

000 001 002 003 004 005 006 007 SPIKINGLLM: A CONVERSION-BASED METHOD WITH 008 WINDOW INHIBITION MECHANISM FOR SPIKING 009 LARGE LANGUAGE MODELS 010 011 012

013 **Anonymous authors**
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Paper under double-blind review

ABSTRACT

Recent advancements in large language models (LLMs) have led to unprecedented capabilities in real-world applications. However, it remains challenging to reduce the energy consumption of LLMs. In this paper, we aim to improve the energy efficiency of LLMs by leveraging the advantages of brain-inspired spiking neural networks (SNNs). We propose a novel approach called SpikingLLM, which equivalently converts quantized large language models (QLLMs) applying PrefixQuant* to their fully-spiking counterparts (all operators are in a more efficient spiking version). To ensure that every operator can be converted into its spiking version, we propose two approaches: ① QK2Head-migration post-softmax quantization, which significantly improves the performance of current QLLMs with post-softmax quantization; ② Differential-based methods, which tackle the SNN-unfriendly operators such as KV Cache. To further reduce the energy consumption, we introduce a window inhibition mechanism which effectively addresses the over-firing issue in ST-BIF⁺ neuron and improves the sparsity. With the approaches above, SpikingLLM significantly reduces the energy consumption while achieving state-of-the-art performance on both perplexity and common-sense reasoning tasks.

1 INTRODUCTION

Large language models (LLMs) (Brown & Mann, 2020; Touvron & Lavril, 2023; Zhang et al., 2022; Le Scao et al., 2023) have revolutionized natural language processing (NLP) by leveraging massive-scale neural networks to achieve state-of-the-art performance across a wide range of tasks. However, the dense and continuous computations inherent in transformer-based architectures (Vaswani, 2017) pose significant challenges in terms of energy efficiency of LLMs. For instance, Llama-2-70B requires three A100-80G GPUs, each consuming approximately 400W of power (Xing et al., 2024a). These limitations are especially problematic for modern edge AI systems, which often require real-time processing under strict power constraints. To mitigate these limitations and improve the accessibility and applicability of LLMs, *we focus on energy-efficient deployment for LLMs*.

As a biologically inspired alternative to traditional artificial neural networks (ANNs), spiking neural networks (SNNs) (Maass, 1997) have emerged to bridge the gap between machine learning and neuroscience. In contrast to ANNs (LeCun et al., 2015), which rely on continuous activations, SNNs process information through discrete and event-driven spikes, closely mimicking the communication mechanisms of biological neurons (Merolla et al., 2014; Davies et al., 2018). As a result, SNNs show promising prospects on computational intelligence tasks (Roy et al., 2019) with strong autonomous learning capabilities and ultra-low power consumption (Bu et al., 2023; Ding et al., 2022; Ostojic, 2014; Zenke et al., 2015).

Unfortunately, scaling up SNNs to large-scale models remains challenging. By far, *directly training (DT)* (Zhu et al., 2023) and *ANN-to-SNN conversion (A2S)* (Xing et al., 2024a; You et al., 2024b) are two traditional methods to scale SNNs up to LLMs. *DT* unfolds the input in time-step dimension and leverages back-propagation-through-time (BPTT) (Wu et al., 2019) to update SNNs from scratch, which is computationally intensive and slow, particularly under limited computing resources. In contrast, *A2S* replaces the quantizers in quantized

ANNS (QANNS) with spiking neurons (*e.g.*, ST-BIF⁺ neuron in (You et al., 2024b)), achieving comparable performance to ANNs while significantly reducing computational costs relative to DT. Consequently, A2S presents a promising pathway for scaling SNNs to LLMs. Nevertheless, applying existing A2S methods (You et al., 2024b; Xing et al., 2024a) directly to LLMs encounters the following challenges: ① It is challenging to construct applicable quantized LLMs (QLLMs) that ensure all operators can be converted into a spiking version, while minimizing performance degradation from quantization. ② It is difficult for A2S methods to establish the equivalence between QLLMs and SNNs due to the existence of SNN-unfriendly operators (*e.g.*, KV Cache, Softmax). The two challenges above are critical to convert LLMs into SNNs.

In this work, we aim to leverage the A2S method to scale SNNs up to LLMs, while maintaining all the operations in spiking version (which is defined as fully-spiking in Section 3.3). Correspondingly, we propose *SpikingLLM*, which establishes the equivalence between fully-spiking neural networks and QLLMs. SpikingLLM firstly introduces QK2Head-migration module to enable post-softmax quantization on top of PrefixQuant (Chen et al., 2025) to establish PrefixQuant* (in Section 4.1), ensuring all matrix products in QLLMs can be faithfully converted into their spiking versions. In addition, we refine the ST-BIF⁺ neuron (You et al., 2024b) to align it with the quantizers in PrefixQuant* and incorporate a window inhibition mechanism, which further reduces the energy consumption. Finally, we propose SNN-friendly operators within SpikingLLM, including Spike KV Cache. Figure 1 demonstrates the superiority of our SpikingLLM over previous methods.

Our contributions are summarized as follows:

- We propose a conversion-based method called SpikingLLM, which enables post-softmax quantization and ensures that QLLMs can be converted into fully-SNNs. To further enhance the performance of post-softmax quantization, we introduce QK2Head-migration module.
- We refine the ST-BIF⁺ neuron to establish the equivalence between fully-SNNs and QLLMs. Then we introduce a window inhibition mechanism to address the over-firing issue of refined ST-BIF⁺ neuron, which significantly improves the sparsity and reduces energy consumption.
- We convert SNN-unfriendly operators (*e.g.*, KV Cache, SiLU) to SNN-friendly versions counterparts, further enabling the equivalence between fully-SNNs and QLLMs.
- SpikingLLM achieves the state-of-the-art performance on perplexity and common-sense reasoning tasks with significant energy reduction (*e.g.*, compared to SpikeLLM(P) on Llama-2-7B in Table 2, our SpikingLLM improves the average accuracy of common-sense reasoning tasks by **26.37%** ($47.79 \Rightarrow 60.28$) with **60.34%** energy reduction ($2.37J \Rightarrow 0.94J$)).

2 RELATED WORKS

Spiking Neural Networks. The learning methods of SNNs come in two folds: *directly training (DT)* and *ANN-to-SNN conversion (A2S)*. The DT algorithm leverages back-propagation through time (BPTT) (Wu et al., 2019) with surrogate gradient (Neftci et al., 2019) to update SNNs from scratch for a fixed time-step. However, the gap between SNNs and ANNs persists due to the gradient estimation error. Compared to DT algorithm, A2S algorithm leverages spiking neurons to replace the quantizers in quantized ANNs, leading to equivalent SNNs with comparable performance to ANNs (Wang et al., 2023; You et al., 2024b). Furthermore, A2S algorithm consumes less computational cost and time. However, most SNNs focus on computer vision tasks. As for language-oriented tasks, current SNNs (SpikeBERT (Lv et al., 2024), SpikingBERT (Bal & Sengupta, 2024), SpikeZIP-TF (You et al., 2024b), SpikeLM (Xing et al., 2024b) and SpikeGPT (Zhu et al., 2024b)) fail to scale up to the billion-level parameters. SpikeLLM (Xing et al., 2024a) scales up SNNs to billions of parameters, but their models are not fully-spiking. It remains a valuable issue to scale fully-spiking neural networks up to billions of parameters.

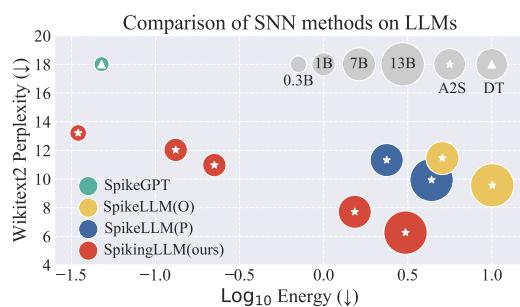


Figure 1: **Comparison of SNNs methods on LLMs.** Star and triangle marks ANN-to-SNN (A2S) and directly training (DT), respectively. SpikeLLM(O) and SpikeLLM(P) refer to SpikeLLM under OmniQuant and PrefixQuant, respectively. The area of scatter denotes model size. Results demonstrate the superiority of our SpikingLLM.

108 **Quantized Large Language Models.** Model quantization improves large language models (LLMs)
 109 efficiency by compressing weights and activations into lower bit-widths, reducing memory consump-
 110 tion and accelerating inference. *Quantization-aware training* (QAT), exemplified by LSQ (Esser
 111 et al., 2020) and U2NQ (Liu et al., 2022), achieves higher accuracy for smaller models through full
 112 retraining, and advances calibration-based techniques like EfficientQAT (Chen et al., 2024), further
 113 balancing efficiency and performance. *Post-training quantization* (PTQ) is more applicable on LLMs
 114 for its computational practicality, with methods like GPTQ (Frantar et al., 2023), SpQR (Dettmers
 115 et al., 2023), and AWQ (Lin et al., 2024a) focusing on weight compression, while SmoothQuant (Xiao
 116 et al., 2024), RPTQ (Yuan et al., 2023) and OmniQuant (Shao et al., 2024) jointly quantize weights
 117 and activations. However, previous PTQ methods (e.g., OmniQuant) mostly focus on dynamic
 118 quantization with quantization scale dynamically determined by input, which is difficult to tackle with
 119 spiking-version input. Although PrefixQuant (Chen et al., 2025) integrates prefixed tokens into static
 120 quantization, enabling low-bit precision for LLMs with high accuracy and efficiency, the overlook
 121 on post-q and post-softmax quantization (as depicted in 2nd column in Figure 3) makes it unable to
 122 convert matrix products of QK^T and $\text{softmax}\left(\frac{QK^T}{\sqrt{d}}\right)V$ into spiking matrix products. Consequently, it
 123 remains a challenge to establish specific QLLMs which are suitable to be converted into fully-SNNs.

124 3 PROBLEM FORMULATION

125 In this section, we firstly introduce the paradigm of A2S algorithm. Then we bring in the current
 126 state-of-the-art QLLMs (PrefixQuant (Chen et al., 2025)) and illustrate its applicability to the A2S
 127 algorithm. Finally we propose the definition of full-spiking and clarify the intuition of SpikingLLM.

