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ABSTRACT

Recent advancements in large language models (LLMs) have led to unprecedented
capabilities in real-world applications. However, it remains challenging to reduce
the energy consumption of LLMs. In this paper, we aim to improve the energy
efficiency of LLMs by leveraging the advantages of brain-inspired spiking neural
networks (SNNs). We propose a novel approach called SpikingL.LM, which equiv-
alently converts quantized large language models (QLLM:s) applying PrefixQuant”
to their fully-spiking counterparts (all operators are in a more efficient spiking
version). To ensure that every operator can be converted into its spiking version,
we propose two approaches: @ QK2Head-migration post-softmax quantization,
which significantly improves the performance of current QLLMs with post-softmax
quantization; @ Differential-based methods, which tackle the SNN-unfriendly
operators such as KV Cache. To further reduce the energy consumption, we
introduce a window inhibition mechanism which effectively addresses the over-
firing issue in ST-BIF* neuron and improves the sparsity. With the approaches
above, Spikingl.LLLM significantly reduces the energy consumption while achieving
state-of-the-art performance on both perplexity and common-sense reasoning tasks.

1 INTRODUCTION

Large language models (LLMs) (Brown & Mann) 2020; Touvron & Lavril, 20235 Zhang et al., [2022;
Le Scao et al.| 2023) have revolutionized natural language processing (NLP) by leveraging massive-
scale neural networks to achieve state-of-the-art performance across a wide range of tasks. However,
the dense and continuous computations inherent in transformer-based architectures (Vaswani, [2017)
pose significant challenges in terms of energy efficiency of LLMs. For instance, Llama-2-70B requires
three A100-80G GPUs, each consuming approximately 400W of power (Xing et al.| [2024a). These
limitations are especially problematic for modern edge Al systems, which often require real-time
processing under strict power constraints. To mitigate these limitations and improve the accessibility
and applicability of LLMs, we focus on energy-efficient deployment for LLMs.

As a biologically inspired alternative to traditional artificial neural networks (ANNs), spiking neural
networks (SNNs) (Maass,, [1997) have emerged to bridge the gap between machine learning and
neuroscience. In contrast to ANNs (LeCun et al.| 2015), which rely on continuous activations, SNNs
process information through discrete and event-driven spikes, closely mimicking the communication
mechanisms of biological neurons (Merolla et al., 2014; |Davies et al., 2018)). As a result, SNNs show
promising prospects on computational intelligence tasks (Roy et al., |2019) with strong autonomous
learning capabilities and ultra-low power consumption (Bu et al.l 2023} Ding et al., [2022} |Ostojicl,
2014; Zenke et al., 2015)).

Unfortunately, scaling up SNNs to large-scale models remains challenging. By far, directly
training (DT) (Zhu et al., |2023) and ANN-to-SNN conversion (A2S) (Xing et al., [2024a; You
et all [2024b) are two traditional methods to scale SNNs up to LLMs. DT unfolds the in-
put in time-step dimension and leverages back-propagation-through-time (BPTT) (Wu et al.
2019) to update SNNs from scratch, which is computationally intensive and slow, particularly
under limited computing resources. In contrast, A2S replaces the quantizers in quantized
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ANNs (QANNG) with spiking neurons (e.g., ST- Comparison of SNN methods on LLMs
BIF* neuron in (You et al.l 2024b)), achieving 20
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converted into a spiking version, while minimiz- Figure 1: Comprison of SNNs methods on LLMs.
ing performance degradation from quantization. Star and triangle marks ANN-to-SNN (A2S) and
@ It is difficult for A2S methods to establish the directly training (DT), respectively. SpikeLLM(O)
equivalence between QLLMs and SNNs due to  and Spike LLM(P) refer to SpikeLLM under Om-
the existence of SNN-unfriendly operators (e.g., niQuant and PrefixQuant, respectively. The area
KV Cache, Softmax). The two challenges above of scatter denotes model size. Results demonstrate
are critical to convert LLMs into SNNS. the superiority of our SpikingLLM.

In this work, we aim to leverage the A2S method to scale SNNs up to LLMs, while maintaining all
the operations in spiking version (which is defined as fully-spiking in Section[3.3). Correspondingly,
we propose SpikingLLM, which establishes the equivalence between fully-spiking neural networks
and QLLMs. SpikingLLM firstly introduces QK2Head-migration module to enable post-softmax
quantization on top of PrefixQuant (Chen et al.| 2025) to establish PrefixQuant” (in Section ,
ensuring all matrix products in QLLMs can be faithfully converted into their spiking versions.
In addition, we refine the ST-BIF* neuron (You et al., [2024b) to align it with the quantizers in
PrefixQuant” and incorporate a window inhibition mechanism, which further reduces the energy
consumption. Finally, we propose SNN-friendly operators within SpikingL.LM, including Spike KV
Cache. Figure[T|demonstrates the superiority of our SpikingLLM over previous methods.

Our contributions are summarized as follows:

* We propose a conversion-based method called SpikingL. LM, which enables post-softmax
quantization and ensures that QLLMs can be converted into fully-SNNs. To further enhance
the performance of post-softmax quantization, we introduce QK2Head-migration module.

* We refine the ST-BIF* neuron to establish the equivalence between fully-SNNs and QLLMs.
Then we introduce a window inhibition mechanism to address the over-firing issue of refined
ST-BIF* neuron, which significantly improves the sparsity and reduces energy consumption.

* We convert SNN-unfriendly operators (e.g., KV Cache, SiLU) to SNN-friendly versions
counterparts, further enabling the equivalence between fully-SNNs and QLLMs.

* Spikingl.LLM achieves the state-of-the-art performance on perplexity and common-sense
reasoning tasks with significant energy reduction (e.g., compared to SpikeLLM(P) on Llama-
2-7B in Table[2] our SpikingLLM improves the average accuracy of common-sense reasoning
tasks by 26.37% (47.79 = 60.28) with 60.34% energy reduction (2.37J = 0.94J)).

2 RELATED WORKS

Spiking Neural Networks. The learning methods of SNNs come in twofolds: directly train-
ing (DT) and ANN-to-SNN conversion (A2S). The DT algorithm leverages back-propagation through
time (BPTT) (Wu et al.| 2019) with surrogate gradient (Neftci et al., 2019) to update SNNs from
scratch for a fixed time-step. However, the gap between SNNs and ANNS s persists due to the gradient
estimation error. Compared to DT algorithm, A2S algorithm leverages spiking neurons to replace
the quantizers in quantized ANNSs, leading to equivalent SNNs with comparable performance to
ANNSs (Wang et al., 2023; You et al., 2024b). Furthermore, A2S algorithm consumes less computa-
tional cost and time. However, most SNNs focus on computer vision tasks. As for language-oriented
tasks, current SNNs (SpikeBERT (Lv et al.|[2024)), SpikingBERT (Bal & Senguptal [2024), SpikeZIP-
TF (You et al., 2024b), SpikeLM (Xing et al.,2024b) and SpikeGPT (Zhu et al., 2024b)) fail to scale
up to the billion-level parameters. SpikeLLM (Xing et al.| [2024a)) scales up SNNs to billions of
parameters, but their models are not fully-spiking. It remains a valuable issue to scale fully-spiking
neural networks up to billions of parameters.
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Quantized Large Language Models. Model quantization improves large language models (LLMs)
efficiency by compressing weights and activations into lower bit-widths, reducing memory consump-
tion and accelerating inference. Quantization-aware training (QAT), exemplified by LSQ (Esser
et al.| 2020) and U2NQ (Liu et al.l 2022)), achieves higher accuracy for smaller models through full
retraining, and advances calibration-based techniques like EfficientQAT (Chen et al.,|2024), further
balancing efficiency and performance. Post-training quantization (PTQ) is more applicable on LLMs
for its computational practicality, with methods like GPTQ (Frantar et al.,[2023)), SpQR (Dettmers
et al.,|2023)), and AWQ (Lin et al., 2024a)) focusing on weight compression, while SmoothQuant (Xiao
et al.,[2024), RPTQ (Yuan et al., [2023)) and OmniQuant (Shao et al.| 2024) jointly quantize weights
and activations. However, previous PTQ methods (e.g., OmniQuant) mostly focus on dynamic
quantization with quantization scale dynamically determined by input, which is difficult to tackle with
spiking-version input. Although PrefixQuant (Chen et al.| 2025)) integrates prefixed tokens into static
quantization, enabling low-bit precision for LLMs with high accuracy and efficiency, the overlook
on post-q and post-softmax quantization (as depicted in 2"¢ column in Figure [3)) makes it unable to

