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ABSTRACT

Training modern AI models has become increasingly expensive, and updating
these base models can significantly alter the behavior of applications or services
built on them, due to changes to internal feature representations. In retrieval
systems, this involves re-extracting feature vectors for all gallery data. This process
can be computationally expensive and time-consuming, especially for large-scale
gallery sets. To address this issue, backward compatible learning was introduced,
allowing direct comparison between the representations of the base model and the
updated ones. Existing backward compatible methods introduce additional losses
or specific network architecture changes, which require the availability of base
models, thereby limiting compatibility with models trained independently. In this
paper, we show that any independently trained model can be made compatible with
any other by simply using features derived from softmax outputs. We leverage
the geometric properties of the softmax function, which projects vectors into the
Probability Simplex, preserving the alignment of softmax outputs across model
updates and verifying the definition of compatibility. A similar property is observed
when using a feature representation derived from logits. They distribute in a
simplex configuration, but with a wider spread in the feature distribution than
softmax outputs, leading to a more robust and transferable representation. Our
framework achieves state-of-the-art performance on standard benchmarks, where
either the number of training classes extends across multiple steps or the base
model is updated with advanced network architectures, showing that any publicly
available pretrained model are compatible without requiring any additional training
or adaptation. Our code will be made available upon acceptance.

1 INTRODUCTION

Training modern Al models has become increasingly expensive, limiting accessibility to a few
well-resourced organizations (Wolf et al.|[2019; Radford et al.| 2021; Dubey et al., 2024} Jiang et al.,
2023}; |/Anthropic} 2024). Despite reductions in model parameters and computing costs (Dubey et al.,
2024), training from scratch, fine-tuning and inference (i.e., test time) (Wang et al., [2024; OpenAl,
2024) remain economically challenging, particularly for smaller teams. As a result, these models are
increasingly offered as services through APIs, a trend that is likely to continue due to persistent high
costs and the significant benefits of scaling laws (Kaplan et al., [2020). Offering models as services
not only simplifies the development of new applications but also enables their widespread use across
various fields. However, updating these base models can completely transform the behavior of the
applications or services built upon them (Raffel, 2023).

Several factors may drive updates to the base model (Raffel, 2023} [Yadav et al.| [2024), including
evolving training strategies (Biondi et al., 2024} [Echterhoff et al., [2024} Shen et al.,|2020)), advance-
ments in architectures (Touvron et al.,[2023), the availability of higher-quality datasets (Gunasekar
et al.| 2023), the expansion of training classes, or extended training periods (Biderman et al.| 2023}
Raffel, 2023). These advancements encapsulate rapid progress in a unified model, simplifying usage
as models, datasets, and computational infrastructures grow in size and complexity (Bommasani
et al.l 2021} [Sorscher et al., [2022)).

A common scenario involves developers focusing on performance improvements in model updates,
potentially compromising compatibility with earlier model versions. Concurrently, end users, such
as drivers of semi-autonomous cars, often develop a mental model of the machine learning model’s
capabilities (Bansal et al.l [2019a). As the software updates, these human-users must continually
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adjust their mental model of its functionality and capabilities, a task that is not only challenging
and potentially dissatisfying but also unsafe (Bansal et al.,2019b). To minimize user adjustments,
both current and new software versions run in the background to compare decisions before the final
deployment (Templeton, |2019). Similarly, image retrieval services might experience unexpected
changes in image rankings following a model update, requiring users to adapt when previously
top-ranked retrieved images no longer appear first (Shen et al.| [2020). In the same vein, recent
observations have shown similar issues with large language models (LLMs) (Echterhoff et al.| [2024),
which directly raises concerns about Al safety and alignment. This is particularly critical when
decisions and textual outputs from these agents are translated into actions (Amodei et al.| 2016} |Ngo
et al.l [2024).