128 3.1 A2S ALGORITHM

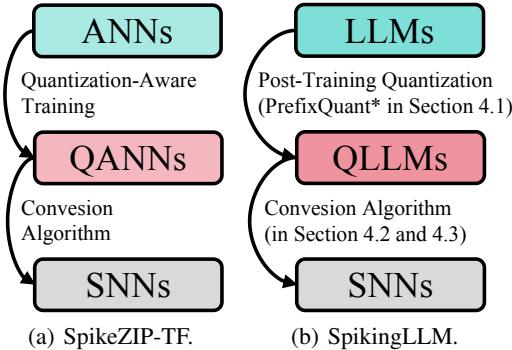
129 A2S Algorithm transfers the parameters of
 130 the pre-trained ANNs into their SNNs coun-
 131 terpart while maintaining the synaptic connec-
 132 tions in ANNs, which yields close-to-
 133 ANNs accuracy. In SpikingLLM, we in-
 134 herit the A2S conversion algorithm from
 135 SpikeZIP-TF (You et al., 2024b) including the
 136 ANNs (LLMs) \rightarrow QANNs (QLLMs) \rightarrow SNNs
 137 conversion paradigm (as shown in Figure 2).
 138 For conversion paradigm, we insert activation
 139 quantizers in front of all the matrix products
 140 in ANNs (LLMs). SpikeZIP-TF leverages the
 141 quantization-aware training (QAT) method to
 142 achieve corresponding QANNs, which is com-
 143 putationally inefficient for LLMs. Conse-
 144 quently, we apply efficient post-training quan-
 145 tization (PTQ) method (PrefixQuant* in Sec-
 146 tion 4.1) to achieve corresponding QLLMs.
 147 Then we propose the
 148 conversion algorithm in Section 4.2 and Section 4.3 to replace the inserted quantizers with spiking
 149 neurons and ensure that all matrix products and operators can be converted to their spiking version.

150 3.2 PREFIXQUANT

151 PrefixQuant (Chen et al., 2025) introduces an efficient **static** quantization framework tailored to
 152 large language models, specifically focusing on **prefixed tokens** to enhance performance. By setting
 153 specific prefixed tokens in the KV cache, PrefixQuant eliminates token-wise outliers in linear inputs
 154 and Q/K/V, enhancing compatibility with per-tensor static quantization. When tackling spiking
 155 version input (which means we cannot acquire the total input at the current inference time-step),
 156 **static** quantization with fixed quantization parameters is more suitable to the A2S algorithm compared
 157 to **dynamic** quantization method (such as OmniQuant (Shao et al., 2024)) where the quantization
 158 parameter is dynamically determined by input. Consequently, we construct SpikingLLM on the basis
 159 of **static** quantization (PrefixQuant) rather than **dynamic** quantization (OmniQuant).

160 3.3 FULLY-SPIKING DEFINITION

161 Inspired by the concept of spike-driven introduced by DT algorithm (Yao et al., 2023), we introduce
 162 the definition of **fully-spiking** for A2S algorithm, which means that **all operators in SNNs are**
 163 **in an event-driven or spiking version (calculation is triggered by spikes)**. However, current



164 Figure 2: SpikeZIP-TF and SpikingLLM.

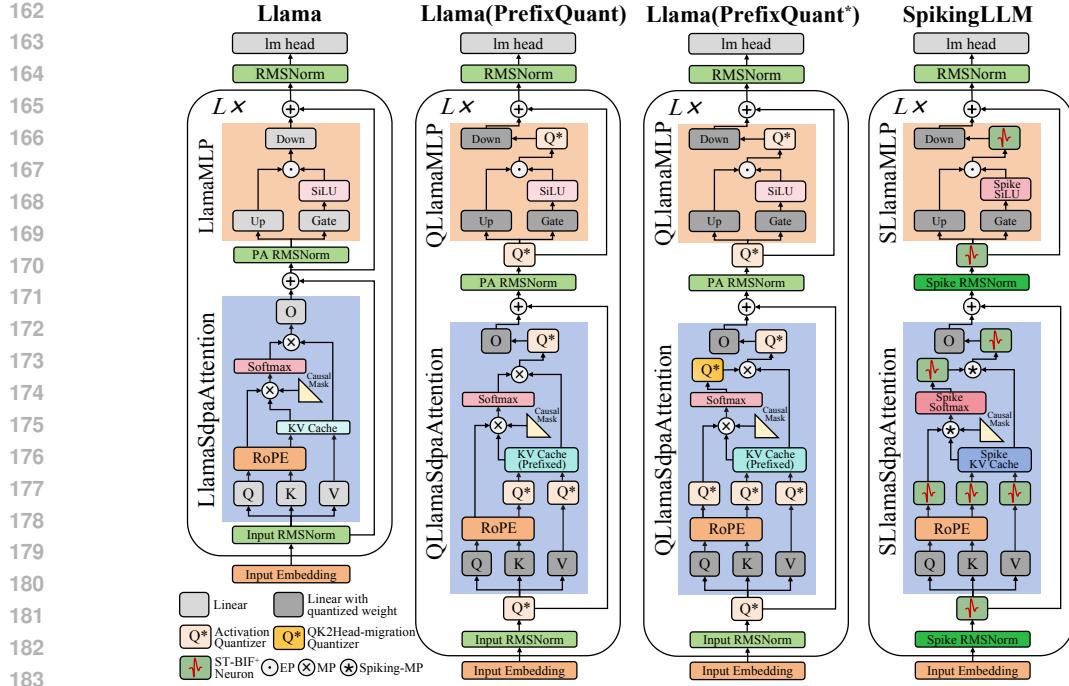


Figure 3: **Architecture of Llama, PrefixQuant, PrefixQuant* and SpikingLLM.** PA, EP and MP refer to post-attention, element-wise product and matrix product, respectively. Compared to PrefixQuant, PrefixQuant* inserts post-q and post-softmax (QK2Head-migration) quantization to ensure that each matrix product can be converted to spiking matrix product. SpikingLLM firstly substitutes ST-BIF⁺ neuron for all quantizers, then replaces SNN-unfriendly operators (Softmax, RMSNorm, SiLU and KV Cache (Prefixed)) with SNN-friendly ones.

QLLMs methods, such as OmniQuant (Shao et al., 2024) and PrefixQuant (Chen et al., 2025), overlook the quantization of query and softmax output (as depicted in 2nd column in Figure 3). As a result, the matrix products of QK^T and $\text{softmax}\left(\frac{QK^T}{\sqrt{d}}\right)V$ cannot be converted into spiking version. Additionally, operators in QLLMs (e.g., KV Cache, SiLU) need to be converted into their spiking version. Although SpikeLLM (Xing et al., 2024a) introduces a spiking mechanism tailored to salient channels, operators on non-salient channels remain non-spiking version. Consequently, our SpikingLLM is the first to establish the equivalence between fully-SNNs and QLLMs.

4 METHODOLOGY

In this section, we firstly introduce post-q and post-softmax quantization on top of PrefixQuant to establish PrefixQuant* (as shown in Figure 3) to ensure that all matrix products are equally converted into spiking matrix products. To further enhance the performance of PrefixQuant*, we propose QK2Head-migration quantization, a novel approach that shifts the difficulties of post-softmax quantization from query and key dimension to head dimension. Then, we refine the ST-BIF⁺ neuron to make it fully equivalent to the quantizer in PrefixQuant*. With the equivalence above, we introduce a window inhibition mechanism to further improve the sparsity of the refined ST-BIF⁺ neuron. Finally, we describe the design of SNN-friendly spike operators in SpikingLLM including Spike KV Cache.

4.1 PREFIXQUANT* WITH QK2HEAD-MIGRATION QUANTIZATION

We firstly introduce PrefixQuant* (3rd column in Figure 3) which inserts post-q and post-softmax quantization on the basis of PrefixQuant. For post-q quantization, we follow the post-k and post-v quantization in PrefixQuant. For 4-dimensional post-softmax output, we propose a novel strategy called *QK2Head-migration quantization*. As illustrated in Figure 4, QK2Head-migration quantization divides the softmax output into prefixed part and normal part. The prefixed part corresponds to the attention scores associated with the prefixed tokens introduced by PrefixQuant, while the normal part

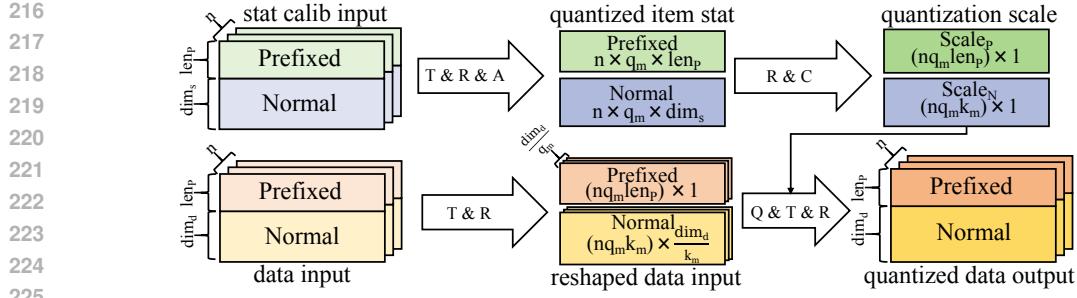


Figure 4: **Architecture of QK2Head-migration Quantization.** Note that **T**, **R**, **A**, **C**, **Q** are the abbreviation of Transpose, Reshape, Accumulate, Calibration and Quantization. Stat calib input means the Pile (Gao et al., 2020) data distribution for static quantization parameter calibration. After **T**, **R** and **A** on stat calib input, quantized item stat is achieved to initialize quantization scale.

represents the standard attention scores computed during the forward pass, which depends on the input sequence.

To cope with the quantization of these two parts, we introduce query dimension migration ratio q_m and key dimension migration ratio k_m to redistribute the quantization complexity from query and key dimension to head dimension. Specifically, for both Prefixed and Normal parts, we firstly transpose, reshape and accumulate the stat calibration input to derive the quantized item stat. Then we initialize separate quantization scales for prefixed ($Scale_P$) and normal ($Scale_N$) parts, ensuring that each part is quantized optimally based on its stat calibration input. After calibration, we follow the same procedure to process the data input and achieve corresponding quantized data output. Then we leverage block-wise fine-tuning (Shao et al., 2024; Chen et al., 2024) to fine-tune PrefixQuant*.

