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Abstract

Principal Component Analysis (PCA) and its exponential family extensions have
three components: observed variables, latent variables and parameters of a linear
transformation. The likelihood of the observation is an exponential family with
canonical parameters that are a linear transformation of the latent variables. We
show how joint maximum a-posteriori (MAP) estimates can be computed using a
deep equilibrium model that computes roots of the score function. Our analysis
provides a systematic way to relate neural network activation functions back to sta-
tistical assumptions about the observations. Our layers are implicitly differentiable,
and can be fine-tuned in downstream tasks, as demonstrated on a synthetic task.

1 Introduction and background

Deep learning provides a means of fitting flexible function classes to data. Parameters of layers are
typically jointly adjusted by applying first-order optimisation methods to an objective involving the
data and the parameters [Deisenroth et al., 2020, §5.6.1]. Layers may provide an explicit description
of a mapping. For example, given an input x ∈ RD, the L-dimensional output of a layer with
parameters θ ∈ RL×D might be defined by σ

(
θx
)

for some function σ applied element-wise.

Alternatively, layers may be defined implicitly as solutions to certain problems. Given an input
x ∈ RD, a Deep Equilibrium Model (DEQ) [Bai et al., 2019] outputs a solution to the fixed point
equation z = σ

(
γz + θx

)
, where θ ∈ RL×D and γ ∈ RL×L are parameters and z ∈ RL is the

implicitly defined output. Implicit layers include DEQs which solve fixed point equations, Neural
ODEs [Chen et al., 2018] which solve ODEs, and Deep Declarative Networks (DDNs) [Gould et al.,
2021] which solve optimisation problems.

Computing roots of the score function — the derivative of the log density/mass function with
respect to the parameter — is one of the most classical and generally applicable methods for finding
point estimates of parameters [Stigler, 2007]. Fixed points z∗ = f(z∗) are equivalent to roots
f(z∗) − z∗ = 0, so roots of score functions can be computed using DEQ layers. An interesting
question to consider is: When are equilibrium networks scoring algorithms?

Contributions. We present a DEQ that solves the problem of joint MAP estimation in a graphical
model representing exponential family PCA (Figure 1). Conveniently, we recover neural network
architectures with commonly used activations such as tanh, logistic sigmoid and softmax. See
Table 1. This enables us to relate statistical assumptions about the data to a choice of activation
function. Our analysis provides a bottom-up justification for the use of particular DEQ layers in
unsupervised learning settings. Our DEQ layers compute solutions to strongly convex optimisation
problems. Hence they are guaranteed to admit unique fixed points. See Theorem 1. We provide an
implementation 1 and compare it to PCA, tSNE and UMAP on some synthetic datasets. See Figure 3.

1https://github.com/RussellTsuchida/ped/

NeurIPS 2022 Workshop on Score-Based Methods.

https://github.com/RussellTsuchida/ped/
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Figure 1: (Left) Graphical model for exponential family PCA with observations Ys, latents Zs, and
parameters W, B. The likelihood of the observation Ys is an exponential family with a canonical
parameter WZs +B. (Right) MAP estimates can be found using a DEQ. The latents are estimated by
the prediction of the DEQ layer given parameters of the DEQ layer, adjusted through backpropagation.

Exponential families. Recall the exponential family (see Appendix A.1), which is a class of
probability distributions whose sufficient statistics admit a moment generating function defined on an
open set, which we take to be R. The probability density (mass) function

p(y | v) = h(y) exp
(
vT (y)−A(v)

)
(1)

belongs to a minimal regular exponential family with canonical parameter v, log-partition function A,
sufficient statistic T and base density (mass function) h. A is both infinitely differentiable and strictly
convex [Wainwright and Jordan, 2008, Proposition 3.1]. We write y ∼ DA,χ(v) if a scalar-valued
random variable y follows an exponential family with log partition function A, canonical parameter v
and additional parameter χ. If Y = (y1, . . . , yd) and V = (v1, . . . , vd), we write Y ∼ DA,χ(V ) to
mean yi ∼ DA,χ(vi) for all 1 ≤ i ≤ d, with each yi mutually conditionally independent given V .

