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ABSTRACT

Recent advancements in large language models (LLMs) have led to unprecedented
capabilities in real-world applications. However, it remains challenging to reduce
the energy consumption of LLMs. In this paper, we aim to improve the energy
efficiency of LLMs by leveraging the advantages of brain-inspired spiking neural
networks (SNNs). We propose a novel approach called SpikingLLM, which equiv-
alently converts quantized large language models (QLLMs) applying PrefixQuant*
to their fully-spiking counterparts (all operators are in a more efficient spiking
version). To ensure that every operator can be converted into its spiking version,
we propose two approaches: ① QK2Head-migration post-softmax quantization,
which significantly improves the performance of current QLLMs with post-softmax
quantization; ② Differential-based methods, which tackle the SNN-unfriendly
operators such as KV Cache. To further reduce the energy consumption, we
introduce a window inhibition mechanism which effectively addresses the over-
firing issue in ST-BIF+ neuron and improves the sparsity. With the approaches
above, SpikingLLM significantly reduces the energy consumption while achieving
state-of-the-art performance on both perplexity and common-sense reasoning tasks.

1 INTRODUCTION

Large language models (LLMs) (Brown & Mann, 2020; Touvron & Lavril, 2023; Zhang et al., 2022;
Le Scao et al., 2023) have revolutionized natural language processing (NLP) by leveraging massive-
scale neural networks to achieve state-of-the-art performance across a wide range of tasks. However,
the dense and continuous computations inherent in transformer-based architectures (Vaswani, 2017)
pose significant challenges in terms of energy efficiency of LLMs. For instance, Llama-2-70B requires
three A100-80G GPUs, each consuming approximately 400W of power (Xing et al., 2024a). These
limitations are especially problematic for modern edge AI systems, which often require real-time
processing under strict power constraints. To mitigate these limitations and improve the accessibility
and applicability of LLMs, we focus on energy-efficient deployment for LLMs.

As a biologically inspired alternative to traditional artificial neural networks (ANNs), spiking neural
networks (SNNs) (Maass, 1997) have emerged to bridge the gap between machine learning and
neuroscience. In contrast to ANNs (LeCun et al., 2015), which rely on continuous activations, SNNs
process information through discrete and event-driven spikes, closely mimicking the communication
mechanisms of biological neurons (Merolla et al., 2014; Davies et al., 2018). As a result, SNNs show
promising prospects on computational intelligence tasks (Roy et al., 2019) with strong autonomous
learning capabilities and ultra-low power consumption (Bu et al., 2023; Ding et al., 2022; Ostojic,
2014; Zenke et al., 2015).

Unfortunately, scaling up SNNs to large-scale models remains challenging. By far, directly
training (DT) (Zhu et al., 2023) and ANN-to-SNN conversion (A2S) (Xing et al., 2024a; You
et al., 2024b) are two traditional methods to scale SNNs up to LLMs. DT unfolds the in-
put in time-step dimension and leverages back-propagation-through-time (BPTT) (Wu et al.,
2019) to update SNNs from scratch, which is computationally intensive and slow, particularly
under limited computing resources. In contrast, A2S replaces the quantizers in quantized
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Figure 1: Comprison of SNNs methods on LLMs.
Star and triangle marks ANN-to-SNN (A2S) and
directly training (DT), respectively. SpikeLLM(O)
and SpikeLLM(P) refer to SpikeLLM under Om-
niQuant and PrefixQuant, respectively. The area
of scatter denotes model size. Results demonstrate
the superiority of our SpikingLLM.

ANNs (QANNs) with spiking neurons (e.g., ST-
BIF+ neuron in (You et al., 2024b)), achieving
comparable performance to ANNs while signif-
icantly reducing computational costs relative to
DT. Consequently, A2S presents a promising
pathway for scaling SNNs to LLMs. Neverthe-
less, applying existing A2S methods (You et al.,
2024b; Xing et al., 2024a) directly to LLMs
encounters the following challenges: ① It is
challenging to construct applicable quantized
LLMs (QLLMs) that ensure all operators can be
converted into a spiking version, while minimiz-
ing performance degradation from quantization.
② It is difficult for A2S methods to establish the
equivalence between QLLMs and SNNs due to
the existence of SNN-unfriendly operators (e.g.,
KV Cache, Softmax). The two challenges above
are critical to convert LLMs into SNNs.

In this work, we aim to leverage the A2S method to scale SNNs up to LLMs, while maintaining all
the operations in spiking version (which is defined as fully-spiking in Section 3.3). Correspondingly,
we propose SpikingLLM, which establishes the equivalence between fully-spiking neural networks
and QLLMs. SpikingLLM firstly introduces QK2Head-migration module to enable post-softmax
quantization on top of PrefixQuant (Chen et al., 2025) to establish PrefixQuant* (in Section 4.1),
ensuring all matrix products in QLLMs can be faithfully converted into their spiking versions.
In addition, we refine the ST-BIF+ neuron (You et al., 2024b) to align it with the quantizers in
PrefixQuant* and incorporate a window inhibition mechanism, which further reduces the energy
consumption. Finally, we propose SNN-friendly operators within SpikingLLM, including Spike KV
Cache. Figure 1 demonstrates the superiority of our SpikingLLM over previous methods.

Our contributions are summarized as follows:

• We propose a conversion-based method called SpikingLLM, which enables post-softmax
quantization and ensures that QLLMs can be converted into fully-SNNs. To further enhance
the performance of post-softmax quantization, we introduce QK2Head-migration module.

• We refine the ST-BIF+ neuron to establish the equivalence between fully-SNNs and QLLMs.
Then we introduce a window inhibition mechanism to address the over-firing issue of refined
ST-BIF+ neuron, which significantly improves the sparsity and reduces energy consumption.

• We convert SNN-unfriendly operators (e.g., KV Cache, SiLU) to SNN-friendly versions
counterparts, further enabling the equivalence between fully-SNNs and QLLMs.

• SpikingLLM achieves the state-of-the-art performance on perplexity and common-sense
reasoning tasks with significant energy reduction (e.g., compared to SpikeLLM(P) on Llama-
2-7B in Table 2, our SpikingLLM improves the average accuracy of common-sense reasoning
tasks by 26.37% (47.79⇒ 60.28) with 60.34% energy reduction (2.37J⇒ 0.94J)).

