
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BIASBUSTERS: UNCOVERING AND MITIGATING TOOL
SELECTION BIAS IN LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Agents backed by large language models (LLMs) often rely on external tools
drawn from marketplaces where multiple providers offer functionally equivalent
options. This raises a critical point concerning fairness: if selection is systemati-
cally biased, it can degrade user experience and distort competition by privileging
some providers over others. We introduce a benchmark of diverse tool categories,
each containing multiple functionally equivalent tools, to evaluate tool-selection
bias. Using this benchmark, we test seven models and show that unfairness exists
with models either fixating on a single provider or disproportionately preferring
earlier-listed tools in context. To investigate the origins of this bias, we conduct
controlled experiments examining tool features, metadata (name, description, pa-
rameters), and pre-training exposure. We find that: (1) semantic alignment be-
tween queries and metadata is the strongest predictor of choice; (2) perturbing
descriptions significantly shifts selections; and (3) repeated pre-training exposure
to a single endpoint amplifies bias. Finally, we propose a lightweight mitigation
that first filters the candidate tools to a relevant subset and then samples uniformly,
reducing bias while preserving good task coverage. Our findings highlight tool-
selection bias as a key obstacle for the fair deployment of tool-augmented LLMs.

1 INTRODUCTION

Large language models (LLMs) have transformed natural language processing, achieving near-
human performance on tasks ranging from code generation to creative writing (Naveed et al., 2024;
Luo et al., 2024). Yet LLMs cannot directly act in the world: they cannot query databases, fetch live
information, or invoke external services. Additionally, their knowledge remains frozen at training
time, leaving them prone to “hallucinations” when asked about events beyond their cutoff (Ji et al.,
2023). Augmenting LLMs with external “tools” / APIs addresses these shortcomings by allowing
models to delegate specialized functions to dedicated services (Qu et al., 2025). It endows LLMs
with the ability to act, a core capability often associated with LLM agents (Chowa et al., 2025). A
crucial step within the typical tool-usage pipeline is the multi-stage tool-selection process: given
an instruction to the LLM, (i) retrieve a short list of the most relevant candidate tools based on the
user query (with, e.g., highest semantic similarity) from a potentially large database of tools, (ii)
insert their metadata into the prompt, (iii) have the LLM reason and pick one to solve (one of) the
necessary user task(s) (see Appendix K covering the entire tool-usage pipeline). However, this pro-
cess introduces a new challenge: bias (see Figure 1). An LLM may prefer certain tools not for their
relevance or accuracy, but because of superficial metadata, i.e., tool names, descriptions, or prompt
ordering. Such bias can degrade user experience by repeatedly selecting slow or unreliable ser-
vices and can, therefore, also inflate operational costs. Additionally, under pay-per-request pricing
for tool use, consider the scenario where such biases are systematic across frontier LLMs: if they
consistently favor tools from a single provider, this creates major market unfairness, disadvantag-
ing competing providers offering functionally equivalent services (RapidAPI, 2025a; Economize,
2024). See Appendix L covering the consequences of tool-selection bias in more detail.

In this paper, we make three key contributions. First, we present a large-scale benchmark for mea-
suring tool selection bias, which we use to conduct the first empirical study of tool-selection bias
in LLMs. We introduce total variation–based metrics to quantify selection imbalances, assemble a
novel benchmark of clusters of tools with equivalent functionality, and conduct extensive experi-
ments across multiple models and configurations. These tell us that bias exists to a certain extent

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Thought: I need to fetch the weather in Paris.
API Name: weatherapi_com
Arguments: {“city”: “Paris”}

User: What's the weather in Paris?

Agent

Run #1:

Available tools:
world_weather_online_api,
weatherapi_com,
weather_forecast_14_days

Run #2:

...User: What's the weather like in London?

AgentAvailable tools

Thought: I need to fetch the weather in Paris.
Tool Name: weatherapi_com
Arguments: {“city”: “Paris”}

Thought: I need to get the weather in London.
Tool Name: weatherapi_com
Arguments: {“city”: “London”}

Run #K:

...User: How's the weather in LA?

AgentAvailable tools

Thought: Let's fetch the weather in LA.
Tool Name: weatherapi_com
Arguments: {“city”: “LA”}

...

Figure 1: Tool-calling enables LLMs to act through external services, but the selection process
introduces bias. Models may favor certain tools based on superficial metadata or position rather than
relevance (here “weatherapi com” is preferred), leading to a potential degraded user experience and
unfair concentration of calls. If such biases are systematic across frontier LLMs, they risk distorting
entire tool marketplaces, disadvantaging functionally equivalent competitors.

for all models tested; models either fixate on a single provider or disproportionately prefer earlier-
listed tools in context. Second, after confirming the existence of bias, we investigate the root causes
of these biases. We define a rich set of tool-level features and use regression and permutation-
importance analyses to identify which factors predict selection. We further perturb metadata fields
to test their influence and probe whether continued pre-training on biased data can induce persis-
tent preferences. Our findings show that semantic alignment between query and tool description
is the strongest interpretable driver of tool choice, metadata interventions on descriptions reliably
steer choices, and biased pre-training amplifies preferences. However, none of these fully explain
the behavior. Third, we propose a lightweight mitigation strategy: filtering the supplied tools to a
subset of relevant ones and sampling uniformly among them. This approach substantially reduces
bias while still ensuring the user task can be solved.

By uncovering, explaining, and addressing tool-selection bias, our work illuminates a critical blind
spot in tool-augmented LLM research. Our contributions go beyond diagnosis: we provide repro-
ducible resources and a simple mitigation strategy that practitioners can adopt immediately. More
broadly, we aim to set a foundation for fairer, more reliable tool-calling systems and a precedent
to judge tool-calling LLM applications not only by their accuracy but also by the equity of their
interactions with external ecosystems. All resources are available online1.

2 RELATED WORK

Fairness & Bias in LLMs. Bias in large language models emerges from their opaque training on
vast web-scale data, often carrying forward and amplifying human prejudices and reasoning short-
cuts (Gallegos et al., 2024). Much of the literature has focused on identifying and mitigating these
undesirable behaviors (Schick et al., 2021; Gallegos et al., 2024; Bouchard, 2024). Unwanted behav-
iors in LLMs manifest as social bias, where stereotypes shape outputs and lead to unequal treatment
of protected groups, or as cognitive bias, reflecting human-like shortcuts such as anchoring or confir-
mation effects (Lou & Sun, 2024; Itzhak et al., 2024; O’Leary, 2025). Measuring these phenomena
requires domain-specific metrics. For example, to measure how likely a model is to associate a

1All resources are available on the public GitHub repository.

2

https://anonymous.4open.science/r/tool-selection-bias-F1CD/

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

neutral attribute with one group over another, one can utilize the normalized log-probability bias
score (Kurita et al., 2019). Mitigation strategies are diverse and can be deployed at multiple stages
(e.g., at pre-/post-inference via augmentation of training data or rewriting of outputs or during train-
ing via fairness-aware objectives) (Gallegos et al., 2024). However, no single approach suffices for
every scenario; effective debiasing requires interventions matched to the task’s fairness goals and
deployment context. We are not aware of prior work on bias in the tool-use paradigm.

Positional Bias in LLMs. Prior research has revealed significant positional selection biases in how
LLMs answer multiple-choice questions. Pezeshkpour & Hruschka (2024) and Zheng et al. (2024)
demonstrated that LLMs exhibit sensitivity to the ordering of answer options, with performance
varying systematically based on option position. This was corroborated in the investigation of Wei
et al. (2024) who also found token sensitivity, where specific token characteristics at different posi-
tions affect selection. Recently Wang et al. (2025), analyses the underlying model mechanisms that
give rise to position bias and proposed a mechanistic approach to eliminating it. In this work we
study a investigate a broad range of potential biases in the critical context of tool selection.

Fairness in Tool Selection. Research on tool-selection bias is limited; however, some works in
information retrieval address related issues such as positional or ranking bias (Dai et al., 2024;
Ziems et al., 2024). Similarly, in code generation, favoritism for certain providers has been observed
(Zhang et al., 2025). However, these studies do not examine the specific setting of tool selection
among providers. Recent studies do show that LLMs can develop systematic preferences in this
setting, for example, for selecting tools with manipulated metadata (Mo et al., 2025; Faghih et al.,
2025). Analogously, one study shows an advanced attack on tool selection which splits malicious
tool entries into fragments optimized for retrieval and selection, achieving high success rates while
evading defenses (Shi et al., 2025). These findings reveal that tool-selection mechanisms are highly
fragile and susceptible to both naı̈ve and advanced exploitation. In contrast to overt adversarial
attacks, our study focuses on subtler sources of bias: small, non-adversarial differences in phrasing
or metadata that can still distort fairness in tool selection.

3 BIASBUSTERS: HOW WE UNCOVER, EXPLAIN, AND MITIGATE BIAS.

In this section, we present our end-to-end framework for uncovering and explaining tool-selection
bias in LLMs. We start in Section 3.1 by introducing our formal definition of this bias. In Section
3.2, we describe how we generate a comprehensive benchmark of API clusters and user queries that
enables systematic measurement of selection behavior. Section 3.3 details our analysis pipeline for
explaining bias.

3.1 BIAS DEFINITION

Tool-selection bias captures the extent to which an LLM systematically favors certain APIs over
others for reasons unrelated to their true utility. Formally:

Definition 3.1 Tool-selection bias is the systematic tendency of a model to favor certain APIs over
others for reasons unrelated to the APIs’ true relevance or utility for the task.

To quantify this bias, we compare a model’s empirical selection rates against an ideal uniform
choice. Consider a cluster of K APIs that can all solve a given query q. A perfectly unbi-
ased model would select each API with probability 1/K, forming a uniform distribution U . Let
PAPI = (PAPI

1 , . . . , PAPI
K) denote the expected empirical selection-rate distribution over the clus-

ter under all orderings of the API list. We measure cluster-level bias via the total variation distance

δAPI = 1
2

K∑
i=1

∣∣∣PAPI
i − 1

K

∣∣∣ = TV
(
PAPI, U

)
.

Prior work has shown that list order itself can introduce bias: when multiple identical tools ap-
pear in sequence, the first position is favored Faghih et al. (2025). To capture this effect, we
also record the expected selection-rate distribution over absolute positions, P pos, and compute
δpos = 1

2

∑K
i=1

∣∣∣P pos
i − 1

K

∣∣∣. Combining both yields an overall bias metric: δmodel =
δAPI+δpos

2 .

