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Abstract

In specific domains such as autonomous driving, quantitative trading, and health-1

care, explainability is crucial for developing ethical, responsible, and trustworthy2

reinforcement learning (RL) models. Although many deep RL algorithms have3

attained remarkable performance, the resulting policies are often neural networks4

that lack explainability, rendering them unsuitable for real-world deployment. To5

tackle this challenge, we introduce a novel semi-parametric reinforcement learning6

framework, dubbed ANQ (Approximate Nearest Neighbor Q-Learning), which cap-7

italizes on neural networks as encoders for high performance and memory-based8

structures for explainability. Furthermore, we propose the Sim-Encoder contrastive9

learning as a component of ANQ for state representation. Our evaluations on Mu-10

JoCo continuous control tasks validate the efficacy of ANQ in solving continuous11

tasks while offering an explainable decision-making process.12

1 Introduction13

Figure 1: Overall Architecture of Our Approach

In recent years, parametric reinforcement learning methods featuring end-to-end training, such as14

Proximal Policy Optimization (PPO) [Schulman et al., 2017], Soft Actor-Critic (SAC) [Haarnoja15

et al., 2018], and Deep Deterministic Policy Gradient (DDPG) [Lillicrap et al., 2015], have gar-16

nered significant attention within the reinforcement learning community. These approaches have17

demonstrated remarkable success in addressing decision-making challenges across diverse domains,18
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including robotics [Hwangbo et al., 2019], video games [Mnih et al., 2015], and board games [Schrit-19

twieser et al., 2020]. Nevertheless, the incorporation of deep neural networks in these methods20

presents a major obstacle to interpreting the underlying rationale of their decision-making processes.21

This limitation hampers the application of such methods to numerous real-world scenarios, such22

as autonomous driving [Kiran et al., 2021], quantitative trading [Zhang et al., 2020], and beyond.23

Consequently, further investigation is necessary to enhance the interpretability and practical utility of24

these reinforcement learning techniques in complex, real-world contexts.25

This issue calls for the research of explainable reinforcement learning (XRL) which aims at obtaining26

RL models that are both explainable and of high performance. Fidelity is one of the major objectives27

in XRL [Milani et al., 2022] which measures to what extent the model makes decisions following its28

explanation. Among different XRL algorithms, white-box algorithms (i.e., making decisions directly29

using explainable models such as linear models or decision trees) enjoys high fidelity than the others.30

(We defer the introduction of other XRL algorithms to Section 5.3.)31

Memory-based reinforcement learning, following the non-parametric paradigm, is a popular class of32

white-box algorithm and differs from widely researched parametric methods in deep reinforcement33

learning. The approximation function in memory-based reinforcement learning is determined directly34

by the training samples, rather than relying on a gradually-updated parameterized function. Prominent35

memory-based methods include EC [Blundell et al., 2016], NEC [Pritzel et al., 2017], and EMDQN36

[Lin et al., 2018] (see more in Ramani [2019]). Memory-based reinforcement learning has several37

benefits, including being able to approximate a universal class of functions, the ability to directly38

impact the policy with newly accumulated data without back-propagation updates Blundell et al.39

[2016], the mitigation of the curse of dimensionality in global estimation Sutton and Barto [1998],40

and higher data sampling efficiency and faster learning Lin et al. [2018]. Most importantly, memory-41

based reinforcement learning possesses the advantage of improved explainability due to its human-42

understandable decision making system (i.e., the memory consists of pre-collected samples).43

Despite its potential for self-explainability through white-box decision-making, the utilization of44

memory-based reinforcement learning for enhancing explainability remains relatively unexplored.45

Existing studies investigating the use of episodic memory for explanations, such as Cruz et al. [2019],46

Pritzel et al. [2017], Blundell et al. [2016], have been limited to grid world environments or discrete47

tasks. In contrast, our work aims to expand this research scope to encompass continuous robotics48

tasks in Mujoco by proposing a comprehensive memory-based self-explainable framework.49

Efficiently retrieving relevant data from extensive databases presents a significant challenge in de-50

veloping an effective memory-based reinforcement learning algorithm, particularly in continuous51

control tasks as emphasized by Sutton and Barto [1998]. However, recent advancements in approxi-52

mate nearest-neighbor searching algorithms, such as Hierarchical Navigable Small World (HNSW)53