convert matrix products of QK™ and softmax(Q—\I/(;)V into spiking matrix products. Consequently, it
remains a challenge to establish specific QLLMs which are suitable to be converted into fully-SNNs.

3 PROBLEM FORMULATION

In this section, we firstly introduce the paradigm of A2S algorithm. Then we bring in the current
state-of-the-art QLLMs (PrefixQuant (Chen et al.,|2025))) and illustrate its applicability to the A2S
algorithm. Finally we propose the definition of full-spiking and clarify the intuition of SpikingLLM.

3.1 A2S ALGORITHM

A2S Algorithm transfers the parameters of

the pre-gained ANNSs into theilr) SNNs coun- ANNSs LLMs
terpart while maintaining the synaptic con- Quantization-Aware Post-Training Quantization
nections in ANNs, which yields close-to- Training (PrefixQuant* in Section 4.1)
ANNs accuracy. In SpikingLLM, we in-

herit the A2S conversion algorithm from QANNS QLLMS
SpikeZIP-TF (You et al., [2024b) including the Comvesion Convesion Algorithm
ANNs (LLMS) _>. QANNs (QLLMS) _> SNNs Algorithm (in Section 4.2 and 4.3)
conversion paradigm (as shown in Figure [2).

For conversion paradigm, we insert activation SNNs SNNs
quantizers in front of all the matrix products

in ANNs (LLMs). SpikeZIP-TF leverages the (a) SpikeZIP-TF. (b) SpikingLLM.
quantization-aware training (QAT) method to Figure 2: SpikeZIP-TF and SpikingLLM.

achieve corresponding QANNSs, which is com-

putationally inefficient for LLMs. Consequently, we apply efficient post-training quantization (PTQ)
method (PrefixQuant” in Section ) to achieve corresponding QLLMs. Then we propose the
conversion algorithm in Section[4.2[and Section[d.3]to replace the inserted quantizers with spiking
neurons and ensure that all matrix products and operators can be converted to their spiking version.

3.2 PREFIXQUANT

PrefixQuant (Chen et al., |[2025) introduces an efficient static quantization framework tailored to
large language models, specifically focusing on prefixed tokens to enhance performance. By setting
specific prefixed tokens in the KV cache, PrefixQuant eliminates token-wise outliers in linear inputs
and Q/K/V, enhancing compatibility with per-tensor static quantization. When tackling spiking
version input (which means we cannot acquire the total input at the current inference time-step),
static quantization with fixed quantization parameters is more suitable to the A2S algorithm compared
to dynamic quantization method (such as OmniQuant (Shao et al., [2024)) where the quantization
parameter is dynamically determined by input. Consequently, we construct SpikingLLM on the basis
of static quantization (PrefixQuant) rather than dynamic quantization (OmniQuant).

3.3 FULLY-SPIKING DEFINITION

Inspired by the concept of spike-driven introduced by DT algorithm (Yao et al.,[2023)), we introduce
the definition of fully-spiking for A2S algorithm, which means that all operators in SNNs are
in an event-driven or spiking version (calculation is triggered by spikes). However, current
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Figure 3: Architecture of Llama, PrefixQuant, PrefixQuant” and SpikingLLM. PA, EP and
MP refer to post-attention, element-wise product and matrix product, respectively. Compared to
PrefixQuant, PrefixQuant” inserts post-q and post-softmax (QK2Head-migration) quantization to
ensure that each matrix product can be converted to spiking matrix product. SpikingLLM firstly
substitutes ST-BIF* neuron for all quantizers, then replaces SNN-unfriendly operators (Softmax,
RMSNorm, SiLU and KV Cache (Prefixed)) with SNN-friendly ones.

QLLMs methods, such as OmniQuant (Shao et al., 2024) and PrefixQuant (Chen et al., [2025)),
overlook the quantization of query and softmax output (as depicted in 2" column in Figure |3)

As a result, the matrix products of QKT and softmax(%)v cannot be converted into spiking

version. Additionally, operators in QLLMs (e.g., KV Cache, SiLU) need to be converted into their
spiking version. Although SpikeLLM (Xing et al., 2024a) introduces a spiking mechanism tailored to
salient channels, operators on non-salient channels remain non-spiking version. Consequently, our
SpikingLLL.M is the first to establish the equivalence between fully-SNNs and QLLMs.

4 METHODOLOGY

In this section, we firstly introduce post-q and post-softmax quantization on top of PrefixQuant
to establish PrefixQuant” (as shown in Figure [3) to ensure that all matrix products are equally
converted into spiking matrix products. To further enhance the performance of PrefixQuant”, we
propose QK2Head-migration quantization, a novel approach that shifts the difficulties of post-softmax
quantization from query and key dimension to head dimension. Then, we refine the ST-BIF* neuron
to make it fully equivalent to the quantizer in PrefixQuant”. With the equivalence above, we introduce
a window inhibition mechanism to further improve the sparsity of the refined ST-BIF* neuron. Finally,
we describe the design of SNN-friendly spike operators in SpikingLL.M including Spike KV Cache.

4.1 PREFIXQUANT" WITH QK2HEAD-MIGRATION QUANTIZATION

We firstly introduce PrefixQuant” (3™ column in Figure [3) which inserts post-q and post-softmax
quantization on the basis of PrefixQuant. For post-q quantization, we follow the post-k and post-v
quantization in PrefixQuant. For 4-dimensional post-softmax output, we propose a novel strategy
called QK2Head-migration quantization. As illustrated in Figure ] QK2Head-migration quantization
divides the softmax output into prefixed part and normal part. The prefixed part corresponds to the
attention scores associated with the prefixed tokens introduced by PrefixQuant, while the normal part
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Figure 4: Architecture of QK2Head-migration Quantization. Note that T, R, A, C, Q are the
abbreviation of Transpose, Reshape, Accumulate, Calibration and Quantization. Stat calib input
means the Pile (Gao et al.,|2020) data distribution for static quantization parameter calibration. After
T, R and A on stat calib input, quantized item stat is achieved to initialize quantization scale.

represents the standard attention scores computed during the forward pass, which depends on the
input sequence.