Note that a high positional bias δpos can be mitigated by randomizing API order at prompt time,
whereas API-level bias δAPI requires deeper intervention.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 DATASET GENERATION

We build on the ToolLLM pipeline (Qin et al., 2024), which provides a large repository of APIs
scraped from RapidAPI (RapidAPI, 2025b). To measure tool-selection bias, we construct a bench-
mark of functionally interchangeable APIs. Specifically, we cluster APIs into groups performing
the same task (e.g., weather forecasting or translation), and generate balanced, provider-agnostic
user queries that all APIs in a cluster can answer. The final benchmark consists of 10 clusters, each
containing 5 APIs and 100 queries, yielding 1,000 total cluster-query pairs. Running LLMs on this
benchmark produces empirical API-selection distributions, from which we compute our bias metrics
δAPI, δpos, and δmodel. See Appendix A for clustering and query-generation details.

3.3 EXPLAINING BIAS

To pinpoint what drives tool-selection bias, we pursue three complementary analyses.

Attribute-Level Analysis. To test whether intrinsic API characteristics explain model preferences,
we extract seven descriptive features for each API. Examples include semantic similarity between
queries and descriptions, number of parameters, description length, readability, and promotional
wording (See Table 3 for the full list). Our benchmark contains 10 clusters with 5 APIs each, giv-
ing 50 APIs in total. For each API, we measure its empirical selection rate and pair this with its
feature values. This produces a dataset of 50 (API, features, selection rate) entries per model. We
then probe relationships between features and selection behavior in three ways. First, we compute
Pearson correlations between tool features and selection rate to capture linear and monotonic asso-
ciations. Second, we fit a linear regression per model to quantify the aggregate explanatory power
(reported as R2) and inspect coefficients to understand the direction and relative weight of each
feature. Third, we train random-forest regressors with cross-validation to allow for non-linear in-
teractions and obtain alternative measures of feature importance. This pipeline reveals which API
attributes most strongly influence the model’s choices.

Metadata Perturbation Experiments. To isolate the superficial cues that drive tool-selection pref-
erences, we apply a series of controlled perturbations to tool metadata. Specifically, we utilize
the following manipulations: (1) Full name scramble. Replace every tool’s name with a fresh
20-character random string, destroying any learned association tied to the literal name; (2) Name
shuffle. Permute the tool names among APIs within each cluster so that names no longer align
with their original endpoints; (3) Single-tool perturbation. Identify the most frequently chosen tool
in each cluster and replace only its name with a random string; (4) Description and parameter
scramble. Randomize each tool’s descriptive text and parameter description(s) (but keep the orig-
inal names intact) to test whether the semantic content beyond the name influences selection; (5)
Description-only / Parameter-only scramble. Randomize only the tool descriptions (keeping pa-
rameter descriptions intact), or only the parameter descriptions (keeping the tool description intact),
to disambiguate their individual contributions; (6) Targeted description scramble (most-selected).
Identify the most frequently chosen API in each cluster and scramble only its description to test
whether degrading its semantics reduces its selection share; (7) Description transfer (most→ least).
Swap the most-selected API’s description with the least-selected API while leaving other metadata
untouched, assessing whether swapping semantic “advantage” transfers selection probability; and
(8) Full scramble. Randomize each tool’s descriptive text, parameter description(s), and tool names
to test the effect of having minimal semantic signal in API metadata on bias.

By re-running our selection experiments under these alterations, we quantify how much of the ob-
served bias is attributable to literal names, to deeper semantic content in descriptions and parameters,
and to relative contrast between a clean and corrupted endpoint.

Biased Continued Pre-Training. We also test whether pre-training data itself can induce tool-
selection bias. To verify this hypothesis, we perform biased continued pre-training (CPT) on Qwen3-
8B using ∼3.5M tokens deliberately saturated with a single API’s metadata. See Appendix C for
additional details on corpus construction and training setup.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Available tools:

* API A

* API B

* API C

User:
What is the weather in Paris?

Available tools:

* API B

* API C

* API A

User:
What is the weather in Paris?

Available tools:

* API C

* API A

* API B

User:
What is the weather in Paris?

Figure 2: Cyclic rotations of one fixed tool list; each API appears at the top once.

G
eo

co
d

e
-

F
or

w
..

.

G
eo

lo
ca

te

T
ru

eW
ay

G
eo

co
d

..
.

G
eo

ke
o

F
or

w
ar

d
..

.

A
d

d
re

ss
N

or
m

al
..

.0.0

0.2

0.4

0.6

0.8

1.0

S
el

ec
ti

on
R

at
e

Address → Coordinates

R
ea

l-
T

im
e

N
ew

s.
..

N
ew

sc
at

ch
er

T
h

eC
li

q
u

e

N
ew

sD
at

a

W
eb

S
ea

rc
h

Top News Headlines by Region

W
h

at
’s

L
an

gu
ag

e

Q
u

ic
k

L
an

gu
ag

e.
..

T
ex

t
L

an
gu

ag
e

..
.

T
ra

n
sl

at
e

v
3

T
ra

n
sl

at
e

A
ll

..
.

Language Identification

GPT-4.1 mini Claude Gemini DeepSeek ToolLLaMA Qwen3 (235B)

Figure 3: Selection distributions for six LLMs across three clusters of functionally equivalent APIs.
Each subplot corresponds to one cluster, with the x-axis indicating the API in the cluster and the
y-axis showing the (mean) fraction of times each model chose that API over 500 inference runs;
error bars indicate the standard deviation across three independent experimental runs. The optimal
uniform selection rate is highlighted.

4 EXPERIMENTS

This section reports the empirical results from our experiments. We first describe the experimental
setup (Section 4.1), then characterize tool-selection behavior and quantify bias using our metrics
(Section 4.2). Next, we investigate the drivers of bias (Section 4.3), and finally, we evaluate an
approach to mitigate any observed bias in Section 4.4.

4.1 EXPERIMENTAL SET-UP

Models. We evaluate a diverse set of LLMs, including GPT-3.5-turbo and GPT-4.1-mini by OpenAI
(2025), Claude 3.5 Sonnet by Anthropic (2025), DeepSeek-V3.2-Exp (DeepSeek-AI et al., 2025),
Gemini 2.5 Flash (Google, 2023), ToolLLaMA-2-7B (Qin et al., 2024), and Qwen3 models spanning
1.7B to 235B parameters (Bai et al., 2023).

Reasoning. Each model is prompted to produce a short chain of thought (Wei et al., 2022) followed
by at most one tool call. This design makes outputs efficient to generate and easy to analyze.

Parameter Setup & Dataset. Experiments use our benchmark of 10 clusters, each containing 5
interchangeable APIs and 100 distinct user queries (Section 3.2 and Appendix A). Unless otherwise
noted, decoding uses a temperature of 0.5 and a top-p of 1.0.

API ordering. As noted in previous work (Faghih et al. (2025)), LLMs prefer tools that appear
earlier in the prompt. To control for this, we execute each query five times, each with a different
cyclic rotation of a fixed API ordering (see Figure 2). This ensures that every API appears at the top
for a given query exactly once.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

G
PT-3

.5

G
PT-4

.1
m

in
i

Cla
ud

e

G
em

in
i

D
ee

pS
ee

k

Too
lL

LaM
A

Q
wen

0.0

0.2

0.4

0.6

0.8

1.0

T
V

d
is

ta
n

ce
v
s.

U
n

if
or

m

Coordinates → Address

G
PT-3

.5

G
PT-4

.1
m

in
i

Cla
ud

e

G
em

in
i

D
ee

pS
ee

k

Too
lL

LaM
A

Q
wen

Email Validation

G
PT-3

.5

G
PT-4

.1
m

in
i

Cla
ud

e

G
em

in
i

D
ee

pS
ee

k

Too
lL

LaM
A

Q
wen

QR Code Generation

δAPI δpos

Figure 4: API- vs. positional bias by model for three clusters. Bars show total-variation deviation
from uniform, where higher values indicate stronger bias.

Table 1: Average cluster-level API bias δAPI, positional bias δpos, and combined bias δmodel (mean
across clusters and runs ± std across runs).

Model δAPI δpos δmodel

Gemini 2.5 Flash 0.365±.003 0.306±.005 0.335±.002

Claude 3.5 Sonnet 0.370±.005 0.325±.005 0.347±.001

DeepSeek-V3.2-Exp 0.249±.003 0.504±.003 0.377±.001

Qwen3 235B 0.330±.006 0.168±.004 0.249±.001

ToolLLaMA 0.277±.002 0.391±.002 0.334±.002

GPT-3.5-turbo 0.320±.022 0.336±.012 0.328±.005

GPT-4.1 mini 0.331±.008 0.423±.002 0.377±.004

4.2 HOW DO LLMS SELECT AMONG FUNCTIONALLY EQUIVALENT APIS?

Figure 3 shows our first results: the empirical selection distributions of six LLMs over three clusters
of functionally equivalent APIs (see Appendix G.2 for the full figure including all clusters). Choices
are far from uniform. In some clusters (e.g., geocoding), all models concentrate heavily on a single
API, whereas in others (e.g., language identification) the distributions are flatter. We also observe
that different models do not always prefer the same API, a point we explore further when analyzing
alignment in selection behavior.

Positional bias persists even when API-level preference is weak. Figure 4 summarizes API- vs.
positional-bias (measured as total variation distance from uniform) across models and clusters. We
notice two regimes: high API bias with low positional bias, or low API bias with high positional
bias; a few exhibit both elevated. This pattern indicates that when no API clearly dominates, models
rely more on positional cues.

The extent of LLM bias in tool selection. To get an idea of how biased each model is in their
tool-selection behavior, we compute the positional bias δpos, API bias δAPI, and their average δmodel

for seven different models (Section 3.1). Table 1 reports these metrics averaged across all clusters
and three runs. All models exhibit substantial bias: δmodel values are around 0.3–0.4, meaning that
roughly 30–40% of the selection probability mass would have to be redistributed to achieve fairness.
GPT-4.1 mini is especially biased, with a combined metric of ∼0.38. The least biased model in our
suite is Qwen 3 (235B), which attains the lowest δmodel.

LLMs are (mostly) aligned in their bias. To examine the similarity of selection behavior of the
different models, we represent each model by a vector obtained by concatenating its empirical selec-
tion distributions over APIs across all clusters, then compute pairwise Pearson correlations between
these vectors; the resulting matrix is shown in Figure 15. It shows that many of the models share

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Full

Desc
. + Param.

Targ. Desc
.

Desc
.

Swap. Desc
.

Rand. Name

Shuff. Name
Param.

Targ. Name
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ea

n
T

V
d

is
ta

n
ce

vs
.

B
as

e

Gemini ChatGPT

Figure 5: Mean total-variation (TV) distance from the base selection distribution (no perturbation)
to the distribution pertaining to each metadata perturbation (higher = larger shift). Blue bars show
results for Gemini and orange bars for GPT-3.5. The error bars denote standard deviation across
clusters. The run-to-run standard deviation is left out; max run-to-run variability of per-run mean
TV was 0.084.

similar bias patterns: GPT 4.1-mini, Claude, Gemini, DeepSeek, and Qwen3 (235B) tend to favor
and disfavor the same APIs. GPT-3.5 and ToolLLaMA stand apart with consistently lower cor-
relations, suggesting qualitatively different selection behavior. This clustering of high correlations
points to common drivers of bias. This could be due to a shared set of similar implicit decision rules.
The relative divergence of GPT-3.5 and ToolLLaMA highlights that model architecture, capacity, or
training objective can alter these tendencies, but overall alignment underscores that tool-selection
bias patterns are not isolated quirks but mostly reproducible phenomena across LLMs.