4.2 ST-BIF⁺ NEURON REFINEMENT AND WINDOW INHIBITION MECHANISM

In SpikingLLM, we follow the ST-BIF⁺ neuron proposed in SpikeZIP-TF (You et al., 2024b), whose accumulated spikes (neuron output) is fully equivalent to the quantized activation. The quantization scale of the quantizer used in SpikeZIP-TF is a simple scalar, which is effective for quantizing models with limited parameters. However, when it comes to the quantization on large-scale LLMs, the quantization scale of quantizer Q^* in PrefixQuant* is a matrix with group size. Consequently, we refine the ST-BIF⁺ neuron in SpikeZIP-TF to make it fully equivalent to Q^* . Overview of the refined ST-BIF⁺ neuron is shown in Figure 5(a) and the equation of Q^* is described in Equation (1). The notations are specified in Table 1.

$$x \xrightarrow[\text{Group}]{\text{Reshape}} \hat{x}; \text{Quantize}(\hat{x}) = \vec{q} \cdot \text{clamp}(\text{round}(\hat{x}/\vec{q}), \alpha, \beta); \text{Quantize}(\hat{x}) \xrightarrow[\text{Reshape}]{\text{Regroup}} O_q \quad (1)$$

As for the refined ST-BIF⁺ neuron, the dynamics can be expressed as follows (note that the threshold voltage \vec{V}_{thr} is equal to quantization scale \vec{q}):

$$V_t^{\text{in}} \xrightarrow[\text{Group}]{\text{Reshape}} \hat{V}_t^{\text{in}}; \Theta(V, \vec{V}_{\text{thr}}, S) = \begin{cases} 1; & V \geq \vec{V}_{\text{thr}} \& S < S_{\text{max}} \\ 0; & \text{other} \\ -1; & V < 0 \& S > S_{\text{min}} \end{cases}; \quad (2)$$

$$V_t = V_{t-1} + \hat{V}_t^{\text{in}} - \vec{V}_{\text{thr}} \cdot \Theta(V_{t-1} + \hat{V}_t^{\text{in}}, \vec{V}_{\text{thr}}, S_{t-1}); S_t = S_{t-1} + \Theta(V_{t-1} + \hat{V}_t^{\text{in}}, \vec{V}_{\text{thr}}, S_{t-1})$$

$$S_{T_{\text{eq}}} \cdot \vec{V}_{\text{thr}} \xrightarrow[\text{Reshape}]{\text{Regroup}} O_s$$

The accumulation of spikes from the refined ST-BIF⁺ neuron O_s is equivalent to the output of Q^* O_q .

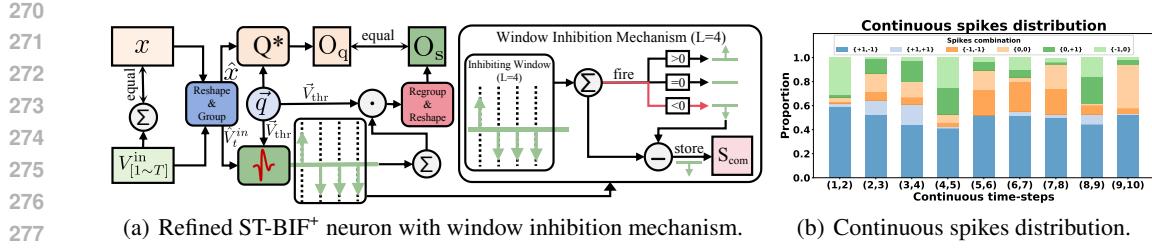


Figure 5: **Refined ST-BIF⁺ neuron with window inhibition mechanism and continuous spikes distribution.**

We plot the continuous spikes distribution under continuous time-steps in Figure 5(b) and find that $\{+1, -1\}$ makes up the majority of the continuous spikes combination. Specifically, most ST-BIF⁺ neurons tend to fire a positive (negative) spike to counteract the negative (positive) spike from the last time-step, leading to fire redundant spikes ("over-firing" issue). To address the over-firing issue and reduce the energy consumption, we propose window inhibition mechanism. As depicted in Figure 5(a), we introduce an inhibiting window (e.g., window length $L = 4$) to accumulate the L time-step spikes to fire 1 time-step spike, which significantly suppresses the over-firing issue and improves the sparsity. For the equivalence between refined ST-BIF⁺ neuron with window inhibition mechanism and quantizer Q^* , we introduce a spike tracer S_{com} to store the redundant spikes for compensation (e.g., the sum of spikes in the inhibiting window is greater than 1 or less than -1). The detailed procedure of window inhibition mechanism is illustrated in appendix (Section A1).

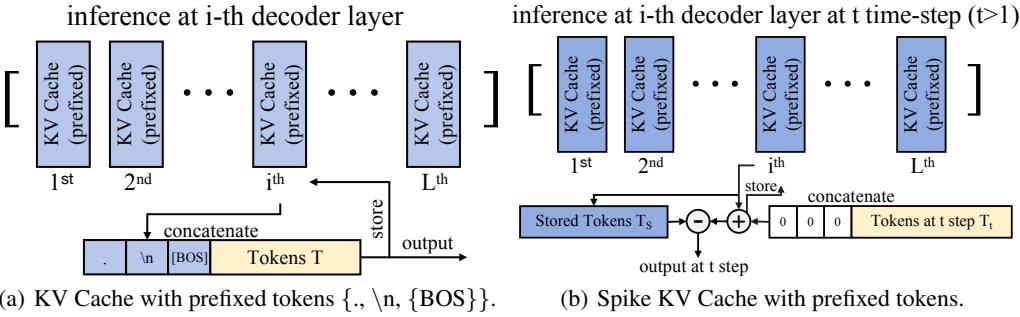


Figure 6: **Architecture of KV cache and Spike KV Cache with prefixed tokens.**

4.3 SNN-FRIENDLY SPIKE OPERATORS

To further ensure the equivalence between PrefixQuant* and SpikingLLM, we introduce SNN-friendly spike operators (e.g., Spike KV Cache, Spike SiLU.). As depicted in Figure 6(b), we introduce Spike KV Cache S_{KV} with prefixed tokens to enable the KV Cache during SNNs inference. The inference of S_{KV} at i -th decoder layer under t time-step is described in Equation (3). *At the first time-step ($t = 1$), S_{KV} outputs and stores the concatenated prefixed and original tokens, which is the same to the original KV Cache in Figure 6(a). As for t time-step ($t > 1$), S_{KV} concatenates zeros tensors (with the same shape of prefixed tokens T_p) with tokens at t time-step T_t to output, which ensures that the accumulation of S_{KV} output equals to original KV Cache output. Then S_{KV} stores the sum of output and stored tokens T_s back to the cache.*

$$S_{KV}(T_t, T_p) = \begin{cases} \overbrace{C[T_p, T_t]}^{\text{store}}; & t = 1 \\ \overbrace{C[Z(T_p), T_t] + T_s - T_s}^{\text{store}}; & t > 1 \end{cases} \quad (3)$$

Since that Rotary Position Embedding (RoPE) operator is a linear mapping, the original RoPE is applicable to SpikingLLM. For Softmax, SiLU and RMSNorm, we follow the differential strategy from SpikeZIP-TF (You et al., 2024b) to introduce Spike Softmax, Spike SiLU and Spike RMSNorm. The detailed procedure of spike operators above are illustrated in appendix (Section A2).

324
 325 **Table 2: Comparison on Llama-2 models.** T refers to inference time-step for SNNs. Best results are
 326 in **bold**, runner-up results are marked in **gray**. SpikeLLM(O) and SpikeLLM(P) refer to SpikeLLM
 327 with OmniQuant and PrefixQuant, respectively. WT2, HS and WG refer to Wikitext2, HellaSwag
 328 and Winogrande, respectively. Inhibiting window length L is set to 4 (L = 4).

Method	Category	Fully-Spiking	T	Bits	Energy (J)(↓)	Perplexity(↓)		Zero-shot Accuracy(↑)			WG	Avg.	
						WT2	C4	PIQA	ARC-e	ARC-c	HS		
LLAMA-2-7B													
OmniQuant	QLLMs	SNNs	16	FP16	20.02	5.47	6.97	79.11	74.62	46.25	76.00	69.22	69.04
PrefixQuant				W4A4	4.71	15.25	19.35	62.19	45.62	25.43	39.15	52.17	44.91
PrefixQuant				W4A4KV4	2.37	6.22	—	77.20	71.51	43.94	73.75	67.80	66.84
PrefixQuant*				W4A4QKVS4	1.64	11.56	14.10	72.85	62.50	36.95	68.01	61.96	60.45
SpikeLLM(O)	SNNs	32	32	W4A5QKV5	1.91	7.78	9.56	75.03	66.04	38.91	70.89	63.77	62.93
SpikeLLM(P)				W4A4	5.18	11.46	14.45	62.79	51.01	27.13	43.47	53.83	47.65
SpikingLLM (L = 4)				W4A4KV4	2.37	11.32	15.01	62.58	50.93	27.11	43.85	54.01	47.70
SpikingLLM (L = 4)				W4A4QKVS4	0.94	10.99	13.78	73.45	61.95	36.43	68.02	61.56	60.28
LLAMA-2-13B													
OmniQuant	QLLMs	SNNs	32	FP16	38.50	4.88	6.46	80.52	77.48	49.06	79.37	72.22	71.73
PrefixQuant				W4A4	9.16	12.40	15.87	67.03	53.96	30.55	62.91	44.83	51.86
PrefixQuant				W4A4KV4	4.18	6.22	—	78.51	75.80	46.67	76.54	72.06	69.92
PrefixQuant*				W4A4QKVS4	3.16	7.99	10.68	75.57	69.49	41.47	72.45	65.27	64.85
SpikeLLM(O)	SNNs	32	32	W4A5QKV5	3.67	6.28	8.11	77.48	73.32	42.92	74.45	69.93	67.02
SpikeLLM(P)				W4A4	10.07	9.56	12.48	65.29	55.81	28.41	48.13	55.56	50.64
SpikingLLM (L = 4)				W4A4KV4	4.39	9.94	12.59	65.93	55.89	28.73	48.22	55.21	50.80
SpikingLLM (L = 4)				W4A4QKVS4	2.08	7.80	10.32	76.50	70.41	41.98	72.42	65.51	65.36

5 EXPERIMENTS

5.1 SETUPS

Training Details. We follow the fine-tuning setting from PrefixQuant (Chen et al., 2025) to fine-tune PrefixQuant*. During fine-tuning, we optimize the block-wise output mean square error. We use 512 samples from Pile (Gao et al., 2020) with a 1024 context length as fine-tuning dataset. For Weight quantization, we choose 4-bit (denoted as W4). For Activation, Query, Key, Value and Softmax quantization, we conduct experiments on 4-bit and 5-bit (denoted as A4QKVS4 and A5QKVS5, respectively) quantization. The fine-tuning batch size and number of epochs are set to 4 and 20, respectively. For QK2Head-migration quantization, we set q_m to 1 and k_m to 16. For SNNs inference, we set time-step T to 16 and 32 for A4QKVS4 and A5QKVS5, respectively. Finally we set inhibiting window length L = 4 during inference.

