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ABSTRACT

Large Language Models (LLMs) have recently demonstrated strong performance
on mathematical reasoning tasks, often evaluated solely by their ability to produce
the correct final answer. However, this evaluation paradigm fails to capture whether
models genuinely follow sound reasoning processes or rely on spurious shortcuts.
In this paper, we introduce Res-Bench, a first fine-grained evaluation dataset
for measuring the mathematical reasoning abilities of LLMs not only on final
correctness but also on step-level reasoning quality and reasoning skill alignment.
Specifically, Res-Bench consists of 3271 test samples, primarily focused on math
problems aligned with Chinese middle- and high-school curricula, provided in
English. Each test case is annotated by GPT-4 and verified by human experts
with its decomposition into intermediate reasoning steps, and mapped to explicit
reasoning skills. Based on Res-Bench, we further conduct extensive evaluation with
a multi-dimensional evaluation protocol that measures: (1) final answer accuracy,
(2) consistency and validity of intermediate steps, and (3) mastery over the required
reasoning skills. Our experimental results across several state-of-the-art LLMs
reveal that while models can often achieve high answer-level accuracy, their step-
level reasoning exhibits significant inconsistencies and frequent misalignment
with targeted reasoning skills. Our findings highlight the necessity of moving
beyond final-answer evaluations and toward process-based assessment, providing
deeper insights into LLMs’ reasoning capabilities.

1 INTRODUCTION

Recently, mathematical datasets have become critical benchmarks for evaluating the reasoning
capabilities of LLMs, indicating that LLMs like GPT-4 and Claude-3 (Achiam et al., 2023} |The) can
solve increasingly complex math problems and sometimes achieve human-level performance (Cobbe
et al.} 2021b; |Gao et al.| 2024} [Lin et al., 2024; |Lightman et al.,[2023; Zheng et al., [2024; Zhou et al.}
2024). Despite these advances, the prevailing evaluation paradigm remains narrowly centered on
final-answer accuracy, overlooking the step-by-step reasoning skills needed to reach a solution. This
creates a critical blind spot: modelsthat guess, rely on spurious shortcuts, or produce superficially
plausible steps are judged equally successful as models that follow valid logical progressions. This
problem is especially acute in reasoning-intensive domains like mathematics, where problem solving
unfolds through intermediate reasoning steps aligned with specific reasoning skills (e.g., applying
formulas, setting up equations, performing logical deductions). These fine-grained reasoning skills
form the fundamental units of LLMs’ mathematical competence. Assessing performance at this
granularity not only reveals whether a model solves a problem, but also how it arrives at the solution
and where errors occur. This perspective enables the diagnosis of issues such as hallucinated
steps, partial mastery of concepts, and logical inconsistencies that remain hidden under answer-only
evaluation (Rahman et al.| 2025 |Ouyang, [2025} |Bang et al.| [2025]).

To address this fundamental challenge, we propose Res-Bench, a first Reasoning Skill-aware evalua-
tion benchmark derived from Chinese middle- and high-school level math problems. Each problem is
annotated automatically by GPT-4 and the quality verification is conducted by human experts with its

!Code and data will be available upon publication.
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Figure 1: Overview of part of the evaluation results on the middle-school subset of RES-BENCH. The
blue parts of each radar map are the performance of LLMs on understanding math problem while the

parts of each radar map are the performance on solving math problems. See details of each
reasoning skill in Table 6}

intermediate steps and the corresponding reasoning skills, enabling systematic step- and reasoning
skill-level evaluation. Table[T]illustrates a data sample of the proposed Res-Bench, which contains
four components: 1) Question, a middle or high-school level math problem; 2) Steps, intermediate
solutions for reaching the correct final answer; 3) reasoning skills, the specific reasoning skill
involves in each intermediate step, including two types: understanding the meaning of the problem
and solving the problem; 4) Answer, the final answer to the given question. Based on Res-Bench, we
further introduce a multi-dimensional evaluation framework that measures (i) final-answer accuracy,
(ii) correctness of intermediate reasoning steps, and (iii) alignment with the required reasoning skills.

Our extensive experiments across a range of state-of-the-art LLMs, including 8 open-source LLMs
(Qwen2.5 series models (Yang et al.,[2024), Deepseek-R1 DeepSeek-Al et al.| (2025)) and 2 commer-
cial LLMs (GPT-40 and O1-mini (Achiam et al.,[2023)), revealed a striking and consistent finding: a
significant performance degradation when transitioning from final-answer accuracy to our proposed
fine-grained metrics. This observation, which we term the ”’Accuracy-Fidelity Gap”, shows that a
model’s ability to produce the correct final answer does not guarantee it has followed a valid or sound
procedure. For example, the QwQ-32B-Preview model achieved an F1 score of 85.12% on final
answers, but its performance dropped to 72.47% for intermediate steps and further to 66.87% for
reasoning skill alignment.