To cope with the quantization of these two parts, we introduce query dimension migration ratio
gm and key dimension migration ratio kp, to redistribute the quantization complexity from query
and key dimension to head dimension. Specifically, for both Prefixed and Normal parts, we firstly
transpose, reshape and accumulate the stat calibration input to derive the quantized item stat. Then
we initialize separate quantization scales for prefixed (Scalep) and normal (Scaley) parts, ensuring
that each part is quantized optimally based on its stat calibration input. After calibration, we follow
the same procedure to process the data input and achieve corresponding quantized data output. Then
we leverage block-wise fine-tuning (Shao et al., [2024; (Chen et al., 2024)) to fine-tune PrefixQuant”.

4.2 ST-BIF* NEURON REFINEMENT AND WINDOW INHIBITION MECHANISM

In Spiking.LLMz we follow the ST-BIF* neuron  Typle 1: Summary of notations used in this paper.
proposed in SpikeZIP-TF (You et al., 2024b),

; - Notation Description
whose acc.:umulated spikes (ne}lron out.put) is 7 quantization scale of quantizer Q"
fully equivalent to the quantized activation. x input of quantizer Q"
The quantization scale of the quantizer used in Vi membrane potential of neuron at ¢ time-siep
. . . . . Vinr threshold voltage for neuron to fire a spike
SpikeZIP-TF is a simple scalar, which is effec- yin you input or output voltage of neuron
tive for quantizing models with limited parame- St spike tracer at time-step ¢

Smax maximum value in spike tracer

ters. HOWCVCI‘, when it comes to the quantlzatlon clip(2, umin, @max)  clip function that limits 2 within oyis and ouax

on large-scale LLMs, the quantization scale of O(V, Vi, §)  output spike decision function of ST-BIF*
. LY * . . . 1 - 1 H -
quantlzer Q in PreﬁxQuant is a matrix with Teq time-step that S‘NN.s enter the equilibrium state
n head number of softmax output

group size. Consequently, we refine the ST-BIF* dimy, dimg dimension of stat calib input and data input

neuron in SpikeZIP-TF to make it fully equiv- g iign - oo e e o Nomal part
alent to Q . Overview of the refined ST-BIF* C[.2() concatenate and zeros like operator
neuron is shown in Figure and the equation e Ts prefixed and stored tokens
of Q" is described in Equation (1). The notations L length of inhibitingpwindow
are specified in Table[T}
% Z; Quantize(Z) = ¢ - clamp(round(£/q), o, 8); Quantize(Z) W) Oq (1)
roup eshape

As for the refined ST-BIF* neuron, the dynamics can be expressed as follows (note that the threshold
voltage Vier is equal to quantization scale ¢):

L V2> V&S < Spu
Vi O(V, Vi, S) =< 0;  other ;

in Reshape
e

Vi

Group
—-1; V<0&S > Smin @)
Vi=Viei + V" — Vior - O(Vic1 + v, ‘Zhr; St—1); St = Si—1 + O (Vi1 + vm ‘Zhr; Si—1)
STeq . ‘Zhr Regroup Os,
Reshape

The accumulation of spikes from the refined ST-BIF* neuron Oy is equivalent to the output of Q" Oq.
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(a) Refined ST-BIF* neuron with window inhibition mechanism. (b) Continuous spikes distribution.
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Figure 5: Refined ST-BIF* neuron with window inhibition mechanism and continuous spikes
distribution.

We plot the continuous spikes distribution under continuous time-steps in Figure[5(b)|and find that
{+1, —1} makes up the majority of the continuous spikes combination. Specifically, most ST-BIF*
neurons tend to fire a positive (negative) spike to counteract the negative (positive) spike from the
last time-step, leading to fire redundant spikes (“over-firing” issue). To address the over-firing
issue and reduce the energy consumption, we propose window inhibition mechanism. As depicted
in Figure[5(a)] we introduce an inhibiting window (e.g., window length L = 4) to accumulate the L
time-step spikes to fire 1 time-step spike, which significantly suppresses the over-firing issue and
improves the sparsity. For the equivalence between refined ST-BIF* neuron with window inhibition
mechanism and quantizer Q”, we introduce a spike tracer S¢op, to store the redundant spikes for
compensation (e.g., the sum of spikes in the inhibiting window is greater than 1 or less than -1). The
detailed procedure of window inhibition mechanism is illustrated in appendix (Section [AT).

inference at i-th decoder layer inference at i-th decoder layer at t time-step (t>1)
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Figure 6: Architecture of KV cache and Spike KV Cache with prefixed tokens.
4.3  SNN-FRIENDLY SPIKE OPERATORS

To futher ensure the equivalence between PrefixQuant” and SpikingLLLM, we introduce SNN-friendly
spike operators (e.g., Spike KV Cache, Spike SiLU.). As depicted in Figure [6(b)l we introduce
Spike KV Cache Skvy with prefixed tokens to enable the KV Cache during SNNs inference. The
inference of Skv at i-th decoder layer under t time-step is described in Equation (3). At the first
time-step (t = 1), Skv outputs and stores the concatenated prefixed and original tokens, which is the
same to the original KV Cache in Figure [6(a)l As for t time-step (t > 1), Sky concatenates zeros
tensors (with the same shape of prefixed tokens Tp) with tokens at t time-step T to output, which
ensures that the accumulation of Sk output equals to original KV Cache output. Then Sk stores
the sum of output and stored tokens Tg back to the cache.

store

C[Tp, T 1
, Tels t=
Skv (T, Tp) = (T stt}ore 3)

—_—
Cl[Z(Tp), Te]+ Ts —Tg; t>1

Since that Rotary Position Embedding (RoPE) operator is a linear mapping, the original RoPE is
applicable to SpikingLLM. For Softmax, SiLU and RMSNorm, we follow the differential strategy
from SpikeZIP-TF (You et al.,[2024b)) to introduce Spike Softmax, Spike SiLU and Spike RMSNorm.
The detailed procedure of spike operators above are illustrated in appendix (Section[AZ)).
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Table 2: Comparison on Llama-2 models. T refers to inference time-step for SNNs. Best results are
in bold, runner-up results are marked in gray . SpikeLLM(O) and SpikeLLM(P) refer to SpikeLLM
with OmniQuant and PrefixQuant, respectively. WT2, HS and WG refer to Wikitext2, HellaSwag
and Winogrande, respectively. Inhibiting window length L is set to 4 (L = 4).