Evaluation Tasks. We evaluate SpikingLLM on Llama-2-7B, Llama-2-13B (Touvron et al., 2023), Llama-3-8B (Grattafiori & et al., 2024) and Mistral-7B (Jiang et al., 2023). We follow the evaluation methods from PrefixQuant and SpikeLLM as the primary baselines. We also conduct experiments on SpikeLLM with PrefixQuant (denoted as SpikeLLM(P)) in Table 2 for a fair comparison between SpikingLLM and SpikeLLM. Specifically, we evaluate the perplexity (PPL) of language generation on Wikitext2 (Merity et al., 2016) and C4 (Raffel et al., 2023) benchmarks. For zero-shot common-sense reasoning tasks, we evaluate SpikingLLM on PIQA (Bisk et al., 2019), ARC-easy (Clark et al., 2018), ARC-challenge (Clark et al., 2018), HellaSwag (Clark et al., 2018) and Winogrande (Sakaguchi et al., 2019). We report acc for Winogrande and acc_norm for remaining datasets, following Qserve (Lin et al., 2024b). We also compare SpikingLLM with SpikeGPT (Zhu et al., 2023) and other efficient LLMs (MatMul-free LLM (Zhu et al., 2024a) and ShiftAddLLM (You et al., 2024a)) in appendix (Section A5 and Section A6).

Energy Consumption Metric. We inherit the operation metric proposed in SpikingFormer (Zhou et al., 2023) to calculate the Multiply-ACcumulate operations (MACs) and ACcumulate-Only operations (ACs) of self-attention and linear operators. For LLMs and QLLMs, we calculate the number of MACs #MACs. For SNNs, we calculate the number of ACs #ACs and MACs #MACs. Then we sample the weights and activations from different methods to estimate the average energy consumption of a single MAC operation E_{MAC} and AC operation E_{AC} (The detailed energy estimation procedure is illustrated in appendix (Section A3)). Finally we follow the formula $E_{SNNs} = \#ACs \times E_{AC} + \#MACs \times E_{MAC}$ and $E_{LLMs/QLLMs} = \#MACs \times E_{MAC}$ from SpikingFormer (Zhou et al., 2023) to estimate the total energy consumption for SNNs, LLMs and QLLMs.

378

379

Table 3: Performance of SpikingLLM on Llama-3-8B and Mistral-7B.

Method	Category	Fully-Spiking	T	Bits	Energy (J)(↓)	Perplexity(↓) WT2 C4	PIQA	Zero-shot Accuracy(↑)				
								ARC-e	ARC-c	HS	WG	Avg.
LLAMA-3-8B	ANNs	–	–	FP16	22.24	6.14 10.85 15.82 75.24	8.88 75.24	80.79 68.01	77.69 42.06	53.33 71.27	79.16 61.56	72.53 63.63
PrefixQuant*	QLLMs	–	–	W4A4QKVS4 W4A5QKVS5	1.83 2.12	8.20 11.61	77.48	73.65	46.76	42.06 75.60	71.27 67.32	63.63 68.16
SpikingLLM (L = 4)	SNNs	✓	16 32	W4A4QKVS4 W4A5QKVS5	1.04 1.77	10.34 8.14 11.28 77.82	15.38 75.51	68.12 73.43	41.93 46.91 75.24 67.66	71.72 61.23	63.70 63.70	72.70
Mistral-7B	ANNs	–	–	FP16	19.46	5.49 7.74 10.68	8.41 78.24	82.46 76.64	82.62 51.28	58.87 76.97	82.94 62.67	74.11 69.16
PrefixQuant*	QLLMs	–	–	W4A4QKVS4 W4A5QKVS5	1.60 1.86	6.39 9.20	81.23	80.30	56.57	80.94 71.51	71.51	74.11
SpikingLLM (L = 4)	SNNs	✓	16 32	W4A4QKVS4 W4A5QKVS5	0.92 1.46	7.32 6.28 8.98 81.44	10.12 78.05	76.82 80.21	51.43 56.84 81.03 71.99	77.21 62.45	69.19 69.19	74.30

5.2 RESULTS COMPARISON

Results on Perplexity Tasks. Table 2 shows the experimental results on Llama-2-7B and Llama-2-13B. For perplexity metric on Wikitext2 and C4 benchmarks, SpikingLLM achieves equivalent results with PrefixQuant* under the same setting. For 4-bit quantization on Llama-2-7B, SpikingLLM surpasses SpikeLLM(P) by 0.33 on Wikitext2 and 1.23 on C4. For 4-bit quantization on Llama-2-13B, SpikingLLM outperforms SpikeLLM(P) by 2.14 on Wikitext2 and 2.27 on C4. Furthermore, SpikingLLM achieves state-of-the-art performance on both Wikitext2 and C4 benchmarks with 5-bit quantization. We also extend our SpikingLLM on Llama-3-8B and Mistral-7B in Table 3, which further verifies the equivalence between SpikingLLM and PrefixQuant*.

Results on common-sense Reasoning Tasks. As tabulated in Table 2, SpikingLLM achieves promising results on common-sense reasoning tasks. For 4-bit quantization, SpikingLLM achieves an average zero-shot accuracy of 60.28 on Llama-2-7B and 65.36 on Llama-2-13B, surpassing SpikeLLM(P) by 12.58 and 14.56, respectively. Moreover, with 5-bit quantization, SpikingLLM achieves an average zero-shot accuracy of 62.26 on Llama-2-7B and 67.64 on Llama-2-13B, further closing the gap between ANNs and SNNs. Notably, SpikingLLM outperforms PrefixQuant* on complex reasoning tasks such as ARC-c and HellaSwag. Furthermore, consistent experimental results on Llama-3-8B and Mistral-7B in Table 3 demonstrate the generalisability of SpikingLLM.

Results on Energy Consumption. Based on the experimental results in Table 2 and Table 3, SpikingLLM demonstrates significant advantages in reducing energy by effectively converting Multiply-ACcumulate operations (MACs) into ACcumulate-Only operations (ACs) through its fully-spiking paradigm. For instance, on Llama-2-7B model under 4-bit quantization, SpikingLLM achieves a remarkable reduction (1.64 \Rightarrow 0.94) compared with PrefixQuant*. Note that SpikeLLM exhibits higher energy consumption than corresponding QLLMs (e.g., 2.15 \Rightarrow 2.37 for PrefixQuant). This discrepancy arises that SpikeLLM fail to embrace the fully-spiking paradigm, instead maintaining a hybrid approach which still relies on traditional Multiply-ACcumulate operations (MACs). We incorporate the detailed analysis on energy consumption in appendix (Section A3 and Section A4).

5.3 ABLATION STUDY

Ablation on QK2Head-migration quantization. As tabulated in Table 4, we test different settings of PrefixQuant*, including versions with/without QK2Head-migration quantization, to verify the effectiveness of QK2Head-migration quantization. Note that for PrefixQuant* without QK2Head-migration quantization, we reshape softmax output into 3-dimensional and quantize it through activation quantization in PrefixQuant. The results demonstrate that the introduction of QK2Head-migration quantization significantly enhances performance across all quantization scenarios for both Llama-2-7B and Llama-2-13B. For instance, for Llama-2-7B with W4A4QKVS4, Wikitext2 perplexity is reduced from 24.17 to 10.99 when QK2Head-migration quantization is applied. Similarly, for Llama-2-13B with W4A4QKVS4, Wikitext2 perplexity decreases from 42.31 to 7.80. These improvements highlight the substantial benefits of incorporating QK2Head-migration quantization.

Table 4: Ablation on QK2Head-migration quantization and Spike KV Cache on Wikitext2.

QK2Head-migration	Spike KV Cache	W4A4QKVS4		W4A5QKVS5	
		2-7B	2-13B	2-7B	2-13B
✗	✗	556.34	512.13	532.81	508.94
✓	✗	523.12	489.16	518.94	498.73
✗	✓	24.17	42.31	9.68	8.69
✓	✓	10.99	7.80	7.71	6.26

Ablation on Spike KV Cache. We also present the experimental results of SpikingLLM with/without Spike KV Cache in Table 4. As detailed in Table 4, original KV Cache fails to process spiking inputs effectively, resulting in a fundamental discrepancy between SNNs and corresponding QLLMs. This limitation highlights the necessity of introducing Spike KV Cache, which ensures that the cumulative output aligns precisely with the output of KV Cache in QLLMs. For instance, in the cases of LLAMA-2-7B and LLAMA-2-13B with W4A4QKVS4, Wikitext2 perplexity are significantly reduced from 523.12 to 10.99 and 489.16 to 7.80 when Spike KV Cache is employed. These substantial reductions demonstrate the effectiveness of the Spike KV Cache in processing spiking input while preserving the consistency of output.

Ablation on post-q and post-softmax quantization. To verify the necessities of introducing post-q and post-softmax quantization, we compare the energy consumption of SpikingLLM with/without post-q and with/without post-softmax quantization on Llama-2 under W4A4QKVS4 in Table 5. As illustrated, the introduction of post-q and post-softmax quantization drastically reduces energy consumption. The significant reduction demonstrates that the introduction of post-q and post-softmax quantization enables the conversion of matrix products of QK^T and $\text{softmax}(\frac{QK^T}{\sqrt{d}})V$ into spiking matrix products, which effectively converts high-energy MACs into low-energy ACs.

Ablation on Window Inhibition Mechanism. We set multiple values to inhibiting window length L in Table 6 to verify the effectiveness of window inhibition mechanism. As illustrated, the energy consumption of SpikingLLM without window inhibition mechanism ($L = 1$) is 1.70J, which is comparable to the corresponding QLLMs (1.64J in Table 2). With the introduction of window inhibition mechanism, our SpikingLLM significantly improves sparsity ($34.93\% \Rightarrow 63.21\%$) and reduces energy consumption ($1.70J \Rightarrow 0.94J$) without performance degradation.

Ablation on (q_m, k_m) Settings. Figure 7 presents the heatmaps of Wikitext2 perplexity (PPL) results for Llama-2-7B model under various (q_m, k_m) settings on QK2Head-migration quantization. As depicted, the effectiveness of QK2Head-migration quantization varies significantly depending on the bit precision and (q_m, k_m) settings. For 4-bit quantization, the optimal performance (11.56) is achieved with $(q_m = 1, k_m = 16)$ setting, which demonstrates the effectiveness of this setting in low-bit quantization. Similarly, for 5-bit quantization, $(q_m = 1, k_m = 16)$ setting also delivers the best result, with a PPL of 7.78, further validating the robustness of this approach across different bit-widths.

