

000 001 002 003 004 005 BIASBUSTERS: UNCOVERING AND MITIGATING TOOL 006 SELECTION BIAS IN LARGE LANGUAGE MODELS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

ABSTRACT

027 Agents backed by large language models (LLMs) often rely on external tools
028 drawn from marketplaces where multiple providers offer functionally equivalent
029 options. This raises a critical point concerning fairness: *if selection is systematically biased, it can degrade user experience and distort competition by privileging some providers over others*. We introduce a benchmark of diverse tool categories,
030 each containing multiple functionally equivalent tools, to evaluate tool-selection
031 bias. Using this benchmark, we test seven models and show that unfairness exists
032 with models either fixating on a single provider or disproportionately preferring
033 earlier-listed tools in context. To investigate the origins of this bias, we conduct
034 controlled experiments examining tool features, metadata (name, description, pa-
035 rameters), and pre-training exposure. We find that: (1) semantic alignment be-
036 tween queries and metadata is the strongest predictor of choice; (2) perturbing
037 descriptions significantly shifts selections; and (3) repeated pre-training exposure
038 to a single endpoint amplifies bias. Finally, we propose a lightweight mitigation
039 that first filters the candidate tools to a relevant subset and then samples uniformly,
040 reducing bias while preserving good task coverage. Our findings highlight tool-
041 selection bias as a key obstacle for the fair deployment of tool-augmented LLMs.
042
043

1 INTRODUCTION

044 Large language models (LLMs) have transformed natural language processing, achieving near-
045 human performance on tasks ranging from code generation to creative writing (Naveed et al., 2024;
046 Luo et al., 2024). Yet LLMs cannot directly act in the world: they cannot query databases, fetch live
047 information, or invoke external services. Additionally, their knowledge remains frozen at training
048 time, leaving them prone to “hallucinations” when asked about events beyond their cutoff (Ji et al.,
049 2023). Augmenting LLMs with external “tools” / APIs addresses these shortcomings by allowing
050 models to delegate specialized functions to dedicated services (Qu et al., 2025). It endows LLMs
051 with the ability to act, a core capability often associated with LLM *agents* (Chowa et al., 2025). A
052 crucial step within the typical tool-usage pipeline is the multi-stage tool-selection process: given
053 an instruction to the LLM, (i) retrieve a short list of the most relevant candidate tools based on the
user query (with, e.g., highest semantic similarity) from a potentially large database of tools, (ii)
insert their metadata into the prompt, (iii) have the LLM reason and pick one to solve (one of) the
necessary user task(s) (see Appendix K covering the entire tool-usage pipeline). However, this pro-
cess introduces a new challenge: bias (see Figure 1). An LLM may prefer certain tools not for their
relevance or accuracy, but because of superficial metadata, i.e., tool names, descriptions, or prompt
ordering. Such bias can degrade user experience by repeatedly selecting slow or unreliable ser-
vices and can, therefore, also inflate operational costs. Additionally, under pay-per-request pricing
for tool use, consider the scenario where such biases are systematic across frontier LLMs: if they
consistently favor tools from a single provider, this creates major market unfairness, disadvantag-
ing competing providers offering functionally equivalent services (RapidAPI, 2025a; Economize,
2024). **See Appendix L covering the consequences of tool-selection bias in more detail.**

054 In this paper, we make three key contributions. **First**, we present a large-scale benchmark for
055 measuring tool selection bias, which we use to conduct the first empirical study of tool-selection bias
056 in LLMs. We introduce total variation-based metrics to quantify selection imbalances, assemble a
057 novel benchmark of clusters of tools with equivalent functionality, and conduct extensive experi-
058 ments across multiple models and configurations. These tell us that bias exists to a certain extent

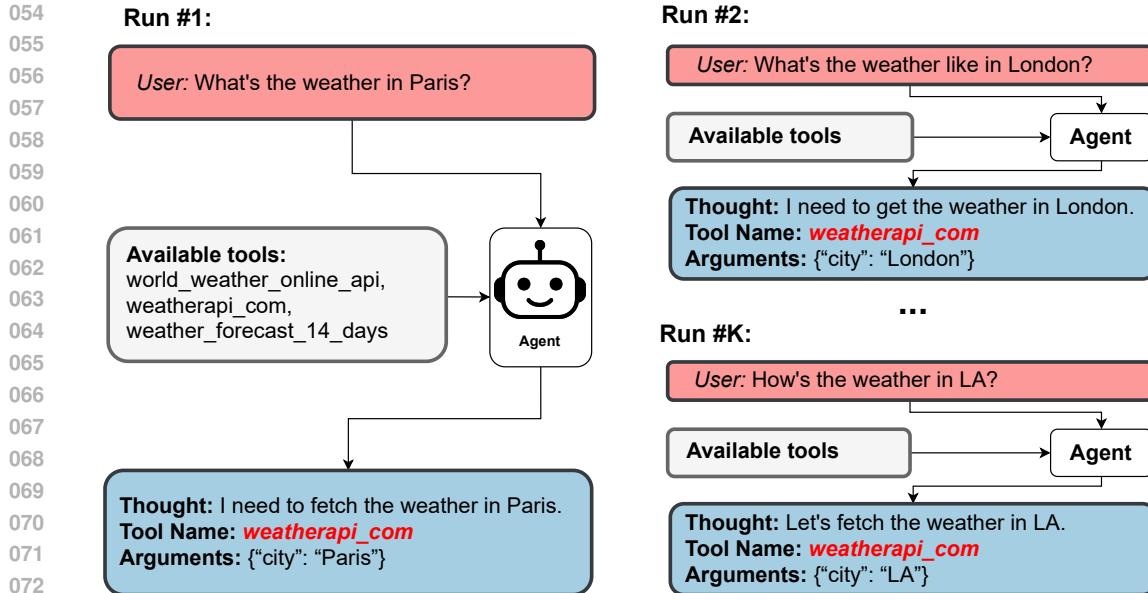


Figure 1: Tool-calling enables LLMs to act through external services, but the selection process introduces bias. Models may favor certain tools based on superficial metadata or position rather than relevance (here “weatherapi.com” is preferred), leading to a potential degraded user experience and unfair concentration of calls. If such biases are systematic across frontier LLMs, they risk distorting entire tool marketplaces, disadvantaging functionally equivalent competitors.

for *all* models tested; models either fixate on a single provider or disproportionately prefer earlier-listed tools in context. **Second**, after confirming the existence of bias, we investigate the root causes of these biases. We define a rich set of tool-level features and use regression and permutation-importance analyses to identify which factors predict selection. We further perturb metadata fields to test their influence and probe whether continued pre-training on biased data can induce persistent preferences. Our findings show that semantic alignment between query and tool description is the strongest interpretable driver of tool choice, metadata interventions on descriptions reliably steer choices, and biased pre-training amplifies preferences. However, none of these fully explain the behavior. **Third**, we propose a lightweight mitigation strategy: filtering the supplied tools to a subset of relevant ones and sampling uniformly among them. This approach substantially reduces bias while still ensuring the user task can be solved.

By uncovering, explaining, and addressing tool-selection bias, our work illuminates a critical blind spot in tool-augmented LLM research. Our contributions go beyond diagnosis: we provide reproducible resources and a simple mitigation strategy that practitioners can adopt immediately. More broadly, we aim to set a foundation for fairer, more reliable tool-calling systems and a precedent to judge tool-calling LLM applications not only by their accuracy but also by the equity of their interactions with external ecosystems. All resources are available online¹.

2 RELATED WORK

Fairness & Bias in LLMs. Bias in large language models emerges from their opaque training on vast web-scale data, often carrying forward and amplifying human prejudices and reasoning shortcuts (Gallegos et al., 2024). Much of the literature has focused on identifying and mitigating these undesirable behaviors (Schick et al., 2021; Gallegos et al., 2024; Bouchard, 2024). Unwanted behaviors in LLMs manifest as social bias, where stereotypes shape outputs and lead to unequal treatment of protected groups, or as cognitive bias, reflecting human-like shortcuts such as anchoring or confirmation effects (Lou & Sun, 2024; Itzhak et al., 2024; O’Leary, 2025). Measuring these phenomena requires domain-specific metrics. For example, to measure how likely a model is to associate a

¹All resources are available on the public GitHub repository.

108 neutral attribute with one group over another, one can utilize the normalized log-probability bias
 109 score (Kurita et al., 2019). Mitigation strategies are diverse and can be deployed at multiple stages
 110 (e.g., at pre-/post-inference via augmentation of training data or rewriting of outputs or during training
 111 via fairness-aware objectives) (Gallegos et al., 2024). However, no single approach suffices for
 112 every scenario; effective debiasing requires interventions matched to the task’s fairness goals and
 113 deployment context. We are not aware of prior work on bias in the tool-use paradigm.

114 **Positional Bias in LLMs.** Prior research has revealed significant positional selection biases in how
 115 LLMs answer multiple-choice questions. Pezeshkpour & Hruschka (2024) and Zheng et al. (2024)
 116 demonstrated that LLMs exhibit sensitivity to the ordering of answer options, with performance
 117 varying systematically based on option position. This was corroborated in the investigation of Wei
 118 et al. (2024) who also found token sensitivity, where specific token characteristics at different pos-
 119 itions affect selection. Recently Wang et al. (2025), analyses the underlying model mechanisms that
 120 give rise to position bias and proposed a mechanistic approach to eliminating it. In this work we
 121 study a investigate a broad range of potential biases in the critical context of tool selection.

122 **Fairness in Tool Selection.** Research on tool-selection bias is limited; however, some works in
 123 information retrieval address related issues such as positional or ranking bias (Dai et al., 2024;
 124 Ziems et al., 2024). Similarly, in code generation, favoritism for certain providers has been observed
 125 (Zhang et al., 2025). However, these studies do not examine the specific setting of tool selection
 126 among providers. Recent studies do show that LLMs can develop systematic preferences in this
 127 setting, for example, for selecting tools with manipulated metadata (Mo et al., 2025; Faghah et al.,
 128 2025). Analogously, one study shows an advanced attack on tool selection which splits malicious
 129 tool entries into fragments optimized for retrieval and selection, achieving high success rates while
 130 evading defenses (Shi et al., 2025). These findings reveal that tool-selection mechanisms are highly
 131 fragile and susceptible to both naive and advanced exploitation. In contrast to overt adversarial
 132 attacks, our study focuses on subtler sources of bias: small, non-adversarial differences in phrasing
 133 or metadata that can still distort fairness in tool selection.

134 3 BIASBUSTERS: HOW WE UNCOVER, EXPLAIN, AND MITIGATE BIAS.

135 In this section, we present our end-to-end framework for uncovering and explaining tool-selection
 136 bias in LLMs. We start in Section 3.1 by introducing our formal definition of this bias. In Section
 137 3.2, we describe how we generate a comprehensive benchmark of API clusters and user queries that
 138 enables systematic measurement of selection behavior. Section 3.3 details our analysis pipeline for
 139 explaining bias.

140 3.1 BIAS DEFINITION

141 Tool-selection bias captures the extent to which an LLM systematically favors certain APIs over
 142 others for reasons unrelated to their true utility. Formally:

143 **Definition 3.1** *Tool-selection bias is the systematic tendency of a model to favor certain APIs over
 144 others for reasons unrelated to the APIs’ true relevance or utility for the task.*

145 To quantify this bias, we compare a model’s empirical selection rates against an ideal uniform
 146 choice. Consider a cluster of K APIs that can all solve a given query q . A perfectly unbiased
 147 model would select each API with probability $1/K$, forming a uniform distribution U . Let
 148 $P^{\text{API}} = (P_1^{\text{API}}, \dots, P_K^{\text{API}})$ denote the expected empirical selection-rate distribution over the cluster
 149 under all orderings of the API list. We measure cluster-level bias via the total variation distance

$$150 \delta_{\text{API}} = \frac{1}{2} \sum_{i=1}^K \left| P_i^{\text{API}} - \frac{1}{K} \right| = \text{TV}(P^{\text{API}}, U).$$

151 Prior work has shown that list order itself can introduce bias: when multiple identical tools ap-
 152 pear in sequence, the first position is favored Faghah et al. (2025). To capture this effect, we
 153 also record the expected selection-rate distribution over absolute positions, P^{pos} , and compute
 154 $\delta_{\text{pos}} = \frac{1}{2} \sum_{i=1}^K \left| P_i^{\text{pos}} - \frac{1}{K} \right|$. Combining both yields an overall bias metric: $\delta_{\text{model}} = \frac{\delta_{\text{API}} + \delta_{\text{pos}}}{2}$.
 155 Note that a high positional bias δ_{pos} can be mitigated by randomizing API order at prompt time,
 156 whereas API-level bias δ_{API} requires deeper intervention.

