
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SPIKINGLLM: A CONVERSION-BASED METHOD WITH
WINDOW INHIBITION MECHANISM FOR SPIKING
LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advancements in large language models (LLMs) have led to unprecedented
capabilities in real-world applications. However, it remains challenging to reduce
the energy consumption of LLMs. In this paper, we aim to improve the energy
efficiency of LLMs by leveraging the advantages of brain-inspired spiking neural
networks (SNNs). We propose a novel approach called SpikingLLM, which equiv-
alently converts quantized large language models (QLLMs) applying PrefixQuant*
to their fully-spiking counterparts (all operators are in a more efficient spiking
version). To ensure that every operator can be converted into its spiking version,
we propose two approaches: ① QK2Head-migration post-softmax quantization,
which significantly improves the performance of current QLLMs with post-softmax
quantization; ② Differential-based methods, which tackle the SNN-unfriendly
operators such as KV Cache. To further reduce the energy consumption, we
introduce a window inhibition mechanism which effectively addresses the over-
firing issue in ST-BIF+ neuron and improves the sparsity. With the approaches
above, SpikingLLM significantly reduces the energy consumption while achieving
state-of-the-art performance on both perplexity and common-sense reasoning tasks.

1 INTRODUCTION

Large language models (LLMs) (Brown & Mann, 2020; Touvron & Lavril, 2023; Zhang et al., 2022;
Le Scao et al., 2023) have revolutionized natural language processing (NLP) by leveraging massive-
scale neural networks to achieve state-of-the-art performance across a wide range of tasks. However,
the dense and continuous computations inherent in transformer-based architectures (Vaswani, 2017)
pose significant challenges in terms of energy efficiency of LLMs. For instance, Llama-2-70B requires
three A100-80G GPUs, each consuming approximately 400W of power (Xing et al., 2024a). These
limitations are especially problematic for modern edge AI systems, which often require real-time
processing under strict power constraints. To mitigate these limitations and improve the accessibility
and applicability of LLMs, we focus on energy-efficient deployment for LLMs.

As a biologically inspired alternative to traditional artificial neural networks (ANNs), spiking neural
networks (SNNs) (Maass, 1997) have emerged to bridge the gap between machine learning and
neuroscience. In contrast to ANNs (LeCun et al., 2015), which rely on continuous activations, SNNs
process information through discrete and event-driven spikes, closely mimicking the communication
mechanisms of biological neurons (Merolla et al., 2014; Davies et al., 2018). As a result, SNNs show
promising prospects on computational intelligence tasks (Roy et al., 2019) with strong autonomous
learning capabilities and ultra-low power consumption (Bu et al., 2023; Ding et al., 2022; Ostojic,
2014; Zenke et al., 2015).

Unfortunately, scaling up SNNs to large-scale models remains challenging. By far, directly
training (DT) (Zhu et al., 2023) and ANN-to-SNN conversion (A2S) (Xing et al., 2024a; You
et al., 2024b) are two traditional methods to scale SNNs up to LLMs. DT unfolds the in-
put in time-step dimension and leverages back-propagation-through-time (BPTT) (Wu et al.,
2019) to update SNNs from scratch, which is computationally intensive and slow, particularly
under limited computing resources. In contrast, A2S replaces the quantizers in quantized

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1.5 1.0 0.5 0.0 0.5 1.0
Log10 Energy ()

4

6

8

10

12

14

16

18

20

W
ik

ite
xt

2
Pe

rp
le

xi
ty

 (
)

DTA2S

Comparison of SNN methods on LLMs

13B7B
0.3B

1B

SpikingLLM(ours)
SpikeLLM(P)
SpikeLLM(O)
SpikeGPT

Figure 1: Comprison of SNNs methods on LLMs.
Star and triangle marks ANN-to-SNN (A2S) and
directly training (DT), respectively. SpikeLLM(O)
and SpikeLLM(P) refer to SpikeLLM under Om-
niQuant and PrefixQuant, respectively. The area
of scatter denotes model size. Results demonstrate
the superiority of our SpikingLLM.

ANNs (QANNs) with spiking neurons (e.g., ST-
BIF+ neuron in (You et al., 2024b)), achieving
comparable performance to ANNs while signif-
icantly reducing computational costs relative to
DT. Consequently, A2S presents a promising
pathway for scaling SNNs to LLMs. Neverthe-
less, applying existing A2S methods (You et al.,
2024b; Xing et al., 2024a) directly to LLMs
encounters the following challenges: ① It is
challenging to construct applicable quantized
LLMs (QLLMs) that ensure all operators can be
converted into a spiking version, while minimiz-
ing performance degradation from quantization.
② It is difficult for A2S methods to establish the
equivalence between QLLMs and SNNs due to
the existence of SNN-unfriendly operators (e.g.,
KV Cache, Softmax). The two challenges above
are critical to convert LLMs into SNNs.

In this work, we aim to leverage the A2S method to scale SNNs up to LLMs, while maintaining all
the operations in spiking version (which is defined as fully-spiking in Section 3.3). Correspondingly,
we propose SpikingLLM, which establishes the equivalence between fully-spiking neural networks
and QLLMs. SpikingLLM firstly introduces QK2Head-migration module to enable post-softmax
quantization on top of PrefixQuant (Chen et al., 2025) to establish PrefixQuant* (in Section 4.1),
ensuring all matrix products in QLLMs can be faithfully converted into their spiking versions.
In addition, we refine the ST-BIF+ neuron (You et al., 2024b) to align it with the quantizers in
PrefixQuant* and incorporate a window inhibition mechanism, which further reduces the energy
consumption. Finally, we propose SNN-friendly operators within SpikingLLM, including Spike KV
Cache. Figure 1 demonstrates the superiority of our SpikingLLM over previous methods.

Our contributions are summarized as follows:

• We propose a conversion-based method called SpikingLLM, which enables post-softmax
quantization and ensures that QLLMs can be converted into fully-SNNs. To further enhance
the performance of post-softmax quantization, we introduce QK2Head-migration module.

• We refine the ST-BIF+ neuron to establish the equivalence between fully-SNNs and QLLMs.
Then we introduce a window inhibition mechanism to address the over-firing issue of refined
ST-BIF+ neuron, which significantly improves the sparsity and reduces energy consumption.

• We convert SNN-unfriendly operators (e.g., KV Cache, SiLU) to SNN-friendly versions
counterparts, further enabling the equivalence between fully-SNNs and QLLMs.

• SpikingLLM achieves the state-of-the-art performance on perplexity and common-sense
reasoning tasks with significant energy reduction (e.g., compared to SpikeLLM(P) on Llama-
2-7B in Table 2, our SpikingLLM improves the average accuracy of common-sense reasoning
tasks by 26.37% (47.79⇒ 60.28) with 60.34% energy reduction (2.37J⇒ 0.94J)).

2 RELATED WORKS

Spiking Neural Networks. The learning methods of SNNs come in twofolds: directly train-
ing (DT) and ANN-to-SNN conversion (A2S). The DT algorithm leverages back-propagation through
time (BPTT) (Wu et al., 2019) with surrogate gradient (Neftci et al., 2019) to update SNNs from
scratch for a fixed time-step. However, the gap between SNNs and ANNs persists due to the gradient
estimation error. Compared to DT algorithm, A2S algorithm leverages spiking neurons to replace
the quantizers in quantized ANNs, leading to equivalent SNNs with comparable performance to
ANNs (Wang et al., 2023; You et al., 2024b). Furthermore, A2S algorithm consumes less computa-
tional cost and time. However, most SNNs focus on computer vision tasks. As for language-oriented
tasks, current SNNs (SpikeBERT (Lv et al., 2024), SpikingBERT (Bal & Sengupta, 2024), SpikeZIP-
TF (You et al., 2024b), SpikeLM (Xing et al., 2024b) and SpikeGPT (Zhu et al., 2024b)) fail to scale
up to the billion-level parameters. SpikeLLM (Xing et al., 2024a) scales up SNNs to billions of
parameters, but their models are not fully-spiking. It remains a valuable issue to scale fully-spiking
neural networks up to billions of parameters.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Quantized Large Language Models. Model quantization improves large language models (LLMs)
efficiency by compressing weights and activations into lower bit-widths, reducing memory consump-
tion and accelerating inference. Quantization-aware training (QAT), exemplified by LSQ (Esser
et al., 2020) and U2NQ (Liu et al., 2022), achieves higher accuracy for smaller models through full
retraining, and advances calibration-based techniques like EfficientQAT (Chen et al., 2024), further
balancing efficiency and performance. Post-training quantization (PTQ) is more applicable on LLMs
for its computational practicality, with methods like GPTQ (Frantar et al., 2023), SpQR (Dettmers
et al., 2023), and AWQ (Lin et al., 2024a) focusing on weight compression, while SmoothQuant (Xiao
et al., 2024), RPTQ (Yuan et al., 2023) and OmniQuant (Shao et al., 2024) jointly quantize weights
and activations. However, previous PTQ methods (e.g., OmniQuant) mostly focus on dynamic
quantization with quantization scale dynamically determined by input, which is difficult to tackle with
spiking-version input. Although PrefixQuant (Chen et al., 2025) integrates prefixed tokens into static
quantization, enabling low-bit precision for LLMs with high accuracy and efficiency, the overlook
on post-q and post-softmax quantization (as depicted in 2nd column in Figure 3) makes it unable to
convert matrix products of QKT and softmax(QKT

√
d
)V into spiking matrix products. Consequently, it

remains a challenge to establish specific QLLMs which are suitable to be converted into fully-SNNs.