6 CONCLUSION

SpikingLLM introduces an innovative ANN-to-SNN conversion method that establishes the equivalence between fully-spiking neural networks and quantized large language models. To make the equivalence applicable, we introduce QK2Head-migration quantization, refined ST-BIF⁺ with window inhibition mechanism and SNN-friendly spike operators. These advancements enable SpikingLLM to achieve state-of-the-art performance on both perplexity and common-sense reasoning tasks, while significantly reducing energy consumption. To the best of our knowledge, SpikingLLM is the first conversion-based method on fully-spiking large language models. We anticipate that SpikingLLM can be further extended to incorporate learning-based methods, which hold the potential to achieve even more promising performance while further reducing energy consumption.

Table 5: Ablation on post-q and post-softmax quantization.

Post-q	Post-softmax	Fully-Spiking	Energy (J) (↓)	
			2-7B	2-13B
✗	✗	✗	2.77	5.64
✓	✗	✗	2.12	4.02
✗	✓	✗	1.59	3.65
✓	✓	✓	0.94	2.08

Table 6: Ablation on window inhibition mechanism.

L	Sparsity(↑)	Energy (J) (↓)	LLAMA-2-7B	
			WT2(↓)	C4(↓)
1	34.93%	1.70	10.91	13.68
2	49.78%	1.19	10.94	13.71
4	63.21%	0.94	10.99	13.78

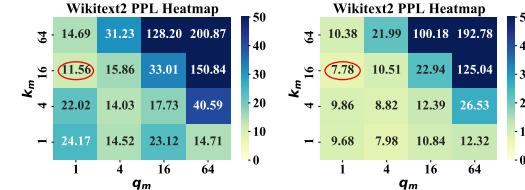


Figure 7: Wikitext2 perplexity with Llama-2-7B under various (q_m, k_m) settings on QK2Head-migration quantization.

Figure 7: Wikitext2 perplexity with Llama-2-7B under various (q_m, k_m) settings on QK2Head-migration quantization.

486 REFERENCES
487

488 Malyaban Bal and Abhronil Sengupta. Spikingbert: Distilling bert to train spiking language models
489 using implicit differentiation, 2024. URL <https://arxiv.org/abs/2308.10873>.

490 Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about
491 physical commonsense in natural language, 2019. URL <https://arxiv.org/abs/1911.11641>.

492

493 Tom Brown and Benjamin et al. Mann. Language models are few-shot learners. *Advances in neural*
494 *information processing systems*, 33:1877–1901, 2020.

495

496 Tong Bu, Wei Fang, Jianhao Ding, PengLin Dai, Zhaofei Yu, and Tiejun Huang. Optimal ann-
497 snn conversion for high-accuracy and ultra-low-latency spiking neural networks. *arXiv preprint*
498 *arXiv:2303.04347*, 2023.

499

500 Mengzhao Chen, Wenqi Shao, Peng Xu, Jiahao Wang, Peng Gao, Kaipeng Zhang, and Ping Luo.
501 Efficientqat: Efficient quantization-aware training for large language models, 2024. URL <https://arxiv.org/abs/2407.11062>.

502

503 Mengzhao Chen, Yi Liu, Jiahao Wang, Yi Bin, Wenqi Shao, and Ping Luo. Prefixquant: Eliminating
504 outliers by prefixed tokens for large language models quantization, 2025. URL <https://arxiv.org/abs/2410.05265>.

505

506 Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
507 Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for
508 statistical machine translation. *arXiv preprint arXiv:1406.1078*, 2014.

509

510 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
511 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge,
512 2018. URL <https://arxiv.org/abs/1803.05457>.

513

514 Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha
515 Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic
516 manycore processor with on-chip learning. *Ieee Micro*, 38(1):82–99, 2018.

517

518 Tim Dettmers, Ruslan Svirchevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-
519 boos, Alexander Borzunov, Torsten Hoefer, and Dan Alistarh. Spqr: A sparse-quantized repre-
520 sentation for near-lossless llm weight compression, 2023. URL <https://arxiv.org/abs/2306.03078>.

521

522 Jianhao Ding, Tong Bu, Zhaofei Yu, Tiejun Huang, and Jian Liu. Snn-rat: Robustness-enhanced
523 spiking neural network through regularized adversarial training. *Advances in Neural Information*
524 *Processing Systems*, 35:24780–24793, 2022.

525

526 Steven K. Esser, Jeffrey L. McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and Dharmen-
527 dra S. Modha. Learned step size quantization, 2020. URL <https://arxiv.org/abs/1902.08153>.

528

529 Elias Frantar, Saleh Ashkboos, Torsten Hoefer, and Dan Alistarh. Gptq: Accurate post-training
530 quantization for generative pre-trained transformers, 2023. URL <https://arxiv.org/abs/2210.17323>.

531

532 Duane E Galbi, Karthik Kannan, and M Hudson. Measuring active power using pt px a user
533 perspective. *SNUG Bostone*, pp. 1–13, 2010.

534

535 Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
536 Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The pile: An 800gb
537 dataset of diverse text for language modeling, 2020. URL <https://arxiv.org/abs/2101.00027>.

538

539 Aaron Grattafiori and Abhimanyu Dubey et al. The llama 3 herd of models, 2024. URL <https://arxiv.org/abs/2407.21783>.

540 Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
 541 Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
 542 Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
 543 Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL <https://arxiv.org/abs/2310.06825>.

545 Hima Bindu Kommuru and Hamid Mahmoodi. Asic design flow tutorial using synopsys tools. *Nano-*
 546 *Electronics & Computing Research Lab, School of Engineering, San Francisco State University*
 547 *San Francisco, CA, Spring*, 2009.

549 Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
 550 Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. Bloom: A 176b-
 551 parameter open-access multilingual language model. 2023.

552 Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. *nature*, 521(7553):436–444,
 553 2015.

555 Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
 556 Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
 557 llm compression and acceleration, 2024a. URL <https://arxiv.org/abs/2306.00978>.

559 Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao, Chuang Gan, and Song
 560 Han. Qserve: W4a8kv4 quantization and system co-design for efficient llm serving, 2024b. URL
 561 <https://arxiv.org/abs/2405.04532>.

562 Zechun Liu, Kwang-Ting Cheng, Dong Huang, Eric Xing, and Zhiqiang Shen. Nonuniform-to-
 563 uniform quantization: Towards accurate quantization via generalized straight-through estimation,
 564 2022. URL <https://arxiv.org/abs/2111.14826>.

566 Zechun Liu, Changsheng Zhao, Forrest Iandola, Chen Lai, Yuandong Tian, Igor Fedorov, Yunyang
 567 Xiong, Ernie Chang, Yangyang Shi, Raghuraman Krishnamoorthi, et al. Mobilellm: Optimizing
 568 sub-billion parameter language models for on-device use cases. In *Forty-first International*
 569 *Conference on Machine Learning*, 2024.

570 Changze Lv, Tianlong Li, Jianhan Xu, Chenxi Gu, Zixuan Ling, Cenyuan Zhang, Xiaoqing Zheng,
 571 and Xuanjing Huang. Spikebert: A language spikformer learned from bert with knowledge
 572 distillation, 2024. URL <https://arxiv.org/abs/2308.15122>.

574 Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.
 575 *Neural networks*, 10(9):1659–1671, 1997.

576 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
 577 models, 2016. URL <https://arxiv.org/abs/1609.07843>.

579 Paul A Merolla, John V Arthur, Rodrigo Alvarez-Icaza, Andrew S Cassidy, Jun Sawada, Philipp
 580 Akopyan, Bryan L Jackson, Nabil Imam, Chen Guo, Yutaka Nakamura, et al. A million spiking-
 581 neuron integrated circuit with a scalable communication network and interface. *Science*, 345
 582 (6197):668–673, 2014.

583 Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking
 584 neural networks: Bringing the power of gradient-based optimization to spiking neural networks.
 585 *IEEE Signal Processing Magazine*, 36(6):51–63, 2019.

587 Srdjan Ostojic. Two types of asynchronous activity in networks of excitatory and inhibitory spiking
 588 neurons. *Nature neuroscience*, 17(4):594–600, 2014.

589 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 590 Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
 591 transformer, 2023. URL <https://arxiv.org/abs/1910.10683>.

593 Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-based machine intelligence
 with neuromorphic computing. *Nature*, 575(7784):607–617, 2019.

594 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
 595 adversarial winograd schema challenge at scale, 2019. URL <https://arxiv.org/abs/1907.10641>.

596

597 Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
 598 Peng Gao, Yu Qiao, and Ping Luo. Omnipoint: Omnidirectionally calibrated quantization for large
 599 language models, 2024. URL <https://arxiv.org/abs/2308.13137>.

600

601 Ernest Tolliver, Velu Pillai, Anshul Jha, and Eugene John. A comparative analysis of half precision
 602 floating point representations in macs for deep learning. In *2022 International Conference on*
 603 *Electrical, Computer, Communications and Mechatronics Engineering (ICECCME)*, pp. 1–6, 2022.
 604 doi: 10.1109/ICECCME55909.2022.9987946.

605

606 Hugo Touvron and Thibaut et al. Llavlil. Llama: Open and efficient foundation language models.
 607 *arXiv preprint arXiv:2302.13971*, 2023.

608

609 Hugo Touvron, Louis Martin, and Kevin Stone et al. Llama 2: Open foundation and fine-tuned chat
 610 models, 2023. URL <https://arxiv.org/abs/2307.09288>.

611

612 A Vaswani. Attention is all you need. *Advances in Neural Information Processing Systems*, 2017.

613

614 Ziqing Wang, Yuetong Fang, Jiahang Cao, Qiang Zhang, Zhongrui Wang, and Renjing Xu. Masked
 615 spiking transformer. In *Proceedings of the IEEE/CVF International Conference on Computer*
 616 *Vision*, pp. 1761–1771, 2023.

617

618 Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, Yuan Xie, and Luping Shi. Direct training for spiking neural
 619 networks: Faster, larger, better. In *Proceedings of the AAAI conference on artificial intelligence*,
 620 volume 33, pp. 1311–1318, 2019.

621

622 Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
 623 Accurate and efficient post-training quantization for large language models, 2024. URL <https://arxiv.org/abs/2211.10438>.

624

625 Xingrun Xing, Boyan Gao, Zheng Zhang, David A Clifton, Shitao Xiao, Li Du, Guoqi Li, and Jiajun
 626 Zhang. Spikellm: Scaling up spiking neural network to large language models via saliency-based
 627 spiking. *arXiv preprint arXiv:2407.04752*, 2024a.

628

629 Xingrun Xing, Zheng Zhang, Ziyi Ni, Shitao Xiao, Yiming Ju, Siqi Fan, Yequan Wang, Jiajun Zhang,
 630 and Guoqi Li. Spikelm: Towards general spike-driven language modeling via elastic bi-spiking
 631 mechanisms, 2024b. URL <https://arxiv.org/abs/2406.03287>.