This general issue of updating a base model seamlessly while ensuring compatibility has been
independently explored with research emphasis varying based on the type of compatibility required
with earlier models: 1) if through the ultimate layer, it targets the problem of “negative flips”— ensure
that the new model only mimics the old model when it is correct. (Milani Fard et al., [2016; |Yan
et al.| [2021); 2) if through the penultimate layer, it involves learning “backward-compatible” feature
representations that can be interchangeably used across models (Shen et al., 2020; Biondi et al.|
2023)); and 3) if through the whole architecture it targets merging by averaging earlier models using
the concept of “linear mode connectivity” (Ainsworth et al., 2023 [Wortsman et al., 2022} [Matena &
Raftell, [2022; |[Frankle et al., [2020).

Although repositories of pre-trained foundation models are publicly available (Wolf et al.| 2020),
merging large models still requires not only the same architecture but also access to weights behind
an API and substantial compute resources (Yadav et al., 2024). Backward compatibility, as defined
in (Shen et al., 2020) originally developed to avoid image re-indexing in retrieval, is crucial in
overcoming these challenges by ensuring models remain effective on targeted tasks and compatible
with established input and output (Raffel, |2023)). However, most existing studies on backward
compatibility require the availability of previous or base models, thereby limiting compatibility with
models trained independently (Shen et al.| 2020; Meng et al.,[2021; [Duggal et al.| 2021)). Recent
studies have begun to address this issue (Biondi et al.,[2023;2024). Although some theoretical results
support these methods, implementation requires agreement on using a specific fixed classifier among
parties before training the models (Pernici et al.| 2021 Zhu et al.| 2021). This agreement is often
challenging due to competition-related issue between organizations, and the fixed classifier requires
substantial pre-allocation for future classes.

In this paper, we demonstrate that any independently trained model can be made compatible with
any other, and can remain compatible when expanded with new classes. This is achieved by using
feature representations derived from softmax outputs. The softmax function projects the feature
space into the Probability Simplex, a geometric configuration in which the vertices—corresponding
to the standard unit vector of the feature space—are maximally equidistant. Although the Probability
Simplex evolves with the introduction of new classes, we show that a projection matrix can be defined
to preserve alignment across model updates, resulting in stationary representations that verify the
definition of compatibility in|Shen et al.[(2020). A similar property is observed when using feature
representations derived from logits. We demonstrate that, during training, they distribute in the same
simplex configuration of the softmax outputs. However, they present a wider spread in the feature
distribution than softmax outputs, leading to a more robust and transferable representation.

Our framework achieves state-of-the-art performance on standard benchmarks, where either the
number of training classes grows over multiple steps or the base model is upgraded with more
advanced architectures. This shows that any publicly available pretrained model can be seamlessly
made compatible without requiring additional training or adaptation.

2 RELATED WORKS

The aim of compatible training is to learn representations that can be used interchangeably when
updating a model, thereby avoiding the re-indexing of the gallery set in retrieval. This basic formu-
lation, originally proposed in Shen et al.| (2020), is in principle a practical method for evaluating
model updates, even when the base or updated models are not explicitly used for retrieval but operate
as input-output black boxes. Backward Compatible Training (BCT) was introduced by [Shen et al.
(2020), employing the previous classifier as a fixed reference during the training of the new model, so
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that new feature vector can align to their old class prototypes. Following works introduced additional
regularization loss functions (Meng et al., 2021; Zhang et al.,[2021};|2022; |Pan et al.,2023)) to align
the updated representation with the old one. In particular, inMeng et al.|(2021) (LCE) a combination
of loss functions is used to align class means between different model upgrades and to achieve more
compact intra-class distributions while learning new data, directly optimizing one of the inequalities
in the definition of compatibility given by |Shen et al.|(2020). An adversarial learning discriminator
was introduced in BCT by [Pan et al|(2023)) (AdvBCT) to minimize the distribution disparity between
features from the old and new models.