Ablation and Sensitivity Analysis. We also analyze the robustness of tool-selection bias across
several factors (full results in Appendix E). Temperature: raising temperature reduces bias modestly
by softening extreme preferences. Top-p: increasing top-p has only a negligible effect. Model size:
larger models exhibit noticeably less bias than smaller ones. API ordering: cyclic vs. random permu-
tations produce very similar outcomes, indicating intrinsic preferences dominate. System prompts:
rewording or restructuring prompts shifts which tools are favored, but does not remove bias. Toolset
size: the composition of the toolset given in context is the primary driver of selection behavior, more
than the size of the toolset alone (see Appendix J).

4.3 ARE TOOL-SELECTIONS DRIVEN BY HUMAN-INTERPRETABLE HEURISTICS?

We investigate the drivers of bias along three complementary axes: (i) feature-level correlations
between API attributes and selection rates, (ii) direct interventions on API metadata, and (iii) biased
continued pre-training (CPT) to test whether exposure alone can plant preferences. We summarise
our results below, with full details in Appendix F.

Which API-level features predict selection rates? The results show a consistent pattern: (1)
Semantic similarity between queries and API / tool descriptions is the strongest predictor of selection
(Table 4). By contrast, structural or stylistic attributes (e.g., parameter count, promotional wording)
exhibit little consistent influence. (2) Linear regression reveals that surface-level semantic alignment
is the primary signal but leaves a lot unexplained (R2 < 0.4 as can be seen in Figure 13), and (3)
Random forests fail to offer meaningful improvement.

How do metadata interventions affect API selection? Figure 5 shows the TV distance from the
base selection distribution to the distribution obtained after a certain metadata perturbation, aver-
aged over clusters and experimental runs. It shows a clear hierarchy: logically minimizing semantic
signal by scrambling the description, name, and parameters causes the biggest shift. For Gemini,
corrupting descriptions+parameters yields the second largest, most reliable shifts in selection (0.450
± 0.203 TV), followed by scrambling the description of the most popular tool (0.419 ± 0.179), and
even description swaps meaningfully steer choices (0.338 ± 0.205). By contrast, name-only per-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

turbations are smaller and have higher variance, and parameters-only are the least impactful. We
see similar results for GPT; description perturbation is more impactful than name/parameter pertur-
bations. Overall sensitivity is higher for Gemini than GPT (mean TV 0.310 vs 0.234), indicating
greater responsiveness to metadata changes.

We show similar results across clusters in Figure 14; however, we observe that manipulating the
description of certain tools has mixed effects from cluster to cluster. It tells us that the impact of
description tampering is context-dependent: the same intervention can invert, redistribute, or barely
change preferences, underscoring that tool choice emerges from multiple interacting cues.

Together, these patterns indicate that description-level semantics are the primary cues models use
to discriminate among functionally similar APIs. Name perturbation alone tends to inject noise
without consistent effects. Finally, bias persists under minimal semantic signal (only leaving certain
parameter schema fields intact), implying selection behavior sometimes relies on residual, non-
obvious priors rather than solely on coherent, human-interpretable heuristics. For an analysis of the
impact of metadata perturbations on bias, see Appendix H.

Does additional pre-training exposure to one endpoint change selection distribution? We run
biased continued pre-training on Qwen3-8B in which the training corpus is saturated with meta-
data for a single target endpoint (Text Language by API-Ninjas)2. All inference settings, prompts,
and decoding parameters are held fixed; only the checkpoint changes (see full training and infer-
ence hyperparameters in Appendix I). We then compare selection rates within the same Language
Identification cluster before CPT and after ∼1/3, ∼2/3, and one full epoch of biased training (See
Figure 17 for full figure). We observe that biased CPT substantially increases the selection of the
exposed endpoint but does not fully determine choice. The target endpoint’s share rises from 0.006
(base) to 0.122 after 1/3 epoch, remains 0.122 at 2/3 epoch, and nudges to 0.128 at one epoch. This
is an absolute gain of ∼12 percentage points (over 20× relative). Most of the shift is realized early,
suggesting a quickly saturating response. This demonstrates that biased exposure during training
can directly shape tool-selection preferences in favor of the exposed endpoint. However, since the
target never approaches a dominant share, pre-training exposure explains only part of the bias, and
additional factors still shape tool choice.

4.4 CAN WE MITIGATE THE OBSERVED BIAS?

After demonstrating the existence and causes of bias, we seek to mitigate it. Our approach is
simple: models often recognize which APIs can solve a certain task, but still exhibit skewed
preferences among interchangeable endpoints. Hence, we propose to decouple recognition from
selection via a lightweight debiasing module. This module uses a smaller LLM (Qwen3-14B),
prompted to return only the subset of APIs from the candidate list that can solve the given query.
We then choose uniformly at random from this subset, ensuring that each valid API has the same
expected probability of selection. This eliminates positional or metadata-based favoritism while
maintaining task coverage. See Appendix D for benchmark details and evaluation metrics. This
section showcases the potential of the method and outlines how it can help.

Subset selection avoids spurious inclusions of incorrect APIs while maintaining high
coverage of correct APIs, thereby mitigating bias without sacrificing performance. Table
2 summarizes results for Qwen3-14B as the subset selector. Overall micro-precision is ∼1.00
(0.9964), meaning the selector almost never adds tools to the candidate set that cannot solve the
user’s task. This is a desirable property as it means that our mitigation module is unlikely to output
an incorrect tool, and therefore, performance will not suffer. Note that since all ground-truth set
size classes have nearly the same number of queries, micro- and macro-precision are effectively
equivalent; we report micro-precision for simplicity. Micro-recall is ∼0.89 (0.8856), so on average
the selector itself is not biased and retains most ground-truth tools, with an exact set match of 0.69
across all instances. Broken out by the size of the ground-truth set K, precision remains essentially
perfect across the board, while recall varies: it is strongest at K=4 (0.9633) and somewhat lower
at K=2 (0.7717) and K=5 (0.8610). The corresponding exact-match rates reflect the same pattern
(notably 0.9100 at K=4). In practice, this means the subset filter very rarely introduces distracting
tools (good for performance), but it can occasionally omit a true option when K is small or large.

2We use this model because its smaller size makes training tractable on modest hardware.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Subset–selection performance for Qwen3 (14B) (overall and by ground–truth set size K).

Overall

Micro-Precision 0.9964
Micro-Recall 0.8856
Exact Set Match Rate 0.6900

By ground–truth set size K

K n Precision Recall Exact Set Match

2 300 1.0000 0.7717 0.5433
3 200 0.9925 0.8850 0.7350
4 300 0.9940 0.9633 0.9100
5 200 1.0000 0.8610 0.5350

G
eo

co
d

e
-

F
or

w
..

.

G
eo

lo
ca

te

T
ru

eW
ay

G
eo

co
d

..
.

G
eo

ke
o

F
or

w
ar

d
..

.

A
d

d
re

ss
N

or
m

al
..

.

0.0

0.2

0.4

0.6

0.8

1.0

S
el

ec
ti

on
R

at
e

Address → Coordinates

V
al

id
at

e
E

m
ai

l

E
m

ai
l

V
al

id
at

or

E
m

ai
l

V
er

ifi
er

E
m

ai
l

V
al

id
at

i.
..

E
m

ai
l

C
h

ec
ke

r
..

.

Email Validation

F
or

ec
a
st

W
ea

th
er

A
P

I.
co

m

W
or

ld
W

ea
th

er
..

.

W
ea

th
er

w
ea

th
er

fo
re

ca
..

.

Multi-Day Weather Forecast

Before After

Figure 6: Selection distributions for GPT-4.1 mini with and without utilizing our mitigation method
across three clusters. Each subplot corresponds to one cluster, with the x-axis indicating the API in
the cluster and the y-axis showing the fraction of times that API was chosen using the corresponding
setup over 500 inference runs.

Taken together, these results suggest subset selection is a promising first line of defense: it does
not lead to spurious inclusions (high precision) and maintains high coverage of correct APIs on
average, and thus, less bias downstream (strong recall).

Our mitigation method successfully alleviates tool-selection bias. Figure 6 shows the empirical
selection distributions of GPT-4.1 mini before and after applying our mitigation method over three
clusters of functionally equivalent APIs. Where choices were far from uniform before, after the
mitigation method is applied we notice an even spread of selection share. However, in the weather
forecasting cluster (right), we see that one API is still being underutilized, perhaps being an indica-
tion that the model has a difficult time using this API correctly even when it is the only API available.
The effectiveness of the mitigation method is further exemplified in Table 5, where a steep decrease
in all our bias metrics after applying the mitigation method can be observed.

5 CONCLUSION

In this paper, we introduced the first benchmark for evaluating tool selection bias in LLMs. Our
results establish tool selection bias as a real and potentially significant issue for tool-augmented
(agentic) LLMs, with implications for user experience, operational cost, and marketplace fairness.
This study offers a concrete starting point for understanding and mitigating this bias.

Limitations: This study is limited by using 100 synthetically generated user queries per cluster and
a narrow seven-feature set for selection-rate predictions, limited model/repeat coverage, and a focus
on APIs from RapidAPI and English queries. Although our choices were constrained by compute
(our setup already required∼500,000 inference runs), these factors may induce variance and restrict
generality.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Future Work: Future work should scale queries and clusters and enrich features with deeper se-
mantic and structural signals to raise predictive power beyond the modest observed R2. In addition,
deploying more expressive models (e.g., boosted trees or deep nets) with cross-validation could
capture higher-order interactions between tool features, further increasing their explanatory power.
Lastly, broader replication across LLMs and runs would aid in quantifying variability.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This research did not involve identifiable human data or animals and therefore did not require ap-
proval from an institutional ethics committee or review board. All experiments are conducted for
scientific purposes only. The work does not involve or target any sensitive attributes such as gender,
race, nationality, or skin color. Our study focuses on identify and mitigate tool-selection bias in
LLM agents, with the aim of improving the trustworthiness and safety of LLM agents deployment.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our work. We provide detailed descrip-
tions of data and experimental setup in Section 4. We have already included an anonymous version
of our code in the public GitHub repository to facilitate replication.

Additional note. During initial experiments we observed an unusually large standard deviation
in DeepSeek’s selection distributions for certain clusters. When we re-ran the experiments under
the same configuration, this anomaly disappeared. Since we use the generic deepseek-chat
endpoint for our LLM calls, which always serves the latest model version, one of the later runs was
executed after a silent model update and thus, ran with a different model. All DeepSeek results
reported in the current version of the paper are based on a fresh set of runs collected using the same
model, which removes the anomalous error bars.