2 RELATED WORKS

Spiking Neural Networks. The learning methods of SNNs come in twofolds: directly train-
ing (DT) and ANN-to-SNN conversion (A2S). The DT algorithm leverages back-propagation through
time (BPTT) (Wu et al., 2019) with surrogate gradient (Neftci et al., 2019) to update SNNs from
scratch for a fixed time-step. However, the gap between SNNs and ANNs persists due to the gradient
estimation error. Compared to DT algorithm, A2S algorithm leverages spiking neurons to replace
the quantizers in quantized ANNs, leading to equivalent SNNs with comparable performance to
ANNs (Wang et al., 2023; You et al., 2024b). Furthermore, A2S algorithm consumes less computa-
tional cost and time. However, most SNNs focus on computer vision tasks. As for language-oriented
tasks, current SNNs (SpikeBERT (Lv et al., 2024), SpikingBERT (Bal & Sengupta, 2024), SpikeZIP-
TF (You et al., 2024b), SpikeLM (Xing et al., 2024b) and SpikeGPT (Zhu et al., 2024b)) fail to scale
up to the billion-level parameters. SpikeLLM (Xing et al., 2024a) scales up SNNs to billions of
parameters, but their models are not fully-spiking. It remains a valuable issue to scale fully-spiking
neural networks up to billions of parameters.
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Quantized Large Language Models. Model quantization improves large language models (LLMs)
efficiency by compressing weights and activations into lower bit-widths, reducing memory consump-
tion and accelerating inference. Quantization-aware training (QAT), exemplified by LSQ (Esser
et al., 2020) and U2NQ (Liu et al., 2022), achieves higher accuracy for smaller models through full
retraining, and advances calibration-based techniques like EfficientQAT (Chen et al., 2024), further
balancing efficiency and performance. Post-training quantization (PTQ) is more applicable on LLMs
for its computational practicality, with methods like GPTQ (Frantar et al., 2023), SpQR (Dettmers
et al., 2023), and AWQ (Lin et al., 2024a) focusing on weight compression, while SmoothQuant (Xiao
et al., 2024), RPTQ (Yuan et al., 2023) and OmniQuant (Shao et al., 2024) jointly quantize weights
and activations. However, previous PTQ methods (e.g., OmniQuant) mostly focus on dynamic
quantization with quantization scale dynamically determined by input, which is difficult to tackle with
spiking-version input. Although PrefixQuant (Chen et al., 2025) integrates prefixed tokens into static
quantization, enabling low-bit precision for LLMs with high accuracy and efficiency, the overlook
on post-q and post-softmax quantization (as depicted in 2nd column in Figure 3) makes it unable to
convert matrix products of QKT and softmax(QKT

√
d
)V into spiking matrix products. Consequently, it

remains a challenge to establish specific QLLMs which are suitable to be converted into fully-SNNs.

3 PROBLEM FORMULATION

In this section, we firstly introduce the paradigm of A2S algorithm. Then we bring in the current
state-of-the-art QLLMs (PrefixQuant (Chen et al., 2025)) and illustrate its applicability to the A2S
algorithm. Finally we propose the definition of full-spiking and clarify the intuition of SpikingLLM.

3.1 A2S ALGORITHM

Quantization-Aware
Training

ANNs

QANNs

SNNs

Convesion
Algorithm

(a) SpikeZIP-TF.

Post-Training Quantization
(PrefixQuant* in Section 4.1)

LLMs

QLLMs

SNNs

Convesion Algorithm
(in Section 4.2 and 4.3)

(b) SpikingLLM.

Figure 2: SpikeZIP-TF and SpikingLLM.

A2S Algorithm transfers the parameters of
the pre-trained ANNs into their SNNs coun-
terpart while maintaining the synaptic con-
nections in ANNs, which yields close-to-
ANNs accuracy. In SpikingLLM, we in-
herit the A2S conversion algorithm from
SpikeZIP-TF (You et al., 2024b) including the
ANNs (LLMs) −→ QANNs (QLLMs) −→ SNNs
conversion paradigm (as shown in Figure 2).
For conversion paradigm, we insert activation
quantizers in front of all the matrix products
in ANNs (LLMs). SpikeZIP-TF leverages the
quantization-aware training (QAT) method to
achieve corresponding QANNs, which is com-
putationally inefficient for LLMs. Consequently, we apply efficient post-training quantization (PTQ)
method (PrefixQuant* in Section 4.1 ) to achieve corresponding QLLMs. Then we propose the
conversion algorithm in Section 4.2 and Section 4.3 to replace the inserted quantizers with spiking
neurons and ensure that all matrix products and operators can be converted to their spiking version.

3.2 PREFIXQUANT

PrefixQuant (Chen et al., 2025) introduces an efficient static quantization framework tailored to
large language models, specifically focusing on prefixed tokens to enhance performance. By setting
specific prefixed tokens in the KV cache, PrefixQuant eliminates token-wise outliers in linear inputs
and Q/K/V, enhancing compatibility with per-tensor static quantization. When tackling spiking
version input (which means we cannot acquire the total input at the current inference time-step),
static quantization with fixed quantization parameters is more suitable to the A2S algorithm compared
to dynamic quantization method (such as OmniQuant (Shao et al., 2024)) where the quantization
parameter is dynamically determined by input. Consequently, we construct SpikingLLM on the basis
of static quantization (PrefixQuant) rather than dynamic quantization (OmniQuant).

3.3 FULLY-SPIKING DEFINITION

Inspired by the concept of spike-driven introduced by DT algorithm (Yao et al., 2023), we introduce
the definition of fully-spiking for A2S algorithm, which means that all operators in SNNs are
in an event-driven or spiking version (calculation is triggered by spikes). However, current
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Figure 3: Architecture of Llama, PrefixQuant, PrefixQuant* and SpikingLLM. PA, EP and
MP refer to post-attention, element-wise product and matrix product, respectively. Compared to
PrefixQuant, PrefixQuant* inserts post-q and post-softmax (QK2Head-migration) quantization to
ensure that each matrix product can be converted to spiking matrix product. SpikingLLM firstly
substitutes ST-BIF+ neuron for all quantizers, then replaces SNN-unfriendly operators (Softmax,
RMSNorm, SiLU and KV Cache (Prefixed)) with SNN-friendly ones.

QLLMs methods, such as OmniQuant (Shao et al., 2024) and PrefixQuant (Chen et al., 2025),
overlook the quantization of query and softmax output (as depicted in 2nd column in Figure 3).
As a result, the matrix products of QKT and softmax(QKT

√
d
)V cannot be converted into spiking

version. Additionally, operators in QLLMs (e.g., KV Cache, SiLU) need to be converted into their
spiking version. Although SpikeLLM (Xing et al., 2024a) introduces a spiking mechanism tailored to
salient channels, operators on non-salient channels remain non-spiking version. Consequently, our
SpikingLLM is the first to establish the equivalence between fully-SNNs and QLLMs.

4 METHODOLOGY

In this section, we firstly introduce post-q and post-softmax quantization on top of PrefixQuant
to establish PrefixQuant* (as shown in Figure 3) to ensure that all matrix products are equally
converted into spiking matrix products. To further enhance the performance of PrefixQuant*, we
propose QK2Head-migration quantization, a novel approach that shifts the difficulties of post-softmax
quantization from query and key dimension to head dimension. Then, we refine the ST-BIF+ neuron
to make it fully equivalent to the quantizer in PrefixQuant*. With the equivalence above, we introduce
a window inhibition mechanism to further improve the sparsity of the refined ST-BIF+ neuron. Finally,
we describe the design of SNN-friendly spike operators in SpikingLLM including Spike KV Cache.

4.1 PREFIXQUANT* WITH QK2HEAD-MIGRATION QUANTIZATION

We firstly introduce PrefixQuant* (3rd column in Figure 3) which inserts post-q and post-softmax
quantization on the basis of PrefixQuant. For post-q quantization, we follow the post-k and post-v
quantization in PrefixQuant. For 4-dimensional post-softmax output, we propose a novel strategy
called QK2Head-migration quantization. As illustrated in Figure 4, QK2Head-migration quantization
divides the softmax output into prefixed part and normal part. The prefixed part corresponds to the
attention scores associated with the prefixed tokens introduced by PrefixQuant, while the normal part
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Figure 4: Architecture of QK2Head-migration Quantization. Note that T, R, A, C, Q are the
abbreviation of Transpose, Reshape, Accumulate, Calibration and Quantization. Stat calib input
means the Pile (Gao et al., 2020) data distribution for static quantization parameter calibration. After
T, R and A on stat calib input, quantized item stat is achieved to initialize quantization scale.

represents the standard attention scores computed during the forward pass, which depends on the
input sequence.