As shown in Figurd]] further analysis using our framework revealed that models consistently per-
formed better on “understanding-based” skills, such as recognizing problem categories, than on
”solving-based” skills like setting up equations or using logical inference. This suggests that LLMs
are more proficient at semantic interpretation and pattern recognition than at the higher-level, strategic
formulation of a solution. Furthermore, our analysis of step-by-step correctness demonstrated a
performance gap based on model size; larger models were better able to maintain logical consistency
over longer, more complex reasoning chains than their smaller counterparts.

In this paper, we propose a reasoning skill-level annotated dataset for mathematical reasoning, where
each problem is decomposed into intermediate reasoning steps with explicit mappings to reasoning
skills. This dataset serves as the foundation for our fine-grained evaluation framework that assesses
LLMs not only on their ability to arrive at the correct final answer, but also on the soundness and
completeness of their reasoning process as well as their alignment with relevant reasoning skills.
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Question: In the city math competition, schools A, B, and C respectively, have 1, 2, and 3 students
winning the first prize. Arranging these six students in a line for a group photo requires that students
from the same school are adjacent. The different arrangements total ways.

Step 1:

Recognize that this is a permutation problem involving the arrangement of students in a line with specific
constraints. Recognize the number of students from each school: School A has 1 student, School B has
2 students, and School C has 3 students, totaling 6 students.

Reasoning Skill: require model to understand question: Recognize the problem category, such
as algebra or geometry.

Step 2:

Understand that students from the same school must be adjacent, which means each school’s students
can be treated as a single unit or block. Apply the bundling method to treat each school’s students as a
single unit. There are 3 units (schools) to arrange, and within each unit, the students can be arranged
among themselves.

Reasoning Skill: require model to solve the question: Apply appropriate mathematical formula
or theorem.

Step 3:
Set up the equation for the total number of arrangements: A3 (arrangements of 3 units) * A3 (arrange-
ments within School C) * A2 (arrangements within School B) * Al (arrangements within School A).

Reasoning Skill: require model to solve the question: Set up equations or inequalities based on
conditions.

Step 4:
Calculate the permutations: A3 =3! =6, A3 =3! =6, A2 =2!=2, A} = 1! = 1. Multiply these together:

6%6%2% 1 =(72]).

Reasoning Skill: require model to solve the question: Perform step-by-step calculations or
manipulations.

Answer: 72
& Y,

Table 1: An Example of Res-Bench with annotated intermediate steps and reasoning skills.

Extensive experiment results underscore the importance of process-based evaluation in advancing the
development of LLMs toward interpretable and trustworthy reasoning systems.

2 RELATED WORK

As mentioned in the Introduction, dominant evaluation datasets focus on evaluating the ability of
LLMs’ math reasoning ability to correctly infer the correct answer and related steps. And it ignores
the evaluation of the knowledge system required for solving problems by the large model.

2.1 MATH REASONING

In the realm of math reasoning, mathematical problem solving is a common benchmark for evaluating
LLM reasoning capabilities. Widely used datasets such as GSM8K (grade-school math word
problems) (Cobbe et al.}[2021b)) and MATHS500 (competition-level problems with detailed solutions)
have driven advances in chain-of-thought prompting and verification techniques (Hendrycks et al.|
2021;|Cobbe et al.| 2021a)). However, these benchmarks typically rely on the accuracy of the final
answer as the primary evaluation signal. Even though some methods generate intermediate steps,
the evaluation pipeline rarely assesses fine-grained reasoning fidelity or identifies which reasoning
skills are actually being applied. There are also several existing benchmarks related to assessing
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Table 2: Comparison between RES-BENCH and previous math reasoning benchmarks. : Difficulty
diversity denotes the diversity of problem types; our data varies from middle-school to high-school
level math problems. *: Data diversity denotes the diversity of problem types of the benchmarks.
Our Res-Bench evaluates not only the performance of intermediate steps in the model, but also the
model’s mastery of relevant reasoning skills for each step, while balancing the diversity of data and
difficulty.