Malkov and Yashunin [2018], have demonstrated their effectiveness in swiftly retrieving pertinent54

information from billions of records in natural language processing (NLP) tasks. Such methods have55

been successfully applied to question-answering Kassner and Schütze [2020] and text generation56

Borgeaud et al. [2022] tasks. In addition to NLP applications, retrieval-based systems have been57

integrated with deep reinforcement learning algorithms, resulting in enhanced sample efficiency58

Goyal et al. [2022], Humphreys et al. [2022].59

The contributions of our paper are summarized as follows:60

• We introduce a novel framework, ANQ, which offers efficient control in continuous domains61

across a wide range of Mujoco experiments, while maintaining high explainability through62

its "data is policy" design principle.63

• We present the Sim-Encoder, a nearest neighbor contrastive learning approach for state64

representation, which demonstrates its effectiveness in memory retrieval learning tasks.65

2 Preniminaries66

We first introduce notations and summarize the conventional episodic control method.67
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2.1 Notation68

In this work, we study policy learning in continuous action space A and observation space S. We69

consider a Markov decision process with transition st+1 ∼ p(st+1|st, at). After performing an70

action, the agent receives a reward, and the ultimate goal is to optimize the policy to maximize71

returns.72

A key-value-based dataset D stores the key as the state embedding e. The database consists of rows73

of {k, et, st, at, rt, st+1, qt} ∈ D and columns of {K,E,St,A,R,St+1,Q} ∈ D. K represents the74

set of all record IDs. The maximum number of rows is M . The observation Sim-Encoder network is75

denoted as Gθ parameterized by the network parameters θ.76

For database operating, in total, six operations are defined in the memory module: APPEND, TRIM,77

GET, UPDATE, SEARCH, and INDEX. More corresponding explanations for these operations can78

be found in Sec.3.2.79

2.2 Episodic Control80

Episodic control methods enhance sampling efficiency and episodic returns by using an external81

memory database for interactions such as writing, reading, and updating. The concept was first82

introduced in Blundell et al. [2016], which resolved complex sequential decision tasks.83

This method is defined for discrete spaces. It proposes the following Q table update mechanism:84

QEC(s, a) = max(QEC(s, a), R) (1)

After the update, it generates an effective Q Table. During the policy execution phase, if an85

observation-action pair exists in memory, the Q value is retrieved directly from the table. However, if86

the pair is not found in memory, an approximation matching and estimation process is required. The87

agent queries the Q Table using the following approach to obtain the Q value.88

Q̂EC(s, a) =
1

N

n=N∑
n=1

Q(sn, a) (2)

The objective of episodic control is to accelerate learning speed and improve decision quality. An89

external memory module can then compensate for drawbacks such as low sample efficiency and slow90

gradient updates.91

In previous discussions, the Episodic Control (EC) method has been investigated under both discrete92

actions and continuous actions (Li et al. [2023], Kuznetsov and Filchenkov [2021]). However, the93

explainability of EC in continuous action spaces suffers from low fidelity due to the utilization of a94

policy network. In this paper, we set out to achieve two objectives concurrently. First, we explore95

how Episodic Control can be effectively applied in continuous action spaces. Second, we strive to96

leverage the memory of Episodic Control to attain explainability benefits.97

3 Method98

The complete algorithm is presented in Algorithm 1, and the illustration of the inference pipeline99

can be observed (cf. Fig.1). The proposed method involves generating an embedding vector et from100

the observation using the Sim-Encoder. Subsequently, we employ the HNSW algorithm Malkov101

and Yashunin [2018] to search for the nearest neighbor set en within the memory. Each neighbor is102

associated with an action and a Q value, and the action with the highest Q value is selected as the103

policy output. It is worth noting that this action is continuous, which distinguishes it from previous104

EC work Blundell et al. [2016].105

First, the Sim-Encoder in embedding observations into a cosine space is augmented via One-Step-106

Away State Encoding Contrastive Learning. This approach employs adjacent states as positive107

samples for contrastive learning, with experimental outcomes demonstrating that the implementation108

of the Sim-Encoder considerably enhances performance.109
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Algorithm 1 ANQ Algorithm
Input:
Database D
with each row notated as {k, et, st, at, rt, st+1, qt} ∈ D
with each column notated as {K,E,St,A,R,St+1,Q} ∈ D
Observation Sim-Encoder network Gθ