Matrices and data. Let Ys = (ys1; . . . ; ysd) ∼ DA,χ(Vs), where for each s, Vs ∈ Rd is a
vector consisting of canonical parameters. Let Y ∈ Rd×N denote a matrix with N such vectors Ys,
1 ≤ s ≤ N , each sampled conditionally independently given the canonical parameters. Each of the
Ys are associated with a latent representation Zs ∈ Rl. Write Z ∈ Rl×N for the matrix consisting of
such latent representations. Scalars are lower-case, vectors are upper-case and matrices are upper-case
sans-serif. Functions that accept scalars extend to vector and matrix inputs applied elementwise.

Scoring. The score S — ∂ log p(Y |V )
∂V or ∂ log p(V |Y )

∂V — is necessarily zero when evaluated at an MLE
or MAP estimate V ∗, for sufficiently smooth likelihoods. When the log density is convex, the score S
being the zero vector is also sufficient. The Jacobian of the score S, called the observed information
matrix. When using density (1), the Jacobian is independent of the data Y and coincides with
E[SS⊤]— the Fisher information matrix [Stigler, 2007, §7]. Fisher’s scoring method is essentially
Newton’s method for the special case of finding the root of S using the Fisher information matrix
as the Hessian. Fisher’s scoring method using exponential families appears in supervised and
unsupervised contexts as generalised linear models [McCullagh and Nelder, 1989] and exponential
family PCA [Collins et al., 2001] respectively. The latter problem is only convex in one of the latents
or parameters but not both.

Implicit neural networks. We work with a prototype problem to represent both DEQs and DDNs

min
θ,γ

N∑
s=1

L
(
Fγ

(
Z∗
s , Ys

)
, Ys

)
subject to Z∗

s = SolveProblem(θ, Ys), s = 1, . . . , N. (2)

Here θ are parameters of the implicit layer, Z∗
s are outputs of the implicit layer, Fγ is a neural network

(that may also contain implicit layers) parameterised by γ, and L is a loss function. SolveProblem
defines and solves an optimisation or fixed point problem depending on parameters θ and input
data Ys. Connections between DDNs and DEQs have been explored [Tsuchida et al., 2022, Li et al.,
2022]. The outer problem learns the parameters of the network, and the inner constraint outputs
predictions of the implicit layer. The inner constraint is subject to questions of well-posedness, that
is, whether solutions to the problem exist and are unique. Following usual deep learning philosophy,
we ignore such questions for the outer parameter learning problem, which is likely to be nonconvex.
If a problem can be cast in the form of (2), the machinery of implicit deep learning can be used to
solve the problem. Our aim is to cast problems in the form (2) with well-posed inner constraints.
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Y T (y) A(η) h(y) σ(η) := A′(η)

R y/b η2/2 (2π)−1/2 η

{0, 1} y log
(
1 + exp(η)

)
1 exp(η)

exp(η)+1

{−1, 1} y log cosh η 1/2 tanh(η)

[0, 1] y log eη−1
η 1 eη(η−1)+1

(eη−1)η

{0, 1, . . .} y eη (y!)−1 eη

Table 1: Different exponential families induce different inverse link functions (which we call
activation functions) σ. In order, each row represents a different exponential family: Gaussian,
Bernoulli, non-interacting Ising, continuous Bernoulli [Loaiza-Ganem and Cunningham, 2019] and
Poisson likelihoods respectively. See Appendix A and also Nielsen and Garcia [2009].

2 A DEQ layer that solves exponential family PCA

Setup. We consider the graphical model in Figure 1, which mirrors various versions of PCA [Bishop,
2006, Collins et al., 2001, Mohamed et al., 2008]. Let H = WZ+B11×N , where W ∈ Rd×l, B ∈ Rd

and Z ∈ Rl×N . Equivalently Hs = WZs + B where Zs ∈ Rl×1 are the latent variables for data
Ys = (ys1, . . . ysd). Typically l < d, although this need not be the case. The canonical parameters
of the distribution of the observed variables Ys are Hs ∈ Rd. In other words, we assume that the
observed vector of data Ys is drawn from an exponential family DA,χ(Hs). Following (1),

p(Y | Z,W, B) =

N∏
s=1

d∏
i=1

h
(
ysi
)
exp

(
(WZs +B)iT (ysi)−A

(
(WZs +B)i

))
. (3)