632

633 Man Yao, Jiakui Hu, Zhaokun Zhou, Li Yuan, Yonghong Tian, Bo Xu, and Guoqi Li. Spike-driven
 634 transformer, 2023. URL <https://arxiv.org/abs/2307.01694>.

635

636 Haoran You, Yipin Guo, Yichao Fu, Wei Zhou, Huihong Shi, Xiaofan Zhang, Souvik Kundu, Amir
 637 Yazdanbakhsh, and Yingyan Celine Lin. Shiftaddllm: Accelerating pretrained llms via post-
 638 training multiplication-less reparameterization, 2024a. URL <https://arxiv.org/abs/2406.05981>.

639

640 Kang You, Zekai Xu, Chen Nie, Zhijie Deng, Qinghai Guo, Xiang Wang, and Zhezhi He. Spikezip-tf:
 641 Conversion is all you need for transformer-based snn. In *Proceedings of Forty-First International*
 642 *conference on Machine Learning (ICML)*, 2024b.

643

644 Zhihang Yuan, Lin Niu, Jiawei Liu, Wenyu Liu, Xinggang Wang, Yuzhang Shang, Guangyu Sun,
 645 Qiang Wu, Jiaxiang Wu, and Bingzhe Wu. Rptq: Reorder-based post-training quantization for
 646 large language models, 2023. URL <https://arxiv.org/abs/2304.01089>.

647

648 Friedemann Zenke, Everton J Agnes, and Wulfram Gerstner. Diverse synaptic plasticity mechanisms
 649 orchestrated to form and retrieve memories in spiking neural networks. *Nature communications*, 6
 650 (1):6922, 2015.

651

652 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuhui Chen, Christopher
 653 Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
 654 models. *arXiv preprint arXiv:2205.01068*, 2022.

648 Chenlin Zhou, Liutao Yu, Zhaokun Zhou, Han Zhang, Zhengyu Ma, Huihui Zhou, and Yonghong
649 Tian. Spikingformer: Spike-driven residual learning for transformer-based spiking neural network.
650 *arXiv preprint arXiv:2304.11954*, 2023.

651 Rui-Jie Zhu, Qihang Zhao, Guoqi Li, and Jason K Eshraghian. Spikegpt: Generative pre-trained
652 language model with spiking neural networks. *arXiv preprint arXiv:2302.13939*, 2023.

653 Rui-Jie Zhu, Yu Zhang, Ethan Siferman, Tyler Sheaves, Yiqiao Wang, Dustin Richmond, Peng
654 Zhou, and Jason K. Eshraghian. Scalable matmul-free language modeling, 2024a. URL <https://arxiv.org/abs/2406.02528>.

655 Rui-Jie Zhu, Qihang Zhao, Guoqi Li, and Jason K. Eshraghian. Spikegpt: Generative pre-trained
656 language model with spiking neural networks, 2024b. URL <https://arxiv.org/abs/2302.13939>.

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

Appendix

A1 WINDOW INHIBITION MECHANISM

Algorithm 1 Window Inhibition Mechanism

Input: Input voltage t at time-step \hat{V}_t^{in} .

Model: Refined ST-BIF⁺ Neuron Θ .

Parameter: Spike Tracer at t time-step $S_t = 0$, Spike Tracer for previous window $S_{\text{pre}} = 0$, Spike Tracer for compensation $S_{\text{com}} = 0$, Inhibiting Window Length L , time-step T , Threshold voltage for neuron to fire a spike \vec{V}_{thr} , Membrane potential of neuron at t time-step V_t .

Output: Firing spikes spike.

```

1: for t = 1 to T do
2:    $S_t = S_{t-1} + \Theta(V_{t-1} + \hat{V}_t^{\text{in}}, \vec{V}_{\text{thr}}, S_{t-1})$ 
3:   # Window inhibition process
4:   if (t-1) % L == 0 then
5:     spike =  $\begin{cases} 1; & S_t - S_{\text{pre}} > 0 \\ 0; & \text{other} \\ -1; & S_t - S_{\text{pre}} < 0 \end{cases}$ 
6:     # Update spikes for compensation
7:      $S_{\text{com}} = S_t - S_{\text{pre}} - \text{spike}$ 
8:   else
9:     # Block firing spikes
10:    spike =  $\hat{V}_t^{\text{in}} * 0$ .
11:    if (t-1) % L == 1 then
12:      # Update spike tracer for previous window
13:       $S_{\text{pre}} = S_t.\text{clone}()$ 
14:    end if
15:  end if
16: end for
17: # Firing compensated spikes
18: while max( $S_{\text{com}}.\text{abs}()$ ) != 0 do
19:   spike =  $\begin{cases} 1; & S_{\text{com}} > 0 \\ 0; & \text{other} \\ -1; & S_{\text{com}} < 0 \end{cases}$ 
20:    $S_{\text{com}} = S_{\text{com}} - \text{spike}$ 
21: end while

```

The detailed process of the window inhibition mechanism is specified in Algorithm 1. As illustrated, we introduce an inhibiting window with length L to combine the original L time-step spikes into 1 time-step spike (fire one positive spike if $S_t - S_{\text{pre}} > 0$, fire one negative spike if $S_t - S_{\text{pre}} < 0$). For the equivalence between refined ST-BIF⁺ neuron with window inhibition mechanism and quantizer Q^* , we introduce a spike tracer S_{com} to trace the redundant spikes for compensation (e.g., the sum of spikes in the inhibiting window is greater than 1 or less than -1). When it comes to time-step t satisfying $(t - 1)\%L == 0$, the refined ST-BIF⁺ neuron fires a spike. After firing the spike, the redundant spikes $S_t - S_{\text{pre}}$ – spike should be updated into S_{com} . After T time-step, S_{com} should fire redundant spikes until there is no spike left. The introduction of window inhibition mechanism significantly suppresses the over-firing issue and improves the sparsity, leading to apparent reduction on energy consumption. Note that under most circumstances, there are no redundant spikes in S_{com} , which suggests that redundant spikes from inhibiting window can also counteract each other as time-step increases, further verifying the effectiveness of window inhibition mechanism.

A2 SPIKE OPERATORS

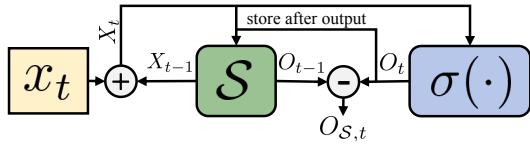
Regarding the differential strategy (Figure A1) to convert the SNN-unfriendly operators (e.g., Softmax, RMSNorm, SiLU) to SNN-friendly counterparts, the definition is as follows:

756
757
758
759

$$X_t = X_{t-1} + x_t; \quad O_t = \sigma(X_t) \quad (A1)$$

$$O_{S,t} = O_t - O_{t-1}$$

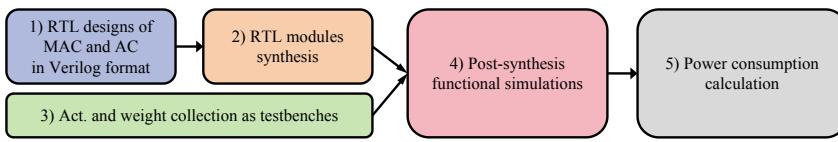
760 where $\sigma(\cdot)$ represents the ANN operators including Softmax, RMSNorm and SiLU. x_t and $O_{S,t}$ are the input and output of the operator at time-step t respectively, X_t is the summation of the input during t time-steps, O_t is the output of the function $\sigma(\cdot)$ with input X_t . Both X_t and O_t are stored back to spike tracer \mathcal{S} for computation at next time-step. The operators in ANNs can be made equivalent to its SNNs version by summing up $O_{S,t}$ through time.



761
762
763
764
765
766
767

Figure A1: **Architecture of spike operators (e.g., Spike Softmax, Spike RMSNorm, Spike SiLU).** \mathcal{S} refers to spike tracer. $\sigma(\cdot)$ refers to ANN operators (e.g., Softmax, RMSNorm, SiLU).

A3 ENERGY ESTIMATION PROCEDURE



768
769
770
771
772
773
774

Figure A2: **Detailed procedure of energy estimation.**

775 We follow the standard EDA design flow (Kommuru & Mahmoodi, 2009) to evaluate energy consumption. The detailed evaluation procedure is illustrated in Figure A2 and summarized as follows:

776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791

- 1) We first implement the RTL designs of the MAC and AC units in Verilog format, following standard digital circuit design practices.
- 2) These RTL designs are synthesized into gate-level netlists using Synopsys Design Compiler, utilizing the TSMC 28nm HPC standard cell library.
- 3) We collect real activation and weight values from actual network inference and construct representative testbenches using these samples as input stimuli.
- 4) We perform post-synthesis functional simulations using Synopsys VCS, applying the testbenches to the synthesized netlists. The simulation generates VCD files that capture signal transitions and circuit switching activity over time.
- 5) We import the VCD files into Synopsys PrimeTime PX (Galbi et al., 2010), a gate-level power analysis tool, to calculate the dynamic power consumption based on real activity patterns and cell-level power models.

792 This procedure ensures that the reported energy values in
793 this work are realistic and reflect actual data-dependent
794 switching activity under typical network inference work-
795 loads. With the evaluation procedure above, we present
796 the average energy consumption of a single MAC opera-
797 tion E_{MAC} and a single AC operation E_{AC} in Table A1.
798 Note that the energy of 16-bit \times 16-bit Float-Point E_{MAC}
799 is adopted from (Tolliver et al., 2022). As a result, con-
800 verting MAC operations to AC operations with our fully-spiking neural networks can remarkably
801 reduce over 80% energy consumption.

Table A1: **E_{MAC} and E_{AC} estimation.**

Operation	Energy (pJ)
4-bit+4-bit Fixed-Point E_{AC}	0.0236
4-bit \times 4-bit Fixed-Point E_{MAC}	0.1141
4-bit \times 5-bit Fixed-Point E_{MAC}	0.1325
16-bit \times 16-bit Float-Point E_{MAC}	1.3900

802 We follow the procedure from Spikingformer (Zhou et al., 2023) to conduct energy evaluation
803 between QLLMs and SNNs, which is concluded as follows:

804
805
806
807

$$E_{SNNs} = \#ACs \times E_{AC} + \#MACs \times E_{MAC} \quad (A2)$$

$$E_{QLLMs/QLLMs} = \#MACs \times E_{MAC}$$

808 #MACs and #ACs refer to the total number of Multiply-ACcumulate and ACcumulate-Only
809 operations, respectively. We follow the procedure from SpikeZIP-TF (You et al., 2024b) to calculate
#MACs and #ACs, which is concluded as follows:

810

Algorithm 2 #MACs in Linear and Attention Layers

811

Input: Number of tokens N ; Input feature dimension of linear layer D_{in} ; Output feature dimension of linear layer D_{out} ; Token dimension in attention layer D ; Total layers L .