Fully-

Energy  Perplexity(]) Zero-shot Accuracy(1)

Method Category Bits

Spiking M) WT2 €4 PIQA ARCe ARCc HS WG Avg
LLAMA-2-7B  ANNs - - FP16 2002 547 697 79.11 7462 4625 7600 6922 69.04
OmniQuant W4A4 471 1525 1935 6219 4562 2543 39.15 5217 4491
PrefixQuant (s W4A4KV4 215 622 - 7720 7151 4394 7375 67.80 66.84
PrefixQuant’ s - T W4A4QKVS4 164 1156 14.10 7285 6250 3695 68.01 61.96 6045
relixQuan W4A5QKVS5 191  7.78 956 7503 66.04 3891 7089 6377 62.93
SpikeLLM(O) X - W4A4 518 1146 1445 6279 5101 27.13 4347 5383 47.65
SpIkeLLM(P) g X —  W4A4QKV4 237 1132 1501 6258 5093 27.11 4385 5401 47.70
SpikingLLM ; y 16 W4A4QKVS4 094 1099 1378 7345 6195 3643 6802 61.56 60.28
L =4 32 WA4ASQKVSS 153 771 935 7454 6566 3916 7122 6251 62.26
LLAMA-2-13B ANNs - - FP16 3850 488 646 8052 7748 4906 7937 7222 7173
OmniQuant W4A4 9.16 1240 1587 67.03 5396 3055 6291 4483 51.86
PrefixQuant (o _ _ W4A4KV4 418 622 - 7851 7580 4667 7654 7206 69.92
Prefi o s WA4A4QKVS4 316 799 10.68 7557 6949 4147 7245 6527 64.85
refixQuan W4A5QKVSS  3.67 628 811 7748 7332 4292 7445 69.93 67.02
SpikeLLM(O) X - W4A4 1007 956 1248 6529 5581 2841 4813 5556 50.64
SpikeLLM(P) g X —  W4A4QKV4 439 994 1259 6593 5589 2873 4822 5521 50.80
SpikingLLM v 16 W4A4QKVS4 2.08  7.80 1032 7650 7041 4198 7242 6551 6536
L =4) 32 WA4ASQKVSS 307 626 8.07 7726 7344 4343 7437 66.69 67.64

5 EXPERIMENTS

5.1 SETUPS

Training Details. We follow the fine-tuning setting from PrefixQuant (Chen et al.| 2025)) to fine-
tune PrefixQuant”. During fine-tuning, we optimize the block-wise output mean square error. We use
512 samples from Pile (Gao et al.,[2020) with a 1024 context length as fine-tuning dataset. For Weight
quantization, we choose 4-bit (denoted as W4). For Activation, Query, Key, Value and Softmax
quantization, we conduct experiments on 4-bit and 5-bit (denoted as A4QKVS4 and ASQKVSS,
respectively) quantization. The fine-tuning batch size and number of epochs are set to 4 and 20,
respectively. For QK2Head-migration quantization, we set g, to 1 and k,, to 16. For SNNs inference,
we set time-step T to 16 and 32 for A4QKVS4 and A5QKVSS, respectively. Finally we set inhibiting
window length L = 4 during inference.

Evaluation Tasks. We evaluate SpikingLL.M on Llama-2-7B, Llama-2-13B (Touvron et al., [2023),
Llama-3-8B (Grattafiori & et al., [2024) and Mistral-7B (Jiang et al.,[2023)). We follow the evaluation
methods from PrefixQuant and SpikeLLLM as the primary baselines. We also conduct experiments on
SpikeLLM with PrefixQuant (denoted as SpikeLLM(P)) in Table |2} for a fair comparison between
Spikingl.LM and SpikeLLM. Specifically, we evaluate the perplexity (PPL) of language generation on
Wikitext2 (Merity et al.l 2016) and C4 (Raffel et al.,2023) benchmarks. For zero-shot common-sense
reasoning tasks, we evaluate SpikingLLM on PIQA (Bisk et al.} 2019), ARC-easy (Clark et al., 2018]),
ARC-challenge (Clark et al., 2018)), HellaSwag (Clark et al., |2018) and Winogrande (Sakaguchi
et al| 2019). We report acc for WinoGrande and acc_norm for remaining datasets, following
Qserve (Lin et al., [2024b). We also compare SpikingLLM with SpikeGPT (Zhu et al.,|2023) and
other efficient LLMs (MatMul-free LLM (Zhu et al.,|[2024a)) and ShiftAddLLM (You et al.| 2024a))
in appendix (Section[A5]and Section [A6).

Energy Consumption Metric. We inherit the operation metric proposed in SpikingFormer (Zhou
et al.,[2023)) to calculate the Multiply-ACcumulate operations (MACs) and ACcumulate-Only op-
erations (ACs) of self-attention and linear operators. For LLMs and QLLMs, we calculate the
number of MACs #MACs. For SNNs, we calculate the number of ACs #ACs and MACs #MACs.
Then we sample the weights and activations from different methods to estimate the average en-
ergy consumption of a single MAC operation Eyjac and AC operation Exc (The detailed en-
ergy estimation procedure is illustrated in appendix (Section[A3))). Finally we follow the formula
ESNNs = #ACS X EAC + #MACS X EMAC and ELLMS/QLLMS = #MACS X EMAC‘ from Spiking—
Former (Zhou et al., [2023)) to estimate the total energy consumption for SNNs, LLMs and QLLMs.
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Table 3: Performance of SpikinglLLM on Llama-3-8B and Mistral-7B.

Fully- . Energy  Perplexity(]) Zero-shot Accuracy(T)
Method  Category g i, T Bits OJ WT2 C4 PIQA ARC-e ARCc HS WG Avg
LLAMA-3-8B ANNs - FP16 224 614 888 8079 7769 5333 79.16 72.53 72.70
. W4A4QKVS4 183 1085 1582 7524 6801 4206 7127 6156 63.63
PrefixQuant”  QLLMs -~ wyasQRVSS 212 820 1161 7748 7365 4676 7560 6732 68.16
SpikingLLM o , 16 WAAJQKVSY 104 1034 1538 7551 6812 4193 7172 6123 6370
(L =4) ‘ 32 W4ASQKVSS 177 814 1128 7782 7343 4691 7524 67.66 68.21
Mistral- 7B ANNs - FP16 1946 549 841 8246 8262 5887 8294 7411 7620
. , W4A4QKVS4 160 7.74 1068 7824 7664 5128 7697 6267 69.16
PrefixQuant”  QLLMs -~ wuusORVSS 186 639 920 8123 8030 5657 8094 7151 741l
SpikinglLM o 16 W4AJQKVS4 092 732 1002 7805 7682 5143 7721 6245 69.19
(L =4) s 3 W4ASQKVSS 146 628 898 8144 8021 5684 8103 7199 74.30

5.2 RESULTS COMPARISON

Results on Perplexity Tasks. Table 2] shows the experimental results on Llama-2-7B and Llama-
2-13B. For perplexity metric on Wikitext2 and C4 benchmarks, Spikingl.LM achieves equivalent
results with PrefixQuant” under the same setting. For 4-bit quantization on Llama-2-7B, SpikingLLM
surpasses SpikeLLM(P) by 0.33 on Wikitext2 and 1.23 on C4. For 4-bit quantization on Llama-2-
13B, SpikingLLM outperforms SpikeLLM(P) by 2.14 on Wikitext2 and 2.27 on C4. Furthermore,
SpikingL. LM achieves state-of-the-art performance on both Wikitext2 and C4 benchmarks with 5-bit
quantization. We also extend our SpikingLLM on Llama-3-8B and Mistral-7B in Table [3] which
further verifies the equivalence between SpikingLLM and PrefixQuant”.