REFERENCES

Anthropic. Meet Claude Anthropic, 2025. URL https://www.anthropic.com/claude.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi
Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng
Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi
Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. arXiv preprint
arXiv:2309.16609, 2023.

Dylan Bouchard. An actionable framework for assessing bias and fairness in large language model
use cases. arXiv preprint arXiv:2407.10853, 2024.

Sadia Sultana Chowa, Riasad Alvi, Subhey Sadi Rahman, Md Abdur Rahman, Mohaimenul
Azam Khan Raiaan, Md Rafiqul Islam, Mukhtar Hussain, and Sami Azam. From language to
action: A review of large language models as autonomous agents and tool users. arXiv preprint
arXiv:2508.17281, 2025.

Sunhao Dai, Chen Xu, Shicheng Xu, Liang Pang, Zhenhua Dong, and Jun Xu. Bias and unfairness
in information retrieval systems: New challenges in the llm era. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, 2024.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng

11

https://anonymous.4open.science/r/tool-selection-bias-C371/
https://www.anthropic.com/claude

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948, 2025.

Economize. AWS API Gateway Pricing and 5 Strategies for Cost Reduction, 2024. URL https:
//www.economize.cloud/blog/aws-api-gateway-pricing/.

Kazem Faghih, Wenxiao Wang, Yize Cheng, Siddhant Bharti, Gaurang Sriramanan, Sriram Bala-
subramanian, Parsa Hosseini, and Soheil Feizi. Gaming tool preferences in agentic llms. arXiv
preprint arXiv:2505.18135, 2025.

Isabel O. Gallegos, Ryan A. Rossi, Joe Barrow, Md. Mehrab Tanjim, Sungchul Kim, Franck Der-
noncourt, Tong Yu, Ruiyi Zhang, and Nesreen K. Ahmed. Bias and fairness in large language
models: A survey. Comput. Linguistics, 2024.

Google. Introducing Gemini: our largest and most capable AI model. 2023. URL https://
blog.google/technology/ai/google-gemini-ai/.

GrandViewResearch. API Marketplace Market (2025 - 2030), 2025. URL
https://www.grandviewresearch.com/industry-analysis/
api-marketplace-market-report.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In The Tenth Interna-
tional Conference on Learning Representations, ICLR, 2022.

Itay Itzhak, Gabriel Stanovsky, Nir Rosenfeld, and Yonatan Belinkov. Instructed to bias: Instruction-
tuned language models exhibit emergent cognitive bias. arXiv preprint arXiv:2308.00225, 2024.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. ACM
Computing Surveys, 2023.

Keita Kurita, Nidhi Vyas, Ayush Pareek, Alan W Black, and Yulia Tsvetkov. Measuring bias in
contextualized word representations. In Proceedings of the First Workshop on Gender Bias in
Natural Language Processing, 2019.

Jiaxu Lou and Yifan Sun. Anchoring bias in large language models: An experimental study. arXiv
preprint arXiv:2412.06593, 2024.

Xiaoliang Luo, Akilles Rechardt, Guangzhi Sun, Kevin K. Nejad, Felipe Yáñez, Bati Yilmaz,
Kangjoo Lee, Alexandra O. Cohen, Valentina Borghesani, Anton Pashkov, Daniele Marinazzo,
Jonathan Nicholas, Alessandro Salatiello, Ilia Sucholutsky, Pasquale Minervini, Sepehr Razavi,
Roberta Rocca, Elkhan Yusifov, Tereza Okalova, Nianlong Gu, Martin Ferianc, Mikail Khona,
Kaustubh R. Patil, Pui-Shee Lee, Rui Mata, Nicholas E. Myers, Jennifer K. Bizley, Sebas-
tian Musslick, Isil Poyraz Bilgin, Guiomar Niso, Justin M. Ales, Michael Gaebler, N. Apurva
Ratan Murty, Leyla Loued-Khenissi, Anna Behler, Chloe M. Hall, Jessica Dafflon, Sherry Dongqi
Bao, and Bradley C. Love. Large language models surpass human experts in predicting neuro-
science results. Nature Human Behaviour, 2024.

12

https://www.economize.cloud/blog/aws-api-gateway-pricing/
https://www.economize.cloud/blog/aws-api-gateway-pricing/
https://blog.google/technology/ai/google-gemini-ai/
https://blog.google/technology/ai/google-gemini-ai/
https://www.grandviewresearch.com/industry-analysis/api-marketplace-market-report
https://www.grandviewresearch.com/industry-analysis/api-marketplace-market-report

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Kanghua Mo, Li Hu, Yucheng Long, and Zhihao Li. Attractive metadata attack: Inducing llm agents
to invoke malicious tools. In Advances in Neural Information Processing Systems (NeurIPS),
2025.

Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar, Muhammad Usman,
Naveed Akhtar, Nick Barnes, and Ajmal Mian. A comprehensive overview of large language
models. arXiv preprint arXiv:2307.06435, 2024.

OpenAI. ChatGPT, 2025. URL https://openai.com/chatgpt/overview/.

Daniel E. O’Leary. Confirmation and specificity biases in large language models: An explorative
study. IEEE Intelligent Systems, 2025.

Pouya Pezeshkpour and Estevam Hruschka. Large language models sensitivity to the order of op-
tions in multiple-choice questions. NAACL, 2024.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
Dahai Li, Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large language models to master
16000+ real-world apis. In The Twelfth International Conference on Learning Representations,
ICLR, 2024.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, Shuaiqiang Wang, Dawei Yin, Jun Xu, and
Ji-rong Wen. Tool learning with large language models: a survey. Frontiers of Computer Science,
2025.

RapidAPI. Monetizing your API on Rapidapi.com, 2025a. URL https://docs.rapidapi.
com/docs/monetizing-your-api-on-rapidapicom.

RapidAPI. Nokia acquires Rapid technology and team!, 2025b. URL https://rapidapi.
com/.

Timo Schick, Sahana Udupa, and Hinrich Schütze. Self-diagnosis and self-debiasing: A proposal for
reducing corpus-based bias in nlp. Transactions of the Association for Computational Linguistics,
2021.

Jiawen Shi, Zenghui Yuan, Guiyao Tie, Pan Zhou, Neil Zhenqiang Gong, and Lichao Sun. Prompt
injection attack to tool selection in llm agents. arXiv preprint arXiv:2504.19793, 2025.

Ziqi Wang et al. Eliminating position bias of language models: A mechanistic approach. ICLR,
2025.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing Systems (NeurIPS), 2022.

Sheng-Lun Wei et al. Unveiling selection biases: Exploring order and token sensitivity in large
language models. ACL, 2024.

Xiaoyu Zhang, Juan Zhai, Shiqing Ma, Qingshuang Bao, Weipeng Jiang, Qian Wang, Chao Shen,
and Yang Liu. The invisible hand: Unveiling provider bias in large language models for code
generation. Association for Computational Linguistics ACL 2025, 2025.

Chujie Zheng et al. Large language models are not robust multiple choice selectors. ICLR, 2024.

Caleb Ziems, William Held, Jane Dwivedi-Yu, and Diyi Yang. Measuring and addressing indexical
bias in information retrieval. In Findings of the Association for Computational Linguistics ACL
2024, 2024.

13

https://openai.com/chatgpt/overview/
https://docs.rapidapi.com/docs/monetizing-your-api-on-rapidapicom
https://docs.rapidapi.com/docs/monetizing-your-api-on-rapidapicom
https://rapidapi.com/
https://rapidapi.com/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A MORE DETAILS ON DATA GENERATION

RapidAPI 16000+ APIs
Embed

&
Cluster

world_weather_online_api
weatherapi_com
weather_forecast_14_days

qr_code_generator_api
generate_qr_easy
qr_code_generator_v2

Generate
Queries

"What's the weather in Paris?"
"Give me the weather in LA."

...

Clusters of Equivalent Tools Realistic Queries for Clusters

 "Generate a QR for my URL."
 "Create a QR for my website."

 ...

Bias Measures

B
ia

s
M

et
ric

...Benchmark
Models

...

... ...

Figure 7: An overview of our clustering and query generation pipeline.

We build on the “tool-usage” evaluation pipeline introduced by Qin et al. (2024), hereafter referred
to as ToolLLM, owing to its wide adoption and extensibility. At its core, ToolLLM assembles a large
catalog of real-world APIs scraped from RapidAPI spanning 49 functional categories (RapidAPI,
2025b). For each API, ToolLLM provides a JSON file containing the API’s human-readable
name, detailed description, and full parameter schema. In this work, we leverage exactly that API
repository but restrict our attention to the stages in which ToolLLM selects among a short list of
retrieved candidates. Note that in ToolLLM, a set of closely-related APIs is called a ‘tool’. For
example, a geocoding tool could offer both forward geocoding and reverse geocoding APIs3.

We assemble our benchmark in two stages: (1) clustering APIs into functionally equivalent
groups, and (2) generating realistic user queries for each group (see Figure 7).

Algorithm 1 Generation of Functionally-Equivalent API Clusters

Require: API id to metadata map π,
Precomputed embeddings E,
List of “general” APIs G = {(tool, tool desc, api name, api desc)},
neighbor count K,
max outlier loops R

1: C ← ∅
2: for all (tool, tool desc, api name, api desc) ∈ G do
3: Construct query text q = “ tool : tool desc | api name :api desc ”
4: Embed q with ADA: vq ← Embed(q)
5: Compute cosine similarities: si ← cos(vq, Ei) ∀i
6: Select top–K unique tools with largest similarity and store in set TOPK

7: candidate← {π[i] | i ∈ TOPK}
8: for r ← 1 to R do
9: Prompt GPT-4 to detect outliers: outliers← DetectOutliers(candidate)

10: if outliers = ∅ then break
11: end if
12: Remove outliers from candidate: candidate = candidate \ outliers
13: end for
14: if |candidate| > 3 then
15: C ← C ∪ {candidate}
16: end if
17: end for
18: return C

3Geocoding is the process of converting between human-readable addresses and geographic coordinates:
“forward” geocoding maps an address (e.g., “1600 Amphitheatre Parkway”) to its latitude/longitude, while
“reverse” geocoding maps a given coordinate pair back to a structured postal address.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

You are a prompt-writing assistant. I will give you a set of API
endpoints (tool name + description, endpoint name + description,
and potentially the required parameters) that all perform the same
underlying task. Please generate exactly {n} distinct, natural-

language user queries that could be satisfied by ALL of these
endpoints. **Include realistic sample values** for any required
parameters (e.g. use "https://example.com" for a URL, or "Hello
World" for a text field). Return them as a JSON array of strings,
with no extra commentary.