162 3.2 DATASET GENERATION
163

164

165 We build on the ToolLLM pipeline (Qin et al., 2024), which provides a large repository of APIs
 166 scraped from RapidAPI (RapidAPI, 2025b). To measure tool-selection bias, we construct a bench-
 167 mark of functionally interchangeable APIs. Specifically, we cluster APIs into groups performing
 168 the same task (e.g., weather forecasting or translation), and generate balanced, provider-agnostic
 169 user queries that all APIs in a cluster can answer. The final benchmark consists of 10 clusters, each
 170 containing 5 APIs and 100 queries, yielding 1,000 total cluster-query pairs. Running LLMs on this
 171 benchmark produces empirical API-selection distributions, from which we compute our bias metrics
 172 δ_{API} , δ_{pos} , and δ_{model} . See Appendix A for clustering and query-generation details.
 173

174

175

176 3.3 EXPLAINING BIAS
177

178

179 To pinpoint what drives tool-selection bias, we pursue three complementary analyses.

180

Attribute-Level Analysis. To test whether intrinsic API characteristics explain model preferences,
 181 we extract seven descriptive features for each API. Examples include semantic similarity between
 182 queries and descriptions, number of parameters, description length, readability, and promotional
 183 wording (See Table 3 for the full list). Our benchmark contains 10 clusters with 5 APIs each, giv-
 184 ing 50 APIs in total. For each API, we measure its empirical selection rate and pair this with its
 185 feature values. This produces a dataset of 50 (API, features, selection rate) entries per model. We
 186 then probe relationships between features and selection behavior in three ways. First, we compute
 187 *Pearson correlations* between tool features and selection rate to capture linear and monotonic as-
 188 sociations. Second, we fit a *linear regression* per model to quantify the aggregate explanatory power
 189 (reported as R^2) and inspect coefficients to understand the direction and relative weight of each
 190 feature. Third, we train *random-forest regressors* with cross-validation to allow for non-linear in-
 191 teractions and obtain alternative measures of feature importance. This pipeline reveals which API
 192 attributes most strongly influence the model’s choices.

193

Metadata Perturbation Experiments. To isolate the superficial cues that drive tool-selection pref-
 194 erences, we apply a series of controlled perturbations to tool metadata. Specifically, we utilize
 195 the following manipulations: (1) *Full name scramble*. Replace every tool’s name with a fresh
 196 20-character random string, destroying any learned association tied to the literal name; (2) *Name*
 197 *shuffle*. Permute the tool names among APIs within each cluster so that names no longer align
 198 with their original endpoints; (3) *Single-tool perturbation*. Identify the most frequently chosen tool
 199 in each cluster and replace only its name with a random string; (4) *Description and parameter*
 200 *scramble*. Randomize each tool’s descriptive text and parameter description(s) (but keep the orig-
 201 inal names intact) to test whether the semantic content beyond the name influences selection; (5)
 202 *Description-only / Parameter-only scramble*. Randomize only the tool descriptions (keeping pa-
 203 rameter descriptions intact), or only the parameter descriptions (keeping the tool description intact),
 204 to disambiguate their individual contributions; (6) *Targeted description scramble (most-selected)*.
 205 Identify the most frequently chosen API in each cluster and scramble only *its* description to test
 206 whether degrading its semantics reduces its selection share; (7) *Description transfer (most → least)*.
 207 Swap the most-selected API’s description with the least-selected API while leaving other metadata
 208 untouched, assessing whether swapping semantic “advantage” transfers selection probability; and
 209 (8) *Full scramble*. Randomize each tool’s descriptive text, parameter description(s), and tool names
 210 to test the effect of having minimal semantic signal in API metadata on bias.

211

212 By re-running our selection experiments under these alterations, we quantify how much of the ob-
 213 served bias is attributable to literal names, to deeper semantic content in descriptions and parameters,
 214 and to relative contrast between a clean and corrupted endpoint.

215

Biased Continued Pre-Training. We also test whether pre-training data itself can induce tool-
 216 selection bias. To verify this hypothesis, we perform biased continued pre-training (CPT) on Qwen3-
 217 8B using ~ 3.5 M tokens deliberately saturated with a single API’s metadata. See Appendix C for
 218 additional details on corpus construction and training setup.

216	Available tools:	217	Available tools:	218	Available tools:
218	* API A	219	* API C	220	* API B
219	* API B	220	User:	221	User:
220	* API C	221	What is the weather in Paris?	222	What is the weather in Paris?
222		223		224	

Figure 2: Cyclic rotations of one fixed tool list; each API appears at the top once.

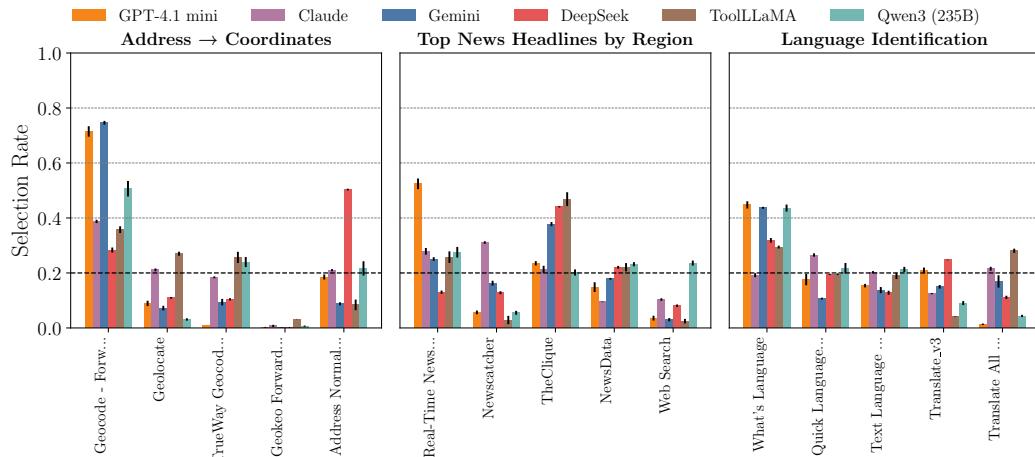


Figure 3: Selection distributions for six LLMs across three clusters of functionally equivalent APIs. Each subplot corresponds to one cluster, with the x-axis indicating the API in the cluster and the y-axis showing the (mean) fraction of times each model chose that API over 500 inference runs; error bars indicate the standard deviation across three independent experimental runs. The optimal uniform selection rate is highlighted.

4 EXPERIMENTS

This section reports the empirical results from our experiments. We first describe the experimental setup (Section 4.1), then characterize tool-selection behavior and quantify bias using our metrics (Section 4.2). Next, we investigate the drivers of bias (Section 4.3), and finally, we evaluate an approach to mitigate any observed bias in Section 4.4.

4.1 EXPERIMENTAL SET-UP

Models. We evaluate a diverse set of LLMs, including GPT-3.5-turbo and GPT-4.1-mini by OpenAI (2025), Claude 3.5 Sonnet by Anthropic (2025), DeepSeek-V3.2-Exp (DeepSeek-AI et al., 2025), Gemini 2.5 Flash (Google, 2023), ToolLLaMA-2-7B (Qin et al., 2024), and Qwen3 models spanning 1.7B to 235B parameters (Bai et al., 2023).

Reasoning. Each model is prompted to produce a short chain of thought (Wei et al., 2022) followed by at most one tool call. This design makes outputs efficient to generate and easy to analyze.

Parameter Setup & Dataset. Experiments use our benchmark of 10 clusters, each containing 5 interchangeable APIs and 100 distinct user queries (Section 3.2 and Appendix A). Unless otherwise noted, decoding uses a temperature of 0.5 and a top-p of 1.0.

API ordering. As noted in previous work (Faghah et al. (2025)), LLMs prefer tools that appear earlier in the prompt. To control for this, we execute each query five times, each with a different cyclic rotation of a fixed API ordering (see Figure 2). This ensures that every API appears at the top for a given query exactly once.

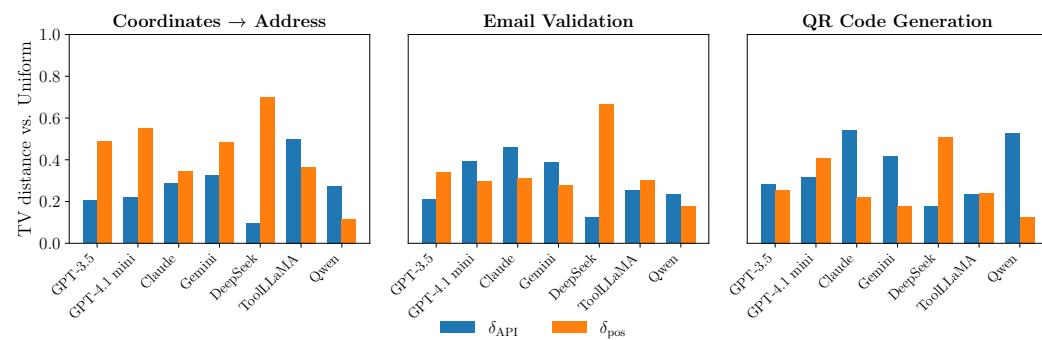


Figure 4: API- vs. positional bias by model for three clusters. Bars show total-variation deviation from uniform, where higher values indicate stronger bias.

Table 1: Average cluster-level API bias δ_{API} , positional bias δ_{pos} , and combined bias δ_{model} (mean across clusters and runs \pm std across runs).

Model	δ_{API}	δ_{pos}	δ_{model}
Gemini 2.5 Flash	0.365 ± 0.003	0.306 ± 0.005	0.335 ± 0.002
Claude 3.5 Sonnet	0.370 ± 0.005	0.325 ± 0.005	0.347 ± 0.001
DeepSeek-V3.2-Exp	0.249 ± 0.003	0.504 ± 0.003	0.377 ± 0.001
Qwen3 235B	0.330 ± 0.006	0.168 ± 0.004	0.249 ± 0.001
ToolLaMA	0.277 ± 0.002	0.391 ± 0.002	0.334 ± 0.002
GPT-3.5-turbo	0.320 ± 0.022	0.336 ± 0.012	0.328 ± 0.005
GPT-4.1 mini	0.331 ± 0.008	0.423 ± 0.002	0.377 ± 0.004

4.2 HOW DO LLMs SELECT AMONG FUNCTIONALLY EQUIVALENT APIs?

Figure 3 shows our first results: the empirical selection distributions of six LLMs over three clusters of functionally equivalent APIs (see Appendix G.2 for the full figure including all clusters). Choices are far from uniform. In some clusters (e.g., geocoding), all models concentrate heavily on a single API, whereas in others (e.g., language identification) the distributions are flatter. We also observe that different models do not always prefer the same API, a point we explore further when analyzing alignment in selection behavior.

Positional bias persists even when API-level preference is weak. Figure 4 summarizes API- vs. positional-bias (measured as total variation distance from uniform) across models and clusters. We notice two regimes: high API bias with low positional bias, or low API bias with high positional bias; a few exhibit both elevated. This pattern indicates that when no API clearly dominates, models rely more on positional cues.

The extent of LLM bias in tool selection. To get an idea of *how* biased each model is in their tool-selection behavior, we compute the positional bias δ_{pos} , API bias δ_{API} , and their average δ_{model} for seven different models (Section 3.1). Table 1 reports these metrics averaged across all clusters and three runs. All models exhibit substantial bias: δ_{model} values are around 0.3–0.4, meaning that roughly 30–40% of the selection probability mass would have to be redistributed to achieve fairness. GPT-4.1 mini is especially biased, with a combined metric of ~ 0.38 . The least biased model in our suite is Qwen 3 (235B), which attains the lowest δ_{model} .