3 PROBLEM FORMULATION

In this section, we firstly introduce the paradigm of A2S algorithm. Then we bring in the current
state-of-the-art QLLMs (PrefixQuant (Chen et al., 2025)) and illustrate its applicability to the A2S
algorithm. Finally we propose the definition of full-spiking and clarify the intuition of SpikingLLM.

3.1 A2S ALGORITHM

Quantization-Aware
Training

ANNs

QANNs

SNNs

Convesion
Algorithm

(a) SpikeZIP-TF.

Post-Training Quantization
(PrefixQuant* in Section 4.1)

LLMs

QLLMs

SNNs

Convesion Algorithm
(in Section 4.2 and 4.3)

(b) SpikingLLM.

Figure 2: SpikeZIP-TF and SpikingLLM.

A2S Algorithm transfers the parameters of
the pre-trained ANNs into their SNNs coun-
terpart while maintaining the synaptic con-
nections in ANNs, which yields close-to-
ANNs accuracy. In SpikingLLM, we in-
herit the A2S conversion algorithm from
SpikeZIP-TF (You et al., 2024b) including the
ANNs (LLMs) −→ QANNs (QLLMs) −→ SNNs
conversion paradigm (as shown in Figure 2).
For conversion paradigm, we insert activation
quantizers in front of all the matrix products
in ANNs (LLMs). SpikeZIP-TF leverages the
quantization-aware training (QAT) method to
achieve corresponding QANNs, which is com-
putationally inefficient for LLMs. Consequently, we apply efficient post-training quantization (PTQ)
method (PrefixQuant* in Section 4.1) to achieve corresponding QLLMs. Then we propose the
conversion algorithm in Section 4.2 and Section 4.3 to replace the inserted quantizers with spiking
neurons and ensure that all matrix products and operators can be converted to their spiking version.

3.2 PREFIXQUANT

PrefixQuant (Chen et al., 2025) introduces an efficient static quantization framework tailored to
large language models, specifically focusing on prefixed tokens to enhance performance. By setting
specific prefixed tokens in the KV cache, PrefixQuant eliminates token-wise outliers in linear inputs
and Q/K/V, enhancing compatibility with per-tensor static quantization. When tackling spiking
version input (which means we cannot acquire the total input at the current inference time-step),
static quantization with fixed quantization parameters is more suitable to the A2S algorithm compared
to dynamic quantization method (such as OmniQuant (Shao et al., 2024)) where the quantization
parameter is dynamically determined by input. Consequently, we construct SpikingLLM on the basis
of static quantization (PrefixQuant) rather than dynamic quantization (OmniQuant).

3.3 FULLY-SPIKING DEFINITION

Inspired by the concept of spike-driven introduced by DT algorithm (Yao et al., 2023), we introduce
the definition of fully-spiking for A2S algorithm, which means that all operators in SNNs are
in an event-driven or spiking version (calculation is triggered by spikes). However, current

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Input Embedding

Q K V

RoPE

KV Cache
(Prefixed)

×
️

Causal
Mask

Softmax

O

×
️

Q
Ll

am
aS

dp
aA

tte
nt

io
n

+
️

Up Gate

·
️ SiLU

Down

Q
Ll

am
aM

LP

+
️

 L×️
RMSNorm

lm head

Q*Q*

Q*

Input RMSNorm

Q*

PA RMSNorm

Q*

Q*

Llama(PrefixQuant)

Input Embedding

Q K V

RoPE

×
️

Causal
Mask

Softmax

O

×
️

Q
Ll

am
aS

dp
aA

tte
nt

io
n

+
️

Up Gate

·
️ SiLU

Down

Q
Ll

am
aM

LP

+
️

 L×️
RMSNorm

lm head

Q*Q*

Q*

Input RMSNorm

Q*

PA RMSNorm

Q*

Q*

Llama(PrefixQuant*)

Q*

Q*

Input Embedding

Q K V

RoPE

Spike
KV Cache

️
Causal
Mask

O

️

SL
la

m
aS

dp
aA

tte
nt

io
n

+
️

Up Gate

·
️

Down

SL
la

m
aM

LP

+
️

 L×️
RMSNorm

lm head

Spike RMSNorm

Spike RMSNorm

SpikingLLM

*

*

ST-BIF+
Neuron

Input Embedding

Input RMSNorm

Q K V

RoPE

KV Cache

×
️

Causal
Mask

Softmax

O

×
️

Ll
am

aS
dp

aA
tte

nt
io

n

+
️

PA RMSNorm

Up Gate

·
️ SiLU

Down

Ll
am

aM
LP

+
️

 L×️
RMSNorm

lm head

Llama

Q*

Linear Linear with
quantized weight

Activation
Quantizer

×
️

MP ️* Spiking-MP·
️

EP

KV Cache
(Prefixed)

Q* QK2Head-migration
Quantizer

Spike
Softmax

Spike
SiLU

Figure 3: Architecture of Llama, PrefixQuant, PrefixQuant* and SpikingLLM. PA, EP and
MP refer to post-attention, element-wise product and matrix product, respectively. Compared to
PrefixQuant, PrefixQuant* inserts post-q and post-softmax (QK2Head-migration) quantization to
ensure that each matrix product can be converted to spiking matrix product. SpikingLLM firstly
substitutes ST-BIF+ neuron for all quantizers, then replaces SNN-unfriendly operators (Softmax,
RMSNorm, SiLU and KV Cache (Prefixed)) with SNN-friendly ones.

QLLMs methods, such as OmniQuant (Shao et al., 2024) and PrefixQuant (Chen et al., 2025),
overlook the quantization of query and softmax output (as depicted in 2nd column in Figure 3).
As a result, the matrix products of QKT and softmax(QKT

√
d
)V cannot be converted into spiking

version. Additionally, operators in QLLMs (e.g., KV Cache, SiLU) need to be converted into their
spiking version. Although SpikeLLM (Xing et al., 2024a) introduces a spiking mechanism tailored to
salient channels, operators on non-salient channels remain non-spiking version. Consequently, our
SpikingLLM is the first to establish the equivalence between fully-SNNs and QLLMs.

4 METHODOLOGY

In this section, we firstly introduce post-q and post-softmax quantization on top of PrefixQuant
to establish PrefixQuant* (as shown in Figure 3) to ensure that all matrix products are equally
converted into spiking matrix products. To further enhance the performance of PrefixQuant*, we
propose QK2Head-migration quantization, a novel approach that shifts the difficulties of post-softmax
quantization from query and key dimension to head dimension. Then, we refine the ST-BIF+ neuron
to make it fully equivalent to the quantizer in PrefixQuant*. With the equivalence above, we introduce
a window inhibition mechanism to further improve the sparsity of the refined ST-BIF+ neuron. Finally,
we describe the design of SNN-friendly spike operators in SpikingLLM including Spike KV Cache.

4.1 PREFIXQUANT* WITH QK2HEAD-MIGRATION QUANTIZATION

We firstly introduce PrefixQuant* (3rd column in Figure 3) which inserts post-q and post-softmax
quantization on the basis of PrefixQuant. For post-q quantization, we follow the post-k and post-v
quantization in PrefixQuant. For 4-dimensional post-softmax output, we propose a novel strategy
called QK2Head-migration quantization. As illustrated in Figure 4, QK2Head-migration quantization
divides the softmax output into prefixed part and normal part. The prefixed part corresponds to the
attention scores associated with the prefixed tokens introduced by PrefixQuant, while the normal part

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Prefixed

Normal d
im

s
le

n P

stat calib inputn

T & R & A

Prefixed
 n×qm×lenP

quantized item stat

Normal
 n×qm×dims

R & C

ScaleP(nqmlenP)×1

quantization scale

ScaleN(nqmkm)×1

Prefixed

Normaldi
m

d
le

n P

data input

n

T & R

Prefixed
(nqmlenP) ×1

reshaped data input

Q & T & R
Prefixed

Normaldi
m

d
le

n P

quantized data output

n

Normal
 (nqmkm)×dimd

km

dim
d

q m

Figure 4: Architecture of QK2Head-migration Quantization. Note that T, R, A, C, Q are the
abbreviation of Transpose, Reshape, Accumulate, Calibration and Quantization. Stat calib input
means the Pile (Gao et al., 2020) data distribution for static quantization parameter calibration. After
T, R and A on stat calib input, quantized item stat is achieved to initialize quantization scale.

represents the standard attention scores computed during the forward pass, which depends on the
input sequence.

To cope with the quantization of these two parts, we introduce query dimension migration ratio
qm and key dimension migration ratio km to redistribute the quantization complexity from query
and key dimension to head dimension. Specifically, for both Prefixed and Normal parts, we firstly
transpose, reshape and accumulate the stat calibration input to derive the quantized item stat. Then
we initialize separate quantization scales for prefixed (ScaleP) and normal (ScaleN) parts, ensuring
that each part is quantized optimally based on its stat calibration input. After calibration, we follow
the same procedure to process the data input and achieve corresponding quantized data output. Then
we leverage block-wise fine-tuning (Shao et al., 2024; Chen et al., 2024) to fine-tune PrefixQuant*.