Results on common-sense Reasoning Tasks. As tabulated in Table [2] SpikingLLM achieves
promising results on common-sense reasoning tasks. For 4-bit quantization, SpikingLLLM achieves
an average zero-shot accuracy of 60.28 on Llama-2-7B and 65.36 on Llama-2-13B, surpassing
SpikeLLM(P) by 12.58 and 14.56, respectively. Moreover, with 5-bit quantization, SpikingLLM
achieves an average zero-shot accuracy of 62.26 on Llama-2-7B and 67.64 on Llama-2-13B, further
closing the gap between ANNs and SNNs. Notably, SpikingLLM outperforms PrefixQuant™ on
complex reasoning tasks such as ARC-c and HellaSwag. Furthermore, consistent experimental results
on Llama-3-8B and Mistral-7B in Table [3|demonstrate the generalisability of SpikingLLM.

Results on Energy Consumption. Based on the experimental results in Table [2] and Table [3|
SpikingLLM demonstrates significant advantages in reducing energy by effectively converting
Multiply-ACcumulate operations (MACs) into ACcumulate-Only operations (ACs) through its fully-
spiking paradigm. For instance, on Llama-2-7B model under 4-bit quantization, SpikingLL.M achieves
a remarkable reduction (1.64 = 0.94) compared with PrefixQuant”. Note that SpikeL.LM exhibits
higher energy consumption than corresponding QLLMs (e.g., 2.15 = 2.37 for PrefixQuant). This
discrepancy arises that SpikeLL.M fail to embrace the fully-spiking paradigm, instead maintaining
a hybrid approach which still relies on traditional Multiply-ACcumulate operations (MACs). We
incorporate the detailed analysis on energy consumption in appendix (Section[A3]and Section [A4).

5.3 ABLATION STUDY

Ab!ation on QKZHea.d-migration quanti- Typle 4: Ablation on QK2Head-migration quan-
zation. As tabulated in Table 4 we test tization and Spike KV Cache on Wikitext2.
different settings of PrefixQuant, includ- QK2Head-  Spike WA4AQKVSA  WAASQKVSS
ing versions with/without QK2Head-migration =~ migration KV Cache 2-7B  2-13B  2-7B  2-13B

quantization, to verify the effectiveness of X X 556.34 512.13 532.81 508.94
QK2Head-migration quantization. Note that ; ‘); 522431172 ‘2329-3116 5;%34 4336-;3
for PrefixQuant” without QK2Head-migration v v 1099 780 771 626

quantization, we reshape softmax output into
3-dimensional and quantize it through activation quantization in PrefixQuant. The results demonstrate
that the introduction of QK2Head-migration quantization significantly enhances performance across
all quantization scenarios for both Llama-2-7B and Llama-2-13B. For instance, for Llama-2-7B
with W4A4QKVS4, Wikitext2 perplexity is reduced from 24.17 to 10.99 when QK2Head-migration
quantization is applied. Similarly, for Llama-2-13B with W4A4QKVS4, Wikitext2 perplexity de-
creases from 42.31 to 7.80. These improvements highlight the substantial benefits of incorporating
QK2Head-migration quantization.
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Ablation on Spike KV Cache. We also present the experimental results of SpikingLLM
with/without Spike KV Cache in Table As detailed in Table 4 original KV Cache fails to
process spiking inputs effectively, resulting in a fundamental discrepancy between SNNs and corre-
sponding QLLMs. This limitation highlights the necessity of introducing Spike KV Cache, which
ensures that the cumulative output aligns precisely with the output of KV Cache in QLLMs. For
instance, in the cases of LLAMA-2-7B and LLAMA-2-13B with W4A4QKVS4, Wikitext2 perplexity
are significantly reduced from 523.12 to 10.99 and 489.16 to 7.80 when Spike KV Cache is employed.
These substantial reductions demonstrate the effectiveness of the Spike KV Cache in processing
spiking input while preserving the consistency of output.

Ablation on post-q and post-softmax quantization. Taple 5: Ablation on post-q and post-
To verify the necessities of introducing post-q and post-  goftmax quantization.

softmax quantization, we compare the energy consumption Energy

of SpikingLLLM with/without post-q and with/without post- ~ Post-  Post- Fully- O
softmax quantization on Llama-2 under W4A4QKVS4 q  softmax  Spiking 5 ;5775 138
in Table[5] As illustrated, the introduction of post-q and

X X X 2.77 5.64
post-softmax quantization drastically reduces energy con- v X X 212 4.02
sumption. The significant reduction demonstrates that the X v X 159 3.65
v v v 094  2.08

introduction of post-q and post-softmax quantization en-

ables the conversion of matrix products of QKT and softmax(Q—zT)V into spiking matrix products,
which effectively converts high-energy MACs into low-energy ACs.

Ablation on Window Inhibition Mechanism. We set Tuple 6: Ablation on window inhibi-
multiple values to inhibiting window length L in Table[6]t0  tjon mechanism.

verify the effectiveness of window inhibition mechanism. ] Enerey LLAMA-2-7B
As illustrated, the energy consumption of Spikingl. LM Lo Sparsit( gy Wt cad)
without window inhibition mechanism (L. = 1) is 1.70J, 1 34.93% 1.70 1091  13.68
which is comparable to the corresponding QLLMs (1.64] 2 49.78% 1.19 10.94  13.71
in Table2). With the introduction of window inhibition ~_4 _ 63.21% 0.94 1099 1378
mechanism, our SpikingL.LM significantly improves sparsity (34.93% = 63.21%) and reduces
energy consumption (1.70J = 0.94J) without performance degradation.

Ablation on (Qm, km) Settings. Figure Wikitext2 PPL Heatmap s Wikitext2 PPL Heatmap .
presents the heatmaps of Wikitext2 perplexity - 1038 12199 R
(PPL) results for LLlama-2-7B model under var- -7 1051 2294 RN
ious (g, km) settings on QK2Head-migration “olnm e o PR 20 Ce-ose ss 1239 e

64
64

16
w
=3

6

quantization. As depicted, the effectiveness of - s B 1 P o 7es 1084 naz W
QK2Head-migration quantization varies signif- i 4 15 e 0 i 4 16 e 0
icantly depending on the bit precision and (gp, m an

km) settings. For 4-bit quantization, the optimal (a) W4A4QKVS4. (b) WAA5QKVSS.

performance (11.56) is achieved with (¢, = 1,
km = 16) setting, which demonstrates the ef-
fectiveness of this setting in low-bit quantiza-
tion. Similarly, for 5-bit quantization, (¢, = 1,
km = 16) setting also delivers the best result, with a PPL of 7.78, further validating the robustness of
this approach across different bit-widths.

Figure 7: Wikitext2 perplexity with Llama-2-7B
under various (¢m, km) settings on QK2Head-
migration quantization.

6 CONCLUSION

SpikinglLLM introduces an innovative ANN-to-SNN conversion method that establishes the equiv-
alence between fully-spiking neural networks and quantized large language models. To make the
equivalence applicable, we introduce QK2Head-migration quantization, refined ST-BIF* with window
inhibition mechanism and SNN-friendly spike operators. These advancements enable SpikingLLM
to achieve state-of-the-art performance on both perplexity and common-sense reasoning tasks, while
significantly reducing energy consumption. To the best of our knowledge, SpikingLLLM is the first
conversion-based method on fully-spiking large language models. We anticipate that SpikinglL. LM
can be further extended to incorporate learning-based methods, which hold the potential to achieve
even more promising performance while further reducing energy consumption.
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Appendix

Al WINDOW INHIBITION MECHANISM

Algorithm 1 Window Inhibition Mechanism

Input: Input voltage t t time-step Vti“.

Model: Refined ST-BIF* Neuron ©.