Problem Data Step Annotat Reasoning

Diffculty’  Diversity  Annotation nnotator Skill
CriticBench (Lin et al.||[2024) * % 2.8, 8.9 X Human+Synthetic X
MathCheck-GSM (Zhou et al.|[2024) * * X Synthetic X
PRMS800K (Lightman et al.[[2023) * % * v Human X
OMNI-MATH (Gao et al.||2024) V.o ¢ . 8.0.6.¢ X Human X
GSMSK (Cobbe et al.|[2021b) * * X Human X
AIME24 1 2.0 6. 0. * X Human X
AMC23 . 8.8.8.¢ * X Human X
MATHS500 * % 2. 8.8.8.¢ X Human X
ProcessBench (Zheng et al.||2024) 1 8 ® ¢ 8. @ ¢ 4 Human X
RES-BENCH ) 8 0 ¢ Y% % K v Human+Synthetic v

language models’ reasoning process. Omni-Math and CriticBench (Gao et al.,|2024; Lin et al., [2024)
evaluate language models’ abilities to critique solutions and correct mistakes in various reasoning
tasks. MathCheck (Zhou et al., 2024) synthesizes solutions containing erroneous steps using the
GSMBS8K dataset (Cobbe et al.l [2021b)), in which language models are tasked with judging the
correctness of final answers or reasoning steps. PRM800OK (Lightman et al.| 2023 builds on the
MATH problems (Hendrycks et al.,|2021) and annotates the correctness and soundness of reasoning
steps in model-generated solutions. It has also sparked a blooming of research interest in building
process reward models (PRMs) (Wang et al., 2023). However, all of the previous datasets ignore
the evaluation of LLMs’ reasoning skills by assessing the intermediate steps with corresponding
reasoning skills.

2.2 STEP WISE EVALUATION

Previous reasoning ability evaluation on LLMs often focuses exclusively on final-answer correctness.
However, correct outputs can result from spurious shortcuts rather than sound reasoning. Notably,
Wau et al.| (2024) introduces CofCA, undertaking a detailed investigation of the LLMs’ capabilities
to reason on counterfactual passages. Their findings revealed that notable LLMs such as GPT-
4(Achiam et al., [2023)), Qwen(Bai et al.,|2023)), and LlaMA (Touvron et al.} 2023) get inflated high
performance and benefit from a high proportion of incorrect reasoning chains. To address this,
researchers have proposed process-based evaluation approaches that assess intermediate reasoning
steps(Yang et al.l 2025} [Thawakar et al., 2025). Chain-of-Thought (CoT) prompting encourages
models to output multi-step reasoning traces, which has improved performance on complex tasks
Wei et al.| (2022). Enhancements such as self-consistency, which aggregates multiple reasoning
paths, and verifier models, which score candidate solutions or sub-steps, further strengthen the
reliability and robustness of reasoning (Wang et al., |2022; /Cobbe et al., 2021a). While these methods
emphasize correctness of intermediate steps, they often lack explicit mapping to underlying knowledge
components—something our work addresses directly.

In contrast to the previous works, our proposed Res-Bench aims to objectively and realistically reflect
the performance of LLMs in mathematical reasoning tasks by annotating fine-grained Intermedi-
ate steps and corresponding reasoning skills. The evaluation results of the performance of each
intermediate step and corresponding reasoning skill reflect the real math reasoning ability of LLMs.

3 REASONING SKILL-AWARE EVALUATION

This section details the dataset construction process, including task definition, data annotation, quality
verification, data statistics and evaluation protocols of the Res-Bench.
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3.1 TASK DEFINITION

As shown in Table |1} given a math problem, step-by-step solutions, and corresponding reasoning
skills, Res-Bench evaluates LLMs’ performance on identifying the correct final answer, reasoning
skill by assessing the intermediate steps. Formally, given a math problem P with its step-by-step
solution S = {sy, S2, ..., $p } and reasoning skills K = {ki, k2, ..., ky }, the task is to output an
correct answer A with s_é and k_j, i € {—1,0,...,n}. i = —1 indicates that all steps are correct,
7 = —1 indicates that all steps are aligned with reasoning skills. Typically but non-inclusively, we
consider a step as erroneous if it contains any of the following: (1) Final Answer Errors: incorrect
final answers; (2) Intermediate Step Errors: invalid deductions, unwarranted or flawed reasoning
steps. (3) reasoning skill alignment errors: misunderstanding or misapplication of mathematical or
problem concepts.

3.2 DATA COLLECTION AND ANNOTATION

We collect over 5000 math problems from the Chinese middle school and high school level math
problems in mathematical reasoning tasks. Inspired by recent studies on LLMs’ ability to aid human
annotation and avoid data contamination (Bartolo et al., [2021} [Tornberg, 2023; /Wu et al.| 2024), we
design a pipeline for automatically annotating math problems. Given a raw Chinese math problem,
LLMs are required to act as translators to translate Chinese into English. Since LLMs are pre-trained
on large scale corpus, to avoid data contamination, we prompt LLMs to randomly replace all the noun
phrases, named entities of the translated math problem, and paraphrase it into a new math problem
with numbers, variables, and concepts remaining unchanged.