4.2 ST-BIF+ NEURON REFINEMENT AND WINDOW INHIBITION MECHANISM

Table 1: Summary of notations used in this paper.
Notation Description

q⃗ quantization scale of quantizer Q*

x input of quantizer Q*

Vt membrane potential of neuron at t time-step
V⃗thr threshold voltage for neuron to fire a spike

V in, V out input or output voltage of neuron
St spike tracer at time-step t
Smax maximum value in spike tracer

clip(x, αmin, αmax) clip function that limits x within αmin and αmax
Θ(V, Vthr, S) output spike decision function of ST-BIF+

Teq time-step that SNNs enter the equilibrium state
n head number of softmax output

dims, dimd dimension of stat calib input and data input
qm, km migration ratio for query, key dimension

ScaleP, ScaleN quantization scale for Prefixed and Normal part
C[·],Z(·) concatenate and zeros like operator
TP,TS prefixed and stored tokens
Tt tokens at t time-step
L length of inhibiting window

In SpikingLLM, we follow the ST-BIF+ neuron
proposed in SpikeZIP-TF (You et al., 2024b),
whose accumulated spikes (neuron output) is
fully equivalent to the quantized activation.
The quantization scale of the quantizer used in
SpikeZIP-TF is a simple scalar, which is effec-
tive for quantizing models with limited parame-
ters. However, when it comes to the quantization
on large-scale LLMs, the quantization scale of
quantizer Q* in PrefixQuant* is a matrix with
group size. Consequently, we refine the ST-BIF+

neuron in SpikeZIP-TF to make it fully equiv-
alent to Q*. Overview of the refined ST-BIF+

neuron is shown in Figure 5(a) and the equation
of Q* is described in Equation (1). The notations
are specified in Table 1.

x
Reshape−−−−−→
Group

x̂; Quantize(x̂) = q⃗ · clamp(round(x̂/q⃗), α, β);Quantize(x̂)
Regroup−−−−−→
Reshape

Oq (1)

As for the refined ST-BIF+ neuron, the dynamics can be expressed as follows (note that the threshold
voltage V⃗thr is equal to quantization scale q⃗):

V in
t

Reshape−−−−−→
Group

V̂ in
t ; Θ(V, V⃗thr, S) =


1; V ≥ V⃗thr & S < Smax

0; other
−1; V < 0 & S > Smin

;

Vt = Vt−1 + V̂ in
t − V⃗thr ·Θ(Vt−1 + V̂ in

t , V⃗thr;St−1);St = St−1 +Θ(Vt−1 + V̂ in
t ; V⃗thr;St−1)

STeq · V⃗thr
Regroup−−−−−→
Reshape

Os

(2)

The accumulation of spikes from the refined ST-BIF+ neuron Os is equivalent to the output of Q* Oq.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Regroup
&

Reshape

Reshape

&
Group

️

Q*

·
️

equal

️
eq

ua
l

∑

∑

=0
Inhibiting Window

(L=4) fire∑
️

Window Inhibition Mechanism (L=4)

－
️

Scom store

>0

<0

(a) Refined ST-BIF+ neuron with window inhibition mechanism.

(1,2) (2,3) (3,4) (4,5) (5,6) (6,7) (7,8) (8,9) (9,10)
Continuous time-steps

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
ti

on

Continuous spikes distribution
Spikes combination

{+1,-1} {+1,+1} {-1,-1} {0,0} {0,+1} {-1,0}

(b) Continuous spikes distribution.

Figure 5: Refined ST-BIF+ neuron with window inhibition mechanism and continuous spikes
distribution.

We plot the continuous spikes distribution under continuous time-steps in Figure 5(b) and find that
{+1,−1} makes up the majority of the continuous spikes combination. Specifically, most ST-BIF+

neurons tend to fire a positive (negative) spike to counteract the negative (positive) spike from the
last time-step, leading to fire redundant spikes (”over-firing” issue). To address the over-firing
issue and reduce the energy consumption, we propose window inhibition mechanism. As depicted
in Figure 5(a), we introduce an inhibiting window (e.g., window length L = 4) to accumulate the L
time-step spikes to fire 1 time-step spike, which significantly suppresses the over-firing issue and
improves the sparsity. For the equivalence between refined ST-BIF+ neuron with window inhibition
mechanism and quantizer Q*, we introduce a spike tracer Scom to store the redundant spikes for
compensation (e.g., the sum of spikes in the inhibiting window is greater than 1 or less than -1). The
detailed procedure of window inhibition mechanism is illustrated in appendix (Section A1).

inference at i-th decoder layer

[··· ···]

K
V

 C
ac

he
(p

re
fix

ed
)

K
V

 C
ac

he
(p

re
fix

ed
)

K
V

 C
ac

he
(p

re
fix

ed
)

K
V

 C
ac

he
(p

re
fix

ed
)

1st 2nd ith Lth

. \n [BOS] Tokens T
concatenate outputst

or
e

(a) KV Cache with prefixed tokens {., \n, {BOS}}.

inference at i-th decoder layer at t time-step (t>1)

[··· ···]

K
V

 C
ac

he
(p

re
fix

ed
)

K
V

 C
ac

he
(p

re
fix

ed
)

K
V

 C
ac

he
(p

re
fix

ed
)

K
V

 C
ac

he
(p

re
fix

ed
)

1st 2nd ith Lth

0 0 0 Tokens at t step TtStored Tokens TS +
️

️

store

-
output at t step

concatenate

(b) Spike KV Cache with prefixed tokens.

Figure 6: Architecture of KV cache and Spike KV Cache with prefixed tokens.

4.3 SNN-FRIENDLY SPIKE OPERATORS

To futher ensure the equivalence between PrefixQuant* and SpikingLLM, we introduce SNN-friendly
spike operators (e.g., Spike KV Cache, Spike SiLU.). As depicted in Figure 6(b), we introduce
Spike KV Cache SKV with prefixed tokens to enable the KV Cache during SNNs inference. The
inference of SKV at i-th decoder layer under t time-step is described in Equation (3). At the first
time-step (t = 1), SKV outputs and stores the concatenated prefixed and original tokens, which is the
same to the original KV Cache in Figure 6(a). As for t time-step (t > 1), SKV concatenates zeros
tensors (with the same shape of prefixed tokens TP) with tokens at t time-step Tt to output, which
ensures that the accumulation of SKV output equals to original KV Cache output. Then SKV stores
the sum of output and stored tokens TS back to the cache.

SKV(Tt,TP) =


store︷ ︸︸ ︷

C[TP,Tt]; t = 1
store︷ ︸︸ ︷

C[Z(TP),Tt] + TS −TS; t > 1

(3)

Since that Rotary Position Embedding (RoPE) operator is a linear mapping, the original RoPE is
applicable to SpikingLLM. For Softmax, SiLU and RMSNorm, we follow the differential strategy
from SpikeZIP-TF (You et al., 2024b) to introduce Spike Softmax, Spike SiLU and Spike RMSNorm.
The detailed procedure of spike operators above are illustrated in appendix (Section A2).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Comparison on Llama-2 models. T refers to inference time-step for SNNs. Best results are
in bold, runner-up results are marked in gray . SpikeLLM(O) and SpikeLLM(P) refer to SpikeLLM
with OmniQuant and PrefixQuant, respectively. WT2, HS and WG refer to Wikitext2, HellaSwag
and Winogrande, respectively. Inhibiting window length L is set to 4 (L = 4).

Perplexity(↓) Zero-shot Accuracy(↑)Method Category Fully-
Spiking T Bits Energy

(J)(↓) WT2 C4 PIQA ARC-e ARC-c HS WG Avg.

LLAMA-2-7B ANNs – – FP16 20.02 5.47 6.97 79.11 74.62 46.25 76.00 69.22 69.04

OmniQuant W4A4 4.71 15.25 19.35 62.19 45.62 25.43 39.15 52.17 44.91
PrefixQuant W4A4KV4 2.15 6.22 – 77.20 71.51 43.94 73.75 67.80 66.84

W4A4QKVS4 1.64 11.56 14.10 72.85 62.50 36.95 68.01 61.96 60.45PrefixQuant*
QLLMs – –

W4A5QKVS5 1.91 7.78 9.56 75.03 66.04 38.91 70.89 63.77 62.93

SpikeLLM(O) ✗ – W4A4 5.18 11.46 14.45 62.79 51.01 27.13 43.47 53.83 47.65
SpikeLLM(P) ✗ – W4A4QKV4 2.37 11.32 15.01 62.58 50.93 27.11 43.85 54.01 47.70

✓ 16 W4A4QKVS4 0.94 10.99 13.78 73.45 61.95 36.43 68.02 61.56 60.28SpikingLLM
(L = 4)

SNNs

32 W4A5QKVS5 1.53 7.71 9.35 74.54 65.66 39.16 71.22 62.51 62.26
LLAMA-2-13B ANNs – – FP16 38.50 4.88 6.46 80.52 77.48 49.06 79.37 72.22 71.73

OmniQuant W4A4 9.16 12.40 15.87 67.03 53.96 30.55 62.91 44.83 51.86
PrefixQuant W4A4KV4 4.18 6.22 – 78.51 75.80 46.67 76.54 72.06 69.92

W4A4QKVS4 3.16 7.99 10.68 75.57 69.49 41.47 72.45 65.27 64.85PrefixQuant*
QLLMs – –

W4A5QKVS5 3.67 6.28 8.11 77.48 73.32 42.92 74.45 69.93 67.02

SpikeLLM(O) ✗ – W4A4 10.07 9.56 12.48 65.29 55.81 28.41 48.13 55.56 50.64
SpikeLLM(P) ✗ – W4A4QKV4 4.39 9.94 12.59 65.93 55.89 28.73 48.22 55.21 50.80

✓ 16 W4A4QKVS4 2.08 7.80 10.32 76.50 70.41 41.98 72.42 65.51 65.36SpikingLLM
(L = 4)

SNNs

32 W4A5QKVS5 3.07 6.26 8.07 77.26 73.44 43.43 74.37 66.69 67.64

5 EXPERIMENTS

5.1 SETUPS

Training Details. We follow the fine-tuning setting from PrefixQuant (Chen et al., 2025) to fine-
tune PrefixQuant*. During fine-tuning, we optimize the block-wise output mean square error. We use
512 samples from Pile (Gao et al., 2020) with a 1024 context length as fine-tuning dataset. For Weight
quantization, we choose 4-bit (denoted as W4). For Activation, Query, Key, Value and Softmax
quantization, we conduct experiments on 4-bit and 5-bit (denoted as A4QKVS4 and A5QKVS5,
respectively) quantization. The fine-tuning batch size and number of epochs are set to 4 and 20,
respectively. For QK2Head-migration quantization, we set qm to 1 and km to 16. For SNNs inference,
we set time-step T to 16 and 32 for A4QKVS4 and A5QKVS5, respectively. Finally we set inhibiting
window length L = 4 during inference.