LLMs are (mostly) aligned in their bias. To examine the similarity of selection behavior of the different models, we represent each model by a vector obtained by concatenating its empirical selection distributions over APIs across all clusters, then compute pairwise Pearson correlations between these vectors; the resulting matrix is shown in Figure 15. It shows that many of the models share

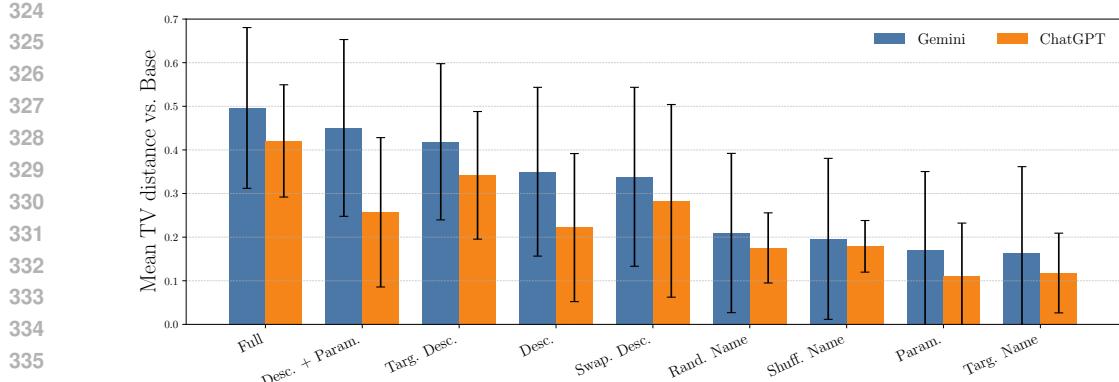


Figure 5: Mean total-variation (TV) distance from the base selection distribution (no perturbation) to the distribution pertaining to each metadata perturbation (higher = larger shift). Blue bars show results for Gemini and orange bars for GPT-3.5. The error bars denote standard deviation across clusters. The run-to-run standard deviation is left out; max run-to-run variability of per-run mean TV was 0.084.

similar bias patterns: GPT 4.1-mini, Claude, Gemini, DeepSeek, and Qwen3 (235B) tend to favor and disfavor the same APIs. GPT-3.5 and ToolLLaMA stand apart with consistently lower correlations, suggesting qualitatively different selection behavior. This clustering of high correlations points to common drivers of bias. This could be due to a shared set of similar implicit decision rules. The relative divergence of GPT-3.5 and ToolLLaMA highlights that model architecture, capacity, or training objective can alter these tendencies, but overall alignment underscores that tool-selection bias patterns are not isolated quirks but mostly reproducible phenomena across LLMs.

Ablation and Sensitivity Analysis. We also analyze the robustness of tool-selection bias across several factors (full results in Appendix E). *Temperature*: raising temperature reduces bias modestly by softening extreme preferences. *Top-p*: increasing top-p has only a negligible effect. *Model size*: larger models exhibit noticeably less bias than smaller ones. *API ordering*: cyclic vs. random permutations produce very similar outcomes, indicating intrinsic preferences dominate. *System prompts*: rewording or restructuring prompts shifts which tools are favored, but does not remove bias. *Toolset size*: the composition of the toolset given in context is the primary driver of selection behavior, more than the size of the toolset alone (see Appendix J).

4.3 ARE TOOL-SELECTIONS DRIVEN BY HUMAN-INTERPRETABLE HEURISTICS?

We investigate the drivers of bias along three complementary axes: (i) feature-level correlations between API attributes and selection rates, (ii) direct interventions on API metadata, and (iii) biased continued pre-training (CPT) to test whether exposure alone can plant preferences. We summarise our results below, with full details in Appendix F.

Which API-level features predict selection rates? The results show a consistent pattern: (1) Semantic similarity between queries and API / tool descriptions is the strongest predictor of selection (Table 4). By contrast, structural or stylistic attributes (e.g., parameter count, promotional wording) exhibit little consistent influence. (2) Linear regression reveals that surface-level semantic alignment is the primary signal but leaves a lot unexplained ($R^2 < 0.4$ as can be seen in Figure 13), and (3) Random forests fail to offer meaningful improvement.

How do metadata interventions affect API selection? Figure 5 shows the TV distance from the base selection distribution to the distribution obtained after a certain metadata perturbation, averaged over clusters and experimental runs. It shows a clear hierarchy: logically minimizing semantic signal by scrambling the description, name, and parameters causes the biggest shift. For Gemini, corrupting descriptions+parameters yields the second largest, most reliable shifts in selection (0.450 ± 0.203 TV), followed by scrambling the description of the most popular tool (0.419 ± 0.179), and even description swaps meaningfully steer choices (0.338 ± 0.205). By contrast, name-only per-

turbations are smaller and have higher variance, and parameters-only are the least impactful. We see similar results for GPT; description perturbation is more impactful than name/parameter perturbations. Overall sensitivity is higher for Gemini than GPT (mean TV 0.310 vs 0.234), indicating greater responsiveness to metadata changes.

We show similar results across clusters in Figure 14; however, we observe that manipulating the description of certain tools has mixed effects from cluster to cluster. It tells us that the impact of description tampering is context-dependent: the same intervention can invert, redistribute, or barely change preferences, underscoring that tool choice emerges from multiple interacting cues.

Together, these patterns indicate that description-level semantics are the primary cues models use to discriminate among functionally similar APIs. Name perturbation alone tends to inject noise without consistent effects. Finally, bias persists under minimal semantic signal (only leaving certain parameter schema fields intact), implying selection behavior sometimes relies on residual, non-obvious priors rather than solely on coherent, human-interpretable heuristics. For an analysis of the impact of metadata perturbations on bias, see Appendix H.

Does additional pre-training exposure to one endpoint change selection distribution? We run biased continued pre-training on Qwen3-8B in which the training corpus is saturated with metadata for a single target endpoint (Text Language by API-Ninjas)². All inference settings, prompts, and decoding parameters are held fixed; only the checkpoint changes (see full training and inference hyperparameters in Appendix I). We then compare selection rates within the same Language Identification cluster before CPT and after $\sim 1/3$, $\sim 2/3$, and one full epoch of biased training (See Figure 17 for full figure). We observe that biased CPT substantially increases the selection of the exposed endpoint but does not fully determine choice. The target endpoint’s share rises from 0.006 (base) to 0.122 after 1/3 epoch, remains 0.122 at 2/3 epoch, and nudges to 0.128 at one epoch. This is an absolute gain of ~ 12 percentage points (over $20\times$ relative). Most of the shift is realized early, suggesting a quickly saturating response. This demonstrates that biased exposure during training can directly shape tool-selection preferences in favor of the exposed endpoint. However, since the target never approaches a dominant share, pre-training exposure explains only part of the bias, and additional factors still shape tool choice.

4.4 CAN WE MITIGATE THE OBSERVED BIAS?

After demonstrating the existence and causes of bias, we seek to mitigate it. Our approach is simple: models often recognize which APIs can solve a certain task, but still exhibit skewed preferences among interchangeable endpoints. Hence, we propose to decouple recognition from selection via a lightweight debiasing module. This module uses a smaller LLM (Qwen3-14B), prompted to return only the subset of APIs from the candidate list that can solve the given query. We then choose uniformly at random from this subset, ensuring that each valid API has the same expected probability of selection. This eliminates positional or metadata-based favoritism while maintaining task coverage. See Appendix D for benchmark details and evaluation metrics. This section showcases the potential of the method and outlines how it can help.

Subset selection avoids spurious inclusions of incorrect APIs while maintaining high coverage of correct APIs, thereby mitigating bias without sacrificing performance. Table 2 summarizes results for Qwen3-14B as the subset selector. Overall micro-precision is ~ 1.00 (0.9964), meaning the selector almost never adds tools to the candidate set that cannot solve the user’s task. This is a desirable property as it means that our mitigation module is unlikely to output an incorrect tool, and therefore, performance will not suffer. Note that since all ground-truth set size classes have nearly the same number of queries, micro- and macro-precision are effectively equivalent; we report micro-precision for simplicity. Micro-recall is ~ 0.89 (0.8856), so on average the selector itself is not biased and retains most ground-truth tools, with an exact set match of 0.69 across all instances. Broken out by the size of the ground-truth set K , precision remains essentially perfect across the board, while recall varies: it is strongest at $K=4$ (0.9633) and somewhat lower at $K=2$ (0.7717) and $K=5$ (0.8610). The corresponding exact-match rates reflect the same pattern (notably 0.9100 at $K=4$). In practice, this means the subset filter very rarely introduces distracting tools (good for performance), but it can occasionally omit a true option when K is small or large.

²We use this model because its smaller size makes training tractable on modest hardware.

Table 2: Subset-selection performance for Qwen3 (14B) (overall and by ground-truth set size K).

Overall		By ground-truth set size K				
		K	n	Precision	Recall	Exact Set Match
Micro-Precision	0.9964	2	300	1.0000	0.7717	0.5433
Micro-Recall	0.8856	3	200	0.9925	0.8850	0.7350
Exact Set Match Rate	0.6900	4	300	0.9940	0.9633	0.9100
		5	200	1.0000	0.8610	0.5350

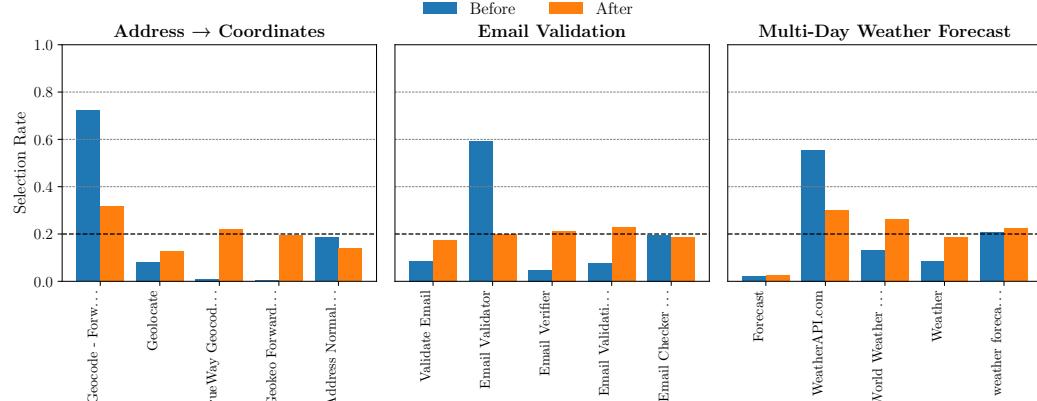


Figure 6: Selection distributions for GPT-4.1 mini with and without utilizing our mitigation method across three clusters. Each subplot corresponds to one cluster, with the x-axis indicating the API in the cluster and the y-axis showing the fraction of times that API was chosen using the corresponding setup over 500 inference runs.

Taken together, these results suggest subset selection is a promising first line of defense: it does not lead to spurious inclusions (high precision) and maintains high coverage of correct APIs on average, and thus, less bias downstream (strong recall).

Our mitigation method successfully alleviates tool-selection bias. Figure 6 shows the empirical selection distributions of GPT-4.1 mini before and after applying our mitigation method over three clusters of functionally equivalent APIs. Where choices were far from uniform before, after the mitigation method is applied we notice an even spread of selection share. However, in the weather forecasting cluster (right), we see that one API is still being underutilized, perhaps being an indication that the model has a difficult time using this API correctly even when it is the only API available. The effectiveness of the mitigation method is further exemplified in Table 5, where a steep decrease in all our bias metrics after applying the mitigation method can be observed.

5 CONCLUSION

In this paper, we introduced the first benchmark for evaluating tool selection bias in LLMs. Our results establish tool selection bias as a real and potentially significant issue for tool-augmented (agentic) LLMs, with implications for user experience, operational cost, and marketplace fairness. This study offers a concrete starting point for understanding and mitigating this bias.

Limitations: This study is limited by using 100 synthetically generated user queries per cluster and a narrow seven-feature set for selection-rate predictions, limited model/repeat coverage, and a focus on APIs from RapidAPI and English queries. Although our choices were constrained by compute (our setup already required $\sim 500,000$ inference runs), these factors may induce variance and restrict generality.

486

Future Work: Future work should scale queries and clusters and enrich features with deeper semantic and structural signals to raise predictive power beyond the modest observed R^2 . In addition, deploying more expressive models (e.g., boosted trees or deep nets) with cross-validation could capture higher-order interactions between tool features, further increasing their explanatory power. Lastly, broader replication across LLMs and runs would aid in quantifying variability.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

ETHICS STATEMENT

This research did not involve identifiable human data or animals and therefore did not require approval from an institutional ethics committee or review board. All experiments are conducted for scientific purposes only. The work does not involve or target any sensitive attributes such as gender, race, nationality, or skin color. Our study focuses on identify and mitigate tool-selection bias in LLM agents, with the aim of improving the trustworthiness and safety of LLM agents deployment.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our work. We provide detailed descriptions of data and experimental setup in Section 4. We have already included an anonymous version of our code in the public GitHub repository to facilitate replication.