To cope with the quantization of these two parts, we introduce query dimension migration ratio
qm and key dimension migration ratio km to redistribute the quantization complexity from query
and key dimension to head dimension. Specifically, for both Prefixed and Normal parts, we firstly
transpose, reshape and accumulate the stat calibration input to derive the quantized item stat. Then
we initialize separate quantization scales for prefixed (ScaleP) and normal (ScaleN) parts, ensuring
that each part is quantized optimally based on its stat calibration input. After calibration, we follow
the same procedure to process the data input and achieve corresponding quantized data output. Then
we leverage block-wise fine-tuning (Shao et al., 2024; Chen et al., 2024) to fine-tune PrefixQuant*.

4.2 ST-BIF+ NEURON REFINEMENT AND WINDOW INHIBITION MECHANISM

Table 1: Summary of notations used in this paper.
Notation Description

q⃗ quantization scale of quantizer Q*

x input of quantizer Q*

Vt membrane potential of neuron at t time-step
V⃗thr threshold voltage for neuron to fire a spike

V in, V out input or output voltage of neuron
St spike tracer at time-step t
Smax maximum value in spike tracer

clip(x, αmin, αmax) clip function that limits x within αmin and αmax
Θ(V, Vthr, S) output spike decision function of ST-BIF+

Teq time-step that SNNs enter the equilibrium state
n head number of softmax output

dims, dimd dimension of stat calib input and data input
qm, km migration ratio for query, key dimension

ScaleP, ScaleN quantization scale for Prefixed and Normal part
C[·],Z(·) concatenate and zeros like operator
TP,TS prefixed and stored tokens
Tt tokens at t time-step
L length of inhibiting window

In SpikingLLM, we follow the ST-BIF+ neuron
proposed in SpikeZIP-TF (You et al., 2024b),
whose accumulated spikes (neuron output) is
fully equivalent to the quantized activation.
The quantization scale of the quantizer used in
SpikeZIP-TF is a simple scalar, which is effec-
tive for quantizing models with limited parame-
ters. However, when it comes to the quantization
on large-scale LLMs, the quantization scale of
quantizer Q* in PrefixQuant* is a matrix with
group size. Consequently, we refine the ST-BIF+

neuron in SpikeZIP-TF to make it fully equiv-
alent to Q*. Overview of the refined ST-BIF+

neuron is shown in Figure 5(a) and the equation
of Q* is described in Equation (1). The notations
are specified in Table 1.

x
Reshape−−−−−→
Group

x̂; Quantize(x̂) = q⃗ · clamp(round(x̂/q⃗), α, β);Quantize(x̂)
Regroup−−−−−→
Reshape

Oq (1)

As for the refined ST-BIF+ neuron, the dynamics can be expressed as follows (note that the threshold
voltage V⃗thr is equal to quantization scale q⃗):

V in
t

Reshape−−−−−→
Group

V̂ in
t ; Θ(V, V⃗thr, S) =


1; V ≥ V⃗thr & S < Smax

0; other
−1; V < 0 & S > Smin

;

Vt = Vt−1 + V̂ in
t − V⃗thr ·Θ(Vt−1 + V̂ in

t , V⃗thr;St−1);St = St−1 +Θ(Vt−1 + V̂ in
t ; V⃗thr;St−1)

STeq · V⃗thr
Regroup−−−−−→
Reshape

Os

(2)

The accumulation of spikes from the refined ST-BIF+ neuron Os is equivalent to the output of Q* Oq.
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(a) Refined ST-BIF+ neuron with window inhibition mechanism.
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Figure 5: Refined ST-BIF+ neuron with window inhibition mechanism and continuous spikes
distribution.

We plot the continuous spikes distribution under continuous time-steps in Figure 5(b) and find that
{+1,−1} makes up the majority of the continuous spikes combination. Specifically, most ST-BIF+

neurons tend to fire a positive (negative) spike to counteract the negative (positive) spike from the
last time-step, leading to fire redundant spikes (”over-firing” issue). To address the over-firing
issue and reduce the energy consumption, we propose window inhibition mechanism. As depicted
in Figure 5(a), we introduce an inhibiting window (e.g., window length L = 4) to accumulate the L
time-step spikes to fire 1 time-step spike, which significantly suppresses the over-firing issue and
improves the sparsity. For the equivalence between refined ST-BIF+ neuron with window inhibition
mechanism and quantizer Q*, we introduce a spike tracer Scom to store the redundant spikes for
compensation (e.g., the sum of spikes in the inhibiting window is greater than 1 or less than -1). The
detailed procedure of window inhibition mechanism is illustrated in appendix (Section A1).
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Figure 6: Architecture of KV cache and Spike KV Cache with prefixed tokens.

4.3 SNN-FRIENDLY SPIKE OPERATORS

To futher ensure the equivalence between PrefixQuant* and SpikingLLM, we introduce SNN-friendly
spike operators (e.g., Spike KV Cache, Spike SiLU.). As depicted in Figure 6(b), we introduce
Spike KV Cache SKV with prefixed tokens to enable the KV Cache during SNNs inference. The
inference of SKV at i-th decoder layer under t time-step is described in Equation (3). At the first
time-step (t = 1), SKV outputs and stores the concatenated prefixed and original tokens, which is the
same to the original KV Cache in Figure 6(a). As for t time-step (t > 1), SKV concatenates zeros
tensors (with the same shape of prefixed tokens TP) with tokens at t time-step Tt to output, which
ensures that the accumulation of SKV output equals to original KV Cache output. Then SKV stores
the sum of output and stored tokens TS back to the cache.

SKV(Tt,TP) =


store︷ ︸︸ ︷

C[TP,Tt]; t = 1
store︷ ︸︸ ︷

C[Z(TP),Tt] + TS −TS; t > 1

(3)

Since that Rotary Position Embedding (RoPE) operator is a linear mapping, the original RoPE is
applicable to SpikingLLM. For Softmax, SiLU and RMSNorm, we follow the differential strategy
from SpikeZIP-TF (You et al., 2024b) to introduce Spike Softmax, Spike SiLU and Spike RMSNorm.
The detailed procedure of spike operators above are illustrated in appendix (Section A2).
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Table 2: Comparison on Llama-2 models. T refers to inference time-step for SNNs. Best results are
in bold, runner-up results are marked in gray . SpikeLLM(O) and SpikeLLM(P) refer to SpikeLLM
with OmniQuant and PrefixQuant, respectively. WT2, HS and WG refer to Wikitext2, HellaSwag
and Winogrande, respectively. Inhibiting window length L is set to 4 (L = 4).

Perplexity(↓) Zero-shot Accuracy(↑)Method Category Fully-
Spiking T Bits Energy

(J)(↓) WT2 C4 PIQA ARC-e ARC-c HS WG Avg.