Due to the regularization constraints imposed to achieve compatibility, the performance of the new
backward-compatible model often does not reach that of a newly independently trained model (Zhou
et al., 2023). To address this issue, other methods achieved compatibility between independently
trained models using mapping-based approaches (Chen et al.,[2019; [Wang et al.l 2020; Ramanujan
et al.}[2022a; Meng et al.| 202 1; Ramanujan et al.,|2022b). However, learning these mapping functions
on top of the models introduces additional computational overhead, which can become infeasible
with large datasets, and involves the composition of these modules when the model is updated several
times. In a similar vein, in Zhou et al.| (2023); Ricci et al.| (2024)), at each model update, the feature
space of the model is expanded to obtain compatibility with the previous model while learning the
new information in the expanded part of the feature space. Although these methods can leverage the
discriminative power of a newly independently trained model, their implementations require specific
network architecture changes.

The solution proposed by [Biondi et al.|(2023) (CoReS) to achieve compatibility between indepen-
dently trained models involves learning according to a pre-allocated d-Simplex fixed classifier. This
approach learns stationary representations, with features remaining aligned with their fixed class
prototypes, while new classes are incorporated into pre-allocated regions of the feature space. Our
formulation leverages one-hot encoded label vectors as a fixed reference, implicitly supporting
stationarity in the alignment of features derived from softmax outputs. The implicit use of one-hot
encoded label vectors as a fixed reference obviates the need for a unified fixed classifier among parties
before training the models, given that the softmax function is inherently universal across these parties.

3 THE PROBABILITY SIMPLEX LEADS TO COMPATIBLE REPRESENTATIONS

3.1 PRELIMINARIES ON BACKWARD-COMPATIBLE REPRESENTATION LEARNING

Let G = {(x;, yl)}j\/:"1 be the gallery set composed of N, images x;, each belonging to class y;
and a query set Q = {xi}ﬁi‘ll composed of N, images x;. A base model indexes the gallery set by
extracting feature vectors for each image, which are then used to perform retrieval tasks with the

feature vectors from the query set.

At a given time step t, the base model can be updated to include new network architectures or
to increase the number of training classes. At this time step ¢, the training set, denoted D* =
{(x4, yz)}f\gl comprises of V! labeled images x;, where each label y; corresponds to one of the
C'" classes. Specifically, when the number of classes increases, the base model is updated using the
dataset Dt = D!~ U X'*, where D'~ ! represents the existing data up to step ¢ — 1, and X' includes
the new data for step ¢.

Backward compatibility between the updated model at time step ¢ and the base model learned
at a previous step k is achieved if the features of the queries extracted by the current model,
o4 = {h! € R?|Vx; € Q}, can be compared with the gallery features obtained by the old model
<I>§ = {h¥ € R?|Vx; € G}, while preserving the accuracy and avoiding the necessity of re-extracting
the gallery features using the updated model. Here, h! € R< represents the feature vector of the
image x; extracted with the updated model at step ¢ where d is the dimension of the feature space.

Following the outlined setup, the formal definition of backward-compatible representations by [Shen
et al.| (2020) specifies that:
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Definition 1 (Compatibility). The representation of a base model learned at step k is compatible
with the representation of the updated model learned at step t, with k < t, if it holds that:

d(hf,h}) > d(h{,h}), V(i 5) € {(i, )y # v} (1b)
where d(-, -) is a distance function and y; and y; are class labels associated to h; and hj, respectively.

The inequalities of Def. [T|specifies that the updated model representation performs at least as well as
the base model in separating images from different classes and grouping those from the same classes.

3.2 PROBABILITY SIMPLEX PROJECTIONS (PSP)

In this section, we demonstrate that the softmax output from independently trained models provides
compatible representations according to Def.[I] To this aim, we consider the geometric properties of
the softmax function. This function maps the vector space R® onto the standard (C' — 1)-simplex,
resulting in a dimensional reduction of one, due to the linear constraint that requires all output values
to sum to 1. Consequently, this confines the output to reside in a (C' — 1)-dimensional hyperplane
within the C-dimensional space. We demonstrate that this mapping inherently provides the basis for
defining a rigorous methodology where adding new classes to a base model not only preserves the
alignment of softmax vectors after a model update, but also meets the second criterion of compatibility
in Def. [I] recently shown to be not strictly feasible by Biondi et al|(2024).