For each s, place independent zero mean iid standard Gaussian priors over Zs. By Bayes’ theorem,
the posterior and a (not necessarily unique) MAP estimate are respectively

p(Z,W, B | Y) = p(Y | Z,W, B)p(Z)p(W, B)/p(Y), and (4)
Z∗,W∗, b∗ ∈ argmin

Z,W,B
p(Z,W, B | Y). (5)

Results. Since the log-posterior (4) is strongly convex in Z, first order optimality conditions are
sufficient to characterise the unique global optima of the latents given a fixed set of parameters W,B.
This yields a fixed point equation, which is a DEQ of the form (2) — see Appendix B for proof.
Theorem 1. Any MAP estimate (5) of the graphical model in Figure 1 is a DEQ

W∗, B∗ ∈ argmin
W,B

− log p(W, B)− log p(Z∗) +

N∑
s=1

1⊤d×1A (WZ∗
s +B)− T (Ys)

⊤(WZ∗
s +B)

subject to Z∗
s =

1

λ
W⊤(T (Ys)− σ(WZ∗

s +B)
)
, ∀1 ≤ s ≤ N. (6)

Solutions to the inner constraint (6) are guaranteed to exist and be unique.

Constraint (6) is a fully connected (FC) DEQ layer with activation σ, shared weights W and biases
B. While we are not aware of any published usage of DEQs applied to dimensionality reduction, (6)
resembles what practitioners might use as a generic baseline in applying DEQs as black-box predictors,
without any explicit statistical model or intention to compute with score functions. The outer
optimisation is a non-Gaussian exponential family generalisation of a squared reprojection error.

3 Illustration on a low dimensional latent space

Figure 2: Z
ground truth.

We compare performance and features of PCA, tSNE [Van der Maaten and Hinton,
2008], UMAP [McInnes et al., 2018] and DEQ. We focus on two issues.

Ground truth latents. We generate datasets through graphical model in Figure 1,
except that Z is fixed to be as shown in Figure 2. For each distribution shown in the
left column of Figure 3, we generate 100 parameters W according to the graphical
model and them sample the corresponding Y. This results in 100 different datasets
for each distribution, each with known ground truth Z.
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PCA (sklearn) tSNE UMAP Our DEQ

Gaussian
A(r) = r2/2
R(η) = η

5 - 0 95

Bernoulli
A(r) = log

(
1 + er

)
R(η) = η

6 - 0 94

Poisson
A(r) = exp(r)

R(η) = η
0 - 16 84

Figure 3: The number in each cell represents the number of times that model performed the
best compared with others when used as the input for a downstream task over 100 random trials.
Interestingly, PCA and DEQ produce visually similar results. However, DEQ is able to obtain better
results on downstream tasks on account of its ability to be fine-tuned. While UMAP’s results are
visually pleasing, embeddings do not bear similarity with the ground truth, except in the Gaussian
case. For non-Gaussian cases, UMAP places latents in good clusters, but fails to globally position the
clusters accurately relative to one another. tSNE is incompatible in a pipeline with a downstream task.
tSNE produces globally accurate positioning, but sometimes adds artefacts into the visualisation.
Embeddings are an equivalence class up to a rotation and scaling, since W and Z are non-identifiable;
we rotated images by hand. For DEQ, we visualise the latents in an orthogonal basis, i.e. shown
are RZ, where W = QR is a QR decomposition.

Downstream performance and deep learning compatibility. We can fine-tune backbone DEQ
layers that are pretrained in an unsupervised manner on a supervised task with a head network. In
contrast, since PCA is a linear mapping, composing it with a head network and optimising the result is
equivalent to just using a head network. Other dimensionality reduction techniques that do not posses
neural network parameters such as UMAP cannot benefit from fine-tuning. Since tSNE’s mapping
does not transfer from training to testing data it is incompatible in a pipeline with downstream tasks.
We evaluate the performance of each dimensionality reduction algorithm by passing its output to
a downstream task. Figure 3 shows the number of times each method performed the best over 100
random trials. See Appendix C for more details.