LLAMA-2-7B ANNs – – FP16 20.02 5.47 6.97 79.11 74.62 46.25 76.00 69.22 69.04

OmniQuant W4A4 4.71 15.25 19.35 62.19 45.62 25.43 39.15 52.17 44.91
PrefixQuant W4A4KV4 2.15 6.22 – 77.20 71.51 43.94 73.75 67.80 66.84

W4A4QKVS4 1.64 11.56 14.10 72.85 62.50 36.95 68.01 61.96 60.45PrefixQuant*
QLLMs – –

W4A5QKVS5 1.91 7.78 9.56 75.03 66.04 38.91 70.89 63.77 62.93

SpikeLLM(O) ✗ – W4A4 5.18 11.46 14.45 62.79 51.01 27.13 43.47 53.83 47.65
SpikeLLM(P) ✗ – W4A4QKV4 2.37 11.32 15.01 62.58 50.93 27.11 43.85 54.01 47.70

✓ 16 W4A4QKVS4 0.94 10.99 13.78 73.45 61.95 36.43 68.02 61.56 60.28SpikingLLM
(L = 4)

SNNs

32 W4A5QKVS5 1.53 7.71 9.35 74.54 65.66 39.16 71.22 62.51 62.26
LLAMA-2-13B ANNs – – FP16 38.50 4.88 6.46 80.52 77.48 49.06 79.37 72.22 71.73

OmniQuant W4A4 9.16 12.40 15.87 67.03 53.96 30.55 62.91 44.83 51.86
PrefixQuant W4A4KV4 4.18 6.22 – 78.51 75.80 46.67 76.54 72.06 69.92

W4A4QKVS4 3.16 7.99 10.68 75.57 69.49 41.47 72.45 65.27 64.85PrefixQuant*
QLLMs – –

W4A5QKVS5 3.67 6.28 8.11 77.48 73.32 42.92 74.45 69.93 67.02

SpikeLLM(O) ✗ – W4A4 10.07 9.56 12.48 65.29 55.81 28.41 48.13 55.56 50.64
SpikeLLM(P) ✗ – W4A4QKV4 4.39 9.94 12.59 65.93 55.89 28.73 48.22 55.21 50.80

✓ 16 W4A4QKVS4 2.08 7.80 10.32 76.50 70.41 41.98 72.42 65.51 65.36SpikingLLM
(L = 4)

SNNs

32 W4A5QKVS5 3.07 6.26 8.07 77.26 73.44 43.43 74.37 66.69 67.64

5 EXPERIMENTS

5.1 SETUPS

Training Details. We follow the fine-tuning setting from PrefixQuant (Chen et al., 2025) to fine-
tune PrefixQuant*. During fine-tuning, we optimize the block-wise output mean square error. We use
512 samples from Pile (Gao et al., 2020) with a 1024 context length as fine-tuning dataset. For Weight
quantization, we choose 4-bit (denoted as W4). For Activation, Query, Key, Value and Softmax
quantization, we conduct experiments on 4-bit and 5-bit (denoted as A4QKVS4 and A5QKVS5,
respectively) quantization. The fine-tuning batch size and number of epochs are set to 4 and 20,
respectively. For QK2Head-migration quantization, we set qm to 1 and km to 16. For SNNs inference,
we set time-step T to 16 and 32 for A4QKVS4 and A5QKVS5, respectively. Finally we set inhibiting
window length L = 4 during inference.

Evaluation Tasks. We evaluate SpikingLLM on Llama-2-7B, Llama-2-13B (Touvron et al., 2023),
Llama-3-8B (Grattafiori & et al., 2024) and Mistral-7B (Jiang et al., 2023). We follow the evaluation
methods from PrefixQuant and SpikeLLM as the primary baselines. We also conduct experiments on
SpikeLLM with PrefixQuant (denoted as SpikeLLM(P)) in Table 2 for a fair comparison between
SpikingLLM and SpikeLLM. Specifically, we evaluate the perplexity (PPL) of language generation on
Wikitext2 (Merity et al., 2016) and C4 (Raffel et al., 2023) benchmarks. For zero-shot common-sense
reasoning tasks, we evaluate SpikingLLM on PIQA (Bisk et al., 2019), ARC-easy (Clark et al., 2018),
ARC-challenge (Clark et al., 2018), HellaSwag (Clark et al., 2018) and Winogrande (Sakaguchi
et al., 2019). We report acc for WinoGrande and acc norm for remaining datasets, following
Qserve (Lin et al., 2024b). We also compare SpikingLLM with SpikeGPT (Zhu et al., 2023) and
other efficient LLMs (MatMul-free LLM (Zhu et al., 2024a) and ShiftAddLLM (You et al., 2024a))
in appendix (Section A5 and Section A6).

Energy Consumption Metric. We inherit the operation metric proposed in SpikingFormer (Zhou
et al., 2023) to calculate the Multiply-ACcumulate operations (MACs) and ACcumulate-Only op-
erations (ACs) of self-attention and linear operators. For LLMs and QLLMs, we calculate the
number of MACs #MACs. For SNNs, we calculate the number of ACs #ACs and MACs #MACs.
Then we sample the weights and activations from different methods to estimate the average en-
ergy consumption of a single MAC operation EMAC and AC operation EAC (The detailed en-
ergy estimation procedure is illustrated in appendix (Section A3)). Finally we follow the formula
ESNNs = #ACs×EAC+#MACs×EMAC and ELLMs/QLLMs = #MACs×EMAC from Spiking-
Former (Zhou et al., 2023) to estimate the total energy consumption for SNNs, LLMs and QLLMs.
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Table 3: Performance of SpikingLLM on Llama-3-8B and Mistral-7B.
Method Category Fully-

Spiking T Bits Energy
(J)(↓)

Perplexity(↓) Zero-shot Accuracy(↑)
WT2 C4 PIQA ARC-e ARC-c HS WG Avg.

LLAMA-3-8B ANNs – – FP16 22.24 6.14 8.88 80.79 77.69 53.33 79.16 72.53 72.70

PrefixQuant* QLLMs – – W4A4QKVS4 1.83 10.85 15.82 75.24 68.01 42.06 71.27 61.56 63.63
W4A5QKVS5 2.12 8.20 11.61 77.48 73.65 46.76 75.60 67.32 68.16

SpikingLLM
(L = 4) SNNs ✓

16 W4A4QKVS4 1.04 10.34 15.38 75.51 68.12 41.93 71.72 61.23 63.70
32 W4A5QKVS5 1.77 8.14 11.28 77.82 73.43 46.91 75.24 67.66 68.21

Mistral-7B ANNs – – FP16 19.46 5.49 8.41 82.46 82.62 58.87 82.94 74.11 76.20

PrefixQuant* QLLMs – – W4A4QKVS4 1.60 7.74 10.68 78.24 76.64 51.28 76.97 62.67 69.16
W4A5QKVS5 1.86 6.39 9.20 81.23 80.30 56.57 80.94 71.51 74.11

SpikingLLM
(L = 4) SNNs ✓ 16 W4A4QKVS4 0.92 7.32 10.12 78.05 76.82 51.43 77.21 62.45 69.19

32 W4A5QKVS5 1.46 6.28 8.98 81.44 80.21 56.84 81.03 71.99 74.30

5.2 RESULTS COMPARISON

Results on Perplexity Tasks. Table 2 shows the experimental results on Llama-2-7B and Llama-
2-13B. For perplexity metric on Wikitext2 and C4 benchmarks, SpikingLLM achieves equivalent
results with PrefixQuant* under the same setting. For 4-bit quantization on Llama-2-7B, SpikingLLM
surpasses SpikeLLM(P) by 0.33 on Wikitext2 and 1.23 on C4. For 4-bit quantization on Llama-2-
13B, SpikingLLM outperforms SpikeLLM(P) by 2.14 on Wikitext2 and 2.27 on C4. Furthermore,
SpikingLLM achieves state-of-the-art performance on both Wikitext2 and C4 benchmarks with 5-bit
quantization. We also extend our SpikingLLM on Llama-3-8B and Mistral-7B in Table 3, which
further verifies the equivalence between SpikingLLM and PrefixQuant*.