Evaluation Tasks. We evaluate SpikingLLM on Llama-2-7B, Llama-2-13B (Touvron et al., 2023),
Llama-3-8B (Grattafiori & et al., 2024) and Mistral-7B (Jiang et al., 2023). We follow the evaluation
methods from PrefixQuant and SpikeLLM as the primary baselines. We also conduct experiments on
SpikeLLM with PrefixQuant (denoted as SpikeLLM(P)) in Table 2 for a fair comparison between
SpikingLLM and SpikeLLM. Specifically, we evaluate the perplexity (PPL) of language generation on
Wikitext2 (Merity et al., 2016) and C4 (Raffel et al., 2023) benchmarks. For zero-shot common-sense
reasoning tasks, we evaluate SpikingLLM on PIQA (Bisk et al., 2019), ARC-easy (Clark et al., 2018),
ARC-challenge (Clark et al., 2018), HellaSwag (Clark et al., 2018) and Winogrande (Sakaguchi
et al., 2019). We report acc for WinoGrande and acc norm for remaining datasets, following
Qserve (Lin et al., 2024b). We also compare SpikingLLM with SpikeGPT (Zhu et al., 2023) and
other efficient LLMs (MatMul-free LLM (Zhu et al., 2024a) and ShiftAddLLM (You et al., 2024a))
in appendix (Section A5 and Section A6).

Energy Consumption Metric. We inherit the operation metric proposed in SpikingFormer (Zhou
et al., 2023) to calculate the Multiply-ACcumulate operations (MACs) and ACcumulate-Only op-
erations (ACs) of self-attention and linear operators. For LLMs and QLLMs, we calculate the
number of MACs #MACs. For SNNs, we calculate the number of ACs #ACs and MACs #MACs.
Then we sample the weights and activations from different methods to estimate the average en-
ergy consumption of a single MAC operation EMAC and AC operation EAC (The detailed en-
ergy estimation procedure is illustrated in appendix (Section A3)). Finally we follow the formula
ESNNs = #ACs×EAC+#MACs×EMAC and ELLMs/QLLMs = #MACs×EMAC from Spiking-
Former (Zhou et al., 2023) to estimate the total energy consumption for SNNs, LLMs and QLLMs.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Performance of SpikingLLM on Llama-3-8B and Mistral-7B.
Method Category Fully-

Spiking T Bits Energy
(J)(↓)

Perplexity(↓) Zero-shot Accuracy(↑)
WT2 C4 PIQA ARC-e ARC-c HS WG Avg.

LLAMA-3-8B ANNs – – FP16 22.24 6.14 8.88 80.79 77.69 53.33 79.16 72.53 72.70

PrefixQuant* QLLMs – – W4A4QKVS4 1.83 10.85 15.82 75.24 68.01 42.06 71.27 61.56 63.63
W4A5QKVS5 2.12 8.20 11.61 77.48 73.65 46.76 75.60 67.32 68.16

SpikingLLM
(L = 4) SNNs ✓

16 W4A4QKVS4 1.04 10.34 15.38 75.51 68.12 41.93 71.72 61.23 63.70
32 W4A5QKVS5 1.77 8.14 11.28 77.82 73.43 46.91 75.24 67.66 68.21

Mistral-7B ANNs – – FP16 19.46 5.49 8.41 82.46 82.62 58.87 82.94 74.11 76.20

PrefixQuant* QLLMs – – W4A4QKVS4 1.60 7.74 10.68 78.24 76.64 51.28 76.97 62.67 69.16
W4A5QKVS5 1.86 6.39 9.20 81.23 80.30 56.57 80.94 71.51 74.11

SpikingLLM
(L = 4) SNNs ✓ 16 W4A4QKVS4 0.92 7.32 10.12 78.05 76.82 51.43 77.21 62.45 69.19

32 W4A5QKVS5 1.46 6.28 8.98 81.44 80.21 56.84 81.03 71.99 74.30

5.2 RESULTS COMPARISON

Results on Perplexity Tasks. Table 2 shows the experimental results on Llama-2-7B and Llama-
2-13B. For perplexity metric on Wikitext2 and C4 benchmarks, SpikingLLM achieves equivalent
results with PrefixQuant* under the same setting. For 4-bit quantization on Llama-2-7B, SpikingLLM
surpasses SpikeLLM(P) by 0.33 on Wikitext2 and 1.23 on C4. For 4-bit quantization on Llama-2-
13B, SpikingLLM outperforms SpikeLLM(P) by 2.14 on Wikitext2 and 2.27 on C4. Furthermore,
SpikingLLM achieves state-of-the-art performance on both Wikitext2 and C4 benchmarks with 5-bit
quantization. We also extend our SpikingLLM on Llama-3-8B and Mistral-7B in Table 3, which
further verifies the equivalence between SpikingLLM and PrefixQuant*.

Results on common-sense Reasoning Tasks. As tabulated in Table 2, SpikingLLM achieves
promising results on common-sense reasoning tasks. For 4-bit quantization, SpikingLLM achieves
an average zero-shot accuracy of 60.28 on Llama-2-7B and 65.36 on Llama-2-13B, surpassing
SpikeLLM(P) by 12.58 and 14.56, respectively. Moreover, with 5-bit quantization, SpikingLLM
achieves an average zero-shot accuracy of 62.26 on Llama-2-7B and 67.64 on Llama-2-13B, further
closing the gap between ANNs and SNNs. Notably, SpikingLLM outperforms PrefixQuant* on
complex reasoning tasks such as ARC-c and HellaSwag. Furthermore, consistent experimental results
on Llama-3-8B and Mistral-7B in Table 3 demonstrate the generalisability of SpikingLLM.

Results on Energy Consumption. Based on the experimental results in Table 2 and Table 3,
SpikingLLM demonstrates significant advantages in reducing energy by effectively converting
Multiply-ACcumulate operations (MACs) into ACcumulate-Only operations (ACs) through its fully-
spiking paradigm. For instance, on Llama-2-7B model under 4-bit quantization, SpikingLLM achieves
a remarkable reduction (1.64⇒ 0.94) compared with PrefixQuant*. Note that SpikeLLM exhibits
higher energy consumption than corresponding QLLMs (e.g., 2.15⇒ 2.37 for PrefixQuant). This
discrepancy arises that SpikeLLM fail to embrace the fully-spiking paradigm, instead maintaining
a hybrid approach which still relies on traditional Multiply-ACcumulate operations (MACs). We
incorporate the detailed analysis on energy consumption in appendix (Section A3 and Section A4).

5.3 ABLATION STUDY

Table 4: Ablation on QK2Head-migration quan-
tization and Spike KV Cache on Wikitext2.

QK2Head-
migration

Spike
KV Cache

W4A4QKVS4 W4A5QKVS5
2-7B 2-13B 2-7B 2-13B

✗ ✗ 556.34 512.13 532.81 508.94
✓ ✗ 523.12 489.16 518.94 498.73
✗ ✓ 24.17 42.31 9.68 8.69
✓ ✓ 10.99 7.80 7.71 6.26

Ablation on QK2Head-migration quanti-
zation. As tabulated in Table 4, we test
different settings of PrefixQuant*, includ-
ing versions with/without QK2Head-migration
quantization, to verify the effectiveness of
QK2Head-migration quantization. Note that
for PrefixQuant* without QK2Head-migration
quantization, we reshape softmax output into
3-dimensional and quantize it through activation quantization in PrefixQuant. The results demonstrate
that the introduction of QK2Head-migration quantization significantly enhances performance across
all quantization scenarios for both Llama-2-7B and Llama-2-13B. For instance, for Llama-2-7B
with W4A4QKVS4, Wikitext2 perplexity is reduced from 24.17 to 10.99 when QK2Head-migration
quantization is applied. Similarly, for Llama-2-13B with W4A4QKVS4, Wikitext2 perplexity de-
creases from 42.31 to 7.80. These improvements highlight the substantial benefits of incorporating
QK2Head-migration quantization.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Ablation on Spike KV Cache. We also present the experimental results of SpikingLLM
with/without Spike KV Cache in Table 4. As detailed in Table 4, original KV Cache fails to
process spiking inputs effectively, resulting in a fundamental discrepancy between SNNs and corre-
sponding QLLMs. This limitation highlights the necessity of introducing Spike KV Cache, which
ensures that the cumulative output aligns precisely with the output of KV Cache in QLLMs. For
instance, in the cases of LLAMA-2-7B and LLAMA-2-13B with W4A4QKVS4, Wikitext2 perplexity
are significantly reduced from 523.12 to 10.99 and 489.16 to 7.80 when Spike KV Cache is employed.
These substantial reductions demonstrate the effectiveness of the Spike KV Cache in processing
spiking input while preserving the consistency of output.

Table 5: Ablation on post-q and post-
softmax quantization.