4 Discussion, conclusion and future work

We derived DEQ architectures that solve the problem of MAP estimation of exponential family PCA.
Our DEQ layers compute unique roots of the score function (given a set of parameters W, B), and
may be computed using Fisher scoring or otherwise. Our analysis grounds DEQ architectures in
a probabilistic framework, and shows how certain architectural choices are implied by statistical
assumptions on observations. As noted by Bai et al. [2019], DEQs built from contraction mappings
may be understood as infinitely deep neural networks with shared weights. In this sense, our analysis
motivates the use of such infinitely deep networks. In future, it might be interesting to extend our
implementation to a Bayesian setting by taking the Hessian of the negative log likelihood evaluated
at the MAP. Surprisingly, the Laplace approximation has recently been shown to be competitive with
other Bayesian approximations in deep learning [Daxberger et al., 2021]. We found expressions
for the Laplace approximation (see Appendix D), which may be useful for future investigations.
Our canonical parameters WZs + B are linear transformations of latent variables, which recover
fully connected and convolutional DEQ architectures. Empirical success stories of DEQs applied to
language prediction and computer vision usually other deep learning elements such as activations
that are not canonical inverse link functions (such as the ReLU), attention and/or multi-scale residual
blocks [Bai et al., 2020]. In future, we hope to cast these elements in light of scoring methods.
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A Exponential family calculations

A.1 Construction of exponential families

Let Y ⊆ R and form a measurable space (Y,B) for some sigma algebra B. Let ω be some reference
measure (nominally Lebesgue or counting) and let h : Y → R≥0 be some ω-integrable function,∫
Y h(y)dω(y) < ∞. Let T be some measurable function and let F ⊆ R be the set of all canonical

parameters r such that
∫
Y exp

(
T (y)r)h(y)dω(y) < ∞. Assume that F is open. Define the log

partition function A : F → R by A(r) = log
∫
Y exp

(
T (y)r)h(y)dω(y). Call

p(y | r) = h(y) exp
(
rT (y)−A(r)

)
(7)

the PDF of a minimal regular exponential family. For such a family, A is both infinitely differentiable
and strictly convex [Wainwright and Jordan, 2008, Proposition 3.1]. Strictly convex and infinitely
differentiable functions A are admissible if and only if exp

(
A(ir)

)
is a positive definite function. See

Lemma 1, Appendix A.2. A acts as a cumulant generating function, so that in particular the expected
value under p(y | r) is µ = A′(r). The parameter µ is called the expectation parameter. Following
common convention, we will use p(· | ·) to denote all (conditional) probability density functions, with
a meaning clear from the arguments. We write y ∼ DA,χ(r) to mean that a scalar-valued random
variable y follows an exponential family with log partition function A, scalar canonical parameter r
and additional parameter ν. If Y = (y1, . . . , yd) and V = (r1, . . . , rd), we write Y ∼ DA,χ(V ) to
mean yi ∼ DA,χ(ri) for all 1 ≤ i ≤ d, with each yi mutually conditionally independent given H .

A.2 How to check whether a log partition function is admissible

Lemma 1. An infinitely differentiable and strictly convex A is an admissible log partition function
for a minimal, regular, one-dimensional exponential family if and only if

• there exists some c such that c exp
(
A(r)

)
is the moment generating function of some random

variable evaluated at r ∈ F ⊆ R.

• exp
(
A(ir)

)
is a positive definite function evaluated at r ∈ R and is continuous at r = 0.

Proof. Define

q(y | r) = h(y) exp
(
T (y)r −A(r)

)
for some nonnegative h and A : F → R with F ⊆ R. For a given A, we would like to determine
whether there exist an h such that q(· | r) defines a valid probability density function (or mass
function). This is true if and only if ch(·) for some c > 0 is the probability density function (or
probability mass function) of a random variable y satisfying

1

c
Ey∼ch(·)

[
exp

(
T (y)r −A(r)

)]
= 1 (8)

Ey∼ch(·)
[
exp

(
T (y)r

)]
= c exp

(
A(r)

)
,

which is the moment generating function of a random variable T (y). Alternatively, we may view
ϕ(r) := c exp

(
A(ir)

)
as the characteristic function of a random variable T (y) evaluated at real

value r. Choose c = exp
(
−A(0)

)
. By Bochner’s theorem, ϕ is a characteristic function if and only

if is continuous at 0 and ϕ is positive definite.