User:
Here are the endpoints:
- Tool: WeatherNow - Provides current weather information
Endpoint: Current Weather - Returns temperature, humidity,
and conditions for a given location.
Required parameters:
* city (string) - name of the city
* country (string) - ISO country code

- ...

Figure 8: Example prompt used for query generation. The model outputs n natural-language queries
that all listed endpoints can satisfy.

API clustering. We begin by embedding every endpoint’s metadata (tool name, API name,
descriptions, etc.) into a shared vector space using a pre-trained text encoder (OpenAI’s
text-embedding-ada-002 model). We then curate a small set of “seed” APIs whose de-
scriptions span a number of “general” tasks, such as text translation or weather forecasting. For
each seed, we retrieve its top-K nearest neighbors in embedding space to form a candidate cluster.
To ensure true functional equivalence, we iteratively prompt GPT-4 to flag any outlier endpoints that
cannot perform the same task as the rest; flagged APIs are removed and the check repeats for up to a
pre-defined number of rounds. Any cluster that stabilizes with more than three members is retained.
See Algorithm 1 for an overview of our clustering approach. Lastly, we manually inspect and refine
these clusters, yielding 10 high-quality groups of five APIs each.

Query generation. For each cluster, we prompt GPT-4 (see Figure 8) to produce natural-language
queries that all members can satisfy. In batches of ten, the model generates candidate queries until
we collect 100 unique queries per cluster, filtering out duplicates. In cases where freeform gener-
ation exhibits provider-specific bias (e.g., mentioning a particular vendor’s feature), we switch to a
template-filling workflow: we design a small set of generic templates with placeholders (e.g. “Get
the latest news headlines for {country} about {topic}.”), and ask GPT-4 to instantiate each template
multiple times with realistic sample values.

Final curation. All 1,000 generated queries are then reviewed by hand to remove any that inadver-
tently favor a single provider or rely on specialized parameters. The resulting dataset consists of 10
clusters with 5 APIs each, and 100 balanced, provider-agnostic queries for each cluster.

Running each model over these prompts yields empirical selection distributions over APIs and list
positions, from which we compute our total-variation-based bias metrics δAPI, δpos, and δmodel.
This rigorously grounded benchmark enables precise measurement and comparison of tool-selection
bias across models and settings.

B ATTRIBUTE-LEVEL ANALYSIS FEATURE TABLE

See Table 3 for the list of features used in the analysis of Section 4.3.

C MORE DETAILS ON THE BIASED CPT EXPERIMENT

We test whether pre-training data can cause tool-selection bias by doing biased continued pre-
training (CPT) on a single model. That is, we do additional next-token training on raw text using

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 3: API-level predictor features.

Feature Description
avg similarity tool desc Mean text similarity between cluster queries and the tool’s de-

scription.
avg similarity api desc Mean text similarity between cluster queries and each API’s

description.
age days Days since the API was first published.
desc name length sum Total character count of the API’s name plus description.
num params Number of required and optional parameters.
flesch reading ease Flesch reading-ease score of the combined descriptions.
positive word count Count of positive or promotional words (e.g. “efficient,” “ro-

bust”).

∼3.5M tokens deliberately saturated with one endpoint’s metadata (its name, description, and
parameter info). After this exposure, we re-run the selection tasks and measure shifts in that
endpoint’s selection share.

To generate the biased corpus, we synthesize long-form prose with an external LLM (Gem-
ini 2.5 Flash). We prompt it to produce a single document of roughly 1.1–1.3k words written in a
randomly sampled style (e.g., blog note, Q&A memo, release note, how-to guide, troubleshooting
checklist). The prompt requires frequent natural mentions of the target API name, the exact
or faithfully paraphrased tool description, and the exact or paraphrased API description; it also
requests inclusion of the endpoint path in about 60% of documents and parameter metadata in about
50%. This pipeline yields a large, stylistically varied corpus that is nevertheless saturated with the
same endpoint’s metadata.

We then run CPT on the same base model used elsewhere (i.e., Qwen3-8B) with parameter-
efficient adapters (LoRA) attached (see Hu et al. (2022) for more details on LoRA). We keep
tokenizer unchanged.

We evaluate pre/post CPT selection distributions on the original cluster, prompts, and infer-
ence settings. The primary outcome is the shift in the target API’s selection share. We also measure
spillover: changes in the selection shares of non-target APIs within the cluster. If biased CPT
reliably increases the target API’s selection share, this is evidence that a portion of tool-selection
bias originates from pre-training exposure.

D DETAILS ON THE IMPLEMENTATION AND EVALUATION OF THE
MITIGATION METHOD

After showing the existence and possible causes of bias, we seek to mitigate it. We pursue a simple
approach based on the following insight: Models often know which APIs can solve a task but
can possibly exhibit biased choices among interchangeable endpoints. We decouple capability
recognition from final selection via a lightweight debiasing module.

The debiasing module consists of a lightweight LLM (Qwen3 14B in our case) prompted to
output the subset of APIs from the given candidate list that can solve the task given in the query.
This way, we get a subset selector that outputs an array of the APIs that can complete the task. The
system prompt constrains the output to an exact list with no prose. From the returned set S, we pick
one API uniformly at random. This API then replaces the original API list and is used for the rest
of the tool-usage pipeline.

If this approach is successful, each API in S has an expected selection share of 1/|S|, elimi-
nating position/API favoritism at the choice stage. If the selector’s true positive/negative rates are
high enough, the overall selection distribution approaches uniform even when original models were
skewed. This, following our definition, means the tool selection stage becomes unbiased by design.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Temperature

0.28

0.29

0.30

0.31

0.32

0.33

0.34

0.35

δ m
o
d

el

(a) Temp. (GPT-3.5)

0.70 0.75 0.80 0.85 0.90 0.95 1.00

Top-p

0.340

0.341

0.342

0.343

0.344

0.345

0.346

δ m
o
d

el

(b) Top-p (GPT-3.5)

0 50 100 150 200

Model size (B parameters)

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

δ m
o
d

el

(c) Model size (Qwen 3)

Figure 9: Sensitivity of the combined bias metric δmodel to model hyperparameters. Each point is
the mean over three independent runs (except for the top-p subplot); vertical bars show one standard
deviation where available.

To evaluate this approach, we build a 1000-query benchmark with 8 API candidates per
query and a ground truth set indicating which K ∈ {2, 3, 4, 5} APIs are sufficient (∼250 items
each). We report subset quality: precision, recall, and exact-set match. Note that the formula for
exact-set match is given by 1

N

∑N
i=1 1[Si = Gi] where G denotes the set of ground truth sets, S the

set of selected subsets, and N is the number of queries. Additionally note that bias can persist if the
subset selector itself is biased; underselecting viable tools (false negatives) or selecting unrelevant
ones (false positives). Measures of recall and precision will tell us whether this is the case.

E MORE ELABORATE ABLATION AND SENSITIVITY ANALYSIS

Temperature. Raising temperature reduces combined bias. As shown in Figure 9a, as temperature
goes from 0 to 2, the mean δmodel for GPT-3.5 drops from about 0.350 to 0.285, a 6.5% absolute
reduction. Figure 10 makes clear why: the overall selection patterns remain similar across
temperatures, but higher temperatures soften extreme preferences. This suggests that increased
stochasticity slightly mitigates bias, but does not eliminate it.

Top-p. Figure 9b shows how the combined bias δmodel for GPT-3.5 varies with the top-p
cutoff. Increasing top-p from 0.7 to 1.0 yields a small decrease in bias (from ∼0.346 to ∼0.340),
suggesting that less aggressive truncation of the probability distribution slightly softens extreme
tool preferences. The effect is noticeably weaker than the temperature change.

Model Size. In Figure 9c, the combined bias δmodel is depicted for Qwen 3 with varying
model size. It seems that larger models exhibit less bias, with a notable drop at 32B. This pattern
suggests that larger models develop more nuanced selection mechanisms which temper extreme
preferences for certain APIs.

API Ordering. Figure 11 compares GPT-3.5’s API selection under two different ordering schemes:
cyclic rotations versus random permutations. Across all clusters, the choice distribution is very
similar: no API’s selection rate shifts more than about ten percentage points. This indicates that the
ordering of the APIs has some influence, but the dominant signal is the model’s intrinsic preference.
However, the small differences could also reflect the inherent noise from stochastic token sampling,
and overall we argue that the tool-selection behavior is robust to either type of shuffling.

System Prompts. To evaluate how sensitive tool selection is to the phrasing and structure of
the instructions given, we compare three variants of the system prompt: the original “Base” prompt,
a lightly reworded “Similar” prompt, and a structurally different “Adjusted” prompt. Figure 12
shows the resulting distributions for GPT-3.5.

Prompt wording shifts model preferences but does not remove bias. Reworded prompts can amplify
dominant choices and in some cases radically redistribute the selection shares. Elsewhere, effects are
modest. Overall, framing and formatting can tilt the implicit ranking among functionally equivalent
APIs, indicating that part of the observed bias is prompt-dependent even as a tendency to favor a
subset of tools remains.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Geocode - Forw
. . .

Geolocate

TrueW
ay

Geocod. . .

Geokeo
Forw

ard. . .

Addres
s Norm

al. .
.

0.0

0.2

0.4

0.6

0.8

1.0

S
el

ec
ti

on
R

at
e

Address → Coordinates

Geocode - Forw
. . .

Forw
ard

&
Reve. .

.

Geocoding by A. . .

Addres
s From

T. . .

Fero
eg

- Rever.
. .

Coordinates → Address

Real-T
im

e New
s. .

.

New
sca

tch
er

TheC
liq

ue

New
sD

ata

Web
Search

Top News Headlines by Region

IP
Geolocatio

n. . .

IP
Geolocaliz

a. . .

Free
IP

Geoloc. .
.

IP
Addres

s Geo. . .

IP
Geo

Locatio
. . .

IP Address → Geolocation

Domain
W

HOIS
L. . .

W
hois

by API-N
. . .

New
ly

Regist
er.

. .

W
HOIS

v2
W

hois
0.0

0.2

0.4

0.6

0.8

1.0

S
el

ec
ti

on
R

at
e

WHOIS Domain History

Valid
ate

Email

Email Valid
ator

Email Veri
fier

Email Valid
ati.

. .

Email Check
er

. . .

Email Validation

Sentim
ent Anal. .

.

Multi-
lin

gual . . .

TextSentA
I - . . .

Sentim
ent by A. . .

Sentim
ent Anal. .

.

Sentiment Analysis

W
hat’s

Language

Quick
Language. .

.

Text Language . . .

Transla
te

v3

Transla
te

All . . .

Language Identification

QR
Code API v33

QR
Code API v67

QR
Code Gen

era
. . .

QR
Code API Ge. .

.

Easy
QR

Code G. . .
0.0

0.2

0.4

0.6

0.8

1.0

S
el

ec
ti

on
R

at
e

QR Code Generation

Forec
ast

WeatherA
PI.c

om

World
Weather

. . .