Additional note. During initial experiments we observed an unusually large standard deviation in DeepSeek’s selection distributions for certain clusters. When we re-ran the experiments under the same configuration, this anomaly disappeared. Since we use the generic `deepseek-chat` endpoint for our LLM calls, which always serves the latest model version, one of the later runs was executed after a silent model update and thus, ran with a different model. All DeepSeek results reported in the current version of the paper are based on a fresh set of runs collected using the same model, which removes the anomalous error bars.

REFERENCES

Anthropic. Meet Claude Anthropic, 2025. URL <https://www.anthropic.com/clause>.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.

Dylan Bouchard. An actionable framework for assessing bias and fairness in large language model use cases. *arXiv preprint arXiv:2407.10853*, 2024.

Sadia Sultana Chowdhury, Riasad Alvi, Subhey Sadi Rahman, Md Abdur Rahman, Mohaimenul Azam Khan Raian, Md Rafiqul Islam, Mukhtar Hussain, and Sami Azam. From language to action: A review of large language models as autonomous agents and tool users. *arXiv preprint arXiv:2508.17281*, 2025.

Sunhao Dai, Chen Xu, Shicheng Xu, Liang Pang, Zhenhua Dong, and Jun Xu. Bias and unfairness in information retrieval systems: New challenges in the ILM era. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, 2024.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng

594 Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
 595 Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
 596 Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
 597 Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
 598 Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
 599 aoshua Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
 600 Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
 601 Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
 602 Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
 603 Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
 604 Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
 605 Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
 606 Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
 607 Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
 608 Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
 609 ment learning. *arXiv preprint arXiv:2501.12948*, 2025.

610 Economize. AWS API Gateway Pricing and 5 Strategies for Cost Reduction, 2024. URL <https://www.economize.cloud/blog/aws-api-gateway-pricing/>.

611

612 Kazem Faghah, Wenxiao Wang, Yize Cheng, Siddhant Bharti, Gaurang Sriramanan, Sriram Bal-
 613 subramanian, Parsa Hosseini, and Soheil Feizi. Gaming tool preferences in agentic llms. *arXiv*
 614 *preprint arXiv:2505.18135*, 2025.

615

616 Isabel O. Gallegos, Ryan A. Rossi, Joe Barrow, Md. Mehrab Tanjim, Sungchul Kim, Franck Der-
 617 noncourt, Tong Yu, Ruiyi Zhang, and Nesreen K. Ahmed. Bias and fairness in large language
 618 models: A survey. *Comput. Linguistics*, 2024.

619

620 Google. Introducing Gemini: our largest and most capable AI model. 2023. URL <https://blog.google/technology/ai/google-gemini-ai/>.

621

622 GrandViewResearch. API Marketplace Market (2025 - 2030), 2025. URL
 623 [https://www.grandviewresearch.com/industry-analysis/
 624 api-marketplace-market-report](https://www.grandviewresearch.com/industry-analysis/api-marketplace-market-report).

625

626 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 627 and Weizhu Chen. Lora: Low-rank adaptation of large language models. In *The Tenth Interna-
 628 tional Conference on Learning Representations, ICLR*, 2022.

629

630 Itay Itzhak, Gabriel Stanovsky, Nir Rosenfeld, and Yonatan Belinkov. Instructed to bias: Instruction-
 631 tuned language models exhibit emergent cognitive bias. *arXiv preprint arXiv:2308.00225*, 2024.

632

633 Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
 634 Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. *ACM*
 635 *Computing Surveys*, 2023.

636

637 Keita Kurita, Nidhi Vyas, Ayush Pareek, Alan W Black, and Yulia Tsvetkov. Measuring bias in
 638 contextualized word representations. In *Proceedings of the First Workshop on Gender Bias in
 639 Natural Language Processing*, 2019.

640

641 Jiaxu Lou and Yifan Sun. Anchoring bias in large language models: An experimental study. *arXiv*
 642 *preprint arXiv:2412.06593*, 2024.

643

644 Xiaoliang Luo, Akilles Rechardt, Guangzhi Sun, Kevin K. Nejad, Felipe Yáñez, Bati Yilmaz,
 645 Kangjoo Lee, Alexandra O. Cohen, Valentina Borghesani, Anton Pashkov, Daniele Marinazzo,
 646 Jonathan Nicholas, Alessandro Salatiello, Ilia Sucholutsky, Pasquale Minervini, Sepehr Razavi,
 647 Roberta Rocca, Elkhan Yusifov, Tereza Okalova, Nianlong Gu, Martin Ferianc, Mikail Khona,
 648 Kaustubh R. Patil, Pui-Shee Lee, Rui Mata, Nicholas E. Myers, Jennifer K. Bizley, Sebas-
 649 tian Musslick, Isil Poyraz Bilgin, Guiomar Niso, Justin M. Ales, Michael Gaebler, N. Apurva
 650 Ratan Murty, Leyla Loued-Khenissi, Anna Behler, Chloe M. Hall, Jessica Dafflon, Sherry Dongqi
 651 Bao, and Bradley C. Love. Large language models surpass human experts in predicting neuro-
 652 science results. *Nature Human Behaviour*, 2024.

648 Kanghua Mo, Li Hu, Yucheng Long, and Zhihao Li. Attractive metadata attack: Inducing llm agents
 649 to invoke malicious tools. In *Advances in Neural Information Processing Systems (NeurIPS)*,
 650 2025.

651

652 Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar, Muhammad Usman,
 653 Naveed Akhtar, Nick Barnes, and Ajmal Mian. A comprehensive overview of large language
 654 models. *arXiv preprint arXiv:2307.06435*, 2024.

655 OpenAI. ChatGPT, 2025. URL <https://openai.com/chatgpt/overview/>.

656

657 Daniel E. O’Leary. Confirmation and specificity biases in large language models: An explorative
 658 study. *IEEE Intelligent Systems*, 2025.

659

660 Pouya Pezeshkpour and Estevam Hruschka. Large language models sensitivity to the order of op-
 661 tions in multiple-choice questions. *NAACL*, 2024.

662

663 Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
 664 Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
 665 Dahai Li, Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large language models to master
 666 16000+ real-world apis. In *The Twelfth International Conference on Learning Representations*,
 667 *ICLR*, 2024.

668

669 Chang Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, Shuaiqiang Wang, Dawei Yin, Jun Xu, and
 670 Ji-rong Wen. Tool learning with large language models: a survey. *Frontiers of Computer Science*,
 671 2025.

672

673 RapidAPI. Monetizing your API on Rapidapi.com, 2025a. URL <https://docs.rapidapi.com/docs/monetizing-your-api-on-rapidapicom>.

674

675 RapidAPI. Nokia acquires Rapid technology and team!, 2025b. URL <https://rapidapi.com/>.

676

677 Timo Schick, Sahana Udupa, and Hinrich Schütze. Self-diagnosis and self-debiasing: A proposal for
 678 reducing corpus-based bias in nlp. *Transactions of the Association for Computational Linguistics*,
 679 2021.

680

681 Jiawen Shi, Zenghui Yuan, Guiyao Tie, Pan Zhou, Neil Zhenqiang Gong, and Lichao Sun. Prompt
 682 injection attack to tool selection in llm agents. *arXiv preprint arXiv:2504.19793*, 2025.

683

684 Ziqi Wang et al. Eliminating position bias of language models: A mechanistic approach. *ICLR*,
 685 2025.

686

687 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
 688 Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
 689 models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh
 690 (eds.), *Advances in Neural Information Processing Systems (NeurIPS)*, 2022.

691

692 Sheng-Lun Wei et al. Unveiling selection biases: Exploring order and token sensitivity in large
 693 language models. *ACL*, 2024.

694

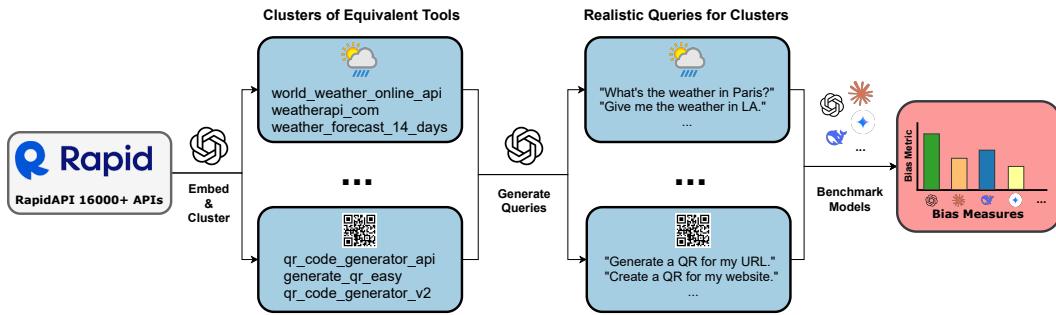
695 Xiaoyu Zhang, Juan Zhai, Shiqing Ma, Qingshuang Bao, Weipeng Jiang, Qian Wang, Chao Shen,
 696 and Yang Liu. The invisible hand: Unveiling provider bias in large language models for code
 697 generation. *Association for Computational Linguistics ACL 2025*, 2025.

698

699 Chujie Zheng et al. Large language models are not robust multiple choice selectors. *ICLR*, 2024.

700

701 Caleb Ziems, William Held, Jane Dwivedi-Yu, and Diyi Yang. Measuring and addressing indexical
 702 bias in information retrieval. In *Findings of the Association for Computational Linguistics ACL*
 703 2024, 2024.

702 A MORE DETAILS ON DATA GENERATION
703
704716 Figure 7: An overview of our clustering and query generation pipeline.
717

718 We build on the “tool-usage” evaluation pipeline introduced by Qin et al. (2024), hereafter referred
719 to as ToolLLM, owing to its wide adoption and extensibility. At its core, ToolLLM assembles a large
720 catalog of real-world APIs scraped from RapidAPI spanning 49 functional categories (RapidAPI,
721 2025b). For each API, ToolLLM provides a JSON file containing the API’s human-readable
722 name, detailed description, and full parameter schema. In this work, we leverage exactly that API
723 repository but restrict our attention to the stages in which ToolLLM selects among a short list of
724 retrieved candidates. Note that in ToolLLM, a set of closely-related APIs is called a ‘tool’. For
725 example, a geocoding tool could offer both forward geocoding and reverse geocoding APIs³.

726 We assemble our benchmark in two stages: (1) clustering APIs into functionally equivalent
727 groups, and (2) generating realistic user queries for each group (see Figure 7).
728

730 **Algorithm 1** Generation of Functionally-Equivalent API Clusters

731 **Require:** API id to metadata map π ,
732 Precomputed embeddings E ,
733 List of “general” APIs $G = \{(tool, tool_desc, api_name, api_desc)\}$,
734 neighbor count K ,
735 max outlier loops R
736 1: $\mathcal{C} \leftarrow \emptyset$
737 2: **for all** $(tool, tool_desc, api_name, api_desc) \in G$ **do**
738 3: Construct query text $q = “tool:tool_desc | api_name:api_desc”$
739 4: Embed q with ADA: $\mathbf{v}_q \leftarrow \text{Embed}(q)$
740 5: Compute cosine similarities: $s_i \leftarrow \cos(\mathbf{v}_q, E_i) \quad \forall i$
741 6: Select top- K unique tools with largest similarity and store in set TOP_K
742 7: candidate $\leftarrow \{\pi[i] \mid i \in \text{TOP}_K\}$
743 8: **for** $r \leftarrow 1$ **to** R **do**
744 9: Prompt GPT-4 to detect outliers: outliers $\leftarrow \text{DetectOutliers}(\text{candidate})$
745 10: **if** outliers $= \emptyset$ **then break**
746 11: **end if**
747 12: Remove outliers from candidate: candidate $= \text{candidate} \setminus \text{outliers}$
748 13: **end for**
749 14: **if** $|\text{candidate}| > 3$ **then**
750 15: $\mathcal{C} \leftarrow \mathcal{C} \cup \{\text{candidate}\}$
751 16: **end if**
752 17: **end for**
753 18: **return** \mathcal{C}

754 ³Geocoding is the process of converting between human-readable addresses and geographic coordinates:
755 “forward” geocoding maps an address (e.g., “1600 Amphitheatre Parkway”) to its latitude/longitude, while
“reverse” geocoding maps a given coordinate pair back to a structured postal address.

```

756 You are a prompt-writing assistant. I will give you a set of API
757 endpoints (tool name + description, endpoint name + description,
758 and potentially the required parameters) that all perform the same
759 underlying task. Please generate exactly  $\{n\}$  distinct, natural-
760 language user queries that could be satisfied by ALL of these
761 endpoints. **Include realistic sample values** for any required
762 parameters (e.g. use "https://example.com" for a URL, or "Hello
763 World" for a text field). Return them as a JSON array of strings,
764 with no extra commentary.
765
766 User:
767 Here are the endpoints:
768 - Tool: WeatherNow - Provides current weather information
    Endpoint: Current Weather - Returns temperature, humidity,
    and conditions for a given location.
769 Required parameters:
770     * city (string) - name of the city
    * country (string) - ISO country code
771 - ...
772
773

```

Figure 8: Example prompt used for query generation. The model outputs n natural-language queries that all listed endpoints can satisfy.