A.3 Antiderivative of hyperbolic tangent

Choose A(r) =
∫
tanh(r) dr = log cosh(r). One readily observes that A is admissible since

exp
(
A(ir)

)
= cos(r), which is positive definite.

Since the characteristic function of the base pdf is 2π-periodic, it coincides with a discrete integer-
valued random variable. In fact, we can construct an exponential family supported on {−1, 1} with
this choice of A, T (y) = y and uniform h(y) = 1/2 by verifying that (8) holds with c = 1. This is a
non-interacting Ising model.
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A.4 The Bose-Einstein integral

Let

Bj(r) =
1

Γ(j + 1)

∫ ∞

0

yj

ey−r − 1
dy, j > −1, r < 0

denote the complete Bose-Einstein integral of order j. It is known [Dingle, 1957] that Bj(r) =
Lij+1

(
er
)
, where Lij+1 denotes the polylogarithm of order j+1. The Bose-Einstein integral satisfies

a recursive relationship

d

dr
Bj(r) = Bj−1(r),

with a closed-form initial value B1(r) = − log(1− er).

Define

p(y | r) = h(y) exp
(
yr −Bj(βr)β

−(j+1)
)
,

where h(y) is a nonnegative function and β > 0 is some fixed value. We would like to determine
whether this choice of log partition function is valid.

Since the composition of the exponential function with a positive definite function is positive definite,
it suffices to show that the Bose-Einstein integral Lij+1

(
eir
)

is positive definite. This is observed by
a comparison to the characteristic function of the Geometric distribution. We have that∫ ∞

0

yj

ey−ir − 1
dy =

∫ ∞

0

yje−yeir

1− e−yeir
dy

=

∫ 1

2

(p− 1)
(
− log(p− 1)

)j
eir

1− (p− 1)eir
−1

p− 1
dp, p = e−y + 1

=

∫ 2

1

( (−1)j log(p− 1)j

p

) peir

1− (p− 1)eir
dp.

Now observe that
(

(−1)j log(p−1)j

p

)
is positive in (1, 2), and 1

1−(1−p)eir admits a Fourier series

(via the geometric series)
∑∞

k=0(p − 1)keirk. Since the Fourier series coefficients are positive,
1

1−(p−1)eir is positive definite, as is the product of positive definite functions peir

1−(p−1)eir . The
integrand is therefore positive definite, and by Lévy’s continuity theorem the integral is a positive
definite function.

Since ϕ is 2π-periodic, it is the characteristic function of a discrete random variable taking integer
values.

A.5 A non-example in the Fermi-Dirac integral

The Fermi-Dirac integral is closely related to the Bose-Einstein integral. Let

Bj(r) =
1

Γ(j + 1)

∫ ∞

0

yj

ey−r + 1
dy, j > −1, r < 0

denote the complete Fermi-Einstein integral of order j. It is known [Dingle, 1957] that Bj(r) =
−Lij+1

(
− er

)
, where Lij+1 denotes the polylogarithm of order j + 1. The Fermi-Dirac integral

satisfies a recursive relationship

d

dr
Bj(r) = Bj−1(r),

with a closed-form initial value B1(r) = log(1 + er).

At first, this might appear to be an attractive way to construct softplus activations and their zero-
temperature limits. If B2(r) were an admissible log partition function, σ(r) = A′(r) = log(1 + er).
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However, the Fermi-Dirac integral is not necessarily positive definite. Following the same method as
the Bose-Einstein integral, we have∫ ∞

0

yj

ey−ir + 1
dy =

∫ ∞

0

yje−yeir

1 + e−yeir
dy

=

∫ 1

2

(p− 1)
(
− log(p− 1)

)j
eir

1 + (p− 1)eir
−1

p− 1
dp, p = e−y + 1

=

∫ 2

1

( (−1)j log(p− 1)j

p

) peir

1 + (p− 1)eir
dp.

As before, observe that
(

(−1)j log(p−1)j

p

)
is positive in (1, 2). However, 1

1+(1−p)eir admits a Fourier

series (via the geometric series)
∑∞

k=0(1 − p)keirk. Since the Fourier series coefficients are not
always positive, the Fermi-Dirac integral is indefinite. Hence we cannot conclude that its exponential
is a positive definite function.