Results on common-sense Reasoning Tasks. As tabulated in Table 2, SpikingLLM achieves
promising results on common-sense reasoning tasks. For 4-bit quantization, SpikingLLM achieves
an average zero-shot accuracy of 60.28 on Llama-2-7B and 65.36 on Llama-2-13B, surpassing
SpikeLLM(P) by 12.58 and 14.56, respectively. Moreover, with 5-bit quantization, SpikingLLM
achieves an average zero-shot accuracy of 62.26 on Llama-2-7B and 67.64 on Llama-2-13B, further
closing the gap between ANNs and SNNs. Notably, SpikingLLM outperforms PrefixQuant* on
complex reasoning tasks such as ARC-c and HellaSwag. Furthermore, consistent experimental results
on Llama-3-8B and Mistral-7B in Table 3 demonstrate the generalisability of SpikingLLM.

Results on Energy Consumption. Based on the experimental results in Table 2 and Table 3,
SpikingLLM demonstrates significant advantages in reducing energy by effectively converting
Multiply-ACcumulate operations (MACs) into ACcumulate-Only operations (ACs) through its fully-
spiking paradigm. For instance, on Llama-2-7B model under 4-bit quantization, SpikingLLM achieves
a remarkable reduction (1.64⇒ 0.94) compared with PrefixQuant*. Note that SpikeLLM exhibits
higher energy consumption than corresponding QLLMs (e.g., 2.15⇒ 2.37 for PrefixQuant). This
discrepancy arises that SpikeLLM fail to embrace the fully-spiking paradigm, instead maintaining
a hybrid approach which still relies on traditional Multiply-ACcumulate operations (MACs). We
incorporate the detailed analysis on energy consumption in appendix (Section A3 and Section A4).

5.3 ABLATION STUDY

Table 4: Ablation on QK2Head-migration quan-
tization and Spike KV Cache on Wikitext2.

QK2Head-
migration

Spike
KV Cache

W4A4QKVS4 W4A5QKVS5
2-7B 2-13B 2-7B 2-13B

✗ ✗ 556.34 512.13 532.81 508.94
✓ ✗ 523.12 489.16 518.94 498.73
✗ ✓ 24.17 42.31 9.68 8.69
✓ ✓ 10.99 7.80 7.71 6.26

Ablation on QK2Head-migration quanti-
zation. As tabulated in Table 4, we test
different settings of PrefixQuant*, includ-
ing versions with/without QK2Head-migration
quantization, to verify the effectiveness of
QK2Head-migration quantization. Note that
for PrefixQuant* without QK2Head-migration
quantization, we reshape softmax output into
3-dimensional and quantize it through activation quantization in PrefixQuant. The results demonstrate
that the introduction of QK2Head-migration quantization significantly enhances performance across
all quantization scenarios for both Llama-2-7B and Llama-2-13B. For instance, for Llama-2-7B
with W4A4QKVS4, Wikitext2 perplexity is reduced from 24.17 to 10.99 when QK2Head-migration
quantization is applied. Similarly, for Llama-2-13B with W4A4QKVS4, Wikitext2 perplexity de-
creases from 42.31 to 7.80. These improvements highlight the substantial benefits of incorporating
QK2Head-migration quantization.
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Ablation on Spike KV Cache. We also present the experimental results of SpikingLLM
with/without Spike KV Cache in Table 4. As detailed in Table 4, original KV Cache fails to
process spiking inputs effectively, resulting in a fundamental discrepancy between SNNs and corre-
sponding QLLMs. This limitation highlights the necessity of introducing Spike KV Cache, which
ensures that the cumulative output aligns precisely with the output of KV Cache in QLLMs. For
instance, in the cases of LLAMA-2-7B and LLAMA-2-13B with W4A4QKVS4, Wikitext2 perplexity
are significantly reduced from 523.12 to 10.99 and 489.16 to 7.80 when Spike KV Cache is employed.
These substantial reductions demonstrate the effectiveness of the Spike KV Cache in processing
spiking input while preserving the consistency of output.

Table 5: Ablation on post-q and post-
softmax quantization.

Post-
q

Post-
softmax

Fully-
Spiking

Energy
(J)(↓)

2-7B 2-13B

✗ ✗ ✗ 2.77 5.64
✓ ✗ ✗ 2.12 4.02
✗ ✓ ✗ 1.59 3.65
✓ ✓ ✓ 0.94 2.08

Ablation on post-q and post-softmax quantization.
To verify the necessities of introducing post-q and post-
softmax quantization, we compare the energy consumption
of SpikingLLM with/without post-q and with/without post-
softmax quantization on Llama-2 under W4A4QKVS4
in Table 5. As illustrated, the introduction of post-q and
post-softmax quantization drastically reduces energy con-
sumption. The significant reduction demonstrates that the
introduction of post-q and post-softmax quantization en-
ables the conversion of matrix products of QKT and softmax(QKT

√
d
)V into spiking matrix products,

which effectively converts high-energy MACs into low-energy ACs.

Table 6: Ablation on window inhibi-
tion mechanism.
L Sparsity(↑) Energy

(J)(↓)
LLAMA-2-7B

WT2(↓) C4(↓)
1 34.93% 1.70 10.91 13.68
2 49.78% 1.19 10.94 13.71
4 63.21% 0.94 10.99 13.78

Ablation on Window Inhibition Mechanism. We set
multiple values to inhibiting window length L in Table 6 to
verify the effectiveness of window inhibition mechanism.
As illustrated, the energy consumption of SpikingLLM
without window inhibition mechanism (L = 1) is 1.70J,
which is comparable to the corresponding QLLMs (1.64J
in Table 2). With the introduction of window inhibition
mechanism, our SpikingLLM significantly improves sparsity (34.93% ⇒ 63.21%) and reduces
energy consumption (1.70J⇒ 0.94J) without performance degradation.
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(a) W4A4QKVS4.
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(b) W4A5QKVS5.

Figure 7: Wikitext2 perplexity with Llama-2-7B
under various (qm, km) settings on QK2Head-
migration quantization.

Ablation on (qm, km) Settings. Figure 7
presents the heatmaps of Wikitext2 perplexity
(PPL) results for Llama-2-7B model under var-
ious (qm, km) settings on QK2Head-migration
quantization. As depicted, the effectiveness of
QK2Head-migration quantization varies signif-
icantly depending on the bit precision and (qm,
km) settings. For 4-bit quantization, the optimal
performance (11.56) is achieved with (qm = 1,
km = 16) setting, which demonstrates the ef-
fectiveness of this setting in low-bit quantiza-
tion. Similarly, for 5-bit quantization, (qm = 1,
km = 16) setting also delivers the best result, with a PPL of 7.78, further validating the robustness of
this approach across different bit-widths.

6 CONCLUSION

SpikingLLM introduces an innovative ANN-to-SNN conversion method that establishes the equiv-
alence between fully-spiking neural networks and quantized large language models. To make the
equivalence applicable, we introduce QK2Head-migration quantization, refined ST-BIF+ with window
inhibition mechanism and SNN-friendly spike operators. These advancements enable SpikingLLM
to achieve state-of-the-art performance on both perplexity and common-sense reasoning tasks, while
significantly reducing energy consumption. To the best of our knowledge, SpikingLLM is the first
conversion-based method on fully-spiking large language models. We anticipate that SpikingLLM
can be further extended to incorporate learning-based methods, which hold the potential to achieve
even more promising performance while further reducing energy consumption.
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Appendix

A1 WINDOW INHIBITION MECHANISM

Algorithm 1 Window Inhibition Mechanism

Input: Input voltage t t time-step V̂ in
t .

Model: Refined ST-BIF+ Neuron Θ.
Parameter: Spike Tracer at t time-step St = 0, Spike Tracer for previous window Spre = 0, Spike
Tracer for compensation Scom = 0, Inhibiting Window Length L, time-step T, Threshold voltage for
neuron to fire a spike V⃗thr, Membrane potential of neuron at t time-step Vt.
Output: Firing spikes spike.