Contrastive learning function CL
Gaussian distribution for action noise N (µ, σ)
for each iteration do

for each environment step do
et = Gθ(st)
k1..kn =SEARCH(et)
(a1, q1)..(an, qn) =GET(k1..kn)
nq = argmaxn(q

1..qn)
at = anq +N (µ, σ)
st+1 ∼ p(st+1|st, at)
APPEND ( et, st, at, rt, st+1)

end for
for sampled minibatch {st, st+1} do
Lθ = CL(st, st+1)
update networks Gθ to minimize L

end for
K1..Kn =SEARCH(E)
for each learning step do

Q1..Qn = GET(K1..Kn)
Q̂ = Rt + γ 1

N

∑n=N
n=1 Qn

UPDATE( Q, Q̂)
end for
TRIM()
INDEX()

end for

Subsequently, in order to acquire a comprehensive Q-table, we employ in-memory learning, which110

involves the batch computation of all Q-value estimations and Q-learning updates for each state111

stored in memory. The training process undergoes iterative cycles until the global Q-value converges.112

3.1 Embedding Module113

We introduce our novel approach, the "One-Step-Away State Encoding Contrastive Learning." The114

reason for using a one-step-away state as a positive sample is that the most informative actions and115

q-values for the current state are derived from a scenario that is most similar to it (Blundell et al.116

[2016]).117

et = Gθ(st) (3)

This method aims to effectively represent the state with contrastive learning. Specifically, we utilize118

positive samples that consist of a state pair st, st+1 that are one step away. The resulting state119

representation is designed such that the nearest neighbor of each state is reachable within one step.120

We adopt a similar objective to SimCLR Chen et al. [2020], aiming to maximize the similarity121

between two vectors as measured by cosine similarity sim(u, v) = uT v/(|u||v|). The Sim-Encoder is122

a standalone component trained to maximize the similarity of embedding, without reward information123

but only state transition tuples.124

θ = argmaxθ E(st,st+1)∼D[sim(Gθ(st), Gθ(st+1))] (4)
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Table 1: Memory Operations

Operation Description

APPEND Add a new row to the database
INDEX Construct an HNSW index using Sim-Encoder embeddings for efficient

approximate nearest neighbor search
SEARCH Given an embedding vector e, return the corresponding

row IDs k1..kn, seeing Malkov and Yashunin [2018]
GET Given a row ID k, retrieve relevant data values, such as actions, Q values, etc.
TRIM Remove historical data to maintain a database size of up to M rows
UPDATE Given a column of data, update the corresponding column in database

3.2 Memory Module125

The explainable memory module is in the form of a key-value database. And the keys in the database126

correspond to the observation embedding vectors obtained via the Sim-Encoder, and each key is127

associated with a corresponding value that includes information such as the current step’s observation,128

action, reward, and all of other relevant data. To manage this database, we have defined 6 standard129

operations, namely APPEND, TRIM, GET, UPDATE, INDEX, and SEARCH, which are detailed in130

Algorithm 1. and Table.1.131

The GET operation requires a target state’s embedding as the key and returns the corresponding132

values. To prevent the database from becoming excessively large, we define a TRIM operation that133

automatically removes older data, retaining only the most recent M records. This design enables134

efficient storage and retrieval of data while ensuring that the database remains manageable and135

up-to-date.136

In our approach for effective memory retrieval, Approximate K-Nearest Neighbors Search (AKNN)137

plays a crucial role. We introduce a SEARCH operation that takes a state embedding as input and138

returns the corresponding key(s) of the nearest neighbor(s) in the database. Additionally, we define139

an INDEX operation, activated when the database undergoes modifications, seeing Malkov and140

Yashunin [2018]. This operation reorganizes the HNSW index to align with the updated database,141

ensuring that subsequent KNN searches remain both fast and accurate.142

3.3 Policy Evaluation143

We introduce the Approximate Nearest Neighbor Search Q-Learning method. In contrast to conven-144

tional tabular Q-Learning, we employ a novel form of state value estimation, V̂ (st), by aggregating145

the Q-values from the nearest neighbors of the state (cf. Fig.2). The Q-value of each state-action pair146

is updated following the Bellman equation, incorporating a decay factor, γ.147

During the practical training process, we adopt a batch updating strategy wherein we simultaneously148

compute the labels for all neighbors of each state and estimate the values of all states in memory.149