Parameter: Spike Tracer at t time-step S; = 0, Spike Tracer for previous window Sy = 0, Spike
Tracer for compensation S = 0, Inhibiting Window Length L, time-step T, Threshold voltage for
neuron to fire a spike Vthr, Membrane potential of neuron at t time-step V.

Output: Firing spikes spike.

1: fort=1toTdo L
2 Se =S +0(Ver + ‘/tinvvlhrv Se1)
3: # Window inhibition process
4 if (t-1) % L == 0 then
1; St — Spre >0

5: spike = ¢ 0; other
—1; Si = Spe <0
6: # Update spikes for compensation
7: Secom = St — Spre — spike
8: else
9: # Block firing spikes
10: spike = V" % 0.
11: if (t-1) % L == 1 then
12: # Update spike tracer for previous window
13: Spre = Si.clone()
14: end if
15:  endif
16: end for

17: # Firing compensated spikes
18: while max(Som.abs())! = 0 do

]-; Scom >0
19:  spike = ¢ 0; other
_1; Scom <0

Scom = Pcom — spike
20: end while

The detailed process of the window inhibition mechanism is specified in Algorithm[I] As illustrated,
we introduce an inhibiting window with length L to combine the original L time-step spikes into 1
time-step spike (fire one positive spike if S; — Sy > 0, fire one negative spike if S; — Sy < 0). For
the equivalence between refined ST-BIF* neuron with window inhibition mechanism and quantizer
Q°, we introduce a spike tracer Scon, to trace the redundant spikes for compensation (e.g., the sum
of spikes in the inhibiting window is greater than 1 or less than -1). When it comes to time-step t
satisfying (t — 1)%L == 0, the refined ST-BIF* neuron fires a spike. After firing the spike, the
redundant spikes S; — Sy — spike should be updated into Scor,. After T time-step, Scom should
fire redundant spikes until there is no spike left. The introduction of window inhibition mechanism
significantly suppresses the over-firing issue and improves the sparsity, leading to apparent reduction
on energy consumption. Note that under most circumstances, there are no redundant spikes in Sc¢op,,
which suggests that redundant spikes from inhibiting window can also counteract each other as
time-step increases, further verifying the effectiveness of window inhibition mechanism.

A2 SPIKE OPERATORS

Regarding the differential strategy (Figure to convert the SNN-unfriendly operators (e.g.,
Softmax, RMSNorm, SiLU) to SNN-friendly counterparts, the definition is as follows:
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Xe=Xi14+x; Op=0(Xy)
Os,t = 0; — Oy

where o (+) represents the ANN operators includ-

ing Softmax, RMSNorm and SiLU. z; and Os+  Figure Al: Architecture of spike operators (e.g.,
are the input z}nd output of the operator at time- - gpjke Softmax, Spike RMSNorm, Spike SiLU).
step ¢ respectively, X is the summation of the ~ § refers to spike tracer. o(-) refers to ANN opera-

input during ¢ time-steps, Oy is the output of the (g (e.g., Softmax, RMSNorm, SiLU).
function o () with input X;. Both X; and O;

are stored back to spike tracer S for computation at next time-step. The operators in ANNs can be
made equivalent to its SNNs version by summing up Ogs ; through time.

(AD)

A3 ENERGY ESTIMATION PROCEDURE

1) RTL designs of
MAC and AC 2) RTL lrlnodules
in Verilog format synthesis 4) Post-synthesis 5) Power consumption
functional simulations calculation
[ 3) Act. and weight collection as testbenches

Figure A2: Detailed procedure of energy estimation.

We follow the standard EDA design flow (Kommuru & Mahmoodi, [2009) to evaluate energy con-
sumption. The detailed evaluation procedure is illustrated in Figure [A2)and summarized as follows:

1) We first implement the RTL designs of the MAC and AC units in Verilog format, following standard
digital circuit design practices.

2) These RTL designs are synthesized into gate-level netlists using Synopsys Design Compiler,
utilizing the TSMC 28nm HPC standard cell library.

3) We collect real activation and weight values from actual network inference and construct represen-
tative testbenches using these samples as input stimuli.

4) We perform post-synthesis functional simulations using Synopsys VCS, applying the testbenches
to the synthesized netlists. The simulation generates VCD files that capture signal transitions and
circuit switching activity over time.

5) We import the VCD files into Synopsys PrimeTime PX (Galbi et al.,[2010), a gate-level power
analysis tool, to calculate the dynamic power consumption based on real activity patterns and cell-level
power models.

This procedure ensures that the reported energy values in - Taple Al: Eyjac and Eac estimation.
this work are realistic and reflect actual data-dependent

S . . . ; Energy
switching activity under typical network inference work- Operation ®h)
loads. With the evaluation procedure above, we present 4-bit+4-bit Fixed Point Exc _ 0.0236
the average energy consumption of a single MAC opera- 4-bit x 4-bit Fixed-Point Eyjac:~ 0.1141

tion Epac and a single AC operation E¢ in Table @ 4-bitx 5-bit Fixed-Point Eyjac 0.1325
Note that the energy of 16-bitx 16-bit Float-Point Eyjac 16-bitx 16-bit Float-Point Eyjac 1.3900
is adopted from (Tolliver et al., [2022). As a result, con-

verting MAC operations to AC operations with our fully-spiking neural networks can remarkably
reduce over 80% energy consumption.

We follow the procedure from Spikingformer (Zhou et al.| 2023) to conduct energy evaluation
between QLLMs and SNNs, which is concluded as follows:

Esnns = #ACs X Eac + #MACs x Epac

A2
Erpms/qQuimvs = #MACs X Emac (42)

#MACs and #ACs refer to the total number of Multiply-ACcumulate and ACcumulate-Only
operations, respectively. We follow the procedure from SpikeZIP-TF (You et al., 2024b)) to calculate
#MACs and #ACs, which is concluded as follows:
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Algorithm 2 #MACs in Linear and Attention Layers

Input: Number of tokens N; Input feature dimension of linear layer D;,,; Output feature dimension
of linear layer D,; Token dimension in attention layer D; Total layers L.
Output: #MACs

1: #MACs « 0

2: forl=1toLdo

3: # Calculate #MACs for linear layer

4:  #MACs < #MACs + N x Dj, X Dous

5. # Calculate #MACs for attention layer
6: #MACs + #MACs+2x N x N x D
7: end for
8: return #MACs

Algorithm 3 #ACs in Linear and Attention Layers
Input: Number of tokens N; Input feature dimension of linear layer D;,,; Output feature dimension
of linear layer D,,t; Token dimension in attention layer D; Spike count per time-step C;; Total

inference time-steps T'; Total layers L.
Output: #ACs

I: #ACs <+ 0

2: forl=1to L do

3: fort=1toT do

4: fork = 1to C; do

5: # Linear layer: Dout synapses activated per spike and 2
operations per spike for ST-BIF' neuron

6: #ACs < #ACs+ Doyt + 2

7: # Attention layer: 2xN synapses activated per spike (dual
matrix product) and 2 operations per spike for ST-BIF'
neuron

8: #ACs +— #ACs+2x N+2

9: end for

10:  end for

11: end for

12: return #ACs

Table A2: Detailed energy consumption estimation results on Llama-2-7B.