Given a base model at the time step k, we consider the feature representation h” as the normalized
softmax output vector subjected to the projection Py, 3, given by the equation:

Pk,k- O’(Zk)
[Prx oz,

where o(+) represents the softmax function, z¥ = W¥ . ¥ (x) denotes the logit output, ¢* the base
model and W¥ its classifier matrix. The projection P, ;. transforms the softmax output so that it is
centered at the origin of the axes, allowing its mapping onto the hypersphere through normalization.
Thus, Eq. 2] transforms softmax probability vectors into

ht = h* € RY", )

z

hyperspherical feature representation vectors. Given a
reasonably low training error of a model, the probability e ® Class 1
outputs of the softmax function are expected to cluster Na ® Class 2
near the vertices of the Probability Simplex. After pro- ® Class 3
jection with Py, 1., the normalization operation further
projects the softmax probability outputs onto the hyper- °
sphere, forming a distribution that closely approximates S
a von Mises-Fisher distribution —the hyperspherical y
analog of the Normal distribution. This approximation €2
enables us to derive a closed-form solution, which is o(2) V2
utilized in Theorem [I] to analytically determine the
expected distance required in Def. [I] to evaluate and Po(z)
verify compatibility. Specifically, the projection Py, 1, vMF 1P o(2)]],
derived from the centering matrix as described in Mar{
den| (1996), is defined by: Figure 1: Softmax outputs, represented as
1 colored points in the Probability Simplex,
Prr=TIcr — = Jcn (3) are projected onto the hypersphere (shown
c* as colored points on the hypersphere). Each

where I+ is the identity matrix for C* classes, and ~class’s softmax features, approximated by
Jon is a CF x C* matrix entirely composed of ones. the von Mises-Fisher distribution, are cen-

The projection P, ;, can be then defined as: tered on the class prototypes as defined in
) Eq. E] (illustrated with colored vectors).
P = [Prx | O] 4

where 0 € R(C"=C")*C" i5 the zero matrix with C* and C* the number of classes of the updated
and base model, respectively. Prop. |2| demonstrates that P, ;, provides a simple yet surprisingly
beneficial capability, enabling the projection of softmax outputs from the representation space of the
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Figure 2: Visualization of Probability Simplex Projections (PSP) across two model updates. From
left to right: a 1-simplex, a 2-simplex with a new orthogonal class prototype (green), and a 3-simplex
with a new orthogonal class prototype (yellow). Gray dashed lines show how class prototypes
(colored lines) are moved accordingly to form the new simplex structure, while black solid lines
demonstrate their alignment with the old class prototypes up to a projection P ;. This alignment
leads to compatible representations.

updated model to that of the base model. This unifies the representation spaces prior to normalization
onto the hypersphere providing an analytical treatment of the expanding feature space, showing its
inherent compatibility as defined in Def.[T} Given these considerations we refer to our methodology
as Probability Simplex Projections (PSP). Before discussing the theorems central to our framework,
we review the definition of the Probability Simplex, which has been adapted to accommodate a
varying number of classes, denoted as C*, present in the model at time k:

Definition 2 (Probability Simplex). Let AC" 1 be the (C* — 1)-dimensional simplex in RC". Its
k

vertices are the standard unit vectors e, ey, ..., eck, and its center is oF = & Zil e;. The

Probability Simplex is defined as: ACH -1 — {ue RC" | 220:1 wp =1, u; >0Vi, 1 <i<CF}.