Subsequently, we update all Q-values in the table accordingly. The learning iteration persists until the150

maximum change in Q-values falls below a specified threshold.151

q1..qN = GETq(SEARCH(Gθ(st))) (5)

v̂(st) =
1

N

n=N∑
n=1

qn (6)

q̂(st, at) = rt + γv̂(st+1) (7)

3.4 Policy Improvement152

For policy improvement, our proposed method directly selects the action with the maximum Q-value153

from the neighbors (en ∈ E, an ∈ A, qn ∈ Q), as shown in Equation 10. Using the embedding et154
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Figure 2: Policy evaluation in memory (N=3)

Figure 3: Performance on Continuous Control Tasks vs Conventional RL

generated by the contrastively learned Sim-Encoder, candidates are retrieved from the memory155

module via the nearest neighbor search. To encourage exploration, action noise following a Gaussian156

distribution N (µ, σ) is added.157

a1, q1..an, qn = GETaq(SEARCH(et)) (8)

nq = argmaxn(q
1..qn) (9)

at = anq +N (µ, σ) (10)

In contrast to employing a black-box network as an actor, we have devised a data-driven, self-158

explaining actor that seamlessly integrates the results of model search and generates decisions directly159

using a rule-based approach.160

4 Experiments161

In these experiments, we aimed to evaluate the performance of our ANQ approach in solving162

continuous control tasks in Mujoco, provide action explainability, and investigate the significance of163

the Sim-Encoder module in the ANQ framework.164

4.1 Solving Continuous Control Task in Mujoco165

First of all, our approach is evaluated on several continuous control tasks in the MuJoCo physics166

engine. Specifically, we compare our method with state-of-the-art reinforcement learning (RL)167

algorithms, including SAC-1M, PPO-1M, and TRPO-1M, on the Walker2d-v3, Ant-v3, HalfCheetah-168

v3, and Hopper-v3 environments. We use the benchmark performance reported by stable-baselines3169

Raffin et al. [2021].170

The results (cf. Fig.3) show that our method slightly outperforms A2C-1M on the Walker2d-v3171

task and PPO-1M on the Ant-v3 task while achieving comparable performance to TRPO-1M on the172
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Figure 4: Explainable Action

HalfCheetah-v3 task. Furthermore, we analyze the performance of our method on the Hopper-v3173

task by examining the game replay. We find that the agent fails to take the second step and falls after174

the first step. This indicates that our method may currently lack exploration capability. This will be175

addressed in future research in order to surpass the performance of traditional RL methods. Overall,176

our approach successfully and stably converges on the MuJoCo continuous control tasks, but further177

improvement is necessary to achieve better performance, seeing the discussion in Sec.6.178

For the hyperparameters, we utilized a 4-layer MLP network with layer normalization as the encoder.179

The learning rate was set to 0.0003, the batch size was 512, and the Adam optimizer was used. The180

size of the explainable memory was limited to 500,000, and old data were discarded once this limit181

was exceeded. We set the parameters of HNSW to M=16 and ef=10. The total number of training182

steps was 10 million, and the agent performed ANQ learning every 40,000 environment interactions.183

We set the number of neighboring actions sampled during each action selection to 10.184

4.2 Action explainability185

In this explainability experiment, we designed a question-and-answer (QA) case (cf. Fig.4) to186

simulate a scenario where humans need to double-check the correctness of the robot’s decision during187

human-robot collaboration. Specifically, humans ask "why" questions to query the basis of the robot’s188

action, and the robot responds with the policy that it has chosen, as well as the evidence supporting189

its decision.190

To provide a convincing explanation, the robot searches its memory for similar states and explains to191

the human the actions that it had taken in the past in similar scenarios, as well as the corresponding192

returns. By providing such detailed explanations, the robot is able to offer valuable insights to humans193

and effectively bridge the gap in understanding between human and machine decision-making194

processes, for ensuring safe and reliable human-robot collaboration.195

4.3 Sim-Encoder196

We conducted experiments to investigate the significance of the Sim-Encoder module within the197

ANQ framework. We have illustrated the retrieved samples (cf. Fig.5). Without the Sim-Encoder,198

semantically similar states do not share relevant information in cosine space, as discussed in Su et al.199

[2021]. Our ablation study (cf. Fig.6) demonstrated that the Sim-Encoder led to substantial perfor-200

mance improvements across all four tested tasks, as it effectively retrieves and embeds temporally201
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Figure 5: Retrieved Results using Sim-Encoder and Approximate Nearest Neighbor Search