1: for t = 1 to T do
2: St = St-1 +Θ(Vt-1 + V̂ in

t , V⃗thr, St-1)
3: # Window inhibition process
4: if (t-1) % L == 0 then

5: spike =


1; St − Spre > 0

0; other
−1; St − Spre < 0

6: # Update spikes for compensation
7: Scom = St − Spre − spike
8: else
9: # Block firing spikes

10: spike = V̂ in
t ∗ 0.

11: if (t-1) % L == 1 then
12: # Update spike tracer for previous window
13: Spre = St.clone()
14: end if
15: end if
16: end for
17: # Firing compensated spikes
18: while max(Scom.abs())! = 0 do

19: spike =


1; Scom > 0

0; other
−1; Scom < 0

Scom = Scom − spike
20: end while

The detailed process of the window inhibition mechanism is specified in Algorithm 1. As illustrated,
we introduce an inhibiting window with length L to combine the original L time-step spikes into 1
time-step spike (fire one positive spike if St − Spre > 0, fire one negative spike if St − Spre < 0). For
the equivalence between refined ST-BIF+ neuron with window inhibition mechanism and quantizer
Q*, we introduce a spike tracer Scom to trace the redundant spikes for compensation (e.g., the sum
of spikes in the inhibiting window is greater than 1 or less than -1). When it comes to time-step t
satisfying (t − 1)%L == 0, the refined ST-BIF+ neuron fires a spike. After firing the spike, the
redundant spikes St − Spre − spike should be updated into Scom. After T time-step, Scom should
fire redundant spikes until there is no spike left. The introduction of window inhibition mechanism
significantly suppresses the over-firing issue and improves the sparsity, leading to apparent reduction
on energy consumption. Note that under most circumstances, there are no redundant spikes in Scom,
which suggests that redundant spikes from inhibiting window can also counteract each other as
time-step increases, further verifying the effectiveness of window inhibition mechanism.

A2 SPIKE OPERATORS

Regarding the differential strategy (Figure A1) to convert the SNN-unfriendly operators (e.g.,
Softmax, RMSNorm, SiLU) to SNN-friendly counterparts, the definition is as follows:

1
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+
️

-️
store after output

Figure A1: Architecture of spike operators (e.g.,
Spike Softmax, Spike RMSNorm, Spike SiLU).
S refers to spike tracer. σ(·) refers to ANN opera-
tors (e.g., Softmax, RMSNorm, SiLU).

Xt = Xt−1 + xt; Ot = σ(Xt)

OS,t = Ot −Ot−1
(A1)

where σ(·) represents the ANN operators includ-
ing Softmax, RMSNorm and SiLU. xt and OS,t

are the input and output of the operator at time-
step t respectively, Xt is the summation of the
input during t time-steps, Ot is the output of the
function σ(·) with input Xt. Both Xt and Ot

are stored back to spike tracer S for computation at next time-step. The operators in ANNs can be
made equivalent to its SNNs version by summing up OS,t through time.

A3 ENERGY ESTIMATION PROCEDURE

1) RTL designs of
MAC and AC

in Verilog format

2) RTL modules
synthesis

3) Act. and weight collection as testbenches

4) Post-synthesis
functional simulations

5) Power consumption
calculation

Figure A2: Detailed procedure of energy estimation.
We follow the standard EDA design flow (Kommuru & Mahmoodi, 2009) to evaluate energy con-
sumption. The detailed evaluation procedure is illustrated in Figure A2 and summarized as follows:

1) We first implement the RTL designs of the MAC and AC units in Verilog format, following standard
digital circuit design practices.

2) These RTL designs are synthesized into gate-level netlists using Synopsys Design Compiler,
utilizing the TSMC 28nm HPC standard cell library.

3) We collect real activation and weight values from actual network inference and construct represen-
tative testbenches using these samples as input stimuli.

4) We perform post-synthesis functional simulations using Synopsys VCS, applying the testbenches
to the synthesized netlists. The simulation generates VCD files that capture signal transitions and
circuit switching activity over time.

5) We import the VCD files into Synopsys PrimeTime PX (Galbi et al., 2010), a gate-level power
analysis tool, to calculate the dynamic power consumption based on real activity patterns and cell-level
power models.

Table A1: EMAC and EAC estimation.

Operation Energy
(pJ)

4-bit+4-bit Fixed-Point EAC 0.0236
4-bit×4-bit Fixed-Point EMAC 0.1141
4-bit×5-bit Fixed-Point EMAC 0.1325

16-bit×16-bit Float-Point EMAC 1.3900

This procedure ensures that the reported energy values in
this work are realistic and reflect actual data-dependent
switching activity under typical network inference work-
loads. With the evaluation procedure above, we present
the average energy consumption of a single MAC opera-
tion EMAC and a single AC operation EAC in Table A1.
Note that the energy of 16-bit×16-bit Float-Point EMAC

is adopted from (Tolliver et al., 2022). As a result, con-
verting MAC operations to AC operations with our fully-spiking neural networks can remarkably
reduce over 80% energy consumption.

We follow the procedure from Spikingformer (Zhou et al., 2023) to conduct energy evaluation
between QLLMs and SNNs, which is concluded as follows:

ESNNs = #ACs× EAC +#MACs× EMAC

ELLMs/QLLMs = #MACs× EMAC
(A2)

#MACs and #ACs refer to the total number of Multiply-ACcumulate and ACcumulate-Only
operations, respectively. We follow the procedure from SpikeZIP-TF (You et al., 2024b) to calculate
#MACs and #ACs, which is concluded as follows:

2
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Algorithm 2 #MACs in Linear and Attention Layers
Input: Number of tokens N; Input feature dimension of linear layer Din; Output feature dimension
of linear layer Dout; Token dimension in attention layer D; Total layers L.
Output: #MACs

1: #MACs← 0
2: for l = 1 to L do
3: # Calculate #MACs for linear layer
4: #MACs← #MACs + N×Din ×Dout

5: # Calculate #MACs for attention layer
6: #MACs← #MACs + 2×N×N×D
7: end for
8: return #MACs

Algorithm 3 #ACs in Linear and Attention Layers
Input: Number of tokens N; Input feature dimension of linear layer Din; Output feature dimension
of linear layer Dout; Token dimension in attention layer D; Spike count per time-step Ct; Total
inference time-steps T; Total layers L.
Output: #ACs

1: #ACs← 0
2: for l = 1 to L do
3: for t = 1 to T do
4: for k = 1 to Ct do
5: # Linear layer: Dout synapses activated per spike and 2

operations per spike for ST-BIF+ neuron
6: #ACs← #ACs + Dout + 2
7: # Attention layer: 2*N synapses activated per spike (dual

matrix product) and 2 operations per spike for ST-BIF+

neuron
8: #ACs← #ACs + 2×N+ 2
9: end for

10: end for
11: end for
12: return #ACs

Table A2: Detailed energy consumption estimation results on Llama-2-7B.