813

Output: #MACs

814

```

1: #MACs ← 0
2: for l = 1 to L do
3:   # Calculate #MACs for linear layer
4:   #MACs ← #MACs + N × Din × Dout
5:   # Calculate #MACs for attention layer
6:   #MACs ← #MACs + 2 × N × N × D
7: end for
8: return #MACs

```

823

Algorithm 3 #ACs in Linear and Attention Layers

825

Input: Number of tokens N ; Input feature dimension of linear layer D_{in} ; Output feature dimension of linear layer D_{out} ; Token dimension in attention layer D ; Spike count per time-step C_t ; Total inference time-steps T ; Total layers L .

828

Output: #ACs

829

```

1: #ACs ← 0
2: for l = 1 to L do
3:   for t = 1 to T do
4:     for k = 1 to Ct do
5:       # Linear layer: Dout synapses activated per spike and 2
         operations per spike for ST-BIF+ neuron
6:       #ACs ← #ACs + Dout + 2
7:       # Attention layer: 2*N synapses activated per spike (dual
         matrix product) and 2 operations per spike for ST-BIF+
         neuron
8:       #ACs ← #ACs + 2 × N + 2
9:     end for
10:   end for
11: end for
12: return #ACs

```

844

Table A2: Detailed energy consumption estimation results on Llama-2-7B.

340

Method	Category	Bits	MACs ($\times 10^{12}$) (\downarrow)	ACs ($\times 10^{12}$) (\downarrow)	Energy (J) (\downarrow)	WT2 PPL (\downarrow)	
Llama-2-7B	ANNs	FP16	14.40	0.	20.02	5.47	
PrefixQuant [*]	QLLMs	W4A4QKVS4	14.40	0.	1.64	11.56	
		W4A5QKVS5	14.40	0.	1.91	7.78	
SpikeLLM(P)	SNNs	W4A4QKV4	13.45	11.44	2.37	11.32	
SpikingLLM(L=4)		W4A4QKVS4	1.98	30.25	0.94	10.99	
		W4A5QKVS5	2.14	52.82	1.53	7.71	

655

The detailed energy consumption estimation results on Llama-2-7B are summarized in Table A2. Note that we reproduce PrefixQuant on SpikeLLM (denoted as SpikeLLM (P)), which neglects post-softmax quantization so that the energy consumption is a bit higher than PrefixQuant* with post-softmax quantization. For SpikeLLM (P), note that SpikeLLM neglects post-softmax quantization so that the softmax output remains 16-bit, #MACs consists of 13.01×10^{12} 4-bit \times 4-bit operation (0.0236pJ in Table A1) and 0.44×10^{12} 16-bit \times 16-bit operation (0.1141pJ in Table A1), the energy estimation is calculated as follows:

860

$$E_{\text{SpikeLLM}(P)} = 11.41 \times 0.0236 + 13.01 \times 0.1141 + 0.44 \times 1.39 = 2.37 \text{ J} \quad (\text{A3})$$

862

For SpikingLLM, the energy estimation is calculated as follows:

863

$$E_{\text{SpikingLLM}} = 30.25 \times 0.0236 + 1.98 \times 0.1141 = 0.94 \text{ J} \quad (\text{A4})$$

864 **A4 ANALYSIS OF ENERGY CONSUMPTION**
865866 We further clarify how SpikingLLM overcomes the specific disadvantages of SpikeLLM.
867868 ① SpikeLLM (Xing et al., 2024a) is based on dynamic quantization method OmniQuant (Shao et al.,
869 2024), which is SNN-unfriendly due to the float calculation to determine quantization scale for each
870 input during SNNs inference. Consequently, SpikeLLM fails to convert *Activation-Weight* (aka.
871 **AW**) matrix product in the linear layer and *Activation-Activation* (aka. **AA**) matrix product in the
872 attention layer into fully-spiking matrix product. However, the quantization scale of SpikingLLM is
873 determined during SNNs inference so that SpikingLLM effectively converts **AW** matrix product and
874 **AA** matrix product into the accumulation of spikes as follows:
875

876 for **AW** matrix product: $O_{T_{eq}} = \vec{V}_{thr} \cdot \sum_{t=1}^{T_{eq}} W \cdot \Theta(x_t); \Theta(x_t) \in \{0, \pm 1\}$ (A5)
877

878
879 for **AA** matrix product: $O_{T_{eq}} = \vec{V}_{thr}^Q \vec{V}_{thr}^K \sum_{t_1=1}^{T_{eq}} Q_{t_1} \cdot \sum_{t_2=1}^{T_{eq}} K_{t_2}$
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
180100
180101
180102
180103
180104
180105
180106
180107
180108
180109
180110
180111
180112
180113
180114
180115
180116
180117
180118
180119
180120
180121
180122
180123
180124
180125
180126
180127
180128
180129
180130
180131
180132
180133
180134
180135
180136
180137
180138
180139
180140
180141
180142
180143
180144
180145
180146
180147
180148
180149
180150
180151
180152
180153
180154
180155
180156
180157
180158
180159
180160
180161
180162
180163
180164
180165
180166
180167
180168
180169
180170
180171
180172
180173
180174
180175
180176
180177
180178
180179
180180
180181
180182
180183
180184
180185
180186
180187
180188
180189
180190
180191
180192
180193
180194
180195
180196
180197
180198
180199
180200
180201
180202
180203
180204
180205
180206
180207
180208
180209
180210
180211
180212
180213
180214
180215
180216
180217
180218
180219
180220
180221
180222
180223
180224
180225
180226
180227
180228
180229
180230
180231
180232
180233
180234
180235
180236
180237
180238
180239
180240
180241
180242
180243
180244
180245
180246
180247
180248
180249
180250
180251
180252
180253
180254
180255
180256
180257
180258
180259
180260
180261
180262
180263
180264
180265
180266
180267
180268
180269
180270
180271
180272
180273
180274
180275
180276
180277
180278
180279
180280
180281
180282
180283
180284
180285
180286
180287
180288
180289
180290
180291
180292
180293
180294
180295
180296
180297
180298
180299
180300
180301
180302
180303
180304
180305
180306
180307
180308
180309
180310
180311
180312
180313
180314
180315
180316
180317
180318
180319
180320
180321
180322
180323
180324
180325
180326
180327
180328
180329
180330
180331
180332
180333
180334
180335
180336
180337
180338
180339
180340
180341
180342
180343
180344
180345
180346
180347
180348
180349
180350
180351
180352
180353
180354
180355
180356
180357
180358
180359
180360
180361
180362
180363
180364
180365
180366
180367
180368
180369
180370
180371
180372
180373
180374
180375
180376
180377
180378
180379
180380
180381
180382
180383
180384
180385
180386
180387
180388
180389
180390
180391
180392
180393
180394
180395
180396
180397
180398
180399
180400
180401
180402
180403
180404
180405
180406
180407
180408
180409
180410
180411
180412
180413
180414
180415
180416
180417
180418
180419
180420
180421
180422
180423
180424
180425
180426
180427
180428
180429
180430
180431
180432
180433
180434
180435
180436
180437
180438
180439
180440
180441
180442
180443
180444
180445
180446
180447
180448
180449
180450
180451
180452
180453
180454
180455
180456
180457
180458
180459
180460
180461
180462
180463
180464
180465
180466
180467
180468
180469
180470
180471
180472
180473
180474
180475
180476
180477
180478
180479
180480
180481
180482
180483
180484
180485
180486
180487
180488
180489
180490
180491
180492
180493
180494
180495
180496
180497
180498
180499
180500
180501
180502
180503
180504
180505
180506
180507
180508
180509
180510
180511
180512
180513
180514
180515
180516
180517
180518
180519
180520
180521
180522
180523
180524
180525
180526
180527
180528
180529
180530
180531
180532
180533
180534
180535
180536
180537
180538
180539
180540
180541
180542
180543
180544
180545
180546
180547
180548
180549
180550
180551
180552
180553
180554
180555
180556
180557
180558
180559
180560
180561
180562
180563
180564
180565
180566
180567
180568
180569
180570
180571
180572
180573
180574
180575
180576
180577
180578
180579
180580
180581
180582
180583
180584
180585
180586
180587
180588
180589
180590
180591
180592
180593
180594
180595
180596
180597
180598
180599
180600
180601
180602
180603
180604
180605
180606
180607
180608
180609
180610
180611
180612
180613
180614
180615
180616
180617
180618
180619
180620
180621
180622
180623
180624
180625
180626
180627
180628
180629
180630
180631
180632
180633
180634
180635
180636
180637
180638
180639
180640
180641
180642
180643
180644
180645
180646
180647
180648
180649
180650
180651
180652
180653
180654
180655
180656
180657
180658
180659
180660
180661
180662
180663
180664
180665
180666
180667
180668
180669
180670
180671
180672
180673
180674
180675

Table A4: Comparison between SpikingLLM and MatMul-free LLM. M-LLM refers to MatMul-free-LLM. HS and WG refer to HellaSwag and Winogrande, respectively.

Method	Model	PS(B)	MatMul-free	Bits	PIQA	ARC-e	ARC-c	HS	WG	Avg.(\uparrow)	GPU	Time(\downarrow)
MatMul-free LLM	M-LLM-370M	0.3	✓	—	63.0	42.6	23.8	32.8	49.2	42.3	8 NVIDIA-H100	5 hours
SpikingLLM(ours)	MobileLLM	0.3	✓	W4A5QKV55 W8A5QKV55	63.3 64.8	42.4 43.9	24.7 25.9	43.8 45.1	53.3 53.5	45.5 46.6	1 NVIDIA-4090	52 seconds 61 seconds
MatMul-free LLM	M-LLM-1.3B	1.3	✓	—	68.4	54.0	25.9	44.9	52.4	49.1	8 NVIDIA-H100	84 hours
M-LLM-2.7B	M-LLM-2.7B	2.7	✓	—	71.1	58.5	29.7	52.3	52.1	52.7	8 NVIDIA-H100	173 hours
SpikingLLM(ours)	Llama-3.2-1B	1	✓	W4A4QKV54	68.6	58.2	29.9	55.6	53.8	53.2	1 NVIDIA-4090	72 seconds
	Llama-2-7B	7	✓	W4A4QKV54	73.5	62.0	36.4	68.0	61.6	60.3	1 NVIDIA-4090	269 seconds

Table A6: Comparison with the Llama-2-70B model of SpikELLM. T refers to inference time-step for SNNs. Best results are in **bold**, runner-up results are marked in `gray`.