Figure 6: Ablation Study of Embedding Module Sim-encoder

proximate states into a space with adjacent cosine distances. Overall, the Sim-Encoder is an essential202

component of the ANQ framework and holds potential for use in other RL algorithms.203

5 Related Work204

5.1 Episodic Control205

The idea of episodic control (EC) was bio-inspired by the mechanism of the hippocampus Lengyel206

and Dayan [2007]. EC, as a non-parametric approach, possesses virtues including rapid assimilation207

of past experiences and a solution for sparse-reward situations. Notable works like MFEC Blundell208

et al. [2016] and NEC Pritzel et al. [2017] employed kNN search to acquire the value for the current209

state derived from similar states. The value function is in tabular form and updated using the classical210

Q-learning method. While MFEC adopts random projection Johnson [1984] and VAE Kingma and211

Welling [2013] as state embedding methods, NEC employs a differentiable CNN encoder instead.212

Beyond that, Lin et al. proposed EMDQN Lin et al. [2018], which is a synergy of EC and DQN.213

Their approach combined the merits of both algorithms, i.e., fast learning at an early stage and good214

final performance. ERLAM then further promoted the efficacy by introducing an associative memory215

graph Zhu et al. [2020].216
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5.2 Retrieval-based Learning217

The retrieval-based learning and inference architecture provides a viable solution for managing an218

explainable and extensible knowledge base. One prominent instantiation of this architecture is the219

retriever-reader model Zhu et al. [2021], which has gained traction in the open domain question220

answering (openQA) research community. The retriever component returns a set of relevant articles,221

while the reader extracts the answer from the retrieved documents. Numerous natural language222

processing (NLP) algorithms, including kNN-LM Khandelwal et al. [2019], RAG Lewis et al. [2020]223

and RETRO Borgeaud et al. [2022], leverage a retrieval-based approach to enhance their performance224

and efficiency. These techniques have proven to be effective in the domain of NLP and continue to be225

an active area of future NLP research Liu et al. [2023].226

5.3 Explainable Reinforcement Learning227

The methods for explainability in reinforcement learning can be broadly categorized into three228

groups, as discussed in Milani et al. [2022]: Feature Importance (FI), Learning Processing and229

Markov Decision Process (LPM), and Policy-Level (PL). FI methods involve utilizing decision tree230

models for explainability, learning an explainable surrogate network through expert and learner231

frameworks, or directly generating explanations through natural language or saliency maps. LPM232

addresses explainable transition models to answer "what-if" questions, interpretation of Q values,233

and identification of key training points. PL provides an understanding of long-term behavior and234

summarizes the policy. However, many existing explainable reinforcement learning methods require235

additional network training Guo et al. [2021] or the use of decision trees Silva et al. [2019]. These236

methods can also impose a cognitive burden on users to understand the model’s behavior Dodge et al.237

[2021]. In contrast, the memory-based reinforcement learning algorithm, ANQ, presented in this238

paper provides self-explainability without additional explanation specifically training.239

6 Limitation240

In this study, we present an innovative and explainable architecture, termed ANQ, which, despite241

its novelty, does not significantly outperform state-of-the-art benchmarks. Our primary aim is242

to demonstrate the efficacy of ANQ with its highly interpretable policy. We acknowledge this243

performance gap and recognize that our method has not yet incorporated the latest techniques, such244

as maximum entropy learning from SAC Haarnoja et al. [2018], etc. These refinements will be245

addressed in future work, rather than here. Moreover, we have not compared our approach with246

other contrastive learning methods for representation learning. Since we proposed the Sim-Encoder,247

a thorough comparison with alternative methods and further study will also be included in future248

research.249

7 Conclusion250

Explainability is crucial in specific domains of reinforcement learning, such as autonomous driving,251

quantitative trading, and healthcare. To address this challenge, we propose ANQ, a novel semi-252

parametric reinforcement learning framework that combines the high performance of neural networks253

with the explainability of a memory-based structure. Additionally, we validate the effectiveness of254

Sim-Encoder, a key module of ANQ, in state representation and learning efficiency enhancement.255

Empirical evaluations demonstrate ANQ’s effectiveness in solving continuous tasks and providing256

explainable decision-making. Our contributions include proposing a framework that achieves both257

efficient control and robust explainability. While further improvements are necessary for superior258

performance, our results indicate that ANQ is a promising approach for developing explainable and259

trustworthy RL models in critical applications.260
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