. MACs ACs Energy WT2
Method - Gy BIS - paoyg) (x10%d) @) PPLA)
Llama-2-7B ANNS FP16 14.40 0. 2002 547
. W4A4QKVS4 1440 0. 164 11.56
PrefixQuant QLLMS  WAASQKVSS — 14.40 0. 191 778
SpikeLLM(P) W4A4QKV4 1345 1144 237 1132
- ©  SNNs  W4A4QKVS4 198 3025 094 1099
SpikingLLM(L=4) WAASQKVSS 2,14 52.82 153 771

The detailed energy consumption estimation results on Llama-2-7B are summarized in Table [AZ]
Note that we reproduce PrefixQuant on SpikeLLM (denoted as SpikeLLM (P)), which neglects
post-softmax quantization so that the energy consumption is a bit higher than PrefixQuant™ with
post-softmax quantization. For SpikeLLM (P), note that SpikeLLM neglects post-softmax quanti-
zation so that the softmax output remains 16-bit, #MACs consists of 13.01 x 102 4-bit x 4-bit
operation (0.0236pJ in Table and 0.44 x 10'2 16-bit x 16-bit operation (0.1141pJ in Table ,
the energy estimation is calculated as follows:

Egpikeim (p) = 11.41 x 0.0236 4 13.01 x 0.1141 + 0.4 x 1.39 = 2.37 ] (A3)

For SpikingLLLM, the energy estimation is calculated as follows:

EspitingLiv = 30.25 X 0.0236 + 1.98 x 0.1141 = 0.94 J (A4)
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A4 ANALYSIS OF ENERGY CONSUMPTION

We further clarify how SpikingLLM overcomes the specific disadvantages of SpikeLLM.

@ SpikeLLM (Xing et al.|[20244a) is based on dynamic quantization method OmniQuant (Shao et al.|
2024), which is SNN-unfriendly due to the float calculation to determine quantization scale for each
input during SNNs inference. Consequently, SpikeL.LM fails to convert Activation-Weight (aka.
AW) matrix product in the linear layer and Activation-Activation (aka. AA) matrix product in the
attention layer into fully-spiking matrix product. However, the quantization scale of SpikingL.LM is
detemined during SNNs inference so that Spikingl.LM effectively converts AW matrix product and
AA matrix product into the accumulation of spikes as follows:

Teq
for AW matrix product: Or,, = Vi - Z W0 (x);0 (x¢) € {0,£1} (AS)

t=1

Teq Teq
for AA matrix product: O, = Vﬁr\/{;r Z Qt, - Z Ky,
t1=1 to=1

Teq (A6)

Oq (Q1), 0k (K¢) € {0,£1}

Note that W refers to weight, x refers to input, © refers to refined ST-BIF* neuron, Vthr refers to
threshold voltage in © (which is equal to quantization scale) and 7t refers to total time-step.

@ SpikeLLLM neglects post-softmax quantization so that SpikeLLLM fails to convert matrix products
between softmax (%) and V into spiking matrix products. We propose QK2Head-migration

post-softmax quantization to convert QLLMs to Fully-Spiking LLMs. The effectiveness of QK2Head-
migration post-softmax quantization is verified in Table ] Table[5|and Table[A2] respectively.

A5 COMPARISON BETWEEN SPIKINGLLM AND SPIKEGPT

Table A3: Comparison between SpikinglLLLM and SpikeGPT. DT, PS, Time and WT2 PPL refer
to directly training, parameter size, training time and wikitext2 perplexity respectively.

Method  Category Model PS(B) Bits T}) prVLT(i) (}f:l‘;(gf) GPU Time(J)
SpikeGPT DT  SpikeGPT 02 - 50 1801 4782 4NVIDIA-VIOO 48 hours
with Pre-training
. W4ASQKVSS 32 1456  22.36 52 seconds
SpikingLLM ¢ MObHeLLM 03 wgaASQRVSS 32 1321 3461 (oo oo 6l seconds
(L=4) Llama3 Lo WAAJQKVSE 16 1203 13182 72 seconds
’ ! W4A5QKVS5 32 1097  223.87 78 seconds

We conduct experiments between SpikingLLM and SpikeGPT on WikiText2 perplexity in Table [A3]
For fair comparison, we choose MobileLLM-350M (Liu et al., 2024} with comparable parameter
of SpikeGPT 216M With Pre-training as our ANN model. As tabulated, our Spiking.LLM achieves
lower Wikitext2 perplexity with lower time-step and energy consumption under the configuration of
5-bit quantization on Activation, Query, Key, Value and Softmax. Our SpikingL.LM can also scale up
to Large Language Models with billions parameters (e.g., Llama-2-7B, Llama-2-13B and Llama-3.2-
1B). We also compare the computational cost between SpikingLLM and SpikeGPT, compared with
directly training method SpikeGPT, our Spikingl.LLM significantly reduces the computational cost.

A6 COMPARISON BETWEEN SPIKINGLLM AND OTHER EFFICIENT LLMS

We conduct experiments between Spikingl.LM and other efficient LLMs, such as MatMul-free
LLM (Zhu et al., 2024a) and ShiftAddLLM (You et al.l 2024a). We first conduct experiments
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Table A4: Comparison between SpikingLLM and MatMul-free LLM. M-LLM refers to MatMul-
free-LLM. HS and WG refer to HellaSwag and Winogrande, respectively.

Method Model PS(B) M‘}:ﬁul' Bits PIQA ARC-c ARC-c HS WG Ave(D) GPU Time(})
MatMul-free LLM _ M-LLM-370M 03 v - 630 426 238 328 492 423 SNVIDIA-HIOO 5 hours
N . W4ASQKVSS 633 424 247 438 533 455 52 seconds
SpikingLLM(ours)  MobileLLM 0.3 Y WBASQKVSS 648 439 259 451 535 466 | NVIDIA-090 o onds
i MLLM-13B 13 684 540 259 449 524 49 84 hours
MatMul-free LLM i v 78 27 v - 711 585 207 523 su1 527 SNVIDIAHIOO o500
o Llama-32.1B 1 W4A4QKVS4 686 582 299 556 538 532 72 seconds
SpikingLLM(ours) 1. 10278 7 Y W4A4QKVS4 T35 620 364 680 616 603 1 NVIDIAO90 550 onds

Table A6: Comparison with the Llama-2-70B model of SpikeLLM. T refers to inference time-step
for SNNs. Best results are in bold, runner-up results are marked in gray .

Method  Category si?lgiyn_g Bits %%gemyc(i : PIQA ARC-%em/_\Slg(()?t-?CCUIEIaSZ @ WG Ave.
LLAMA-2-708B

SpikeLLM  SNNs x - W2A16 635 962 7644 6692 3831 5186 59.19 58.54
LLAMA-2-13B

SpikingLLM __ SNNs Y 32 WA4ASQKVSS 626 8.07 7726 7344 4343 7437 6669 67.64
Mistral-7B

SpikingLLM  SNNs /32 WA4ASQKVS5 628 898 8144 8021 56.84 8103 7199 74.30

between SpikingLLM and MatMul-free LLM in Table[A4] our SpikingLLM surpasses MatMul-free
LLM on zero-shot common-sense reasoning tasks with both millions and billions parameters models.
Matmul-free LLM (Zhu et al., |2024a) leverages ternary weights to eliminate matrix multiplication
in dense layers while optimizing the Gated Recurrent Unit (GRU) (Cho et al., [2014)) to remove
matrix multiplication from self-attention. The idea that leveraging ternary weights to eliminate matrix
multiplication is similar to our refined ternary value(-1, 0, +1) ST-BIF* neuron, but our refined ST-
BIF* neuron is introduced to replace activation quantizer. The effectiveness of our SpikingLLM on
Matmul-free LLM is that SpikingLLM eliminates matrix multiplication through replacing activation
quantizers in quantized large language models with equivalent ST-BIF* neurons, so that SpikingLLM
don’t need additional training like Matmul-free LLM. We also compare the computational cost
between Matmul-free LLM and SpikingLLM in Table[A4] our SpikingLLM significantly reduces the
computational cost.