Post-
q

Post-
softmax

Fully-
Spiking

Energy
(J)(↓)

2-7B 2-13B

✗ ✗ ✗ 2.77 5.64
✓ ✗ ✗ 2.12 4.02
✗ ✓ ✗ 1.59 3.65
✓ ✓ ✓ 0.94 2.08

Ablation on post-q and post-softmax quantization.
To verify the necessities of introducing post-q and post-
softmax quantization, we compare the energy consumption
of SpikingLLM with/without post-q and with/without post-
softmax quantization on Llama-2 under W4A4QKVS4
in Table 5. As illustrated, the introduction of post-q and
post-softmax quantization drastically reduces energy con-
sumption. The significant reduction demonstrates that the
introduction of post-q and post-softmax quantization en-
ables the conversion of matrix products of QKT and softmax(QKT

√
d
)V into spiking matrix products,

which effectively converts high-energy MACs into low-energy ACs.

Table 6: Ablation on window inhibi-
tion mechanism.
L Sparsity(↑) Energy

(J)(↓)
LLAMA-2-7B

WT2(↓) C4(↓)
1 34.93% 1.70 10.91 13.68
2 49.78% 1.19 10.94 13.71
4 63.21% 0.94 10.99 13.78

Ablation on Window Inhibition Mechanism. We set
multiple values to inhibiting window length L in Table 6 to
verify the effectiveness of window inhibition mechanism.
As illustrated, the energy consumption of SpikingLLM
without window inhibition mechanism (L = 1) is 1.70J,
which is comparable to the corresponding QLLMs (1.64J
in Table 2). With the introduction of window inhibition
mechanism, our SpikingLLM significantly improves sparsity (34.93% ⇒ 63.21%) and reduces
energy consumption (1.70J⇒ 0.94J) without performance degradation.

1 4 16 64
qm

64
16

4
1

k m

14.69 31.23 128.20 200.87

11.56 15.86 33.01 150.84

22.02 14.03 17.73 40.59

24.17 14.52 23.12 14.71

Wikitext2 PPL Heatmap

0

10

20

30

40

50

(a) W4A4QKVS4.

1 4 16 64
qm

64
16

4
1

k m

10.38 21.99 100.18 192.78

7.78 10.51 22.94 125.04

9.86 8.82 12.39 26.53

9.68 7.98 10.84 12.32

Wikitext2 PPL Heatmap

0

10

20

30

40

50

(b) W4A5QKVS5.

Figure 7: Wikitext2 perplexity with Llama-2-7B
under various (qm, km) settings on QK2Head-
migration quantization.

Ablation on (qm, km) Settings. Figure 7
presents the heatmaps of Wikitext2 perplexity
(PPL) results for Llama-2-7B model under var-
ious (qm, km) settings on QK2Head-migration
quantization. As depicted, the effectiveness of
QK2Head-migration quantization varies signif-
icantly depending on the bit precision and (qm,
km) settings. For 4-bit quantization, the optimal
performance (11.56) is achieved with (qm = 1,
km = 16) setting, which demonstrates the ef-
fectiveness of this setting in low-bit quantiza-
tion. Similarly, for 5-bit quantization, (qm = 1,
km = 16) setting also delivers the best result, with a PPL of 7.78, further validating the robustness of
this approach across different bit-widths.

6 CONCLUSION

SpikingLLM introduces an innovative ANN-to-SNN conversion method that establishes the equiv-
alence between fully-spiking neural networks and quantized large language models. To make the
equivalence applicable, we introduce QK2Head-migration quantization, refined ST-BIF+ with window
inhibition mechanism and SNN-friendly spike operators. These advancements enable SpikingLLM
to achieve state-of-the-art performance on both perplexity and common-sense reasoning tasks, while
significantly reducing energy consumption. To the best of our knowledge, SpikingLLM is the first
conversion-based method on fully-spiking large language models. We anticipate that SpikingLLM
can be further extended to incorporate learning-based methods, which hold the potential to achieve
even more promising performance while further reducing energy consumption.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Malyaban Bal and Abhronil Sengupta. Spikingbert: Distilling bert to train spiking language models
using implicit differentiation, 2024. URL https://arxiv.org/abs/2308.10873.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about
physical commonsense in natural language, 2019. URL https://arxiv.org/abs/1911.
11641.

Tom Brown and Benjamin et al. Mann. Language models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901, 2020.

Tong Bu, Wei Fang, Jianhao Ding, PengLin Dai, Zhaofei Yu, and Tiejun Huang. Optimal ann-
snn conversion for high-accuracy and ultra-low-latency spiking neural networks. arXiv preprint
arXiv:2303.04347, 2023.

Mengzhao Chen, Wenqi Shao, Peng Xu, Jiahao Wang, Peng Gao, Kaipeng Zhang, and Ping Luo.
Efficientqat: Efficient quantization-aware training for large language models, 2024. URL https:
//arxiv.org/abs/2407.11062.

Mengzhao Chen, Yi Liu, Jiahao Wang, Yi Bin, Wenqi Shao, and Ping Luo. Prefixquant: Eliminating
outliers by prefixed tokens for large language models quantization, 2025. URL https://arxiv.
org/abs/2410.05265.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge,
2018. URL https://arxiv.org/abs/1803.05457.

Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha
Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic
manycore processor with on-chip learning. Ieee Micro, 38(1):82–99, 2018.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-
boos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized repre-
sentation for near-lossless llm weight compression, 2023. URL https://arxiv.org/abs/
2306.03078.

Jianhao Ding, Tong Bu, Zhaofei Yu, Tiejun Huang, and Jian Liu. Snn-rat: Robustness-enhanced
spiking neural network through regularized adversarial training. Advances in Neural Information
Processing Systems, 35:24780–24793, 2022.

Steven K. Esser, Jeffrey L. McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and Dharmen-
dra S. Modha. Learned step size quantization, 2020. URL https://arxiv.org/abs/1902.
08153.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers, 2023. URL https://arxiv.org/abs/
2210.17323.

Duane E Galbi, Karthik Kannan, and M Hudson. Measuring active power using pt px a user
perspective. SNUG Bostone, pp. 1–13, 2010.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The pile: An 800gb
dataset of diverse text for language modeling, 2020. URL https://arxiv.org/abs/2101.
00027.

Aaron Grattafiori and Abhimanyu Dubey et al. The llama 3 herd of models, 2024. URL https:
//arxiv.org/abs/2407.21783.

10

https://arxiv.org/abs/2308.10873
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/2407.11062
https://arxiv.org/abs/2407.11062
https://arxiv.org/abs/2410.05265
https://arxiv.org/abs/2410.05265
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2306.03078
https://arxiv.org/abs/2306.03078
https://arxiv.org/abs/1902.08153
https://arxiv.org/abs/1902.08153
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https://arxiv.
org/abs/2310.06825.

Hima Bindu Kommuru and Hamid Mahmoodi. Asic design flow tutorial using synopsys tools. Nano-
Electronics & Computing Research Lab, School of Engineering, San Francisco State University
San Francisco, CA, Spring, 2009.

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. Bloom: A 176b-
parameter open-access multilingual language model. 2023.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
llm compression and acceleration, 2024a. URL https://arxiv.org/abs/2306.00978.

Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao, Chuang Gan, and Song
Han. Qserve: W4a8kv4 quantization and system co-design for efficient llm serving, 2024b. URL
https://arxiv.org/abs/2405.04532.

Zechun Liu, Kwang-Ting Cheng, Dong Huang, Eric Xing, and Zhiqiang Shen. Nonuniform-to-
uniform quantization: Towards accurate quantization via generalized straight-through estimation,
2022. URL https://arxiv.org/abs/2111.14826.

Zechun Liu, Changsheng Zhao, Forrest Iandola, Chen Lai, Yuandong Tian, Igor Fedorov, Yunyang
Xiong, Ernie Chang, Yangyang Shi, Raghuraman Krishnamoorthi, et al. Mobilellm: Optimizing
sub-billion parameter language models for on-device use cases. In Forty-first International
Conference on Machine Learning, 2024.

Changze Lv, Tianlong Li, Jianhan Xu, Chenxi Gu, Zixuan Ling, Cenyuan Zhang, Xiaoqing Zheng,
and Xuanjing Huang. Spikebert: A language spikformer learned from bert with knowledge
distillation, 2024. URL https://arxiv.org/abs/2308.15122.

Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.
Neural networks, 10(9):1659–1671, 1997.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016. URL https://arxiv.org/abs/1609.07843.

Paul A Merolla, John V Arthur, Rodrigo Alvarez-Icaza, Andrew S Cassidy, Jun Sawada, Filipp
Akopyan, Bryan L Jackson, Nabil Imam, Chen Guo, Yutaka Nakamura, et al. A million spiking-
neuron integrated circuit with a scalable communication network and interface. Science, 345
(6197):668–673, 2014.

Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking
neural networks: Bringing the power of gradient-based optimization to spiking neural networks.
IEEE Signal Processing Magazine, 36(6):51–63, 2019.

Srdjan Ostojic. Two types of asynchronous activity in networks of excitatory and inhibitory spiking
neurons. Nature neuroscience, 17(4):594–600, 2014.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer, 2023. URL https://arxiv.org/abs/1910.10683.

Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-based machine intelligence
with neuromorphic computing. Nature, 575(7784):607–617, 2019.

11

https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2306.00978
https://arxiv.org/abs/2405.04532
https://arxiv.org/abs/2111.14826
https://arxiv.org/abs/2308.15122
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1910.10683

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale, 2019. URL https://arxiv.org/abs/
1907.10641.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for large
language models, 2024. URL https://arxiv.org/abs/2308.13137.

Ernest Tolliver, Velu Pillai, Anshul Jha, and Eugene John. A comparative analysis of half precision
floating point representations in macs for deep learning. In 2022 International Conference on
Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), pp. 1–6, 2022.
doi: 10.1109/ICECCME55909.2022.9987946.

Hugo Touvron and Thibaut et al. Lavril. Llama: Open and efficient foundation language models.
arXiv preprint arXiv:2302.13971, 2023.