Then we annotate solutions using the widely used commercial LLMs, GPT-4(Achiam et al., 2023 and
the prompt is shown in Table[I] Given a math problem, LLMs are required to act as a math annotation
assistant to generate the final as well as the intermediate steps, and corresponding reasoning skills.
We manually defined 14 reasoning skill types that are used in middle- and high-school level problems,
shown in Table[6l

Expert Verification We use LLMs to generate answers, steps, and reasoning skills to fit the given
math problems. To make sure the final answers are correct and the steps and reasoning skills are
related to each other, we use DeepSeek-R1 (DeepSeek-Al et al., 2025) and Qwen2.5-Math 72B-
Instruct to verify the annotations, the correctness of final answers in the model-generated solutions
against the reference answers. We follow the settings of ProcessBench (Zheng et al., 2024} and
recruit five human experts with Chinese high school-level mathematical expertise for annotation, and
all of them are required to conduct the majority vote for each annotation, and filter out the wrong
annotations for the five experts can not reach consensus.

Table 3: Statistics of RES-BENCH. “% annotation errors” denotes the proportion of samples with
error annotation Intermediate steps among all Intermediate steps with correct final answers. “% 3/n
agreement” denotes the proportion of samples where the three-annotator agreement is achieved within
n annotators, so (% 3/3) + (% 3/4) + (% 3/5) = 100%. “% < n steps” denotes the proportion of
samples whose solutions have < n steps .

Middle High Middle High
error-steps correct-steps error-steps correct-steps error-skills correct-skills error-skills correct-skills

# Samples 791 6235 967 6752 887 6139 1278 6441
% annotation errors 791 _ 967 887 1278
total annotations Z05g = 11.3% =055 = 13.8% o1 = 11.5% 10 = 16.6%
% 3/3 agreement 72.3% 82.1% 62.3% 71.2%
% 3/4 agreement 20.1% 13.6% 21.4% 17.5%
% 3/5 agreement 7.6% 4.3% 16.3% 11.3%
Distribution of . .
Reasoning Steps Middle High
% <5 steps 52.3% 48.7%
% < 10 steps 31.7% 32.5%
% < 15 steps 9.6% 11.4%
% < 20 steps 6.4% 7.4%
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3.3 EVALUATION

We evaluate models along three complementary axes—(1) final-answer correctness, (2) step-level
reasoning correctness, and (3) reasoning-skill alignment—to reveal not only whether a model reaches
the right answer but how it reaches it and which mathematical concepts it uses.

Final-answer accuracy For each test sample ¢, final-answer accuracy is computed as the exact
. d
match score between model-predicted answer A”"*? and reference answer A7/

This metric captures the standard end-to-end success rate and is reported separately for the middle-
and high-school subsets. We use the exact match score for each sample.

Step-level correctness Each problem in Res-Bench is annotated with a sequence of reference
intermediate steps S = {s1, S2, ..., $p }. To evaluate model-generated solutions we align model-
generated steps S = {51, 82, ..., 8, } with the reference steps in monotonic order (the ¢—th produced
step is matched to the t—th reference step ). Unmatched steps (insertions/deletions when m # n are
treated as incorrect for the purposes of step-level scoring. From the aligned steps, we compute:

* Step-level accuracy (micro):

B Zf\;1 Z?Zl 1{3; is correct} n

ACCstep - ZN 7
1=1""

where 7; is the number of aligned steps for sample 7.

* All-steps-correct rate (sample-level): the fraction of samples for which every aligned step
is judged correct.

» Earliest-error localization accuracy: for each sample we identify the earliest erroneous

step index in the annotations e}®' and the earliest erroneous step in the model output e?red.

We report the proportion of samples with exact matches e,‘i)md = et and provide a 41

tolerance variant to account for minor segmentation differences.

ref
i

Reasoning Skill Alignment Res-Bench associates each reference step with an explicit reasoning
skill index drawn from the taxonomy listed in Table@ For every aligned model step §; ; we require

the model to indicate (or be mapped to) a single reasoning skill index k; ; € K that best describes

9

the mathematical concept or operation used in that step (e.g., “set up equations”, “apply formula”,
“simplify expressions”). We evaluate the correctness of the model’s selection in two ways:

* Reasoning skill selection accuracy (top-1):
Zij\il Zf:l 1{]%i,t = k/’ﬁf
N -
D i1 T

where k‘fff is the annotated reasoning skill for sample ¢’s ¢-th step.

; @

Accyp, =

* Per-KP precision/recall/F1: to reveal which reasoning skills models master or confuse,
we compute precision, recall, and F1 for each reasoning skill and report macro- and micro-
averaged values.

When a model does not explicitly output a reasoning skill index, we obtain its implicit reasoning
skill labels by prompting it to annotate each previously generated step with the kp list; if automatic
mapping remains ambiguous we fall back to human adjudication and exclude highly ambiguous cases
from Res-accuracy aggregation.