Method	Category	Fully-Spiking	T	Bits	Perplexity(↓)		PIQA	Zero-shot Accuracy(↑)				
					WT2	C4		ARC-e	ARC-c	HSg	WG	Avg.
<i>LLAMA-2-70B</i>												
SpikeLLM	SNNs	✗	–	W2A16	6.35	9.62	76.44	66.92	38.31	51.86	59.19	58.54
<i>LLAMA-2-13B</i>												
SpikingLLM	SNNs	✓	32	W4A5QKVS5	6.26	8.07	77.26	73.44	43.43	74.37	66.69	67.64
<i>Mistral-7B</i>												
SpikingLLM	SNNs	✓	32	W4A5QKVS5	6.28	8.98	81.44	80.21	56.84	81.03	71.99	74.30

between SpikingLLM and MatMul-free LLM in Table A4, our SpikingLLM surpasses MatMul-free LLM on zero-shot common-sense reasoning tasks with both millions and billions parameters models. Matmul-free LLM (Zhu et al., 2024a) leverages ternary weights to eliminate matrix multiplication in dense layers while optimizing the Gated Recurrent Unit (GRU) (Cho et al., 2014) to remove matrix multiplication from self-attention. The idea that leveraging ternary weights to eliminate matrix multiplication is similar to our refined ternary value(-1, 0, +1) ST-BIF⁺ neuron, but our refined ST-BIF⁺ neuron is introduced to replace activation quantizer. The effectiveness of our SpikingLLM on Matmul-free LLM is that SpikingLLM eliminates matrix multiplication through replacing activation quantizers in quantized large language models with equivalent ST-BIF⁺ neurons, so that SpikingLLM don't need additional training like Matmul-free LLM. We also compare the computational cost between Matmul-free LLM and SpikingLLM in Table A4, our SpikingLLM significantly reduces the computational cost.

We then compare our SpikingLLM with ShiftAddLLM on WikiText2 perplexity in Table A5, our SpikingLLM surpasses ShiftAddLLM on LLMs with both millions and billions parameters. Note that ShiftAddLLM (You et al., 2024a) introduces shift-and-add operations to eliminate weight-activation multiplications, the key limitation is its inability to eliminate activa-
ers). Compared to ShiftAddLLM, our S activation matrix multiplications through models with equivalent refined ST-BI-
guage models.

Table A5: Comparison between ShiftAddLLM and SpikingLLM on WikiText2 Perplexity.

Method	Model	PS(B)	MatMul-free	Bits	WT2 PPL(↓)
ShiftAddLLM	OPT (Zhang et al., 2022)	0.3	✗	W2A16QKVS16	40.24
SpikingLLM(ours)	MobileLLM	0.3	✓	W4A5QKVS5	14.56
				W8A5QKVS5	13.21
ShiftAddLLM	Llama-2-7B	7	✗	W2A16QKVS16	8.11
SpikingLLM(ours)			✓	W4A5QKVS5	7.71
ShiftAddLLM	Llama-2-13B	13	✗	W2A16QKVS16	6.77
SpikingLLM(ours)			✓	W4A5QKVS5	6.26

A7 COMPARISON WITH THE LLAMA-2-70B MODEL OF SPIKELLM

To further demonstrate the effectiveness of our SpikingLLM method, we compared the Llama-2-13B and Mistral-7B models of SpikingLLM with the Llama-2-70B model of SpikeLLM. Table A6 indicates that, even with fewer parameters, our SpikingLLM surpasses SpikeLLM on all perplexity and common-sense reasoning tasks, which further verifies the effectiveness of SpikingLLM.

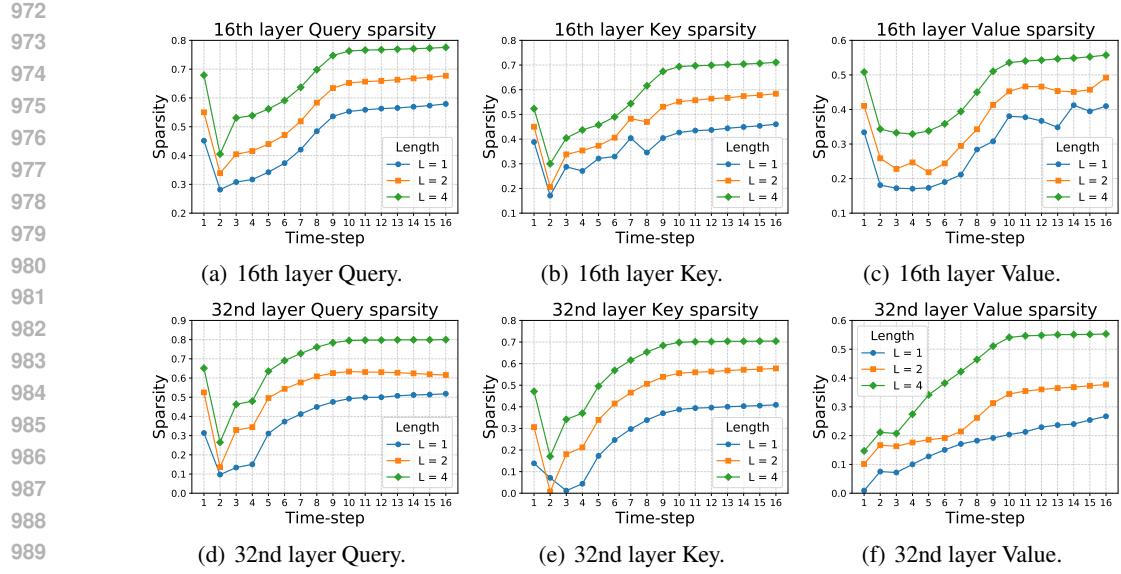


Figure A3: **Sparsity of 16th and 32nd layer Query, Key, Value in Llama-2-7B with each time-step under different inhibiting window lengths.** All visualizations are sampled under W4A4QKVS4.

A8 SPARSITY VISUALIZATION

As depicted in Figure A3, we visualize the sparsity of 16th and 32nd layer Query, Key, Value in Llama-2-7B, which intuitively demonstrates the effectiveness of window inhibition mechanism. Note that, the improvement in sparsity and the reduction in energy consumption are more significant as inhibiting window length L increases.

A9 COMPARISON BETWEEN SPIKINGLLM AND SPIKEZIP-TF

Table A7: Comparison between LSQ and PrefixQuant* on Llama-2-7B.

Model	Quantization Method	Quantization Type	GPU	Time	Bits	WT2 PPL
Llama-2-7B	LSQ PrefixQuant*	QAT PTQ	4*NVIDIA-4090 1*NVIDIA-4090	6 hours 269 seconds	W4A4QKVS4	45.28 11.56

Apart from adapting the A2S conversion method in SpikeZIP-TF (You et al., 2024b) to PrefixQuant framework, we propose three innovations:

- ① To effectively achieve promising QLLMs, we insert post-q quantization and propose QK2Head-migration post-softmax quantization(in Section 4.1) to establish PrefixQuant* (As shown in Figure 3). As illustrated in Table A7, compared to Quantization-Aware Training (QAT) method LSQ (Esser et al., 2020) in SpikeZIP-TF, our PrefixQuant* effectively achieves QLLMs with promising performance.
- ② To establish the equivalence between QLLMs and SNNs, we firstly refine the ST-BIF⁺ neuron in Section 4.2 to make it fully equivalent to quantizer in PrefixQuant* (quantizer with group-size matrix quantization scale). Then we propose SNN-friendly operators in SpikingLLM including Spike KV Cache (in Section 4.3), Spike Softmax, Spike SiLU and Spike RMSNorm (in Section A2).
- ③ In order to suppress redundant continuous $\{\pm 1\}$ spikes from ST-BIF⁺ neuron, we propose window inhibition mechanism in Section 4.2, which significantly improves the sparsity without performance degradation. As illustrated in Table 6 and Table A8, the introduction of window inhibition mechanism significantly improves sparsity and reduces energy consumption without performance degradation.

Table A8: **Ablation on window inhibition mechanism.**

L	Sparsity(\uparrow)	Energy (J)(\downarrow)	LLAMA-2-13B
		WT2(\downarrow)	C4(\downarrow)
1	32.82%	3.96	7.72
2	48.94%	2.66	7.75
4	62.51%	2.08	7.80
			10.32

1026
 1027 To conclude, our SpikingLLM advances SpikeZIP-TF by tailoring the conversion process to LLM-
 1028 specific challenges (e.g., effective PTQ on LLMs with post-softmax quantization, SNN-friendly
 1029 LLMs operators, refined ST-BIF⁺ neuron with window inhibition mechanism to reduce energy
 1030 consumption) and achieving the first fully-spiking billion-parameter language models.
 1031
 1032

A10 ANALYSIS OF OUTLIER TOKENS ON SPIKINGLLM AND PREFIXQUANT.

1033
 1034 We further analyze the outlier tokens between
 1035 SpikingLLM and PrefixQuant in Table A9. We
 1036 follow the definition of outlier tokens in Pre-
 1037 fixQuant (Chen et al., 2025) to detect outlier
 1038 tokens. Given token-wise maximum values
 1039 $M \in \mathbb{R}^T$, which represents the maximum val-
 1040 ues of each token. Then, outlier token in the i -th
 1041 index of token sequence is identified when the
 1042 ratio of their maximum values to the median of
 1043 all maximum values exceeds a threshold η :
 1044

$$\frac{M_i}{\text{median}(M)} > \eta \quad (\text{A7})$$

1045 where M_i is the maximum value of the i -th token, $\text{median}()$ denotes the function to find the median
 1046 value from the vector. We then leverage the same calibration dataset Pile (Gao et al., 2020) and set the
 1047 same outlier threshold $\eta = 64$ to determine outlier tokens before Post-Training Quantization (PTQ).
 1048 Consequently, as shown in Table A9, the introduction of post-q and QK2Head-migration post-softmax
 1049 quantization does not change the outlier tokens for the same model.
 1050

A11 USE OF LLMs

1051
 1052 We leverage LLMs to aid or polish writing. Specifically, LLMs help us find some grammar and
 1053 spelling mistakes after we finish writing.
 1054
 1055

1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079

Table A9: **Comparison on outlier tokens between SpikingLLM and PrefixQuant.**

Model	Method	Prefixed token	
		Number	Content
Llama-2-7B	PrefixQuant	3	. \n [BOS]
	SpikingLLM	3	. \n [BOS]
Llama-2-13B	PrefixQuant	3	. the [BOS]
	SpikingLLM	3	. the [BOS]
Llama-3-8B	PrefixQuant	1	[BOS]
	SpikingLLM	1	[BOS]
Mistral-7B	PrefixQuant	4	. \n to [BOS]
	SpikingLLM	4	. \n to [BOS]