Weather

weather
forec

a. . .

Multi-Day Weather Forecast

0 0.5 1 2

Figure 10: Selection distributions for GPT-3.5 using four different temperatures across ten clusters
of functionally equivalent APIs. Each subplot corresponds to one cluster, with the x-axis indicating
the API in the cluster and the y-axis showing the fraction of times that API was chosen by the
respective model over 500 runs.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Geocode - Forw
. . .

Geolocate

TrueW
ay

Geocod. . .

Geokeo
Forw

ard. . .

Addres
s Norm

al. .
.

0.0

0.2

0.4

0.6

0.8

1.0
S

el
ec

ti
on

R
at

e
Address → Coordinates

Geocode - Forw
. . .

Forw
ard

&
Reve. .

.

Geocoding by A. . .

Addres
s From

T. . .

Fero
eg

- Rever.
. .

Coordinates → Address

Real-T
im

e New
s. .

.

New
sca

tch
er

TheC
liq

ue

New
sD

ata

Web
Search

Top News Headlines by Region

IP
Geolocatio

n. . .

IP
Geolocaliz

a. . .

Free
IP

Geoloc. .
.

IP
Addres

s Geo. . .

IP
Geo

Locatio
. . .

IP Address → Geolocation

Domain
W

HOIS
L. . .

W
hois

by API-N
. . .

New
ly

Regist
er.

. .

W
HOIS

v2
W

hois
0.0

0.2

0.4

0.6

0.8

1.0

S
el

ec
ti

on
R

at
e

WHOIS Domain History

Valid
ate

Email

Email Valid
ator

Email Veri
fier

Email Valid
ati.

. .

Email Check
er

. . .

Email Validation

Sentim
ent Anal. .

.

Multi-
lin

gual . . .

TextSentA
I - . . .

Sentim
ent by A. . .

Sentim
ent Anal. .

.

Sentiment Analysis

W
hat’s

Language

Quick
Language. .

.

Text Language . . .

Transla
te

v3

Transla
te

All . . .

Language Identification

QR
Code API v33

QR
Code API v67

QR
Code Gen

era
. . .

QR
Code API Ge. .

.

Easy
QR

Code G. . .
0.0

0.2

0.4

0.6

0.8

1.0

S
el

ec
ti

on
R

at
e

QR Code Generation

Forec
ast

WeatherA
PI.c

om

World
Weather

. . .

Weather

weather
forec

a. . .

Multi-Day Weather Forecast

Random Cyclic

Figure 11: Selection distributions for GPT-3.5 using cyclic and random shuffling of the APIs across
ten representative clusters. Each subplot corresponds to one cluster, with the x-axis indicating the
API in the cluster and the y-axis showing the fraction of times that API was chosen for that specific
API ordering method over 500 runs.

F MORE ELABORATE DISCUSSION ON THE EXPLANATION OF BIAS

We now expand on the analysis given in the main text surrounding the investigation of bias. We
expand on the feature-level analysis, where we try to predict selection rates according to intrinsic
API attributes, and on the perturbation experiments that directly intervene on the API metadata to
see which cues the models rely on during selection.

F.1 WHICH API-LEVEL FEATURES PREDICT SELECTION RATES?

We extract a common set of descriptive features from every API (see Section 3.3) and mean-center
them to investigate how being relatively high or low on a feature affects the API selection. These are
then paired with the empirical selection rates yielding a dataset of 50 examples for each LLM. We
then probe relationships between features and selection behavior in three ways. First, we compute
Pearson correlations to capture linear and monotonic associations. Second, we fit a linear regression
per model to quantify the aggregate explanatory power (reported as R2) and inspect coefficients to
understand the direction and relative weight of each feature. Third, we train random-forest regressors
with cross-validation to allow for non-linear interactions and obtain alternative measures of feature
importance.

Similarity between tool / API description and query is most correlated to selection rate.
As Table 4 makes clear, the most predictive feature of API selection is semantic similar-
ity between the query and the tool/API descriptions. Both avg similarity tool desc
and avg similarity api desc are consistently positively correlated with selection
rates—especially strong for Qwen and clear for Gemini; GPT shows the same pattern, albeit weaker
with higher p-values. By contrast, structural or stylistic attributes (e.g., parameter count, promo-
tional wording) exhibit little consistent influence. Tool age (age days) shows a modest, broadly
consistent negative correlation across models.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Geocode - Forw
. . .

Geolocate

TrueW
ay

Geocod. . .

Geokeo
Forw

ard. . .

Addres
s Norm

al. .
.

0.0

0.2

0.4

0.6

0.8

1.0

S
el

ec
ti

on
R

at
e

Address → Coordinates

Geocode - Forw
. . .

Forw
ard

&
Reve. .

.

Geocoding by A. . .

Addres
s From

T. . .

Fero
eg

- Rever.
. .

Coordinates → Address

Real-T
im

e New
s. .

.

New
sca

tch
er

TheC
liq

ue

New
sD

ata

Web
Search

Top News Headlines by Region

IP
Geolocatio

n. . .

IP
Geolocaliz

a. . .

Free
IP

Geoloc. .
.

IP
Addres

s Geo. . .

IP
Geo

Locatio
. . .

IP Address → Geolocation

Domain
W

HOIS
L. . .

W
hois

by API-N
. . .

New
ly

Regist
er.

. .

W
HOIS

v2
W

hois
0.0

0.2

0.4

0.6

0.8

1.0

S
el

ec
ti

on
R

at
e

WHOIS Domain History

Valid
ate

Email

Email Valid
ator

Email Veri
fier

Email Valid
ati.

. .

Email Check
er

. . .

Email Validation

Sentim
ent Anal. .

.

Multi-
lin

gual . . .

TextSentA
I - . . .

Sentim
ent by A. . .

Sentim
ent Anal. .

.

Sentiment Analysis

W
hat’s

Language

Quick
Language. .

.

Text Language . . .

Transla
te

v3

Transla
te

All . . .

Language Identification

QR
Code API v33

QR
Code API v67

QR
Code Gen

era
. . .

QR
Code API Ge. .

.

Easy
QR

Code G. . .
0.0

0.2

0.4

0.6

0.8

1.0

S
el

ec
ti

on
R

at
e

QR Code Generation

Forec
ast

WeatherA
PI.c

om

World
Weather

. . .

Weather

weather
forec

a. . .

Multi-Day Weather Forecast

Base Similar Adjusted

Figure 12: Selection distributions for GPT-3.5 using different system prompts across ten clusters.
Each subplot corresponds to one cluster, with the x-axis indicating the API in the cluster and the
y-axis showing the fraction of times that API was chosen using the corresponding system prompt
over 500 runs.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 4: Correlation between API-level features and model selection rates. Each entry shows Pear-
son r with its p-value.

Feature GPT-4.1 mini Gemini Qwen

avg similarity tool desc +0.227(p=0.113) −0.092(p=0.526) +0.234(p=0.101)

avg similarity api desc +0.111(p=0.442) +0.330(p=0.019) +0.411(p=0.003)

age days −0.199(p=0.201) −0.144(p=0.356) −0.163(p=0.296)

desc name length sum +0.044(p=0.760) +0.103(p=0.477) +0.038(p=0.795)

num params −0.065(p=0.653) +0.038(p=0.793) −0.185(p=0.198)

flesch reading ease +0.160(p=0.267) +0.176(p=0.222) +0.098(p=0.496)

positive word count +0.126(p=0.384) +0.087(p=0.547) +0.093(p=0.521)

Linear regression reveals that surface-level semantic alignment is the primary signal but leaves
a lot unexplained. Figure 13 tells us that linear models explain only part of the variance: R2

is modest—0.143 for GPT-4.1 mini and 0.387 for ToolLLaMA—leaving substantial error. Coeffi-
cients show surface-level semantic alignment dominates: similarity between the query and tool/API
descriptions has the largest positive weights for most models, with Qwen weighting both most
strongly and Gemini emphasizing API-level descriptions. Unexpectedly, ToolLLaMA gives a neg-
ative weight to tool-description similarity. Other features contribute little. Hence, semantic align-
ment is important in driving selection but still gives an incomplete explanation, implying nonlinear
or omitted factors and motivating more flexible models (e.g., random forests).

avg sim
ila

rit
y tool desc

avg sim
ila

rit
y api desc

age days

desc
name len

gth
sum

num
params

flesc
h rea

ding ease

posit
ive word

count

−3

−2

−1

0

1

2

3

L
in

ea
r

re
gr

es
si

on
co

effi
ci

en
t

ChatGPT 3.5 (R2 = 0.222)

ChatGPT 4.1 (R2 = 0.143)

Gemini (R2 = 0.120)

DeepSeek (R2 = 0.182)

Qwen (R2 = 0.226)

ToolLLaMA (R2 = 0.387)

Figure 13: Linear regression feature weights used to predict API selection rates for six LLMs. Each
group of bars corresponds to one API-level feature; different colors denote models, with their R2

shown in the legend. Larger positive weights indicate features that increase the predicted selection
rate.

Random forests fail to offer meaningful improvement. We fitted random-forest regressors with
the same mean-centered features using both cross-validation and a held-out split, but predictive per-
formance was poor, meaning the forests often did worse than a trivial constant baseline. This sug-
gests the available features, at least in their current form and scale, don’t contain enough signal or
that some artifacts are overwhelming the gains from nonlinearity. Therefore, any feature-importance
estimates from these trees would be unreliable and we do not lean on them for explanation. Future
work could involve revisiting this with a richer feature set, more data, or alternative nonlinear mod-
eling.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

F.2 HOW DO METADATA INTERVENTIONS AFFECT API SELECTION?

We saw that corrupting descriptions produces much larger and more stable effects on selection
behavior than name-level perturbations, which are sometimes noisy and unpredictable, in Section
4.3. Figure 14 corroborates this across clusters. Name perturbations often leave distributions near-
unchanged or can make them drift unpredictably (e.g., Cluster 1, where Cluster 1 is positioned at the
top-left and Cluster 6 at the bottom-right), whereas description/parameter scrambles frequently over-
haul rankings: sometimes amplifying the dominant API (Cluster 2), other times causing dramatic
re-ordering (Clusters 3). Name edits rarely produce comparably stable re-ranking.

Together, these patterns indicate that description-level semantics (and, to a lesser extent, parameter
semantics) are the primary cues models use to discriminate among functionally similar APIs. Name
perturbation alone tend to inject noise without consistent effects. Finally, bias persists under minimal
semantic signal (only names and schema fields), implying selection behavior sometimes relies on
residual, non-obvious priors rather than solely on coherent, human-interpretable heuristics.