Aggregation and summary statistics All metrics are computed separately for the middle- and
high-school subsets and then aggregated as needed. Because model behavior on error vs. correct
samples can differ substantially, we also compute accuracy on (a) samples whose final answer is
correct and (b) samples whose final answer is incorrect; to summarize model robustness we report the
harmonic mean (F1) of these two accuracies where appropriate. In addition, we analyze distributions
of kp performance (which reasoning skills are most/least well selected) and error patterns across step



Under review as a conference paper at ICLR 2026

positions (early vs. late steps). The fine-grained nature of these metrics makes Res-Bench suitable
both for evaluating end-to-end solving ability and for diagnosing how and why a model’s reasoning
succeeds or fails. Note:The reasoning skill taxonomy used for alignment and scoring is the 14-point
list shown in Table

4 EXPERIMENTS

We conduct extensive experiments to evaluate the mathematical reasoning capabilities of advanced
LLMs across three dimensions: final answers, intermediate steps, and reasoning skill alignment.
Specifically, our study seeks to address the following research questions:(1) Reasoning Ability:
To what extent can LLMs produce correct final answers while also generating valid intermediate
reasoning steps? (2) reasoning skill: Which specific reasoning skills are used and exhibited by LLMs
during the process of solving mathematical problems? (3) Alignment: How well can LLMs align
their step-by-step reasoning with the appropriate reasoning skills required for problem solving?

4.1 EXPERIMENT SETTINGS

Metrics We evaluate models on Res-Bench along the three complementary axes introduced in §3:
(1) final-answer accuracy, (2) step-level correctness, and (3) reasoning skill alignment. Concretely,
for each Res-Bench subset (middle-school and high-school) we compute:

* Final-answer accuracy Acc,pswer as the proportion of samples whose predicted final
answer equals the reference. :contentReference[oaicite:0]index=0

* Step-level metrics: (i) step-level accuracy (micro) Accgiep computed over all aligned steps,
(i1) all-steps-correct rate (sample-level), and (iii) earliest-error localization accuracy (with a
+1 tolerance variant).

* Reasoning skill metrics: top-1 reasoning skill selection accuracy Accyy, (per-step), and per-
KP precision / recall / F1 (reported as macro- and micro-averages). When a model does not
explicitly emit KP labels we prompt it to annotate its generated steps; ambiguous mappings
are adjudicated by humans and excluded from aggregated kp metrics (these exclusions are
tracked).

* Balanced comparison (F1): for the primary model comparison we follow Res-Bench and
primarily use the harmonic mean (F1) of accuracy on erroneous vs. correct-sample subsets
to balance models that are overly conservative vs. overly permissive.

All reported metrics are computed separately for the middle- and high-school subsets and then
aggregated as needed (we additionally analyze per-step-position error distributions and per-KP
performance breakdowns).

Models We present results from a range of state-of-the-art (SoTA) proprietary LLMs, including
OpenAl’s GPT-4 (Achiam et al.| 2023)), Deepseek-R1 (DeepSeek-Al et al., [2025), and O1-mini (El4
Kishky, 2024). Regarding open-source models, we consider Instruct version models of LLaMA-
3 (Touvron et al., 2023), Qwen2.5 (Yang et al., 2024).

4.2 RESULTS

We present the evaluation results of multiple state-of-the-art LLMs on Res-Bench across three
dimensions: final-answer accuracy, intermediate-step correctness, and reasoning skill alignment. The
results are summarized in Table[d] with F1 scores reported for both middle-school and high-school
subsets, as well as averaged across all metrics.

The ”Accuracy-Fidelity” Gap The data in Table ] reveals a striking and consistent pattern: for
every model evaluated, a significant performance drop is observed when moving from the final-answer
F1 score to the intermediate-step and reasoning-skill F1 scores. For instance, QwQ-32B-Preview
achieves a high final-answer score of 85.12% on the middle-school subset. However, its performance
on intermediate steps drops to 72.47%, and its reasoning skill alignment score falls even further
to 66.87%. This pattern is not an isolated observation; it is a fundamental characteristic of LLM
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performance across the board. This consistent decay is a profound finding because it demonstrates
that a model’s ability to produce a correct final answer does not guarantee that it followed a sound or
valid procedure to get there. The data suggests that a model’s correct output may be the result of a
”spurious shortcut” or even a “hallucinated” set of steps that happens to lead to the right conclusion.

Intermediate-Step Correctness Step-level reasoning remains a challenge for all models. While
final-answer accuracy is relatively high, step-level F1 scores are consistently lower. For example,
QwQ-32B-Preview achieves 72.47% on intermediate steps, still leading among open-source models
but trailing behind o1-mini (62.34%) and GPT-40 (60.75%). This suggests that even when models
produce correct final answers, their reasoning processes often contain errors or inconsistencies. The
earliest-error localization accuracy (not shown in Table 4| but implied by the evaluation protocol)
further reveals that models frequently make mistakes in early reasoning steps, which propagate and
invalidate subsequent reasoning.