Hugo Touvron, Louis Martin, and Kevin Stone et al. Llama 2: Open foundation and fine-tuned chat
models, 2023. URL https://arxiv.org/abs/2307.09288.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Ziqing Wang, Yuetong Fang, Jiahang Cao, Qiang Zhang, Zhongrui Wang, and Renjing Xu. Masked
spiking transformer. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 1761–1771, 2023.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, Yuan Xie, and Luping Shi. Direct training for spiking neural
networks: Faster, larger, better. In Proceedings of the AAAI conference on artificial intelligence,
volume 33, pp. 1311–1318, 2019.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models, 2024. URL https:
//arxiv.org/abs/2211.10438.

Xingrun Xing, Boyan Gao, Zheng Zhang, David A Clifton, Shitao Xiao, Li Du, Guoqi Li, and Jiajun
Zhang. Spikellm: Scaling up spiking neural network to large language models via saliency-based
spiking. arXiv preprint arXiv:2407.04752, 2024a.

Xingrun Xing, Zheng Zhang, Ziyi Ni, Shitao Xiao, Yiming Ju, Siqi Fan, Yequan Wang, Jiajun Zhang,
and Guoqi Li. Spikelm: Towards general spike-driven language modeling via elastic bi-spiking
mechanisms, 2024b. URL https://arxiv.org/abs/2406.03287.

Man Yao, Jiakui Hu, Zhaokun Zhou, Li Yuan, Yonghong Tian, Bo Xu, and Guoqi Li. Spike-driven
transformer, 2023. URL https://arxiv.org/abs/2307.01694.

Haoran You, Yipin Guo, Yichao Fu, Wei Zhou, Huihong Shi, Xiaofan Zhang, Souvik Kundu, Amir
Yazdanbakhsh, and Yingyan Celine Lin. Shiftaddllm: Accelerating pretrained llms via post-
training multiplication-less reparameterization, 2024a. URL https://arxiv.org/abs/
2406.05981.

Kang You, Zekaiu Xu, Chen Nie, Zhijie Deng, Qinghai Guo, Xiang Wang, and Zhezhi He. Spikezip-tf:
Conversion is all you need for transformer-based snn. In Proceedings of Forty-First International
conference on Machine Learning (ICML), 2024b.

Zhihang Yuan, Lin Niu, Jiawei Liu, Wenyu Liu, Xinggang Wang, Yuzhang Shang, Guangyu Sun,
Qiang Wu, Jiaxiang Wu, and Bingzhe Wu. Rptq: Reorder-based post-training quantization for
large language models, 2023. URL https://arxiv.org/abs/2304.01089.

Friedemann Zenke, Everton J Agnes, and Wulfram Gerstner. Diverse synaptic plasticity mechanisms
orchestrated to form and retrieve memories in spiking neural networks. Nature communications, 6
(1):6922, 2015.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

12

https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/2308.13137
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2211.10438
https://arxiv.org/abs/2211.10438
https://arxiv.org/abs/2406.03287
https://arxiv.org/abs/2307.01694
https://arxiv.org/abs/2406.05981
https://arxiv.org/abs/2406.05981
https://arxiv.org/abs/2304.01089

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Chenlin Zhou, Liutao Yu, Zhaokun Zhou, Han Zhang, Zhengyu Ma, Huihui Zhou, and Yonghong
Tian. Spikingformer: Spike-driven residual learning for transformer-based spiking neural network.
arXiv preprint arXiv:2304.11954, 2023.

Rui-Jie Zhu, Qihang Zhao, Guoqi Li, and Jason K Eshraghian. Spikegpt: Generative pre-trained
language model with spiking neural networks. arXiv preprint arXiv:2302.13939, 2023.

Rui-Jie Zhu, Yu Zhang, Ethan Sifferman, Tyler Sheaves, Yiqiao Wang, Dustin Richmond, Peng
Zhou, and Jason K. Eshraghian. Scalable matmul-free language modeling, 2024a. URL https:
//arxiv.org/abs/2406.02528.

Rui-Jie Zhu, Qihang Zhao, Guoqi Li, and Jason K. Eshraghian. Spikegpt: Generative pre-trained
language model with spiking neural networks, 2024b. URL https://arxiv.org/abs/
2302.13939.

13

https://arxiv.org/abs/2406.02528
https://arxiv.org/abs/2406.02528
https://arxiv.org/abs/2302.13939
https://arxiv.org/abs/2302.13939

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Appendix

A1 WINDOW INHIBITION MECHANISM

Algorithm 1 Window Inhibition Mechanism

Input: Input voltage t t time-step V̂ in
t .

Model: Refined ST-BIF+ Neuron Θ.
Parameter: Spike Tracer at t time-step St = 0, Spike Tracer for previous window Spre = 0, Spike
Tracer for compensation Scom = 0, Inhibiting Window Length L, time-step T, Threshold voltage for
neuron to fire a spike V⃗thr, Membrane potential of neuron at t time-step Vt.
Output: Firing spikes spike.

1: for t = 1 to T do
2: St = St-1 +Θ(Vt-1 + V̂ in

t , V⃗thr, St-1)
3: # Window inhibition process
4: if (t-1) % L == 0 then

5: spike =


1; St − Spre > 0

0; other
−1; St − Spre < 0

6: # Update spikes for compensation
7: Scom = St − Spre − spike
8: else
9: # Block firing spikes

10: spike = V̂ in
t ∗ 0.

11: if (t-1) % L == 1 then
12: # Update spike tracer for previous window
13: Spre = St.clone()
14: end if
15: end if
16: end for
17: # Firing compensated spikes
18: while max(Scom.abs())! = 0 do

19: spike =


1; Scom > 0

0; other
−1; Scom < 0

Scom = Scom − spike
20: end while

The detailed process of the window inhibition mechanism is specified in Algorithm 1. As illustrated,
we introduce an inhibiting window with length L to combine the original L time-step spikes into 1
time-step spike (fire one positive spike if St − Spre > 0, fire one negative spike if St − Spre < 0). For
the equivalence between refined ST-BIF+ neuron with window inhibition mechanism and quantizer
Q*, we introduce a spike tracer Scom to trace the redundant spikes for compensation (e.g., the sum
of spikes in the inhibiting window is greater than 1 or less than -1). When it comes to time-step t
satisfying (t − 1)%L == 0, the refined ST-BIF+ neuron fires a spike. After firing the spike, the
redundant spikes St − Spre − spike should be updated into Scom. After T time-step, Scom should
fire redundant spikes until there is no spike left. The introduction of window inhibition mechanism
significantly suppresses the over-firing issue and improves the sparsity, leading to apparent reduction
on energy consumption. Note that under most circumstances, there are no redundant spikes in Scom,
which suggests that redundant spikes from inhibiting window can also counteract each other as
time-step increases, further verifying the effectiveness of window inhibition mechanism.

A2 SPIKE OPERATORS

Regarding the differential strategy (Figure A1) to convert the SNN-unfriendly operators (e.g.,
Softmax, RMSNorm, SiLU) to SNN-friendly counterparts, the definition is as follows:

1

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

+
️

-️
store after output

Figure A1: Architecture of spike operators (e.g.,
Spike Softmax, Spike RMSNorm, Spike SiLU).
S refers to spike tracer. σ(·) refers to ANN opera-
tors (e.g., Softmax, RMSNorm, SiLU).

Xt = Xt−1 + xt; Ot = σ(Xt)

OS,t = Ot −Ot−1
(A1)

where σ(·) represents the ANN operators includ-
ing Softmax, RMSNorm and SiLU. xt and OS,t

are the input and output of the operator at time-
step t respectively, Xt is the summation of the
input during t time-steps, Ot is the output of the
function σ(·) with input Xt. Both Xt and Ot

are stored back to spike tracer S for computation at next time-step. The operators in ANNs can be
made equivalent to its SNNs version by summing up OS,t through time.

A3 ENERGY ESTIMATION PROCEDURE

1) RTL designs of
MAC and AC

in Verilog format

2) RTL modules
synthesis

3) Act. and weight collection as testbenches

4) Post-synthesis
functional simulations

5) Power consumption
calculation

Figure A2: Detailed procedure of energy estimation.
We follow the standard EDA design flow (Kommuru & Mahmoodi, 2009) to evaluate energy con-
sumption. The detailed evaluation procedure is illustrated in Figure A2 and summarized as follows:

1) We first implement the RTL designs of the MAC and AC units in Verilog format, following standard
digital circuit design practices.

2) These RTL designs are synthesized into gate-level netlists using Synopsys Design Compiler,
utilizing the TSMC 28nm HPC standard cell library.

3) We collect real activation and weight values from actual network inference and construct represen-
tative testbenches using these samples as input stimuli.

4) We perform post-synthesis functional simulations using Synopsys VCS, applying the testbenches
to the synthesized netlists. The simulation generates VCD files that capture signal transitions and
circuit switching activity over time.

5) We import the VCD files into Synopsys PrimeTime PX (Galbi et al., 2010), a gate-level power
analysis tool, to calculate the dynamic power consumption based on real activity patterns and cell-level
power models.

Table A1: EMAC and EAC estimation.

Operation Energy
(pJ)

4-bit+4-bit Fixed-Point EAC 0.0236
4-bit×4-bit Fixed-Point EMAC 0.1141
4-bit×5-bit Fixed-Point EMAC 0.1325

16-bit×16-bit Float-Point EMAC 1.3900

This procedure ensures that the reported energy values in
this work are realistic and reflect actual data-dependent
switching activity under typical network inference work-
loads. With the evaluation procedure above, we present
the average energy consumption of a single MAC opera-
tion EMAC and a single AC operation EAC in Table A1.
Note that the energy of 16-bit×16-bit Float-Point EMAC

is adopted from (Tolliver et al., 2022). As a result, con-
verting MAC operations to AC operations with our fully-spiking neural networks can remarkably
reduce over 80% energy consumption.