In essence we aim to induce hyperspherical stationarity in the softmax layer. This is established by
considering the abstract simplex prototypes in the projection Py, 5, of Eq. |§|as:

V’;:ey—ok Vy,1 <y < C*. 5)

According to Eq. [3] the one-hot encoded label Vectors serve as a fixed reference for the class
prototypes. Despite v subjected to the shift of o* with each update, we demonstrate that its
projection retains a ﬁxed position, ensuring stationary references for representation in Eq. 2] The
projected vector vy operates as a fixed unified reference to which the normalized projected softmax
outputs align. Furthermore, the projection P, j, of Eq. E|transforms the softmax outputs and locate
them around v,fj of Eq. |5} which can be interpreted as the mean direction of the von Mises-Fisher
distribution on the hypersphere. We present our framework through the following propositions and a
subsequent final theorem. The first proposition demonstrates the orthogonality of new classes with
respect to old ones by guaranteeing zero projection of the newly added class prototypes relative to
the previous ones. In the second proposition, we demonstrate that alignment across expanded models
can be achieved through a projection matrix. The final theorem shows how compatibility can be
achieved—verifying the compatibility requirements (including the second constraint)— using this
representation as they distribute in a unified simplex configuration with fixed references provided
by Eq. 5] Fig.2]illustrates the basic geometry forming the basis of our theoretical approach. The
figure shows how the prototype vectors interact with the normalized softmax outputs, providing a
visualization of the fixed references to which the projected normalized softmax features align.

The updating process of a base model results in an extension of the classifier to accommodate
additional outputs for new classes. This involves an orthogonal expansion of the one-hot encoded
labels corresponding to the vertices of the newly added classes, causing a change in the configuration
of the updated class prototypes of the old classes (as illustrated by the dashed lines in Fig. 2. This
concept is formalized in the following proposition:

Proposition 1. Assuming an increase in the number of classes to C* from C* at a new step t, the
class prototypes of the newly added classes are orthogonal with respect to the prototypes from the
previous step k.
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Proof. The proof of this proposition is provided in Appendix [A] O

As demonstrated in Prop. [I] the simplex’s symmetry ensures orthogonality of the representation of
the new added classes with the old ones. This implies that the new information introduced by these
classes is also orthogonal to the previous information, ensuring no interaction between them. This
allows us to formulate the following proposition:

Proposition 2. Let VZ € RC" be the prototype vector for class y within the Probability Simplex
A" =1, Define its projection as ul, =P, vl where Py = [V¥|0] with VF = [v’y“ ]g’il € RO*xC"
and 0 € R(C =CXC is 4 zoro matrix. Then the resulting projected prototype ult! is aligned with
the prototype vfj within AC" 1,

Proof. The proof of this proposition is provided in Appendix O

As consequence, class prototypes can be projected according to P, ; from the new feature space RC’

to the old feature space RC" (as illustrated by the solid lines in Fig. , resulting aligned with the
old prototypes of the same classes. The section concludes with the compatibility theorem showing
that PSP features are inherently compatible. In the derivation of the following theorem, we base our
conclusions on several key assumptions: (1) The normalized projected softmax class features are
assumed to follow a von Mises-Fisher (vMF) distribution; (2) the variance of this vMF distribution
is assumed to decrease with each model update; and (3) our findings are established on average,
verifying that same-class features are closer and different-class features are farther apart using the
updated model. Further assumptions will be introduced in the proof to facilitate the progression of
the mathematical analysis.

Theorem 1 (Probability Simplex Compatibility Theorem). Assuming the number of classes changes
from C* at step k to C* at step t, where C* > C*, the normalized softmax features of two models,
independently trained at these respective steps, are compatible as formulated in Def.[I}

Proof. The proof of this theorem is provided in Appendix [C} O

In particular, it results that compatibility requires an angle greater than 7 /2 between two different
classes to satisfy the second inequality in Def. [T} This requirement is always met by representations
arranged in simplex geometry, as described in Def. [2}