We then compare our SpikingLLM  Taple A5: Comparison between ShiftAddLLM and Spik-

with ShiftAddLLM on WikiText2 per- ingLLM on WikiText2 Perplexity.
plexity in Table[A5] our SpikingLLM MatMul- WT2

. Method Model PS(B) N Bits
surpasses ShiftAddLLM on LLMs free PPLO)
. 11 11 ShiftAddLLM OPT (Zhang et al.|2022} 0.3 X W2A16QKVS16  40.24
with both millions and billions param- SpikingLLM(ours) onioLL s B WAASQKVS5  14.56
. iki urs i .3
eters. Note that ShiftAddLLM (You WBASQKVSS 1321
. . ShiftAddLLM X W2A16QKVS16 8.11
et all [2024a) introduces shift-and-  spiingr 1 Mcurs) Llama-2-78 7 7 Naasokvss m
add operations to eliminate weight- ShiftAddLLM X W2A16QKVSI6 677
p g SpikingLLM(ours) Llama-2-13B 13 v W4ASQKVSS 6.6

activation multiplications, the key lim-
itation is its inability to eliminate activation-activation multiplications (e.g., QK7 in self-attention lay-
ers). Compared to ShiftAddLLM, our SpikingLLM eliminates both weight-activation and activation-
activation matrix multiplications through replacing activation quantizers in quantized large language
models with equivalent refined ST-BIF* neurons, constructing matmul-free fully-spiking large lan-
guage models.

A7 COMPARISON WITH THE LLAMA-2-70B MODEL OF SPIKELLM

To further demonstrate the effectiveness of our SpikingLLM method, we compared the Llama-2-
13B and Mistral-7B models of SpikingLLM with the Llama-2-70B model of SpikeLLM. Table[A6]
indicates that, even with fewer parameters, our SpikinglL.LM surpasses SpikeLLM on all perplexity
and common-sense reasoning tasks, which further verifies the effectiveness of SpikingLLM.
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Figure A3: Sparsity of 16th and 32nd layer Query, Key, Value in Llama-2-7B with each time-step
under different inhibiting window lengths. All visualizations are sampled under W4A4QKVS4.

A8 SPARSITY VISUALIZATION

As depicted in Figure [A3] we visualize the sparsity of 16th and 32nd layer Query, Key, Value in
Llama-2-7B, which intuitively demonstrates the effectiveness of window inhibition mechanism. Note
that, the improvement in sparsity and the reduction in energy consumption are more significant as
inhibiting window length L increases.

A9 COMPARISON BETWEEN SPIKINGLLM AND SPIKEZIP-TF

Table A7: Comparison between LSQ and PrefixQuant” on Llama-2-7B.

Quantization  Quantization . . WT2

Model Method Type GPU Time Bits PPL
N LSQ QAT 4*NVIDIA-4090 6 hours 458
Llama-2-78 - 6 Quant” PTQ 1*NVIDIA-4090 269 seconds " *4QKVS4 4156

Apart from adapting the A2S conversion method in SpikeZIP-TF (You et al.,[2024b)) to PrefixQuant
framework, we propose three innovations:

@ To effectively achieve promising QLLMs, we insert post-q quantization and propose QK2Head-
migration post-softmax quantization(in Section to establish PrefixQuant” (As shown in Figure .
As illustrated in Table[A7] compared to Quantization-Aware Training (QAT) method LSQ (Esser et al.|
2020) in SpikeZIP-TF, our PrefixQuant™ effectively achieves QLLMs with promising performance.

@ To establish the equivalence between QLLMs and SNNs, we firstly refine the ST-BIF* neuron
in Section to make it fully equivalent to quantizer in PrefixQuant™ (quantizer with group-size
matrix quantization scale). Then we propose SNN-friendly operators in SpikingL. LM including
Spike KV Cache (in Section[4.3)), Spike Softmax, Spike SiLU and Spike RMSNorm (in Section [AZ).
® In order to suppress redundant continuous {1} spikes Table A8: Ablation on window inhibi-
from ST-BIF* neuron, we propose window inhibition ¢jon mechanism.

mechanism in Section@, which significantly improves Energy LLAMA-2-13B
the sparsity without performance degradation. As illus- O WT2() C4d)
trated in Table [fand Table[AS] the introduction of window 32.82% 3.96 772 1023
inhibition mechanism significantly improves sparsity and 48.94% 2.66 775 1026
reduces energy consumption without performance degra- 62.51% 2.08 780 1032
dation.

L Sparsity(1)

B S
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To conclude, our Spikingl.LM advances SpikeZIP-TF by tailoring the conversion process to LLM-
specific challenges (e.g., effective PTQ on LLMs with post-softmax quantization, SNN-friendly
LLMs operators, refined ST-BIF* neuron with window inhibition mechanism to reduce energy
consumption) and achieving the first fully-spiking billion-parameter language models.

A10 ANALYSIS OF OUTLIER TOKENS ON SPIKINGLLM AND PREFIXQUANT.

We further analyze the outlier tokens between Typle A9: Comparison on outlier tokens be-

SpikingLLM and PrefixQuant in Table[A9] We  tween SpikingLLM and PrefixQuant.
follow the definition of outlier tokens in Pre- Prefixed token

fixQuant (Chen et all, [2025)) to detect outlier Model Method  — e e Content
tokens. Given token-wise maximum values

T . . Llama-2-7B PrefixQuant 3 . \n [BOS]
M € R*, which represents the maximum val- SpikingLLM 3 . \n [BOS]
ues of each token. Then, outlier token in the i-th . PrefixQuant 3 . the [BOS]
; < identi Llama-2-13B - g iingl LM 3 he [BOS
index of token sequence is identified when the PI“ f:ng | -t 163 ([)S ]
ratio of their maximum values to the median of ~ Llama-3-8B Sgiekiﬁgﬁﬁr& | %B OS}
all maximum values exceeds a threshold 7: Mistralyp  PrefixQuant 4 .\n to [BOS]
M SpikingLLM 4 . \nto [BOS]
i
— > (A7)
median(M)

where M; is the maximum value of the i-th token, median() denotes the function to find the median
value from the vector. We then leverage the same calibration dataset Pile (Gao et al.,|2020) and set the
same outlier threshold 77 = 64 to determine outlier tokens before Post-Training Quantization (PTQ).
Consequently, as shown in Table[A9] the introduction of post-q and QK2Head-migration post-softmax
quantization does not change the outlier tokens for the same model.

A1l USE OF LLMS

We leverage LLMs to aid or polish writing. Specifically, LLMs help us find some grammar and
spelling mistakes after we finish writing.
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