We follow the procedure from Spikingformer (Zhou et al., 2023) to conduct energy evaluation
between QLLMs and SNNs, which is concluded as follows:

ESNNs = #ACs× EAC +#MACs× EMAC

ELLMs/QLLMs = #MACs× EMAC
(A2)

#MACs and #ACs refer to the total number of Multiply-ACcumulate and ACcumulate-Only
operations, respectively. We follow the procedure from SpikeZIP-TF (You et al., 2024b) to calculate
#MACs and #ACs, which is concluded as follows:

2

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 2 #MACs in Linear and Attention Layers
Input: Number of tokens N; Input feature dimension of linear layer Din; Output feature dimension
of linear layer Dout; Token dimension in attention layer D; Total layers L.
Output: #MACs

1: #MACs← 0
2: for l = 1 to L do
3: # Calculate #MACs for linear layer
4: #MACs← #MACs + N×Din ×Dout

5: # Calculate #MACs for attention layer
6: #MACs← #MACs + 2×N×N×D
7: end for
8: return #MACs

Algorithm 3 #ACs in Linear and Attention Layers
Input: Number of tokens N; Input feature dimension of linear layer Din; Output feature dimension
of linear layer Dout; Token dimension in attention layer D; Spike count per time-step Ct; Total
inference time-steps T; Total layers L.
Output: #ACs

1: #ACs← 0
2: for l = 1 to L do
3: for t = 1 to T do
4: for k = 1 to Ct do
5: # Linear layer: Dout synapses activated per spike and 2

operations per spike for ST-BIF+ neuron
6: #ACs← #ACs + Dout + 2
7: # Attention layer: 2*N synapses activated per spike (dual

matrix product) and 2 operations per spike for ST-BIF+

neuron
8: #ACs← #ACs + 2×N+ 2
9: end for

10: end for
11: end for
12: return #ACs

Table A2: Detailed energy consumption estimation results on Llama-2-7B.

Method Category Bits MACs
(×1012)(↓)

ACs
(×1012)(↓)

Energy
(J)(↓)

WT2
PPL(↓)

Llama-2-7B ANNs FP16 14.40 0. 20.02 5.47

W4A4QKVS4 14.40 0. 1.64 11.56PrefixQuant* QLLMs W4A5QKVS5 14.40 0. 1.91 7.78

SpikeLLM(P) W4A4QKV4 13.45 11.44 2.37 11.32
W4A4QKVS4 1.98 30.25 0.94 10.99SpikingLLM(L=4) SNNs
W4A5QKVS5 2.14 52.82 1.53 7.71

The detailed energy consumption estimation results on Llama-2-7B are summarized in Table A2.
Note that we reproduce PrefixQuant on SpikeLLM (denoted as SpikeLLM (P)), which neglects
post-softmax quantization so that the energy consumption is a bit higher than PrefixQuant* with
post-softmax quantization. For SpikeLLM (P), note that SpikeLLM neglects post-softmax quanti-
zation so that the softmax output remains 16-bit, #MACs consists of 13.01 × 1012 4-bit × 4-bit
operation (0.0236pJ in Table A1) and 0.44× 1012 16-bit × 16-bit operation (0.1141pJ in Table A1),
the energy estimation is calculated as follows:

ESpikeLLM (P) = 11.41× 0.0236 + 13.01× 0.1141 + 0.44× 1.39 = 2.37 J (A3)

For SpikingLLM, the energy estimation is calculated as follows:

ESpikingLLM = 30.25× 0.0236 + 1.98× 0.1141 = 0.94 J (A4)

3

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A4 ANALYSIS OF ENERGY CONSUMPTION

We further clarify how SpikingLLM overcomes the specific disadvantages of SpikeLLM.

① SpikeLLM (Xing et al., 2024a) is based on dynamic quantization method OmniQuant (Shao et al.,
2024), which is SNN-unfriendly due to the float calculation to determine quantization scale for each
input during SNNs inference. Consequently, SpikeLLM fails to convert Activation-Weight (aka.
AW) matrix product in the linear layer and Activation-Activation (aka. AA) matrix product in the
attention layer into fully-spiking matrix product. However, the quantization scale of SpikingLLM is
detemined during SNNs inference so that SpikingLLM effectively converts AW matrix product and
AA matrix product into the accumulation of spikes as follows:

for AW matrix product: OTeq
= V⃗thr ·

Teq∑
t=1

W ·Θ(xt) ;Θ (xt) ∈ {0,±1} (A5)

for AA matrix product: OTeq = V⃗Q
thrV⃗

K
thr

Teq∑
t1=1

Qt1 ·
Teq∑
t2=1

Kt2

= V⃗Q
thrV⃗

K
thr

Teq∑
t=1

ΘQ (Qt) ·KT
t +Qt ·ΘT

K (Kt)−ΘQ (Qt) ·ΘT
K (Kt)

ΘQ (Qt) ,ΘK (Kt) ∈ {0,±1}

(A6)

Note that W refers to weight, x refers to input, Θ refers to refined ST-BIF+ neuron, V⃗thr refers to
threshold voltage in Θ (which is equal to quantization scale) and Teq refers to total time-step.

② SpikeLLM neglects post-softmax quantization so that SpikeLLM fails to convert matrix products
between softmax

(
QKT
√
d

)
and V into spiking matrix products. We propose QK2Head-migration

post-softmax quantization to convert QLLMs to Fully-Spiking LLMs. The effectiveness of QK2Head-
migration post-softmax quantization is verified in Table 4, Table 5 and Table A2, respectively.

A5 COMPARISON BETWEEN SPIKINGLLM AND SPIKEGPT

Table A3: Comparison between SpikingLLM and SpikeGPT. DT, PS, Time and WT2 PPL refer
to directly training, parameter size, training time and wikitext2 perplexity respectively.

Method Category Model PS(B) Bits T(↓) WT2
PPL(↓)

Energy
(mJ)(↓) GPU Time(↓)

SpikeGPT DT SpikeGPT
with Pre-training 0.2 – 50 18.01 47.82 4 NVIDIA-V100 48 hours

SpikingLLM
(L=4) A2S

MobileLLM 0.3 W4A5QKVS5 32 14.56 22.36

1 NVIDIA-4090

52 seconds
W8A5QKVS5 32 13.21 34.61 61 seconds

Llama-3.2 1.0 W4A4QKVS4 16 12.03 131.82 72 seconds
W4A5QKVS5 32 10.97 223.87 78 seconds

We conduct experiments between SpikingLLM and SpikeGPT on WikiText2 perplexity in Table A3.
For fair comparison, we choose MobileLLM-350M (Liu et al., 2024) with comparable parameter
of SpikeGPT 216M With Pre-training as our ANN model. As tabulated, our SpikingLLM achieves
lower Wikitext2 perplexity with lower time-step and energy consumption under the configuration of
5-bit quantization on Activation, Query, Key, Value and Softmax. Our SpikingLLM can also scale up
to Large Language Models with billions parameters (e.g., Llama-2-7B, Llama-2-13B and Llama-3.2-
1B). We also compare the computational cost between SpikingLLM and SpikeGPT, compared with
directly training method SpikeGPT, our SpikingLLM significantly reduces the computational cost.

A6 COMPARISON BETWEEN SPIKINGLLM AND OTHER EFFICIENT LLMS

We conduct experiments between SpikingLLM and other efficient LLMs, such as MatMul-free
LLM (Zhu et al., 2024a) and ShiftAddLLM (You et al., 2024a). We first conduct experiments

4

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table A4: Comparison between SpikingLLM and MatMul-free LLM. M-LLM refers to MatMul-
free-LLM. HS and WG refer to HellaSwag and Winogrande, respectively.

Method Model PS(B) MatMul-
free Bits PIQA ARC-e ARC-c HS WG Avg.(↑) GPU Time(↓)

MatMul-free LLM M-LLM-370M 0.3 ✓ – 63.0 42.6 23.8 32.8 49.2 42.3 8 NVIDIA-H100 5 hours

SpikingLLM(ours) MobileLLM 0.3 ✓ W4A5QKVS5 63.3 42.4 24.7 43.8 53.3 45.5 1 NVIDIA-4090 52 seconds
W8A5QKVS5 64.8 43.9 25.9 45.1 53.5 46.6 61 seconds

MatMul-free LLM M-LLM-1.3B 1.3 ✓ – 68.4 54.0 25.9 44.9 52.4 49.1 8 NVIDIA-H100 84 hours
M-LLM-2.7B 2.7 71.1 58.5 29.7 52.3 52.1 52.7 173 hours

SpikingLLM(ours) Llama-3.2-1B 1 ✓ W4A4QKVS4 68.6 58.2 29.9 55.6 53.8 53.2 1 NVIDIA-4090 72 seconds
Llama-2-7B 7 W4A4QKVS4 73.5 62.0 36.4 68.0 61.6 60.3 269 seconds

Table A6: Comparison with the Llama-2-70B model of SpikeLLM. T refers to inference time-step
for SNNs. Best results are in bold, runner-up results are marked in gray .

Method Category Fully-
Spiking T Bits Perplexity(↓) Zero-shot Accuracy(↑)

WT2 C4 PIQA ARC-e ARC-c HSg WG Avg.