Manipulating the description of certain tools has mixed effects across clusters. Figure 14 (lower
row) shows three behaviors when we manipulate descriptions. First, swapping the most- and least-
popular tools’ descriptions can invert their selection rates (Cluster 4), indicating description text
alone can dominate choice. Second, the same swap sometimes yields only a modest lift for the
least-popular tool while unexpectedly altering the selection shares of unaffected tools (Cluster 5),
suggesting the landscape is reconfigured rather than ranks simply exchanged. Third, in some clus-
ters the swap has minimal effect (Cluster 6), implying other cues—e.g., name priors or parameter
schemas—anchor preferences.

Targeted corruption of the most-selected tool’s description has similarly inconsistent effects. In
Cluster 4, scrambling collapses its share to near zero as another tool absorbs the mass; in Clusters
5–6, corruption diffuses probability across competitors, producing a more even allocation. Over-
all, description tampering often wields substantial influence, but the impact is context-dependent:
the same intervention can invert, redistribute, or barely change preferences, underscoring that tool
choice emerges from multiple interacting cues.

G ADDITIONAL FIGURES

G.1 CORRELATION IN SELECTION BETWEEN MODELS

Figure 15 shows that models exhibit varying degrees of correlation in their tool-selection patterns,
suggesting shared but non-identical biases across families.

G.2 SELECTION DISTRIBUTIONS FOR ALL CLUSTERS

This subsection provides a full version of the figure referenced in the main text (Figure 3). It expands
the subset plot to all ten clusters and keeps axes, run counts, and error-bar conventions identical to
the summary in Section 4.2. Use Figure 16 for detailed inspection of per-cluster behavior.

G.3 FULL FIGURE RELATED TO THE CPT EXPERIMENT

Figure 17 shows how biased continued pre-training gradually increases preference for the exposed
endpoint.

G.4 TABLE RELATED TO THE REDUCTION OF BIAS DUE TO MITIGATION

Table 5 demonstrates that our mitigation substantially flattens selection distributions and reduces
both API- and position-level bias.

H EFFECT OF METADATA PERTURBATION ON BIAS

Relative to the base distributions, both models move farther from uniform (get more biased)
when we lower semantic signal (see bars corresponding to the description + parameter and full

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

G
eo

co
de

- Fo
rw

. .
.

G
eo

lo
ca

te

Tru
eW

ay
G

eo
co

d.
. .

G
eo

ke
o

Fo
rw

ar
d.

. .

A
dd

re
ss

N
or

m
al
. .

.
0.0

0.2

0.4

0.6

0.8

1.0

S
el

ec
ti

on
R

at
e

Address → Coordinates

IP
G

eo
lo

ca
tio

n.
. .

IP
G

eo
lo

ca
liz

a.
. .

Fr
ee

IP
G

eo
lo

c.
. .

IP
A
dd

re
ss

G
eo

. .
.

IP
G

eo
Loc

at
io
. .

.

IP Address → Geolocation

D
om

ai
n

W
H
O
IS

L. .
.

W
ho

is
by

A
PI-N

. .
.

N
ew

ly
R
eg

ist
er

. .
.

W
H
O
IS

v2

W
ho

is

WHOIS Domain History

Val
id

at
e
Em

ai
l

Em
ai
l Val

id
at

or

Em
ai
l Ver

ifi
er

Em
ai
l Val

id
at

i. .
.

Em
ai
l Che

ck
er

. .
.

0.0

0.2

0.4

0.6

0.8

1.0

S
el

ec
ti

on
R

at
e

Email Validation

W
ha

t’s
Lan

gu
ag

e

Q
ui

ck
Lan

gu
ag

e.
. .

Tex
t Lan

gu
ag

e
. .

.

Tra
ns

la
te

v3

Tra
ns

la
te

A
ll

. .
.

Language Identification

Fo
re

ca
st

W
ea

th
er

A
PI.c

om

W
or

ld
W

ea
th

er
. .

.

W
ea

th
er

wea
th

er
fo

re
ca

. .
.

Multi-Day Weather Forecast

Base Rand. Name Desc. + Param. Targ. Desc. Swap. Desc.

Figure 14: Selection distributions for Gemini under different name/ordering perturbations across six
clusters of functionally equivalent APIs. Each subplot corresponds to one cluster; the x-axis lists the
APIs and the y-axis shows the fraction of times the model under each condition selected that API,
averaged over repeated runs. Error bars (when present) indicate the standard deviation across those
repeats, making visible how robust or variable the preferences are under the different perturbations.
Tools whose names are in green are the most selected by the baseline, and those in red are the least
selected. These are the tools that are targeted for the swapping and selected scramble experiments.

Table 5: Average cluster-level API bias δAPI, positional bias δpos, and combined bias δmodel before
and after mitigation.

Setup δAPI δpos δmodel

Before 0.338 0.422 0.380
After 0.108 0.079 0.094

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

G
PT

3.
5

G
PT

4.
1

C
la
ud

e

G
em

in
i

D
ee

pS
ee

k

Q
wen

T
-L

LaM
A

GPT 3.5

GPT 4.1

Claude

Gemini

DeepSeek

Qwen

T-LLaMA

1.00 0.33 0.12 0.10 0.28 0.12 0.29

0.33 1.00 0.59 0.73 0.64 0.64 0.25

0.12 0.59 1.00 0.67 0.47 0.62 0.12

0.10 0.73 0.67 1.00 0.49 0.74 0.38

0.28 0.64 0.47 0.49 1.00 0.40 0.08

0.12 0.64 0.62 0.74 0.40 1.00 0.13

0.29 0.25 0.12 0.38 0.08 0.13 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

P
ea

rs
on

r

Figure 15: Pearson correlation matrix between models’ tool-selection bias patterns.

perturbations in Figure 18). For Gemini, these manipulations yield the largest TV distances to
uniform (≈0.42–0.43); GPT shows similar results. This suggests that when descriptions/parameters
are corrupted, models amplify bias rather than flatten choices.

Conversely, targeted edits to the most popular API tends to decrease bias. For Gemini, tar-
geting the description of the most popular API leads to an average TVD slightly below the baseline
and swapping the description between most- and least popular API leads to one that is substantially
lower, indicating that weakening or transferring the strongest semantic cue moves the selection
distribution toward uniform. Name-only manipulations have similar effects, but name scrambling
does not increase bias as much.

I DETAILS ON CPT SETUP

Model and adapters. We continue pre-training Qwen3–8B–Base using Unsloth with 4-bit load-
ing. The maximum sequence length is 2048. We attach LoRA adapters with ∼16.29% trainable
parameters. See Table 6 for more info.

Table 6: Model/adapter configuration.

Base model unsloth/Qwen3-8B-Base-unsloth-bnb-4bit
Max seq. length 2048
Quantization 4-bit (bitsandbytes)
LoRA hyperparameters r = 128, α = 32, dropout= 0

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Geocode - Forw
...

Geolocate

TrueW
ay

Geocod...

Geokeo
Forw

ard...

Addres
s Norm

al...
0.0

0.2

0.4

0.6

0.8

1.0

S
el

ec
ti

on
R

at
e

Address → Coordinates

Geocode - Forw
...

Forw
ard

&
Reve..

.

Geocoding by A...

Addres
s From

T...

Fero
eg

- Rever.
..

Coordinates → Address

Real-T
im

e New
s...

New
sca

tch
er

TheC
liq

ue

New
sD

ata

Web
Search

Top News Headlines by Region

IP
Geolocatio

n...

IP
Geolocaliz

a...

Free
IP

Geoloc..
.

IP
Addres

s Geo...

IP
Geo

Locatio
...

IP Address → Geolocation

Domain
W

HOIS
L...

W
hois

by API-N
...

New
ly

Regist
er.

..

W
HOIS

v2
W

hois
0.0

0.2

0.4

0.6

0.8

1.0

S
el

ec
ti

on
R

at
e

WHOIS Domain History

Valid
ate

Email

Email Valid
ator

Email Veri
fier

Email Valid
ati..

.

Email Check
er

...

Email Validation

Sentim
ent Anal...

Multi-
lin

gual ...

TextSentA
I - ...

Sentim
ent by A...

Sentim
ent Anal...

Sentiment Analysis

W
hat’s

Language

Quick
Language..

.

Text Language ...

Transla
te

v3

Transla
te

All ...

Language Identification

QR
Code API v33

QR
Code API v67

QR
Code Gen

era
...

QR
Code API Ge..

.

Easy
QR

Code G...
0.0

0.2

0.4

0.6

0.8

1.0

S
el

ec
ti

on
R

at
e

QR Code Generation

Forec
ast

WeatherA
PI.c

om

World
Weather

...

Weather

weather
forec

a...

Multi-Day Weather Forecast

GPT-4.1 mini Claude Gemini DeepSeek ToolLLaMA Qwen3 (235B)

Figure 16: Selection distributions for six LLMs across ten clusters of functionally equivalent APIs.
Each subplot corresponds to one cluster, with the x-axis indicating the API in the cluster and the y-
axis showing the (mean) fraction of times each model chose that API over 500 inference runs; error
bars indicate the standard deviation across three independent experimental runs. This visualization
highlights how different models exhibit systematic preferences for some APIs.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

What’s
Language

Quick
Language Dete

cto
r

Text Language by API-N
injas

Translate v3

Translate All Languages
0.0

0.2

0.4

0.6

0.8

1.0

S
el

ec
ti

on
R

at
e

0.006

Base Model

What’s
Language

Quick
Language Dete

cto
r

Text Language by API-N
injas

Translate v3

Translate All Languages

0.122

CPT Model (1/3 epoch)

What’s
Language

Quick
Language Dete

cto
r

Text Language by API-N
injas

Translate v3

Translate All Languages
0.0

0.2

0.4

0.6

0.8

1.0

S
el

ec
ti

on
R

at
e

0.122

CPT Model (2/3 epoch)

What’s
Language

Quick
Language Dete

cto
r

Text Language by API-N
injas

Translate v3

Translate All Languages

0.128

CPT Model (1 epoch)

Figure 17: Selection rates for the Language Identification cluster across biased continued pre-
training (CPT) checkpoints. Bars give the fraction that each endpoint was chosen across 500 in-
ference runs. Panels show (top-left) base model, (top-right) CPT after 1/3 epoch, (bottom-left) 2/3
epoch, and (bottom-right) 1 full epoch. The Text Language by API-Ninjas endpoint is highlighted,
with its exact selection rate printed above its bar. Differences across panels visualize how biased
CPT shifts tool choice over training.

Desc
.

Full

Desc
. + Param.

Param.

Rand. Name
Base

Targ. Desc
.

Shuff. Name

Targ. Name

Swap. Desc
.

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
T

V
d

is
ta

n
ce

v
s.

U
n

if
or

m

Gemini ChatGPT

Figure 18: Mean total-variation (TV) distance from the uniform selection distribution to the distri-
bution pertaining to each metadata perturbation (higher = more deviation from uniform). Blue bars
show Gemini and orange bars show GPT; error bars denote standard deviation across clusters, and
single bars indicate perturbations not run for GPT. Dashed horizontal lines (in the corresponding
model colors) mark each model’s baseline TV-to-uniform without perturbations.