API clustering. We begin by embedding every endpoint’s metadata (tool name, API name, descriptions, etc.) into a shared vector space using a pre-trained text encoder (OpenAI’s text-embedding-ada-002 model). We then curate a small set of “seed” APIs whose descriptions span a number of “general” tasks, such as text translation or weather forecasting. For each seed, we retrieve its top- K nearest neighbors in embedding space to form a candidate cluster. To ensure true functional equivalence, we iteratively prompt GPT-4 to flag any outlier endpoints that cannot perform the same task as the rest; flagged APIs are removed and the check repeats for up to a pre-defined number of rounds. Any cluster that stabilizes with more than three members is retained. See Algorithm 1 for an overview of our clustering approach. Lastly, we manually inspect and refine these clusters, yielding 10 high-quality groups of five APIs each.

Query generation. For each cluster, we prompt GPT-4 (see Figure 8) to produce natural-language queries that all members can satisfy. In batches of ten, the model generates candidate queries until we collect 100 unique queries per cluster, filtering out duplicates. In cases where freeform generation exhibits provider-specific bias (e.g., mentioning a particular vendor’s feature), we switch to a template-filling workflow: we design a small set of generic templates with placeholders (e.g. “Get the latest news headlines for $\{\text{country}\}$ about $\{\text{topic}\}$.”), and ask GPT-4 to instantiate each template multiple times with realistic sample values.

Final curation. All 1,000 generated queries are then reviewed by hand to remove any that inadvertently favor a single provider or rely on specialized parameters. The resulting dataset consists of 10 clusters with 5 APIs each, and 100 balanced, provider-agnostic queries for each cluster.

Running each model over these prompts yields empirical selection distributions over APIs and list positions, from which we compute our total-variation-based bias metrics δ_{API} , δ_{pos} , and δ_{model} . This rigorously grounded benchmark enables precise measurement and comparison of tool-selection bias across models and settings.

802 B ATTRIBUTE-LEVEL ANALYSIS FEATURE TABLE

804 See Table 3 for the list of features used in the analysis of Section 4.3.

806 C MORE DETAILS ON THE BIASED CPT EXPERIMENT

808 We test whether pre-training data can cause tool-selection bias by doing biased continued pre-
809 training (CPT) on a single model. That is, we do additional next-token training on raw text using

810 Table 3: API-level predictor features.
811

812 Feature	813 Description
814 avg_similarity_tool_desc	815 Mean text similarity between cluster queries and the tool’s de- 816 scription.
817 avg_similarity_api_desc	818 Mean text similarity between cluster queries and each API’s 819 description.
820 age_days	821 Days since the API was first published.
822 desc_name_length_sum	823 Total character count of the API’s name plus description.
num_params	824 Number of required and optional parameters.
flesch_reading_ease	825 Flesch reading-ease score of the combined descriptions.
positive_word_count	826 Count of positive or promotional words (e.g. “efficient,” “ro- 827 bust”).

828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
172100
172101
172102
172103
172104
172105
172106
172107
172108
172109
172110
172111
172112
172113
172114
172115
172116
172117
172118
172119
172120
172121
172122
172123
172124
172125
172126
172127
172128
172129
172130
172131
172132
172133
172134
172135
172136
172137
172138
172139
172140
172141
172142
172143
172144
172145
172146
172147
172148
172149
172150
172151
172152
172153
172154
172155
172156
172157
172158
172159
172160
172161
172162
172163
172164
172165
172166
172167
172168
172169
172170
172171
172172
172173
172174
172175
172176
172177
172178
172179
172180
172181
172182
172183
172184
172185
172186
172187
172188
172189
172190
172191
172192
172193
172194
172195
172196
172197
172198
172199
172200
172201
172202
172203
172204
172205
172206
172207
172208
172209
172210
172211
172212
172213
172214
172215
172216
172217
172218
172219
172220
172221
172222
172223
172224
172225
172226
172227
172228
172229
172230
172231
172232
172233
172234
172235
172236
172237
172238
172239
172240
172241
172242
172243
172244
172245
172246
172247
172248
172249
172250
172251
172252
172253
172254
172255
172256
172257
172258
172259
172260
172261
172262
172263
172264
172265
172266
172267
172268
172269
172270
172271
172272
172273
172274
172275
172276
172277
172278
172279
172280
172281
172282
172283
172284
172285
172286
172287
172288
172289
172290
172291
172292
172293
172294
172295
172296
172297
172298
172299
172300
172301
172302
172303
172304
172305
172306
172307
172308
172309
172310
172311
172312
172313
172314
172315
172316
172317
172318
172319
172320
172321
172322
172323
172324
172325
172326
172327
172328
172329
172330
172331
172332
172333
172334
172335
172336
172337
172338
172339
172340
172341
172342
172343
172344
172345
172346
172347
172348
172349
172350
172351
172352
172353
172354
172355
172356
172357
172358
172359
172360
172361
172362
172363
172364
172365
172366
172367
172368
172369
172370
172371
172372
172373
172374
172375
172376
172377
172378
172379
172380
172381
172382
172383
172384
172385
172386
172387
172388
172389
172390
172391
172392
172393
172394
172395
172396
172397
172398
172399
172400
172401
172402
172403
172404
172405
172406
172407
172408
172409
172410
172411
172412
172413
172414
172415
172416
172417
172418
172419
172420
172421
172422
172423
172424
172425
172426
172427
172428
172429
172430
172431
172432
172433
172434
172435
172436
172437
172438
172439
172440
172441
172442
172443
172444
172445
172446
172447
172448
172449
172450
172451
172452
172453
172454
172455
172456
172457
172458
172459
172460
172461
172462
172463
172464
172465
172466
172467
172468
172469
172470
172471
172472
172473
172474
172475
172476
172477
172478
172479
172480
172481
172482
172483
172484
172485
172486
172487
172488
172489
172490
172491
172492
172493
172494
172495
172496
172497
172498
172499
172500
172501
172502
172503
172504
172505
172506
172507
172508
172509
172510
172511
172512
172513
172514
172515
172516
172517
172518
172519
172520
172521
172522
172523
172524
172525
172526
172527
172528
172529
172530
172531
172532
172533
172534
172535
172536
172537
172538
172539
172540
172541
172542
172543
172544
172545
172546
172547
172548
172549
172550
172551
172552
172553
172554
172555
172556
172557
172558
172559
172560
172561
172562
172563
172564
172565
172566
172567
172568
172569
172570
172571
172572
172573
172574
172575
172576
172577
172578
172579
172580
172581
172582
172583
172584
172585
172586
172587
172588
172589
172590
172591
172592
172593
172594
172595
172596
172597
172598
172599
172600
172601
172602
172603
172604
172605
172606
172607
172608
172609
172610
172611
172612
172613
172614
172615
172616
172617
172618
172619
172620
172621
172622
172623
172624
172625
172626
172627
172628
172629
172630
172631
172632
172633
172634
172635
172636
172637
172638
172639
172640
172641
172642
172643
172644
172645
172646
172647
172648
172649
172650
172651
172652
172653
172654
172655
172656
172657
172658
172659
172660
172661
172662
172663
172664
172665
172666
172667
172668
172669
172670
172671
172672
172673
172674
172675
172676
172677
172678
172679
172680
172681
172682
172683
172684
172685
172686
172687
172688
172689
172690
172691
172692
172693
172694
172695
172696
172697
172698
172699
172700
172701
172702
172703
172704
172705
172706
172707
1

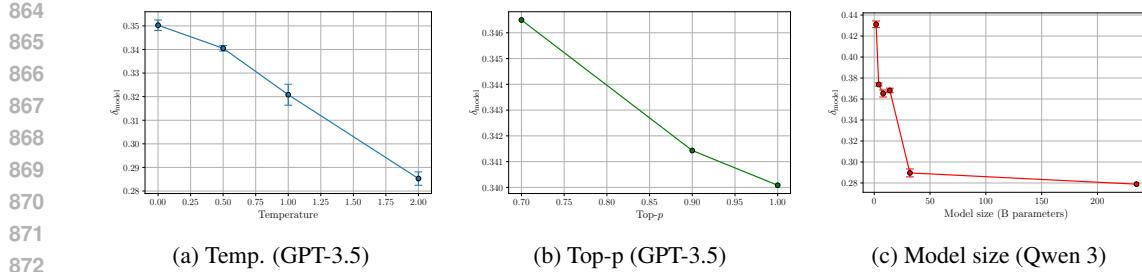


Figure 9: Sensitivity of the combined bias metric δ_{model} to model hyperparameters. Each point is the mean over three independent runs (except for the top-p subplot); vertical bars show one standard deviation where available.

To evaluate this approach, we build a 1000-query benchmark with 8 API candidates per query and a ground truth set indicating which $K \in \{2, 3, 4, 5\}$ APIs are sufficient (~ 250 items each). We report subset quality: precision, recall, and exact-set match. Note that the formula for exact-set match is given by $\frac{1}{N} \sum_{i=1}^N \mathbf{1}[S_i = G_i]$ where G denotes the set of ground truth sets, S the set of selected subsets, and N is the number of queries. Additionally note that bias can persist if the subset selector itself is biased; underselecting viable tools (false negatives) or selecting irrelevant ones (false positives). Measures of recall and precision will tell us whether this is the case.

E MORE ELABORATE ABLATION AND SENSITIVITY ANALYSIS

Temperature. Raising temperature reduces combined bias. As shown in Figure 9a, as temperature goes from 0 to 2, the mean δ_{model} for GPT-3.5 drops from about 0.350 to 0.285, a 6.5% absolute reduction. Figure 10 makes clear why: the overall selection patterns remain similar across temperatures, but higher temperatures soften extreme preferences. This suggests that increased stochasticity slightly mitigates bias, but does not eliminate it.

Top-p. Figure 9b shows how the combined bias δ_{model} for GPT-3.5 varies with the top-p cutoff. Increasing top-p from 0.7 to 1.0 yields a small decrease in bias (from ~ 0.346 to ~ 0.340), suggesting that less aggressive truncation of the probability distribution slightly softens extreme tool preferences. The effect is noticeably weaker than the temperature change.

Model Size. In Figure 9c, the combined bias δ_{model} is depicted for Qwen 3 with varying model size. It seems that larger models exhibit less bias, with a notable drop at 32B. This pattern suggests that larger models develop more nuanced selection mechanisms which temper extreme preferences for certain APIs.

API Ordering. Figure 11 compares GPT-3.5’s API selection under two different ordering schemes: cyclic rotations versus random permutations. Across all clusters, the choice distribution is very similar: no API’s selection rate shifts more than about ten percentage points. This indicates that the ordering of the APIs has some influence, but the dominant signal is the model’s intrinsic preference. However, the small differences could also reflect the inherent noise from stochastic token sampling, and overall we argue that the tool-selection behavior is robust to either type of shuffling.

System Prompts. To evaluate how sensitive tool selection is to the phrasing and structure of the instructions given, we compare three variants of the system prompt: the original “Base” prompt, a lightly reworded “Similar” prompt, and a structurally different “Adjusted” prompt. Figure 12 shows the resulting distributions for GPT-3.5.

Prompt wording shifts model preferences but does not remove bias. Reworded prompts can amplify dominant choices and in some cases radically redistribute the selection shares. Elsewhere, effects are modest. Overall, framing and formatting can tilt the implicit ranking among functionally equivalent APIs, indicating that part of the observed bias is prompt-dependent even as a tendency to favor a subset of tools remains.

Figure 10: Selection distributions for GPT-3.5 using four different temperatures across ten clusters of functionally equivalent APIs. Each subplot corresponds to one cluster, with the x-axis indicating the API in the cluster and the y-axis showing the fraction of times that API was chosen by the respective model over 500 runs.