LLAMA-2-70B

SpikeLLM SNNs ✗ – W2A16 6.35 9.62 76.44 66.92 38.31 51.86 59.19 58.54

LLAMA-2-13B

SpikingLLM SNNs ✓ 32 W4A5QKVS5 6.26 8.07 77.26 73.44 43.43 74.37 66.69 67.64

Mistral-7B

SpikingLLM SNNs ✓ 32 W4A5QKVS5 6.28 8.98 81.44 80.21 56.84 81.03 71.99 74.30

between SpikingLLM and MatMul-free LLM in Table A4, our SpikingLLM surpasses MatMul-free
LLM on zero-shot common-sense reasoning tasks with both millions and billions parameters models.
Matmul-free LLM (Zhu et al., 2024a) leverages ternary weights to eliminate matrix multiplication
in dense layers while optimizing the Gated Recurrent Unit (GRU) (Cho et al., 2014) to remove
matrix multiplication from self-attention. The idea that leveraging ternary weights to eliminate matrix
multiplication is similar to our refined ternary value(-1, 0, +1) ST-BIF+ neuron, but our refined ST-
BIF+ neuron is introduced to replace activation quantizer. The effectiveness of our SpikingLLM on
Matmul-free LLM is that SpikingLLM eliminates matrix multiplication through replacing activation
quantizers in quantized large language models with equivalent ST-BIF+ neurons, so that SpikingLLM
don’t need additional training like Matmul-free LLM. We also compare the computational cost
between Matmul-free LLM and SpikingLLM in Table A4, our SpikingLLM significantly reduces the
computational cost.

Table A5: Comparison between ShiftAddLLM and Spik-
ingLLM on WikiText2 Perplexity.

Method Model PS(B) MatMul-
free Bits WT2

PPL(↓)
ShiftAddLLM OPT (Zhang et al., 2022) 0.3 ✗ W2A16QKVS16 40.24

SpikingLLM(ours) MobileLLM 0.3 ✓ W4A5QKVS5 14.56
W8A5QKVS5 13.21

ShiftAddLLM Llama-2-7B 7 ✗ W2A16QKVS16 8.11
SpikingLLM(ours) ✓ W4A5QKVS5 7.71

ShiftAddLLM Llama-2-13B 13 ✗ W2A16QKVS16 6.77
SpikingLLM(ours) ✓ W4A5QKVS5 6.26

We then compare our SpikingLLM
with ShiftAddLLM on WikiText2 per-
plexity in Table A5, our SpikingLLM
surpasses ShiftAddLLM on LLMs
with both millions and billions param-
eters. Note that ShiftAddLLM (You
et al., 2024a) introduces shift-and-
add operations to eliminate weight-
activation multiplications, the key lim-
itation is its inability to eliminate activation-activation multiplications (e.g., QKT in self-attention lay-
ers). Compared to ShiftAddLLM, our SpikingLLM eliminates both weight-activation and activation-
activation matrix multiplications through replacing activation quantizers in quantized large language
models with equivalent refined ST-BIF+ neurons, constructing matmul-free fully-spiking large lan-
guage models.

A7 COMPARISON WITH THE LLAMA-2-70B MODEL OF SPIKELLM

To further demonstrate the effectiveness of our SpikingLLM method, we compared the Llama-2-
13B and Mistral-7B models of SpikingLLM with the Llama-2-70B model of SpikeLLM. Table A6
indicates that, even with fewer parameters, our SpikingLLM surpasses SpikeLLM on all perplexity
and common-sense reasoning tasks, which further verifies the effectiveness of SpikingLLM.

5

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Time-step

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sp
ar

sit
y

16th layer Query sparsity

Length
L = 1
L = 2
L = 4

(a) 16th layer Query.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Time-step

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sp
ar

sit
y

16th layer Key sparsity

Length
L = 1
L = 2
L = 4

(b) 16th layer Key.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Time-step

0.1

0.2

0.3

0.4

0.5

0.6

Sp
ar

sit
y

16th layer Value sparsity

Length
L = 1
L = 2
L = 4

(c) 16th layer Value.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Time-step

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Sp
ar

sit
y

32nd layer Query sparsity

Length
L = 1
L = 2
L = 4

(d) 32nd layer Query.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Time-step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sp
ar

sit
y

32nd layer Key sparsity

Length
L = 1
L = 2
L = 4

(e) 32nd layer Key.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Time-step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Sp
ar

sit
y

32nd layer Value sparsity
Length

L = 1
L = 2
L = 4

(f) 32nd layer Value.

Figure A3: Sparsity of 16th and 32nd layer Query, Key, Value in Llama-2-7B with each time-step
under different inhibiting window lengths. All visualizations are sampled under W4A4QKVS4.

A8 SPARSITY VISUALIZATION

As depicted in Figure A3, we visualize the sparsity of 16th and 32nd layer Query, Key, Value in
Llama-2-7B, which intuitively demonstrates the effectiveness of window inhibition mechanism. Note
that, the improvement in sparsity and the reduction in energy consumption are more significant as
inhibiting window length L increases.

A9 COMPARISON BETWEEN SPIKINGLLM AND SPIKEZIP-TF

Table A7: Comparison between LSQ and PrefixQuant* on Llama-2-7B.

Model Quantization
Method

Quantization
Type GPU Time Bits WT2

PPL

Llama-2-7B LSQ QAT 4*NVIDIA-4090 6 hours W4A4QKVS4 45.28
PrefixQuant* PTQ 1*NVIDIA-4090 269 seconds 11.56

Apart from adapting the A2S conversion method in SpikeZIP-TF (You et al., 2024b) to PrefixQuant
framework, we propose three innovations:

① To effectively achieve promising QLLMs, we insert post-q quantization and propose QK2Head-
migration post-softmax quantization(in Section 4.1) to establish PrefixQuant* (As shown in Figure 3).
As illustrated in Table A7, compared to Quantization-Aware Training (QAT) method LSQ (Esser et al.,
2020) in SpikeZIP-TF, our PrefixQuant* effectively achieves QLLMs with promising performance.

② To establish the equivalence between QLLMs and SNNs, we firstly refine the ST-BIF+ neuron
in Section 4.2 to make it fully equivalent to quantizer in PrefixQuant* (quantizer with group-size
matrix quantization scale). Then we propose SNN-friendly operators in SpikingLLM including
Spike KV Cache (in Section 4.3), Spike Softmax, Spike SiLU and Spike RMSNorm (in Section A2).

Table A8: Ablation on window inhibi-
tion mechanism.
L Sparsity(↑) Energy

(J)(↓)
LLAMA-2-13B
WT2(↓) C4(↓)

1 32.82% 3.96 7.72 10.23
2 48.94% 2.66 7.75 10.26
4 62.51% 2.08 7.80 10.32

③ In order to suppress redundant continuous {±1} spikes
from ST-BIF+ neuron, we propose window inhibition
mechanism in Section 4.2, which significantly improves
the sparsity without performance degradation. As illus-
trated in Table 6 and Table A8, the introduction of window
inhibition mechanism significantly improves sparsity and
reduces energy consumption without performance degra-
dation.

6

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

To conclude, our SpikingLLM advances SpikeZIP-TF by tailoring the conversion process to LLM-
specific challenges (e.g., effective PTQ on LLMs with post-softmax quantization, SNN-friendly
LLMs operators, refined ST-BIF+ neuron with window inhibition mechanism to reduce energy
consumption) and achieving the first fully-spiking billion-parameter language models.

A10 ANALYSIS OF OUTLIER TOKENS ON SPIKINGLLM AND PREFIXQUANT.

Table A9: Comparison on outlier tokens be-
tween SpikingLLM and PrefixQuant.

Model Method Prefixed token
Number Content

Llama-2-7B PrefixQuant 3 . \n [BOS]
SpikingLLM 3 . \n [BOS]

Llama-2-13B PrefixQuant 3 . the [BOS]
SpikingLLM 3 . the [BOS]

Llama-3-8B PrefixQuant 1 [BOS]
SpikingLLM 1 [BOS]

Mistral-7B PrefixQuant 4 . \n to [BOS]
SpikingLLM 4 . \n to [BOS]

We further analyze the outlier tokens between
SpikingLLM and PrefixQuant in Table A9. We
follow the definition of outlier tokens in Pre-
fixQuant (Chen et al., 2025) to detect outlier
tokens. Given token-wise maximum values
M ∈ RT , which represents the maximum val-
ues of each token. Then, outlier token in the i-th
index of token sequence is identified when the
ratio of their maximum values to the median of
all maximum values exceeds a threshold η:

Mi

median(M)
> η (A7)

where Mi is the maximum value of the i-th token, median() denotes the function to find the median
value from the vector. We then leverage the same calibration dataset Pile (Gao et al., 2020) and set the
same outlier threshold η = 64 to determine outlier tokens before Post-Training Quantization (PTQ).
Consequently, as shown in Table A9, the introduction of post-q and QK2Head-migration post-softmax
quantization does not change the outlier tokens for the same model.

A11 USE OF LLMS

We leverage LLMs to aid or polish writing. Specifically, LLMs help us find some grammar and
spelling mistakes after we finish writing.

7

	Introduction
	Related Works
	Problem Formulation
	A2S Algorithm
	PrefixQuant
	Fully-Spiking Definition

	Methodology
	PrefixQuant* with QK2Head-migration Quantization
	ST-BIF+ neuron refinement and window inhibition mechanism
	SNN-friendly Spike Operators

	Experiments
	Setups
	Results Comparison
	Ablation Study

	Conclusion
	Window Inhibition Mechanism
	Spike Operators
	Energy Estimation Procedure
	Analysis of energy consumption
	Comparison between SpikingLLM and SpikeGPT
	Comparison between SpikingLLM and Other Efficient LLMs
	Comparison with the Llama-2-70B model of SpikeLLM
	Sparsity Visualization
	Comparison between SpikingLLM and SpikeZIP-TF
	Analysis of outlier tokens on SpikingLLM and PrefixQuant.
	Use of LLMs