A.6 Bregman divergences

We need to recall some machinery from Banerjee et al. [2005]. In this subsection, without loss of
generality, suppose T is the identity. We work with the exponential family form

p(y | r) = h(y) exp
(
yr −A(r)

)
,

which is a probability density function for a scalar-valued random variable. Connections extend
to the vector-valued case, but since the setting in our text is restricted to factorised (conditionally
independent) scalar-valued densities, we write the connection in terms of scalar-valued objects.

Let ϕ be a strictly convex and differentiable function mapping from a convex subset of R to R. The
Bregman divergence Dϕ is defined as

Dϕ(υ1, υ2) = ϕ(υ1)− ϕ(υ2)− (υ1 − υ2)
∂

∂υ2
ϕ(υ2).

Every Bregman divergence corresponds with exactly one exponential family through a convex
conjugate. Concretely, the function ϕ that generates the Bregman divergence may be thought of as
the convex conjugate of a log partition function A,

ϕ(µ) = sup
r∈F

{µr −A(r)}.

We have that [Banerjee et al., 2005, Theorem 4]

p(y | r) = exp
(
−Dϕ(y, µ)

)
bϕ(y),

where bϕ is a uniquely determined function that does not depend on the expectation parameter µ (or
the canonical parameter r). The expectation parameter is related to the canonical parameter through
µ = A′(r) and r = ϕ′(µ).
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B Proof

Theorem 1. Any MAP estimate (5) of the graphical model in Figure 1 is a DEQ

W∗, B∗ ∈ argmin
W,B

− log p(W, B)− log p(Z∗) +

N∑
s=1

1⊤d×1A (WZ∗
s +B)− T (Ys)

⊤(WZ∗
s +B)

subject to Z∗
s =

1

λ
W⊤(T (Ys)− σ(WZ∗

s +B)
)
, ∀1 ≤ s ≤ N. (6)

Solutions to the inner constraint (6) are guaranteed to exist and be unique.

Proof. The log posterior over Z and W, B is

log p(Z,W, B | Y) = log p(Y | W,Z, B) + log p(Z) + log p(W, B)− log p(Y).

The joint MAP estimate (Z∗,W∗, B∗) solves the constrained optimisation problem

W∗, B∗ = argmin
W,B∈W

− log p
(
Y | WZ∗ +B

)
− log p(W, B)− log p(Z∗)

subject to Z∗
s = argmin

Zs

λ

2
∥Zs∥22 − Z⊤

s W⊤ +B⊤T (Ys) + 1⊤d×1A
(
WZs +B

)
.

The outer problem is converted into a sum by replacing log p
(
Y | WZ∗ + B

)
with the sum of

likelihoods (1) evaluated at the datapoints Ys = (ysi)
d
i=1 and canonical parameters Hs = WZ∗

s +B.

We convert the inner DDN layer into a DEQ layer. We consider the inner problem for fixed s, which
finds coefficients given W and b. The stationary points of the inner constraint satisfy

Z∗ = argmin
z∈Rl

λ

2
∥z∥22 −R(Z⊤W⊤ +B⊤)T (Y ) + 1⊤d×1A(Wz +B)

0 = λZ∗ −W⊤(T (Y ) +W⊤σ(WZ∗ +B) (9)

Z∗ =
1

λ
W⊤(T (Y )− σ(WZ∗ +B)

)
. (10)

The Hessian H of the constraint is strictly positive definite since the objective is strongly convex.
Concretely, we have

H = λI +W⊤
(

diag
(
σ′(WZ∗ +B)

))
W,

where σ′ = A′′ is nonnegative by strict convexity of A.

9



C Example details

PCA. We use the scikit learn implementation of PCA with default hyperparameters. We scale the
input data into PCA with scikit learn’s StandardScaler.

UMAP. We use the publically available UMAP implementation [McInnes et al., 2018, BSD 3-
Clause License] with default hyperparameters.