Figure [2|illustrates the distribution of correct intermediate steps for two Qwen2.5 models (Math-1.5B
and Math-7B). The results provide a crucial insight: as the number of reasoning steps increases, a
significant performance gap emerges between models of different scales. The smaller 1.5B model
shows a sharp decline in the proportion of fully correct step sequences as the number of steps grows.
In contrast, the 7B model maintains a relatively higher level of correctness over longer reasoning
chains. This indicates that larger models possess a superior ability to maintain coherence and logical
consistency throughout extended, multi-step reasoning processes. The performance gap is most
pronounced for problems requiring more than 10 steps, highlighting that smaller models struggle with
the sustained focus and complex dependency management required for lengthy derivations, while
larger models demonstrate more robust reasoning capabilities.

0.50 Middle 0.50 Middle
0.45 High 0.45 High
0.40 0.40
50.35 50.35
©0.30 ©0.30
3 3
50.25 50.25
<0.20 <0.20
0.15 7 0.15
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0.05 b 0.05
0.00 o 1 2 3 4 5 6 7 8 9 0.00 o 1 2 3 4 5 6 7 8 9
Intermediate Step Intermediate Step

Figure 2: Left: Distribution of correct intermediate steps of Qwen2.5-1.5B-Instruct. Right: Distribu-
tion of correct intermediate steps of Qwen2.5-7B-Instruct.

Per-reasoning skill Performance Based on the reasoning skill taxonomy in Table [6] and the
overview in Figures[T|and 3] we observe that models perform better on understanding-bases reasoning
skills (e.g., Skill 1: Extract numerical values and units from the problem statement, Skill 4: Recognize
the problem category such as algebra or geometry) than on solution-based points (e.g., Skill 7: Apply
appropriate mathematical formula or theorem, Skill 9: Set up equations or inequalities based on
conditions). This suggests that LLMs are more proficient in executing known procedures than in
formulating problem-solving strategies.

This pattern provides a critical insight into the nature of LLM reasoning. A model’s strength in
understanding skills suggests that it excels at semantic interpretation and pattern recognition from
the problem statement. It can effectively read a problem, identify the key components, and recall
a relevant schema from its training data. However, its weakness in solving skills—particularly
those requiring strategic formulation like ’Set up equations” or "Use logical inference”—indicates
a deficiency in its ability to perform novel, strategic planning. The models are adept at executing
known procedures, such as performing calculations or applying a specific formula, but they struggle
with the higher-level, generative process of constructing a multi-step solution from scratch. The
low reasoning skill alignment scores across the board further confirm that models often misapply or
misidentify the required mathematical concepts, even if a step appears to be correct.
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Table 4: Evaluation results on RES-BENCH. We report the F1 score of the respective accuracies on
erroneous and correct samples. Models are evaluated with zero-shot chain-of-thought prompting.

Intermediate-

Reasoning-

Model Middle High Steps SKill Average
Llama Series
Meta-Llama-3-8B-Instruct 44.67 13.12 15.48 10.15 20.86
Llama-3.1-8B-Instruct 42.34 11.75 10.45 9.67 18.56
Llama-3.1-70B-Instruct 59.88 29.54 35.67 30.14 38.81
Llama-3.2-1B-Instruct 35.85 6.72 7.88 6.12 14.14
Llama-3.2-3B-Instruct 38.77 9.34 12.46 7.89 17.11
Llama-3.3-70B-Instruct 60.12 30.32 37.88 29.41 39.43
Owen Series
Qwen2.5-Math-1.5B 42.14 13.59 14.12 9.27 19.78
Qwen?2.5-Math-1.5B-Instruct 44.89 16.22 18.34 11.22 23.42
Qwen2.5-Math-7B 46.71 18.34 20.48 17.56 25.77
Qwen2.5-Math-7B-Instruct 51.91 21.76 25.92 21.87 30.37
Qwen2.5-Math-72B-Instruct 68.91 39.78 45.88 36.48 47.76
Qwen2.5-1.5B-Instruct 40.01 12.69 15.42 9.65 19.44
Qwen2.5-7B-Instruct 47.73 17.89 19.37 15.44 25.11
Qwen2.5-14B-Instruct 51.33 20.12 23.52 20.14 28.78
Qwen2.5-32B-Instruct 54.55 24.36 32.55 27.89 34.84
Qwen2.5-72B-Instruct 64.56 34.92 41.56 32.33 43.34
% QwQ-32B-Preview 85.12 69.33 72.47 66.87 73.45
Proprietary LLMs
GPT-40 74.67 45.23 60.75 52.38 58.26
Deepseek-R1 71.45 4347 59.87 50.14 56.23
ol-mini 77.57 48.95 62.34 55.47 61.08