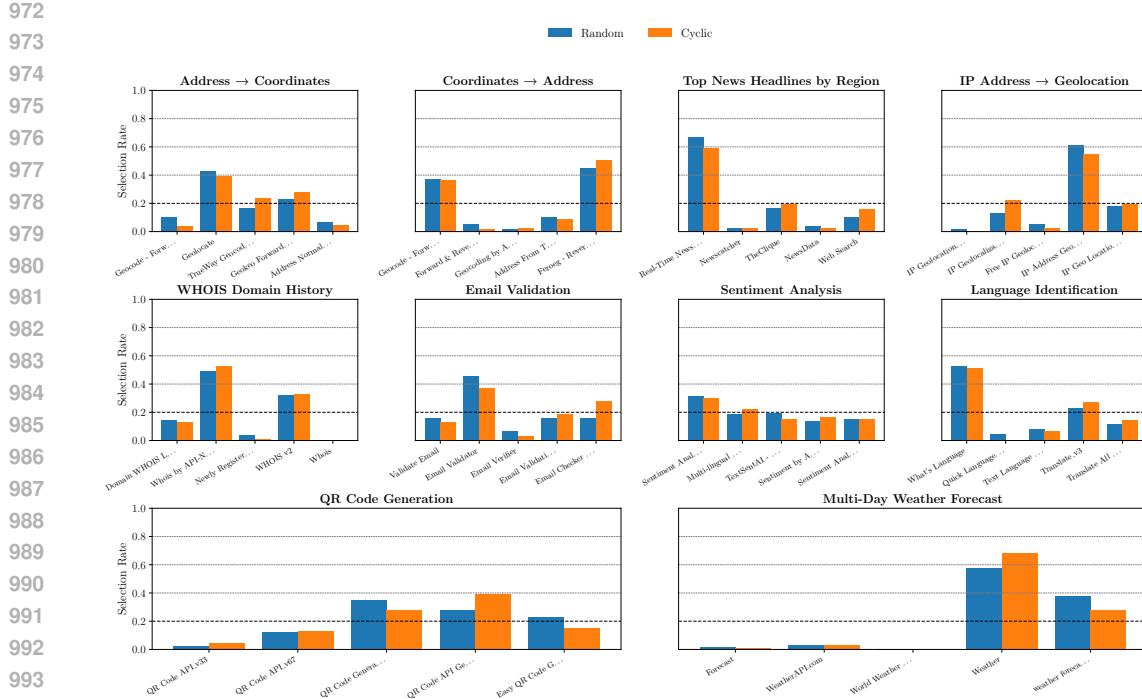


Figure 11: Selection distributions for GPT-3.5 using cyclic and random shuffling of the APIs across ten representative clusters. Each subplot corresponds to one cluster, with the x-axis indicating the API in the cluster and the y-axis showing the fraction of times that API was chosen for that specific API ordering method over 500 runs.

F MORE ELABORATE DISCUSSION ON THE EXPLANATION OF BIAS

We now expand on the analysis given in the main text surrounding the investigation of bias. We expand on the feature-level analysis, where we try to predict selection rates according to intrinsic API attributes, and on the perturbation experiments that directly intervene on the API metadata to see which cues the models rely on during selection.

F.1 WHICH API-LEVEL FEATURES PREDICT SELECTION RATES?

We extract a common set of descriptive features from every API (see Section 3.3) and mean-center them to investigate how being relatively high or low on a feature affects the API selection. These are then paired with the empirical selection rates yielding a dataset of 50 examples for each LLM. We then probe relationships between features and selection behavior in three ways. First, we compute Pearson correlations to capture linear and monotonic associations. Second, we fit a linear regression per model to quantify the aggregate explanatory power (reported as R^2) and inspect coefficients to understand the direction and relative weight of each feature. Third, we train random-forest regressors with cross-validation to allow for non-linear interactions and obtain alternative measures of feature importance.

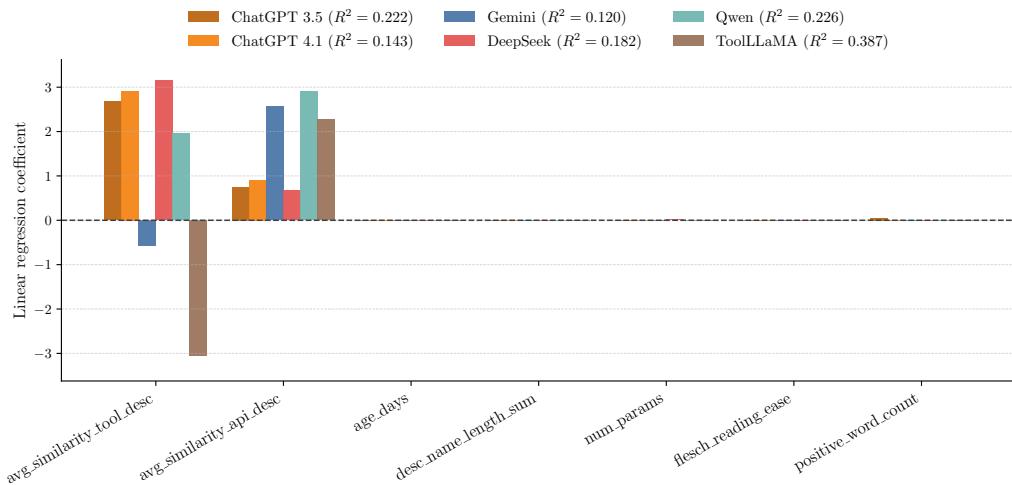
Similarity between tool / API description and query is most correlated to selection rate. As Table 4 makes clear, the most predictive feature of API selection is semantic similarity between the query and the tool/API descriptions. Both `avg_similarity_tool_desc` and `avg_similarity_api_desc` are consistently positively correlated with selection rates—especially strong for Qwen and clear for Gemini; GPT shows the same pattern, albeit weaker with higher p-values. By contrast, structural or stylistic attributes (e.g., parameter count, promotional wording) exhibit little consistent influence. Tool age (`age_days`) shows a modest, broadly consistent negative correlation across models.

Figure 12: Selection distributions for GPT-3.5 using different system prompts across ten clusters. Each subplot corresponds to one cluster, with the x-axis indicating the API in the cluster and the y-axis showing the fraction of times that API was chosen using the corresponding system prompt over 500 runs.

1080 Table 4: Correlation between API-level features and model selection rates. Each entry shows Pearson
 1081 r with its p -value.
 1082

1083 Feature	1084 GPT-4.1 mini	1085 Gemini	1086 Qwen
1087 avg_similarity_tool_desc	1088 +0.227($p=0.113$)	1089 $-0.092(p=0.526)$	1090 $+0.234(p=0.101)$
1091 avg_similarity_api_desc	1092 $+0.111(p=0.442)$	1093 $+0.330(p=0.019)$	1094 $+0.411(p=0.003)$
1095 age_days	1096 $-0.199(p=0.201)$	1097 $-0.144(p=0.356)$	1098 $-0.163(p=0.296)$
1099 desc_name_length_sum	1100 $+0.044(p=0.760)$	1101 $+0.103(p=0.477)$	1102 $+0.038(p=0.795)$
1103 num_params	1104 $-0.065(p=0.653)$	1105 $+0.038(p=0.793)$	1106 $-0.185(p=0.198)$
1107 flesch_reading_ease	1108 $+0.160(p=0.267)$	1109 $+0.176(p=0.222)$	1110 $+0.098(p=0.496)$
1111 positive_word_count	1112 $+0.126(p=0.384)$	1113 $+0.087(p=0.547)$	1114 $+0.093(p=0.521)$

1093 **Linear regression reveals that surface-level semantic alignment is the primary signal but leaves**
 1094 **a lot unexplained.** Figure 13 tells us that linear models explain only part of the variance: R^2
 1095 is modest—0.143 for GPT-4.1 mini and 0.387 for ToolLLaMA—leaving substantial error. Coeffi-
 1096 cients show surface-level semantic alignment dominates: similarity between the query and tool/API
 1097 descriptions has the largest positive weights for most models, with Qwen weighting both most
 1098 strongly and Gemini emphasizing API-level descriptions. Unexpectedly, ToolLLaMA gives a neg-
 1099 ative weight to tool-description similarity. Other features contribute little. Hence, semantic align-
 1100 ment is important in driving selection but still gives an incomplete explanation, implying nonlinear
 1101 or omitted factors and motivating more flexible models (e.g., random forests).
 1102



1115 Figure 13: Linear regression feature weights used to predict API selection rates for six LLMs. Each
 1116 group of bars corresponds to one API-level feature; different colors denote models, with their R^2
 1117 shown in the legend. Larger positive weights indicate features that increase the predicted selection
 1118 rate.
 1119

1120 **Random forests fail to offer meaningful improvement.** We fitted random-forest regressors with
 1121 the same mean-centered features using both cross-validation and a held-out split, but predictive per-
 1122 formance was poor, meaning the forests often did worse than a trivial constant baseline. This sug-
 1123 gests the available features, at least in their current form and scale, don’t contain enough signal or
 1124 that some artifacts are overwhelming the gains from nonlinearity. Therefore, any feature-importance
 1125 estimates from these trees would be unreliable and we do not lean on them for explanation. Future
 1126 work could involve revisiting this with a richer feature set, more data, or alternative nonlinear mod-
 1127 eling.
 1128

1134 F.2 HOW DO METADATA INTERVENTIONS AFFECT API SELECTION?
1135

1136 We saw that corrupting descriptions produces much larger and more stable effects on selection
1137 behavior than name-level perturbations, which are sometimes noisy and unpredictable, in Section
1138 4.3. Figure 14 corroborates this across clusters. Name perturbations often leave distributions near-
1139 unchanged or can make them drift unpredictably (e.g., Cluster 1, where Cluster 1 is positioned at the
1140 top-left and Cluster 6 at the bottom-right), whereas description/parameter scrambles frequently over-
1141 haul rankings: sometimes amplifying the dominant API (Cluster 2), other times causing dramatic
1142 re-ordering (Clusters 3). Name edits rarely produce comparably stable re-ranking.

1143 Together, these patterns indicate that description-level semantics (and, to a lesser extent, parameter
1144 semantics) are the primary cues models use to discriminate among functionally similar APIs. Name
1145 perturbation alone tend to inject noise without consistent effects. Finally, bias persists under minimal
1146 semantic signal (only names and schema fields), implying selection behavior sometimes relies on
1147 residual, non-obvious priors rather than solely on coherent, human-interpretable heuristics.

1148 **Manipulating the description of certain tools has mixed effects across clusters.** Figure 14 (lower
1149 row) shows three behaviors when we manipulate descriptions. First, swapping the most- and least-
1150 popular tools’ descriptions can invert their selection rates (Cluster 4), indicating description text
1151 alone can dominate choice. Second, the same swap sometimes yields only a modest lift for the
1152 least-popular tool while unexpectedly altering the selection shares of unaffected tools (Cluster 5),
1153 suggesting the landscape is reconfigured rather than ranks simply exchanged. Third, in some clus-
1154 ters the swap has minimal effect (Cluster 6), implying other cues—e.g., name priors or parameter
1155 schemas—anchor preferences.

1156 Targeted corruption of the most-selected tool’s description has similarly inconsistent effects. In
1157 Cluster 4, scrambling collapses its share to near zero as another tool absorbs the mass; in Clusters
1158 5–6, corruption diffuses probability across competitors, producing a more even allocation. Over-
1159 all, description tampering often yields substantial influence, but the impact is context-dependent:
1160 the same intervention can invert, redistribute, or barely change preferences, underscoring that tool
1161 choice emerges from multiple interacting cues.