Data-generating process. We generate a 2D grid of size 105 × 105 with corners (±5,±5). We
then remove all points that are not inside the circle of radius 3 centered at (2, 2), the circle of radius
2 centered at (−3,−3) or the diamond of side length 1 centered at (4,−4). These are the ground
truth Z, consisting of 42453 points in the 2D plane. We choose an A, then repeat the following steps
100 times to obtain 100 random datasets. We generate W ∈ R50×2 by drawing elements iid from
a Gaussian with zero mean and variance 1

2 . We then sample Y from an exponential family with
canonical parameter WZ, log partition function A and sufficient statistic T .

DEQ. We use a DEQ with the same choice of A and T that matches the data generating process.
This automatically defines the dropout functions (if any) and activation functions in the network. We
use a value of λ = 0.1. We found it important to initialise weights with a small variance, especially
for Poisson distributions, where the exponential inverse link function can either overflow or become
very large. We use a zero mean iid Gaussian prior over W, B, which is implemented by applying
weight decay to the neural network optimiser. We use Adam [Kingma and Ba, 2015] to optimise
parameters W and B using default hyperparameters using a batch size of 500 and weight decay
varying with layer (note this is not the same as using weight decay with AdamW, which would not
be equivalent to L2 regularisation or Gaussian prior regularisation [Loshchilov and Hutter, 2019]).
Weight decay is set to 10×50. We train the network for 30 epochs. We use a publically available DEQ
repository [Bai et al., 2019, MIT License] to implement our DEQs, with a Anderson acceleration
method used as the solver with default hyperparameters.

Downstream task. We use a fully connected head with widths 2, 100, 1 and ReLU activations.
Together with our DEQ or (untrainable) PCA/UMAP backbone, we train the full network to predict
g(Zs) ∈ R given an input Ys ∈ R50 by minimising the sum of squared errors. This is done for each
of the 100 randomly generated datasets. The corresponding Zs ∈ R2 are not known to the network.
This is an easy to visualise but deceptively difficult task that relies heavily on the quality of the latent
embedding. A limitation of our evaluation is that we did not tune hyperparameters. However, if
latents were to be used in a downstream task not known a priori, there would be no way of obviously
tuning hyperparameters.

We use a small head network Linear(100) -> ReLU -> Linear(1) using default initialisation in Pytorch.
The headnet is appended to our pretrained backbone of each of PCA, DEQ and UMAP and fine-tuned
using Adam with default hyperparameters. For PCA and UMAP, which do not contain learnable
parameters, the backbone network is fixed. The full network is trained to minimise the sum of
squared errors between the output of the network and the function g(z) = Z1 + Z2, where Z1 and
Z2 are respectively the first and second coordinate of z. We use a batch size of 500 and train the
network for 200 epochs. In order to evaluate our model on the downstream task, we turn dropout off.
We randomly partition each of the datasets into 80%− 20% training-testing split and evaluate our
network on the test set. We report the number of times the network performed the best out of the 100
random runs for each of PCA, UMAP and DEQ.

Hardware, software and computational cost. We parallelised runs over multiple nodes, each
consisting of a single Tesla P100-SXM2-16GB GPU. We used CUDA 11.4 and Pytorch 1.11.0. Only
DEQ is GPU-accelerated. We found that typical run times for the dimensionality reduction task were
task dependent. Table 2 shows typical run times for each task.
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PCA tSNE UMAP DEQ
Gaussian 0.09 901.94 180.46 294.09
Bernoulli 0.11 923.85 174.71 267.81
Poisson 0.10 698.34 176.33 189.87

Table 2: Measured run times (seconds) for each dataset and model.

D Approximation to the posterior

The Hessian of the Laplace approximation is found by taking the derivative of the right hand side
of (9) with respect to Z∗. We find

H(Z∗) := − log p(Z∗ | Y,W, B) = λI+W⊤diag
(
σ′(WZ∗ +B)

)
W.

This leads to the Laplace approximation to the posterior,

q(z | Y,W, B) = N

(
z | Z∗, H(Z∗)−1

)
.

Note that the Hessian is positive definite at the local minima that we found, so that inversion of the
Hessian is well-defined.

If the likelihood were linearly parameterised Gaussian, σ′ would be 1 and we would recover a familiar
Gaussian case,

H(Z∗) = λI +W⊤W,

which is independent of the MAP Z∗.
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