5 CONCLUSION

We introduce Res-Bench, a novel benchmark designed for the fine-grained evaluation of mathematical
reasoning in Large Language Models (LLMs). Moving beyond the standard metric of final-answer
accuracy, Res-Bench provides a multi-dimensional assessment framework that measures a model’s
proficiency in generating valid intermediate reasoning steps and its ability to align these steps with
the correct underlying reasoning skills. Our extensive evaluation of state-of-the-art models reveals a
critical discrepancy: while LLMs can often produce correct final answers, their step-by-step reasoning
processes frequently contain logical inconsistencies, errors, and a misapplication of the required
mathematical concepts. This underscores the insufficiency of answer-only evaluation and highlights
the necessity of process-based assessment to truly understand and advance the reasoning capabilities
of LLMs. We envision Res-Bench serving as a foundational tool for the community, enabling
more robust diagnosis of model weaknesses, guiding the development of models that reason more
faithfully, and ultimately driving progress toward more interpretable and trustworthy Al systems for
mathematical problem-solving and beyond.
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protocols—is provided in section 3.2. Part of the data will be uploaded as supplementary materials.
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LIMITATIONS

While Res-Bench provides a valuable framework for fine-grained evaluation of mathematical reason-
ing, our work has several limitations that point to directions for future research.

Scope and Generalizability of the Dataset. The problems in Res-Bench are primarily derived
from Chinese middle- and high-school mathematics curricula. While this provides a focused domain
for analysis, it may limit the generalizability of our findings to mathematical reasoning problems
from other educational systems, cultures, or more advanced domains (e.g., undergraduate-level
mathematics). The benchmark’s effectiveness for evaluating reasoning in highly abstract or proof-
based problems remains to be seen.

Fixed Taxonomy of reasoning skills. Our evaluation relies on a pre-defined taxonomy of 14
reasoning skills. Although this taxonomy was carefully designed to cover common operations in
secondary school math, it is inherently non-exhaustive. This fixed set may not perfectly capture all
nuances of reasoning for every problem, potentially leading to forced or ambiguous alignments for
steps that involve composite or novel reasoning patterns not explicitly listed.

Challenges in Step Alignment and Evaluation. Evaluating step-level correctness and reasoning
skill alignment requires aligning model-generated reasoning traces with the reference solution. This
process can be challenging due to the variability in how different models express the same logical
step. Although we employ human adjudication for ambiguous cases, the alignment process may
not be perfectly robust to stylistic differences, potentially affecting the precision of step-level and
reasoning skill metrics.

A THE USE OF LARGE LANGUAGE MODELS

We employed LLMs for grammar checking and polishing the English expression throughout this
manuscript. It is important to note that while our research focuses on leveraging LLMs for data
annotation and evaluation, the LLMs studied in this work are the subject of our research rather than
tools for research ideation or scientific writing. All experimental design, analysis, and scientific
conclusions were developed independently by the authors.
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Model Performance on Knowledge Point
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Figure 3: Overview performance of reasoning skills on the high-school subset of Res-Bench.

B POST TRAINING

To investigate the impact of specialized training on mathematical reasoning and reasoning skill
alignment, we conducted a series of post-training experiments on the Qwen2.5-Math-1.5B and
Qwen2.5-Math-7B models.

Data Synthesis We synthesized an additional 1,000 high-quality math problems to augment the
training data. This was done by prompting GPT-4 to generate middle-school and high-school level
problems that mirror the style and complexity of Res-Bench. Each generated sample includes
the question, a detailed step-by-step solution, and the corresponding reasoning skill for each step,
following the annotation standard of our benchmark.

Experimental Setup All post-training experiments were conducted on a cluster of § NVIDIA A100
GPUs. We maintained consistent hyperparameters across models to ensure a fair comparison, using a
learning rate of le-5, a batch size of 32, and training for 3 epochs. The models were evaluated on the
Res-Bench test set immediately after each training phase.

Analysis of Post-Training Results The results of the post-training experiments are summarized in
Table 5. The analysis reveals several key findings:

Significant Performance Gains: All post-training algorithms lead to substantial improvements over
the base models (whose performance is shown in Table Ef[) For instance, the Qwen2.5-Math-7B
model’s average F1 score improved from 25.77% (base) to 36.32% after SFT, and further to 45.42%
after GRPO. This demonstrates that targeted training on reasoning skill-annotated data is highly
effective.

