = 5 independent replicates:

RMSE =
1

p

p∑
j=1

√√√√∑T
t=1

(
x̂jt − x

j
t

)
T

, (15)

where x̂jt is the one-step forecast made by a model for the t-th point of the j-th variable, and T is the
length of the held-out time series segment. Table 11 contains average RMSEs for all models across
the considered datasets. In general, RMSEs are not associated with the inferential performance of the
models (cf. tables 1, 2, and 3). For example, while TCDF achieves the best inferential performance
on fMRI (see Table 2), its prediction error is higher than for cMLP. This ‘misalignment’ between the
prediction error and the consistency of variable selection is not surprising and has been discussed
before, e.g. by Meinshausen & Bühlmann (2010).

Table 11: RMSEs of models on held-out data. Averages and standard deviations were taken across
5 independent replicates.

Model Lorenz 96,
F = 10

Lorenz 96,
F = 40

fMRI Lotka–Volterra

VAR 0.378(±0.008) 1.088(±0.021) 0.970(±0.042) 0.202(±0.025)
cMLP 0.336(±0.030) 0.795(±0.017) 0.724(±0.037) 0.098(±0.016)
cLSTM 0.592(±0.013) 0.983(±0.014) 0.874(±0.045) 0.691(±0.035)
TCDF 0.536(±0.015) 1.514(±0.030) 0.879(±0.022) 0.111(±0.016)
eSRU 1.000(±0.010) 1.006(±0.015) 1.000(±0.048) 0.720(±0.035)
GVAR (ours) 0.572(±0.015) 1.005(±0.018) 0.966(±0.047) 0.119(±0.009)
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