Data. We use our corpus saturated with metadata of a single target endpoint (Text Language by
API-Ninjas). The corpus contains ∼3.5M tokens.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Training. Training uses Unsloth’s trainer for one epoch with cosine LR scheduler and warmup.
Optimizer is 8-bit AdamW. We also set a smaller LR for the embedding modules. See Table 7 for
more info.

Table 7: CPT training hyperparameters.

Epochs 1
Total steps (epoch) 153
Per-device batch size 2
Grad. accumulation 8
Effective batch size 16
Learning rate 5× 10−5 (embeddings 5× 10−6)
Scheduler / Warmup cosine / warmup ratio 0.1
Optimizer adamw 8bit
Weight decay 0.0
Checkpoints used step 0 (base), 52 (≈1/3), 104 (≈2/3), 153 (1 epoch)

Evaluation (inference). For all checkpoints, we keep prompts and decoding fixed: temperature
= 0.5, top-p = 1.0, and max new tokens=512. We evaluate with the Language Identification
cluster under circular shifts, aggregating the selection rates over 500 inference runs per checkpoint.

J EFFECT OF TOOL COUNT ON BIAS

To investigate how the number of available tools affects selection bias, we conducted an additional
experiment using the Sentiment Analysis cluster (which contains five functionally equivalent APIs).
From this cluster, we constructed subsets of size K ∈ {2, 3, 4} using three selection strategies:

• Best-to-worst: select the K APIs that were most frequently chosen in our initial K = 5
experiments.

• Worst-to-best: select the K least frequently chosen APIs.
• Random subsets: uniformly sample K tools from the cluster.

For each subset configuration, we re-ran the corresponding queries three times using Qwen3 (235B)
and computed the normalized API-level and positional bias metrics.

2.0 2.5 3.0 3.5 4.0 4.5 5.0

Cluster size K

0

10

20

30

40

50

60

70

80

n
or

m
al

iz
ed

δ A
P

I
(%

of
m

ax
)

2.0 2.5 3.0 3.5 4.0 4.5 5.0

Cluster size K

0

20

40

60

80

n
or

m
al

iz
ed

δ p
o
s

(%
of

m
ax

)

2.0 2.5 3.0 3.5 4.0 4.5 5.0

Cluster size K

25

30

35

40

45

A
ve

ra
ge

(%
)

Best-to-worst Worst-to-best Random subsets

Figure 19: Normalized API-level and positional bias as a function of cluster size K for the
sentiment-analysis cluster. Each curve corresponds to one subset-selection strategy (best-to-worst,
worst-to-best, random), with error bars indicating variability across three independent runs. Bias is
reported as a percentage of its theoretical maximum (1 − 1/K). The rightmost subplot shows the
average of the normalized API-level and positional bias over K.

As can be seen in Figure 19, we find that bias is highly sensitive to the specific subset of tools shown
to the model. At K = 2, both normalized δAPI and δpos vary substantially across selection strate-
gies, revealing strong instability. At moderate subset sizes (K = 3, 4), the variance decreases and
the measured bias becomes more stable, although not uniformly smaller. Overall, the relationship

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

between K and bias is non-monotonic: depending on which tools are included, reducing the number
of available tools can either amplify or attenuate bias. These findings indicate that the composition
of the toolset is the primary driver of selection behavior, more than its size alone.

Finally, note that when K = 5 all methods trivially converge, since they expose the full cluster and
therefore share identical toolsets. To fully characterize tool-count effects, future work should extend
this analysis to larger clusters (e.g., K = 6–10).

K EXPLANATION OF LLM TOOL USAGE PIPELINE

User Query (e.g., What's the weather in Paris?)

Agent

Retriever

Available tools: e.g.
world_weather_online_api,
weatherapi_com,
weather_forecast_14_days

Parser

{x}
Server

GET/POST

Observation

Loop until all necessary information
acquired.

Final Response

Figure 20: The overall workflow for tool usage with large language models. This figure illustrates
the last three stages of tool usage: tool selection (via retriever and LLM selection), tool calling, and
response generation (task planning is omitted). Note how the LLM’s preliminary outputs need to be
parsed to create a functional API call.

Large language models equipped with external tools typically follow a multi-stage decision and
execution process. As summarized by prior work (Qu et al., 2025), the standard tool-usage pipeline
consists of four stages: task planning, tool selection, tool calling, and response generation. Figure 20
showcases the latter three of these stages.

In the first stage, the LLM interprets the user query, identifies the user’s intent, and (if necessary)
decomposes it into sub-tasks that can be handled by external tools. Next, in the tool selection stage,
the model determines which tools are suitable for each sub-task. Modern systems often employ a
retriever-based filtering step before LLM-based selection: rather than presenting the descriptions of
hundreds or thousands of available tools to the model (which is the case with large API hubs like
RapidAPI), a retriever identifies the top-k most relevant candidates. This design is widely adopted
in practical deployments due to context-length limitations (Qu et al., 2025).

In the tool calling stage, the LLM chooses one of the retrieved tools and generates the corresponding
API call, including the required parameters in the correct format. This step requires the model not
only to select an appropriate tool but also to extract and structure the tool arguments accurately.
Once the LLM generation is parsed, the tool executes and returns its output, the LLM may decide to
proceed to the final stage or determine that more tools need to be called. In the final stage, the LLM
integrates the returned tool results into a coherent final answer to the user.

L CONSEQUENCES OF TOOL SELECTION BIAS

We have briefly touched on the consequences of tool selection bias in the introduction. In this
section, we will further elaborate our points on why tool selection bias matters to give the reader a
comprehensive view of the the effects and significance of the bias we uncover.

L.1 ECONOMIC CONSEQUENCES

Problem Statement. A pay-per-request pricing model is common practice within tool marketplaces
(see RapidAPI’s pricing model or that of BridgeAPI). This means that usage of an API directly
corresponds to the amount of revenue the developer of that API makes. Ideally, when two or more
tools offer identical functionality, usage (and thus revenue) should also be split equally. This is
not achieved when LLMs show consistent bias among functionality equivalent tools. This is not a

28

https://docs.rapidapi.com/docs/monetizing-your-api-on-rapidapicom
 https://www.bridgeapi.store/marketing/pricing

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

hypothetical concern. As we show in our experiments, some tools gets selected up 10 times more
than others whilst being functionally identical (see the geocoding cluster in Figure 16). If revenue
is directly correlated with usage, the developer of this tool can then also expect a 10 times higher
revenue than the developer of the disadvantaged tool for seemingly no particular reason but more
advantageous metadata phrasing (see section 4.3 investigating why tool-selection bias occurs).

Magnitude. The size of the tool-usage market is hard to determine exactly. RapidAPI alone handles
over 9 billion requests per month and recommends $0.00003 per API call at a minimum, a quick
calculation gives us at least $270.000 in developer revenue per month or $3.24 million per year
on this platform alone (RapidAPI (2025a)). Looking more broadly, the global API marketplace
market size was estimated at $18.00 billion in 2024 and is projected to reach $49.45 billion by 2030,
growing at a CAGR of 18.9% from 2025 to 2030 (GrandViewResearch (2025)). From this, one can
see that even small shifts in automated traffic can have a meaningful economic impact. It’s unclear
how much of this API traffic is currently due to LLM agents, but with the increasing ubiquity of
agents, we expect this share to rise significantly. This makes tool selection bias a tangible and
pressing economic issue.

L.2 USER EXPERIENCE

Tool-selection bias can directly degrade user experience when an LLM consistently favors an API
that is objectively slower, less accurate, or more costly than its functionally equivalent alternatives.
In such scenarios, end users may experience higher latency, lower-quality responses, or unnecessary
costs, despite the existence of equally capable tools that would have delivered better performance. A
more balanced usage distribution across equivalent APIs mitigates these issues by ensuring that no
single suboptimal tool is disproportionately selected purely due to incidental metadata or positional
biases. This leads to more stable, predictable, and higher-quality user outcomes.

L.3 SAFETY & RELIABILITY

Biased tool selection magnifies the system’s vulnerability to manipulated metadata and adversarial
tools. Recent work on metadata-poisoning attacks (Mo et al. (2025)) shows that adversaries can
craft strategically misleading tool names or descriptions to lure LLM agents into invoking harmful
or unreliable APIs. When an LLM already exhibits strong, unintended preferences toward superfi-
cial metadata cues, such attacks become significantly easier to execute. In this sense, selection bias
is not merely an efficiency problem. It increases the surface area for adversarial exploitation and
directly undermines the reliability of agentic systems. A more uniform or semantics-invariant se-
lection process would provide a stronger baseline defense by reducing the influence of manipulable
metadata.

L.4 EROSION OF TRUST & ECOSYSTEM EFFECTS

A further, systemic consequence of tool-selection bias is the gradual erosion of trust in API market-
places. If developers observe that LLM-mediated traffic does not meaningfully reflect the functional
quality of their tools but instead hinges on arbitrary metadata preferences, they may perceive the
marketplace as unfair or unpredictable. This creates incentives to bypass marketplaces entirely by
hard-coding specific APIs into their applications. This outcome undermines the value proposition
of marketplaces as neutral, competitive intermediaries. In the long term, this can reduce innova-
tion, further distort competition, and create fragile ecosystems where a small number of arbitrarily
preferred tools dominate traffic. Addressing tool-selection bias is therefore critical not only for indi-
vidual user or developer outcomes, but for maintaining trust, participation, and healthy competition
in the broader API economy.

29

	Introduction
	Related Work
	BiasBusters: how we uncover, explain, and mitigate bias.
	Bias Definition
	Dataset Generation
	Explaining Bias

	Experiments
	Experimental set-up
	How do LLMs select among functionally equivalent APIs?
	Are tool-selections driven by human-interpretable heuristics?
	Can we mitigate the observed bias?

	Conclusion
	More Details on Data Generation
	Attribute‐Level Analysis Feature Table
	More Details on the Biased CPT Experiment
	Details on the Implementation and Evaluation of the Mitigation Method
	More Elaborate Ablation and Sensitivity Analysis
	More Elaborate Discussion on the Explanation of Bias
	Which API-level features predict selection rates?
	How do metadata interventions affect API selection?

	Additional Figures
	Correlation in Selection between Models
	Selection Distributions for all Clusters
	Full Figure related to the CPT Experiment
	Table related to the Reduction of Bias due to Mitigation

	Effect of Metadata Perturbation on Bias
	Details on CPT Setup
	Effect of Tool Count on Bias
	Explanation of LLM Tool Usage Pipeline
	Consequences of Tool Selection Bias
	Economic Consequences
	User Experience
	Safety & Reliability
	Erosion of Trust & Ecosystem Effects