Progressive Improvement with Advanced Algorithms: The results show a clear hierarchy: GRPO
> DPO > SFT. This indicates that while supervised fine-tuning (SFT) provides a strong baseline,
algorithms that incorporate preference learning (DPO) and more sophisticated policy optimization
(GRPO) are more effective at teaching the model not just what the correct steps are, but also how to
select valid reasoning paths over invalid ones, leading to more robust reasoning.
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Model  Algorithm | Middle High Inters‘;ep‘ilate' Re"‘ssl‘:;ﬁ“g' Average
SET | 5371 2034 24.56 547 2852

Qwen2.5-Math- DPO | 5892 2357 2672 1781 3176
1.5B GRPO | 6214 2831 3235 2044 3611
SET | 6425 2641 2932 3531 3632

Qwen2.5-Math- DPO | 6671 284l 3214 2733 3865
7B GRPO | 7126 3644 3857 3541 4542

Table 5: Performance of post-training on different algorithms.

Scalability with Model Size: The absolute performance and the relative gains from post-training
are more pronounced for the 7B model compared to the 1.5B model. For example, GRPO led to an
18.1-point absolute improvement in the average score for the 7B model, compared to a 16.59-point
improvement for the 1.5B model. This suggests that larger models have a greater capacity to absorb
and benefit from the nuanced, structured knowledge provided by our training data.

Holistic Improvement Across Metrics: The improvements are consistent across all evaluation di-
mensions—final answer, intermediate steps, and reasoning skill alignment. This confirms that our
post-training approach enhances the model’s reasoning capabilities in a holistic manner, rather than
overfitting to a single metric. The notable improvement in reasoning skill scores (e.g., from 17.56%
to 35.41% for the 7B model) is particularly significant, as it shows that the models are learning to
better associate reasoning steps with the correct underlying mathematical concepts.

In conclusion, the post-training experiments validate that Res-Bench is not only a diagnostic tool
but also a valuable resource for model improvement. The structured, reasoning skill-aware data
enables significant gains in reasoning quality, with advanced algorithms like GRPO yielding the most
substantial benefits, especially for larger models.

Compare algorithms for Qwen2.5-Math 1.5B vs 7B

Qwen2.5-Math-1.5B Qwen2.5-Math-7B
5 4 5 4

SFT  ---- DPO

Figure 4: Overview of reasoning skills on the middle-school subset of Res-Bench.

15



Under review as a conference paper at ICLR 2026

Instruction:

You are an expert at high-school level math problem annotation. Given the Question, Solution,
Please think step-by-step and generate fine-grained intermediate steps. For each intermediate step,
assign exactly one corresponding reasoning skill chosen only from the following 14 reasoning skills
(do not paraphrase or add new labels). Please output your reply in the following JSON format:

Here are 14 reasoning skills:

¢ 1. require model to understand question: Extract numerical values and units from the
problem statement.

¢ 2. require model to understand question: Extract given conditions and constraints.
* 3. require model to understand question: Identify the unknown quantity to be found.

* 4. require model to understand question: Recognize the problem category such as algebra or
geometry.

* 5. require model to understand question: Understand relationships between given quantities.

¢ 6. require model to understand question: Interpret textual descriptions into mathematical
expressions.

* 7. require model to solve the question: Apply appropriate mathematical formula or theorem.
» 8. require model to solve the question: Set up equations or inequalities based on conditions.
* 9. require model to solve the question: Perform step-by-step calculations or manipulations.
* 10. require model to solve the question: Simplify expressions through algebraic operations.
* 11. require model to solve the question: Solve equations or systems of equations.

¢ 12. require model to solve the question: Evaluate expressions to obtain numerical results.

* 13. require model to solve the question: Verify solution against given constraints.

* 14. require model to solve the question: Use logical inference for deductions or proofs.

Here, I provide you with an example of the math data to help you understand your task.
First, I provide you with a Question:

[EXAMPLE QUESTION]

The solution of the Question is [EXAMPLE Solution], you should output:
[EXAMPLE RESPONSE]

Box 1: The prompts of annotating a math problem with reasoning skills and intermediate steps.
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Table 6: List of annotated mathematical reasoning skills.

ID reasoning skill Description Category
1 Extract numerical values and units from the problem state- Understand Question
ment
2 Extract given conditions and constraints Understand Question
4 Recognize the problem category such as algebra or geometry  Understand Question
5  Understand relationships between given quantities Understand Question
6  Interpret textual descriptions into mathematical expressions ~ Understand Question
7  Apply appropriate mathematical formula or theorem Solve Question
8  Perform step-by-step calculations or manipulations Solve Question
9  Set up equations or inequalities based on conditions Solve Question
10 Simplify expressions through algebraic operations Solve Question
11 Solve equations or systems of equations Solve Question
12 Evaluate expressions to obtain numerical results Solve Question
13 Verify solution against given constraints Solve Question
14 Use logical inference for deductions or proofs Solve Question
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