1162 G ADDITIONAL FIGURES
11631164 G.1 CORRELATION IN SELECTION BETWEEN MODELS
1165

1166 Figure 15 shows that models exhibit varying degrees of correlation in their tool-selection patterns,
1167 suggesting shared but non-identical biases across families.
1168

1169 G.2 SELECTION DISTRIBUTIONS FOR ALL CLUSTERS
1170

1171 This subsection provides a full version of the figure referenced in the main text (Figure 3). It expands
1172 the subset plot to all ten clusters and keeps axes, run counts, and error-bar conventions identical to
1173 the summary in Section 4.2. Use Figure 16 for detailed inspection of per-cluster behavior.
1174

1175 G.3 FULL FIGURE RELATED TO THE CPT EXPERIMENT
1176

1177 Figure 17 shows how biased continued pre-training gradually increases preference for the exposed
1178 endpoint.
1179

1180 G.4 TABLE RELATED TO THE REDUCTION OF BIAS DUE TO MITIGATION
1181

1182 Table 5 demonstrates that our mitigation substantially flattens selection distributions and reduces
1183 both API- and position-level bias.
1184

1185 H EFFECT OF METADATA PERTURBATION ON BIAS
1186

1187 Relative to the base distributions, both models move farther from uniform (get more biased)
1188 when we lower semantic signal (see bars corresponding to the description + parameter and full

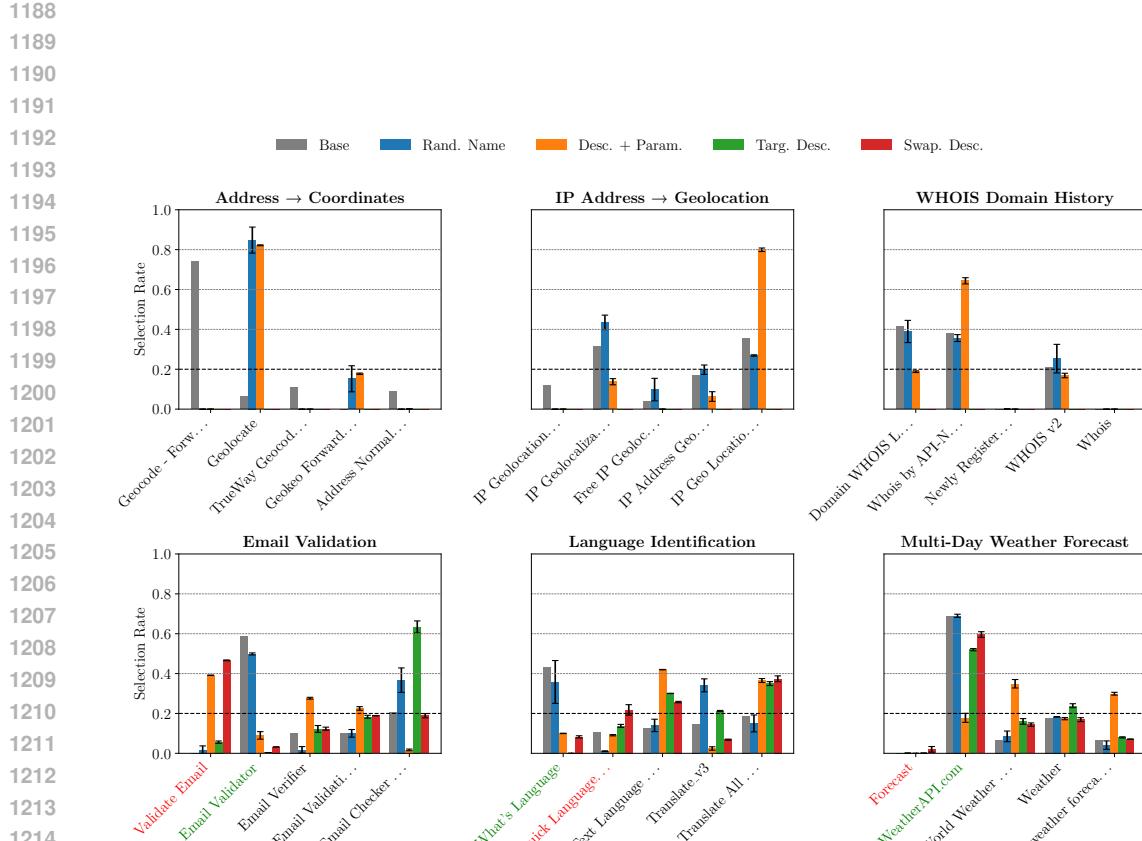


Figure 14: Selection distributions for Gemini under different name/ordering perturbations across six clusters of functionally equivalent APIs. Each subplot corresponds to one cluster; the x-axis lists the APIs and the y-axis shows the fraction of times the model under each condition selected that API, averaged over repeated runs. Error bars (when present) indicate the standard deviation across those repeats, making visible how robust or variable the preferences are under the different perturbations. Tools whose names are in green are the most selected by the baseline, and those in red are the least selected. These are the tools that are targeted for the swapping and selected scramble experiments.

Table 5: Average cluster-level API bias δ_{API} , positional bias δ_{pos} , and combined bias δ_{model} before and after mitigation.

Setup	δ_{API}	δ_{pos}	δ_{model}
Before	0.338	0.422	0.380
After	0.108	0.079	0.094

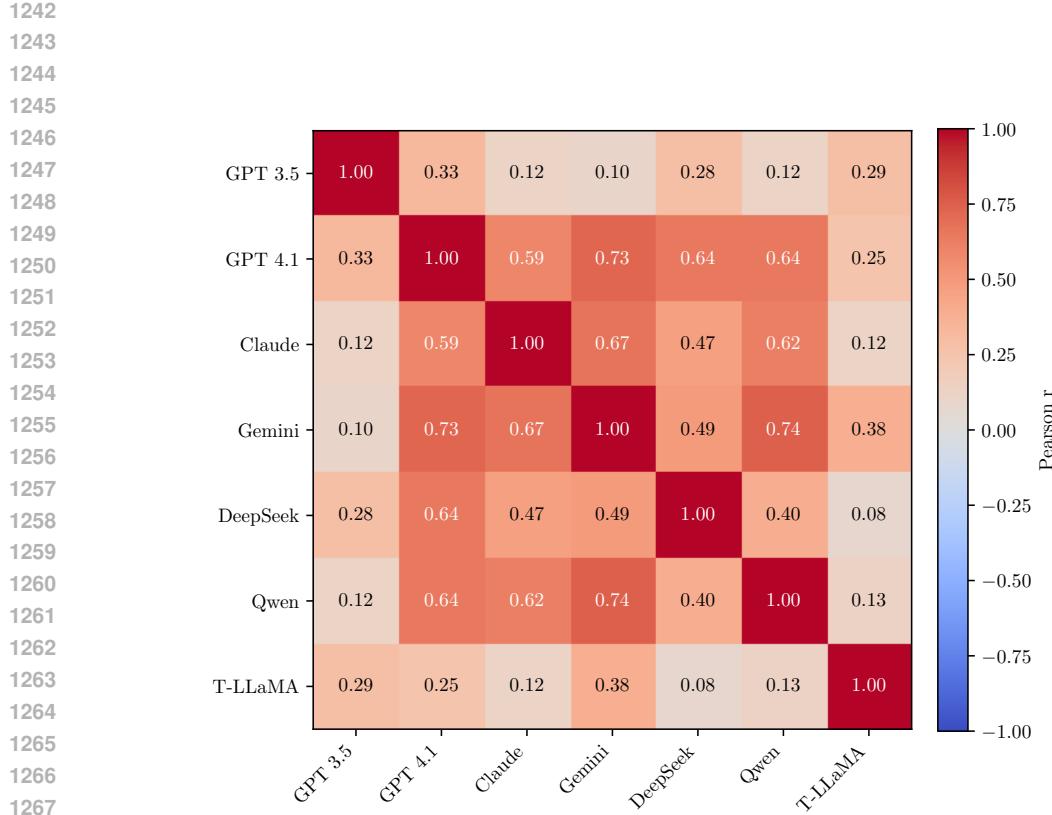


Figure 15: Pearson correlation matrix between models’ tool-selection bias patterns.

perturbations in Figure 18). For Gemini, these manipulations yield the largest TV distances to uniform (≈ 0.42 – 0.43); GPT shows similar results. This suggests that when descriptions/parameters are corrupted, models amplify bias rather than flatten choices.

Conversely, targeted edits to the most popular API tends to decrease bias. For Gemini, targeting the description of the most popular API leads to an average TVD slightly below the baseline and swapping the description between most- and least popular API leads to one that is substantially lower, indicating that weakening or transferring the strongest semantic cue moves the selection distribution toward uniform. Name-only manipulations have similar effects, but name scrambling does not increase bias as much.

I DETAILS ON CPT SETUP

Model and adapters. We continue pre-training Qwen3–8B–Base using Unslot with 4-bit loading. The maximum sequence length is 2048. We attach LoRA adapters with $\sim 16.29\%$ trainable parameters. See Table 6 for more info.

Table 6: Model/adapter configuration.

Base model	unslot/Qwen3–8B–Base–unslot–bnb–4bit
Max seq. length	2048
Quantization	4-bit (bitsandbytes)
LoRA hyperparameters	$r = 128$, $\alpha = 32$, dropout= 0

Figure 16: Selection distributions for six LLMs across ten clusters of functionally equivalent APIs. Each subplot corresponds to one cluster, with the x-axis indicating the API in the cluster and the y-axis showing the (mean) fraction of times each model chose that API over 500 inference runs; error bars indicate the standard deviation across three independent experimental runs. This visualization highlights how different models exhibit systematic preferences for some APIs.

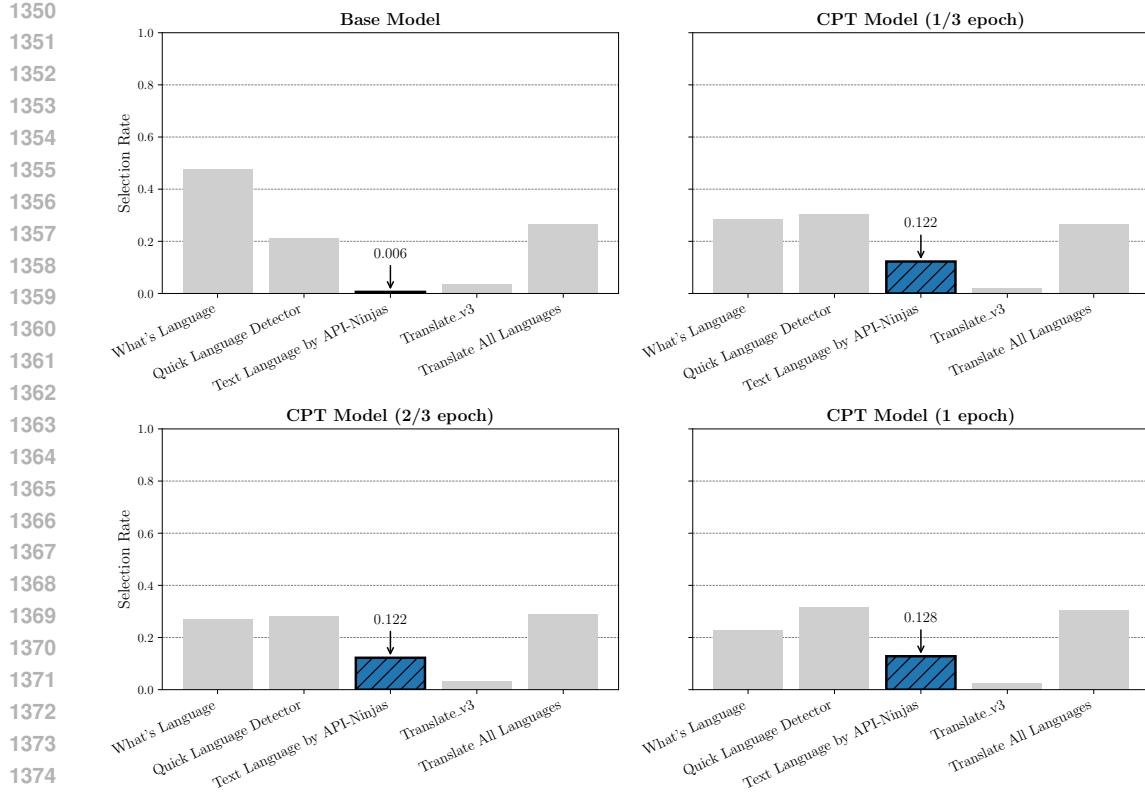


Figure 17: Selection rates for the Language Identification cluster across biased continued pre-training (CPT) checkpoints. Bars give the fraction that each endpoint was chosen across 500 inference runs. Panels show (top-left) base model, (top-right) CPT after 1/3 epoch, (bottom-left) 2/3 epoch, and (bottom-right) 1 full epoch. The Text Language by API-Ninjas endpoint is highlighted, with its exact selection rate printed above its bar. Differences across panels visualize how biased CPT shifts tool choice over training.