Method Category Bits MACs
(×1012)(↓)

ACs
(×1012)(↓)

Energy
(J)(↓)

WT2
PPL(↓)

Llama-2-7B ANNs FP16 14.40 0. 20.02 5.47

W4A4QKVS4 14.40 0. 1.64 11.56PrefixQuant* QLLMs W4A5QKVS5 14.40 0. 1.91 7.78

SpikeLLM(P) W4A4QKV4 13.45 11.44 2.37 11.32
W4A4QKVS4 1.98 30.25 0.94 10.99SpikingLLM(L=4) SNNs
W4A5QKVS5 2.14 52.82 1.53 7.71

The detailed energy consumption estimation results on Llama-2-7B are summarized in Table A2.
Note that we reproduce PrefixQuant on SpikeLLM (denoted as SpikeLLM (P)), which neglects
post-softmax quantization so that the energy consumption is a bit higher than PrefixQuant* with
post-softmax quantization. For SpikeLLM (P), note that SpikeLLM neglects post-softmax quanti-
zation so that the softmax output remains 16-bit, #MACs consists of 13.01 × 1012 4-bit × 4-bit
operation (0.0236pJ in Table A1) and 0.44× 1012 16-bit × 16-bit operation (0.1141pJ in Table A1),
the energy estimation is calculated as follows:

ESpikeLLM (P) = 11.41× 0.0236 + 13.01× 0.1141 + 0.44× 1.39 = 2.37 J (A3)

For SpikingLLM, the energy estimation is calculated as follows:

ESpikingLLM = 30.25× 0.0236 + 1.98× 0.1141 = 0.94 J (A4)

3
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A4 ANALYSIS OF ENERGY CONSUMPTION

We further clarify how SpikingLLM overcomes the specific disadvantages of SpikeLLM.

① SpikeLLM (Xing et al., 2024a) is based on dynamic quantization method OmniQuant (Shao et al.,
2024), which is SNN-unfriendly due to the float calculation to determine quantization scale for each
input during SNNs inference. Consequently, SpikeLLM fails to convert Activation-Weight (aka.
AW) matrix product in the linear layer and Activation-Activation (aka. AA) matrix product in the
attention layer into fully-spiking matrix product. However, the quantization scale of SpikingLLM is
detemined during SNNs inference so that SpikingLLM effectively converts AW matrix product and
AA matrix product into the accumulation of spikes as follows:

for AW matrix product: OTeq
= V⃗thr ·

Teq∑
t=1

W ·Θ(xt) ;Θ (xt) ∈ {0,±1} (A5)

for AA matrix product: OTeq = V⃗Q
thrV⃗

K
thr

Teq∑
t1=1

Qt1 ·
Teq∑
t2=1

Kt2

= V⃗Q
thrV⃗

K
thr

Teq∑
t=1

ΘQ (Qt) ·KT
t +Qt ·ΘT

K ( Kt)−ΘQ (Qt) ·ΘT
K ( Kt)

ΘQ (Qt) ,ΘK ( Kt) ∈ {0,±1}

(A6)

Note that W refers to weight, x refers to input, Θ refers to refined ST-BIF+ neuron, V⃗thr refers to
threshold voltage in Θ (which is equal to quantization scale) and Teq refers to total time-step.

② SpikeLLM neglects post-softmax quantization so that SpikeLLM fails to convert matrix products
between softmax

(
QKT
√
d

)
and V into spiking matrix products. We propose QK2Head-migration

post-softmax quantization to convert QLLMs to Fully-Spiking LLMs. The effectiveness of QK2Head-
migration post-softmax quantization is verified in Table 4, Table 5 and Table A2, respectively.

A5 COMPARISON BETWEEN SPIKINGLLM AND SPIKEGPT

Table A3: Comparison between SpikingLLM and SpikeGPT. DT, PS, Time and WT2 PPL refer
to directly training, parameter size, training time and wikitext2 perplexity respectively.

Method Category Model PS(B) Bits T(↓) WT2
PPL(↓)

Energy
(mJ)(↓) GPU Time(↓)

SpikeGPT DT SpikeGPT
with Pre-training 0.2 – 50 18.01 47.82 4 NVIDIA-V100 48 hours

SpikingLLM
(L=4) A2S

MobileLLM 0.3 W4A5QKVS5 32 14.56 22.36

1 NVIDIA-4090

52 seconds
W8A5QKVS5 32 13.21 34.61 61 seconds

Llama-3.2 1.0 W4A4QKVS4 16 12.03 131.82 72 seconds
W4A5QKVS5 32 10.97 223.87 78 seconds

We conduct experiments between SpikingLLM and SpikeGPT on WikiText2 perplexity in Table A3.
For fair comparison, we choose MobileLLM-350M (Liu et al., 2024) with comparable parameter
of SpikeGPT 216M With Pre-training as our ANN model. As tabulated, our SpikingLLM achieves
lower Wikitext2 perplexity with lower time-step and energy consumption under the configuration of
5-bit quantization on Activation, Query, Key, Value and Softmax. Our SpikingLLM can also scale up
to Large Language Models with billions parameters (e.g., Llama-2-7B, Llama-2-13B and Llama-3.2-
1B). We also compare the computational cost between SpikingLLM and SpikeGPT, compared with
directly training method SpikeGPT, our SpikingLLM significantly reduces the computational cost.

A6 COMPARISON BETWEEN SPIKINGLLM AND OTHER EFFICIENT LLMS

We conduct experiments between SpikingLLM and other efficient LLMs, such as MatMul-free
LLM (Zhu et al., 2024a) and ShiftAddLLM (You et al., 2024a). We first conduct experiments

4
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Table A4: Comparison between SpikingLLM and MatMul-free LLM. M-LLM refers to MatMul-
free-LLM. HS and WG refer to HellaSwag and Winogrande, respectively.

Method Model PS(B) MatMul-
free Bits PIQA ARC-e ARC-c HS WG Avg.(↑) GPU Time(↓)

MatMul-free LLM M-LLM-370M 0.3 ✓ – 63.0 42.6 23.8 32.8 49.2 42.3 8 NVIDIA-H100 5 hours

SpikingLLM(ours) MobileLLM 0.3 ✓ W4A5QKVS5 63.3 42.4 24.7 43.8 53.3 45.5 1 NVIDIA-4090 52 seconds
W8A5QKVS5 64.8 43.9 25.9 45.1 53.5 46.6 61 seconds

MatMul-free LLM M-LLM-1.3B 1.3 ✓ – 68.4 54.0 25.9 44.9 52.4 49.1 8 NVIDIA-H100 84 hours
M-LLM-2.7B 2.7 71.1 58.5 29.7 52.3 52.1 52.7 173 hours

SpikingLLM(ours) Llama-3.2-1B 1 ✓ W4A4QKVS4 68.6 58.2 29.9 55.6 53.8 53.2 1 NVIDIA-4090 72 seconds
Llama-2-7B 7 W4A4QKVS4 73.5 62.0 36.4 68.0 61.6 60.3 269 seconds

Table A6: Comparison with the Llama-2-70B model of SpikeLLM. T refers to inference time-step
for SNNs. Best results are in bold, runner-up results are marked in gray .

Method Category Fully-
Spiking T Bits Perplexity(↓) Zero-shot Accuracy(↑)

WT2 C4 PIQA ARC-e ARC-c HSg WG Avg.

LLAMA-2-70B

SpikeLLM SNNs ✗ – W2A16 6.35 9.62 76.44 66.92 38.31 51.86 59.19 58.54

LLAMA-2-13B

SpikingLLM SNNs ✓ 32 W4A5QKVS5 6.26 8.07 77.26 73.44 43.43 74.37 66.69 67.64

Mistral-7B

SpikingLLM SNNs ✓ 32 W4A5QKVS5 6.28 8.98 81.44 80.21 56.84 81.03 71.99 74.30

between SpikingLLM and MatMul-free LLM in Table A4, our SpikingLLM surpasses MatMul-free
LLM on zero-shot common-sense reasoning tasks with both millions and billions parameters models.
Matmul-free LLM (Zhu et al., 2024a) leverages ternary weights to eliminate matrix multiplication
in dense layers while optimizing the Gated Recurrent Unit (GRU) (Cho et al., 2014) to remove
matrix multiplication from self-attention. The idea that leveraging ternary weights to eliminate matrix
multiplication is similar to our refined ternary value(-1, 0, +1) ST-BIF+ neuron, but our refined ST-
BIF+ neuron is introduced to replace activation quantizer. The effectiveness of our SpikingLLM on
Matmul-free LLM is that SpikingLLM eliminates matrix multiplication through replacing activation
quantizers in quantized large language models with equivalent ST-BIF+ neurons, so that SpikingLLM
don’t need additional training like Matmul-free LLM. We also compare the computational cost
between Matmul-free LLM and SpikingLLM in Table A4, our SpikingLLM significantly reduces the
computational cost.