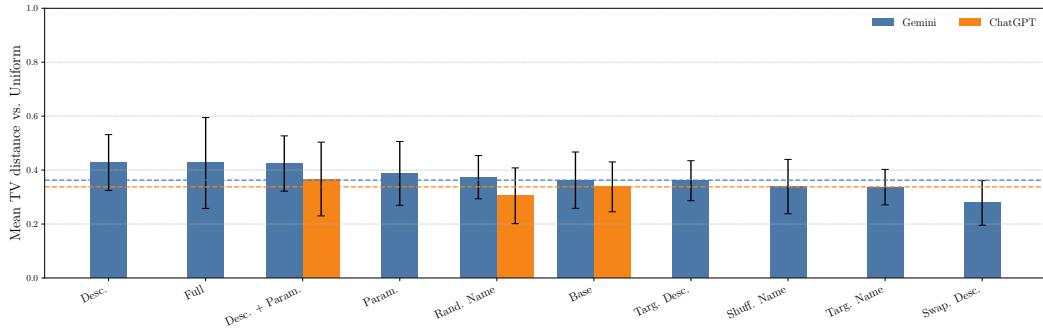


Figure 18: Mean total-variation (TV) distance from the uniform selection distribution to the distribution pertaining to each metadata perturbation (higher = more deviation from uniform). Blue bars show Gemini and orange bars show GPT; error bars denote standard deviation across clusters, and single bars indicate perturbations not run for GPT. Dashed horizontal lines (in the corresponding model colors) mark each model’s baseline TV-to-uniform without perturbations.

Data. We use our corpus saturated with metadata of a single target endpoint (Text Language by API-Ninjas). The corpus contains ~ 3.5 M tokens.

1404
 1405 **Training.** Training uses Unsloth’s trainer for one epoch with cosine LR scheduler and warmup.
 1406 Optimizer is 8-bit AdamW. We also set a smaller LR for the embedding modules. See Table 7 for
 1407 more info.

1408 Table 7: CPT training hyperparameters.
 1409

1410	Epochs	1
1411	Total steps (epoch)	153
1412	Per-device batch size	2
1413	Grad. accumulation	8
1414	Effective batch size	16
1415	Learning rate	5×10^{-5} (embeddings 5×10^{-6})
1416	Scheduler / Warmup	cosine / warmup ratio 0.1
1417	Optimizer	adamw_8bit
1418	Weight decay	0.0
1419	Checkpoints used	step 0 (base), 52 ($\approx 1/3$), 104 ($\approx 2/3$), 153 (1 epoch)

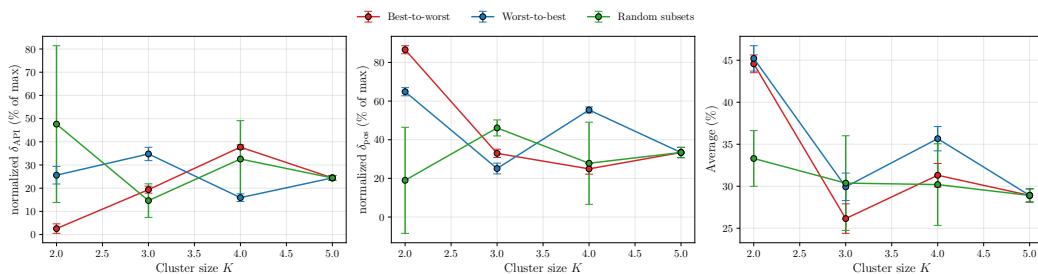
1420
 1421 **Evaluation (inference).** For all checkpoints, we keep prompts and decoding fixed: temperature
 1422 = 0.5, top-p = 1.0, and max_new_tokens=512. We evaluate with the Language Identification
 1423 cluster under circular shifts, aggregating the selection rates over 500 inference runs per checkpoint.
 1424

1425 J EFFECT OF TOOL COUNT ON BIAS
 1426

1427 To investigate how the number of available tools affects selection bias, we conducted an additional
 1428 experiment using the *Sentiment Analysis* cluster (which contains five functionally equivalent APIs).
 1429 From this cluster, we constructed subsets of size $K \in \{2, 3, 4\}$ using three selection strategies:
 1430

- 1431 • **Best-to-worst:** select the K APIs that were most frequently chosen in our initial $K = 5$
 1432 experiments.
- 1433 • **Worst-to-best:** select the K least frequently chosen APIs.
- 1434 • **Random subsets:** uniformly sample K tools from the cluster.
 1435

1436 For each subset configuration, we re-ran the corresponding queries three times using Qwen3 (235B)
 1437 and computed the normalized API-level and positional bias metrics.
 1438



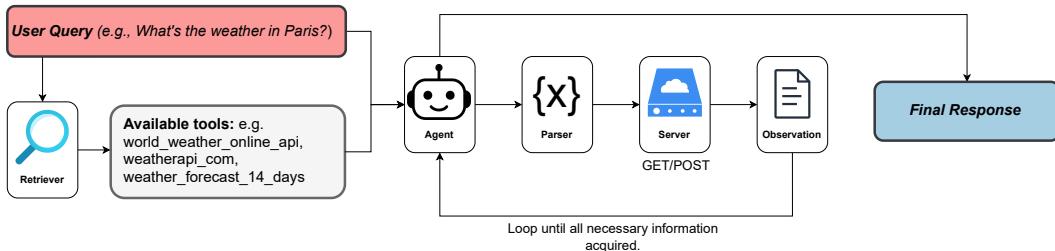
1448 Figure 19: Normalized API-level and positional bias as a function of cluster size K for the
 1449 sentiment-analysis cluster. Each curve corresponds to one subset-selection strategy (best-to-worst,
 1450 worst-to-best, random), with error bars indicating variability across three independent runs. Bias is
 1451 reported as a percentage of its theoretical maximum ($1 - 1/K$). The rightmost subplot shows the
 1452 average of the normalized API-level and positional bias over K .
 1453

1454 As can be seen in Figure 19, we find that bias is highly sensitive to the specific subset of tools shown
 1455 to the model. At $K = 2$, both normalized δ_{API} and δ_{pos} vary substantially across selection strate-
 1456 gies, revealing strong instability. At moderate subset sizes ($K = 3, 4$), the variance decreases and
 1457 the measured bias becomes more stable, although not uniformly smaller. Overall, the relationship

1458 between K and bias is non-monotonic: depending on *which* tools are included, reducing the number
 1459 of available tools can either amplify or attenuate bias. These findings indicate that the composition
 1460 of the toolset is the primary driver of selection behavior, more than its size alone.

1461 Finally, note that when $K = 5$ all methods trivially converge, since they expose the full cluster and
 1462 therefore share identical toolsets. To fully characterize tool-count effects, future work should extend
 1463 this analysis to larger clusters (e.g., $K = 6\text{--}10$).

1465 K EXPLANATION OF LLM TOOL USAGE PIPELINE



1477 Figure 20: The overall workflow for tool usage with large language models. This figure illustrates
 1478 the last three stages of tool usage: tool selection (via retriever and LLM selection), tool calling, and
 1479 response generation (task planning is omitted). Note how the LLM’s preliminary outputs need to be
 1480 parsed to create a functional API call.

1482 Large language models equipped with external tools typically follow a multi-stage decision and
 1483 execution process. As summarized by prior work (Qu et al., 2025), the standard tool-usage pipeline
 1484 consists of four stages: task planning, tool selection, tool calling, and response generation. Figure 20
 1485 showcases the latter three of these stages.

1486 In the first stage, the LLM interprets the user query, identifies the user’s intent, and (if necessary)
 1487 decomposes it into sub-tasks that can be handled by external tools. Next, in the tool selection stage,
 1488 the model determines which tools are suitable for each sub-task. Modern systems often employ a
 1489 retriever-based filtering step before LLM-based selection: rather than presenting the descriptions of
 1490 hundreds or thousands of available tools to the model (which is the case with large API hubs like
 1491 RapidAPI), a retriever identifies the top- k most relevant candidates. This design is widely adopted
 1492 in practical deployments due to context-length limitations (Qu et al., 2025).

1493 In the tool calling stage, the LLM chooses one of the retrieved tools and generates the corresponding
 1494 API call, including the required parameters in the correct format. This step requires the model not
 1495 only to select an appropriate tool but also to extract and structure the tool arguments accurately.
 1496 Once the LLM generation is parsed, the tool executes and returns its output, the LLM may decide to
 1497 proceed to the final stage or determine that more tools need to be called. In the final stage, the LLM
 1498 integrates the returned tool results into a coherent final answer to the user.

1500 L CONSEQUENCES OF TOOL SELECTION BIAS

1502 We have briefly touched on the consequences of tool selection bias in the introduction. In this
 1503 section, we will further elaborate our points on why tool selection bias matters to give the reader a
 1504 comprehensive view of the the effects and significance of the bias we uncover.

1506 L.1 ECONOMIC CONSEQUENCES

1508 **Problem Statement.** A pay-per-request pricing model is common practice within tool marketplaces
 1509 (see RapidAPI’s pricing model or that of BridgeAPI). This means that usage of an API directly
 1510 corresponds to the amount of revenue the developer of that API makes. Ideally, when two or more
 1511 tools offer identical functionality, usage (and thus revenue) should also be split equally. This is
 not achieved when LLMs show consistent bias among functionality equivalent tools. This is not a

1512 hypothetical concern. As we show in our experiments, some tools gets selected up **10 times** more
 1513 than others whilst being functionally identical (see the geocoding cluster in Figure 16). If revenue
 1514 is directly correlated with usage, the developer of this tool can then also expect a 10 times higher
 1515 revenue than the developer of the disadvantaged tool for seemingly no particular reason but more
 1516 advantageous metadata phrasing (see section 4.3 investigating why tool-selection bias occurs).

1517 **Magnitude.** The size of the tool-usage market is hard to determine exactly. RapidAPI alone handles
 1518 over 9 billion requests per month and recommends \$0.00003 per API call *at a minimum*, a quick
 1519 calculation gives us at least \$270.000 in developer revenue per month or \$3.24 million per year
 1520 on this platform alone (RapidAPI (2025a)). Looking more broadly, the global API marketplace
 1521 market size was estimated at \$18.00 billion in 2024 and is projected to reach \$49.45 billion by 2030,
 1522 growing at a CAGR of 18.9% from 2025 to 2030 (GrandViewResearch (2025)). From this, one can
 1523 see that even small shifts in automated traffic can have a meaningful economic impact. It's unclear
 1524 how much of this API traffic is currently due to LLM agents, but with the increasing ubiquity of
 1525 agents, we expect this share to rise significantly. This makes tool selection bias a tangible and
 1526 pressing economic issue.

1527 L.2 USER EXPERIENCE

1529 Tool-selection bias can directly degrade user experience when an LLM consistently favors an API
 1530 that is objectively slower, less accurate, or more costly than its functionally equivalent alternatives.
 1531 In such scenarios, end users may experience higher latency, lower-quality responses, or unnecessary
 1532 costs, despite the existence of equally capable tools that would have delivered better performance. A
 1533 more balanced usage distribution across equivalent APIs mitigates these issues by ensuring that no
 1534 single suboptimal tool is disproportionately selected purely due to incidental metadata or positional
 1535 biases. This leads to more stable, predictable, and higher-quality user outcomes.

1536 L.3 SAFETY & RELIABILITY

1539 Biased tool selection magnifies the system's vulnerability to manipulated metadata and adversarial
 1540 tools. Recent work on metadata-poisoning attacks (Mo et al. (2025)) shows that adversaries can
 1541 craft strategically misleading tool names or descriptions to lure LLM agents into invoking harmful
 1542 or unreliable APIs. When an LLM already exhibits strong, unintended preferences toward superfi-
 1543 cial metadata cues, such attacks become significantly easier to execute. In this sense, selection bias
 1544 is not merely an efficiency problem. It increases the surface area for adversarial exploitation and
 1545 directly undermines the reliability of agentic systems. A more uniform or semantics-invariant se-
 1546 lection process would provide a stronger baseline defense by reducing the influence of manipulable
 1547 metadata.

1548 L.4 EROSION OF TRUST & ECOSYSTEM EFFECTS

1550 A further, systemic consequence of tool-selection bias is the gradual erosion of trust in API market-
 1551 places. If developers observe that LLM-mediated traffic does not meaningfully reflect the functional
 1552 quality of their tools but instead hinges on arbitrary metadata preferences, they may perceive the
 1553 marketplace as unfair or unpredictable. This creates incentives to bypass marketplaces entirely by
 1554 hard-coding specific APIs into their applications. This outcome undermines the value proposition
 1555 of marketplaces as neutral, competitive intermediaries. In the long term, this can reduce innova-
 1556 tion, further distort competition, and create fragile ecosystems where a small number of arbitrarily
 1557 preferred tools dominate traffic. Addressing tool-selection bias is therefore critical not only for indi-
 1558 vidual user or developer outcomes, but for maintaining trust, participation, and healthy competition
 1559 in the broader API economy.

1560
 1561
 1562
 1563
 1564
 1565