Table A5: Comparison between ShiftAddLLM and Spik-
ingLLM on WikiText2 Perplexity.

Method Model PS(B) MatMul-
free Bits WT2

PPL(↓)
ShiftAddLLM OPT (Zhang et al., 2022) 0.3 ✗ W2A16QKVS16 40.24

SpikingLLM(ours) MobileLLM 0.3 ✓ W4A5QKVS5 14.56
W8A5QKVS5 13.21

ShiftAddLLM Llama-2-7B 7 ✗ W2A16QKVS16 8.11
SpikingLLM(ours) ✓ W4A5QKVS5 7.71

ShiftAddLLM Llama-2-13B 13 ✗ W2A16QKVS16 6.77
SpikingLLM(ours) ✓ W4A5QKVS5 6.26

We then compare our SpikingLLM
with ShiftAddLLM on WikiText2 per-
plexity in Table A5, our SpikingLLM
surpasses ShiftAddLLM on LLMs
with both millions and billions param-
eters. Note that ShiftAddLLM (You
et al., 2024a) introduces shift-and-
add operations to eliminate weight-
activation multiplications, the key lim-
itation is its inability to eliminate activation-activation multiplications (e.g., QKT in self-attention lay-
ers). Compared to ShiftAddLLM, our SpikingLLM eliminates both weight-activation and activation-
activation matrix multiplications through replacing activation quantizers in quantized large language
models with equivalent refined ST-BIF+ neurons, constructing matmul-free fully-spiking large lan-
guage models.

A7 COMPARISON WITH THE LLAMA-2-70B MODEL OF SPIKELLM

To further demonstrate the effectiveness of our SpikingLLM method, we compared the Llama-2-
13B and Mistral-7B models of SpikingLLM with the Llama-2-70B model of SpikeLLM. Table A6
indicates that, even with fewer parameters, our SpikingLLM surpasses SpikeLLM on all perplexity
and common-sense reasoning tasks, which further verifies the effectiveness of SpikingLLM.
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(a) 16th layer Query.
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(b) 16th layer Key.
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(c) 16th layer Value.
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(d) 32nd layer Query.
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(e) 32nd layer Key.
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(f) 32nd layer Value.

Figure A3: Sparsity of 16th and 32nd layer Query, Key, Value in Llama-2-7B with each time-step
under different inhibiting window lengths. All visualizations are sampled under W4A4QKVS4.

A8 SPARSITY VISUALIZATION

As depicted in Figure A3, we visualize the sparsity of 16th and 32nd layer Query, Key, Value in
Llama-2-7B, which intuitively demonstrates the effectiveness of window inhibition mechanism. Note
that, the improvement in sparsity and the reduction in energy consumption are more significant as
inhibiting window length L increases.

A9 COMPARISON BETWEEN SPIKINGLLM AND SPIKEZIP-TF

Table A7: Comparison between LSQ and PrefixQuant* on Llama-2-7B.

Model Quantization
Method

Quantization
Type GPU Time Bits WT2

PPL

Llama-2-7B LSQ QAT 4*NVIDIA-4090 6 hours W4A4QKVS4 45.28
PrefixQuant* PTQ 1*NVIDIA-4090 269 seconds 11.56

Apart from adapting the A2S conversion method in SpikeZIP-TF (You et al., 2024b) to PrefixQuant
framework, we propose three innovations:

① To effectively achieve promising QLLMs, we insert post-q quantization and propose QK2Head-
migration post-softmax quantization(in Section 4.1) to establish PrefixQuant* (As shown in Figure 3).
As illustrated in Table A7, compared to Quantization-Aware Training (QAT) method LSQ (Esser et al.,
2020) in SpikeZIP-TF, our PrefixQuant* effectively achieves QLLMs with promising performance.

② To establish the equivalence between QLLMs and SNNs, we firstly refine the ST-BIF+ neuron
in Section 4.2 to make it fully equivalent to quantizer in PrefixQuant* (quantizer with group-size
matrix quantization scale). Then we propose SNN-friendly operators in SpikingLLM including
Spike KV Cache (in Section 4.3), Spike Softmax, Spike SiLU and Spike RMSNorm (in Section A2).

Table A8: Ablation on window inhibi-
tion mechanism.
L Sparsity(↑) Energy

(J)(↓)
LLAMA-2-13B
WT2(↓) C4(↓)

1 32.82% 3.96 7.72 10.23
2 48.94% 2.66 7.75 10.26
4 62.51% 2.08 7.80 10.32

③ In order to suppress redundant continuous {±1} spikes
from ST-BIF+ neuron, we propose window inhibition
mechanism in Section 4.2, which significantly improves
the sparsity without performance degradation. As illus-
trated in Table 6 and Table A8, the introduction of window
inhibition mechanism significantly improves sparsity and
reduces energy consumption without performance degra-
dation.

6



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

To conclude, our SpikingLLM advances SpikeZIP-TF by tailoring the conversion process to LLM-
specific challenges (e.g., effective PTQ on LLMs with post-softmax quantization, SNN-friendly
LLMs operators, refined ST-BIF+ neuron with window inhibition mechanism to reduce energy
consumption) and achieving the first fully-spiking billion-parameter language models.

A10 ANALYSIS OF OUTLIER TOKENS ON SPIKINGLLM AND PREFIXQUANT.

Table A9: Comparison on outlier tokens be-
tween SpikingLLM and PrefixQuant.

Model Method Prefixed token
Number Content

Llama-2-7B PrefixQuant 3 . \n [BOS]
SpikingLLM 3 . \n [BOS]

Llama-2-13B PrefixQuant 3 . the [BOS]
SpikingLLM 3 . the [BOS]

Llama-3-8B PrefixQuant 1 [BOS]
SpikingLLM 1 [BOS]

Mistral-7B PrefixQuant 4 . \n to [BOS]
SpikingLLM 4 . \n to [BOS]

We further analyze the outlier tokens between
SpikingLLM and PrefixQuant in Table A9. We
follow the definition of outlier tokens in Pre-
fixQuant (Chen et al., 2025) to detect outlier
tokens. Given token-wise maximum values
M ∈ RT , which represents the maximum val-
ues of each token. Then, outlier token in the i-th
index of token sequence is identified when the
ratio of their maximum values to the median of
all maximum values exceeds a threshold η:

Mi

median(M)
> η (A7)

where Mi is the maximum value of the i-th token, median() denotes the function to find the median
value from the vector. We then leverage the same calibration dataset Pile (Gao et al., 2020) and set the
same outlier threshold η = 64 to determine outlier tokens before Post-Training Quantization (PTQ).
Consequently, as shown in Table A9, the introduction of post-q and QK2Head-migration post-softmax
quantization does not change the outlier tokens for the same model.

A11 USE OF LLMS

We leverage LLMs to aid or polish writing. Specifically, LLMs help us find some grammar and
spelling mistakes after we finish writing.
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