3.3 LOGITS SIMPLEX PROJECTIONS

In this section, we show that using representations de-

rived from logits exhibit similar properties as the nor- es ® Class 1
malize softmax outputs, offering an alternative represen- vy :gi:zi

tation that achieve compatibility. Thus, our framework
as described in Sec.[3.2]is also valid when considering
logits as features, i.e.,

k
k=2 pbeRrY ©6)
12|

This representation is named Logit Simplex Projections
(LSP). Fig. 3] illustrates the configuration of softmax
outputs and logits in a ResNet18 model trained on three
CIFARI100 classes The figure illustrates the softmax
outputs within the Probability Simplex (shown in darker
gray) in R3, which tend to concentrate near the vertices
corresponding to the canonical basis vectors of R3. We demonstrate that as the softmax probabilities
converge towards these vertices, logits configure into a simplex defined by the ’abstract’ class
prototypes of Eq.[5] The following proposition formally establishes this result.

Figure 3: As softmax outputs converge to-
wards the vertices of the Probability Sim-
plex (in darker gray), logits configure in a
simplex configuration (in lighter gray).
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Figure 4: Neural Collapse hypothesis evaluated using feature representation derived from softmax
outputs (blue lines) and logits (orange lines) on CIFAR100 with ResNet18.

Proposition 3. As the softmax outputs approach the vertices of the Probability Simplex, the corre-
sponding logits vectors assume a simplex configuration, with class prototypes aligning to the vectors

specified in Eq.
Proof. The proof of this proposition is provided in Appendix [D] O

From Prop. 3] it directly follows that logits exhibit the same geometrical properties as normalized
softmax outputs, as specified in Eq.[2} and thus benefit from the same results described in Theorem I]
To empirically verify the theoretical results of Prop. |3} we utilize the Neural Collapse hypothesis
(NC) introduced by [Papyan et al.|(2020). This hypothesis provides a methodology for examining
how PSP/LSP features collapse to the abstract prototypes we have defined in Eq.[5} Specifically, NC
hypothesis evaluates: the within-class covariance of features (NC1); the formation of a simplex where
vertices have equal norm (NC2 equinorm hypothesis) and are at the maximum possible distance from
each other (NC2 equidistance hypothesis); the convergence of class means to class prototypes (NC3);
and the applicability of the nearest class-means rule for classifying features (NC4).

Fig. @] displays training loss and the NC hypothesis values for softmax outputs (blue curves) and
logits (orange curves) of a ResNet18 network trained on CIFAR100. The NC2 equidistance and NC3
curves indicate that logits are less collapsed compared to the softmax outputs, suggesting reduced
alignment. Conversely, the NC1 values show that logits present a higher spread of feature distribution
than softmax outputs, as this metric assesses the extent of within-class covariance of features.

The higher spread of logits highlights an inherent trade-off between alignment and spread in the
feature distribution similar to that described in (Chen et al.| (2022), indicating that achieving both
simultaneously is challenging. Although alignment is beneficial for achieving compatible represen-
tations as demonstrated in Theorem [I] a wider spread is desirable to obtain a representation that
is transferable and robust (Wang & Isola, 2020). Using features derived from logits as in Eq. [6]
provides a better balance between alignment and spread compared to the representation of Eq.
In Appendix [El we show that this effect occurs in several neural network architectures (ResNet18,
ResNet50, and DenseNet) and datasets (CIFAR100 and TinylmageNet200).

4 EXPERIMENTAL RESULTS

We conducted extensive experiments to demonstrate the performance of our framework, which uses
features derived from softmax outputs (PSP) or logits (LSP).

4.1 COMPATIBILITY METRICS

The definition of compatibility in Def. [1| requires evaluating every pair-wise distance between
datapoints in the dataset, which becomes computationally challenging as the dataset size increases.
According to this, the updated model learned at step ¢ is said to be backward-compatible with the
base model learned at step & if the Empirical Compatibility Criterion |Shen et al.|(2020) holds

M(®2,@7) > M(®2,®]) witht > k, )

where M is a performance metric, M (<I>7§Q7 @g) denotes the cross-test where gallery features are
obtained with the updated model of step ¢ and query features with the base model of step k, and
M (‘bkg, @g) the self-test where both gallery and query features are obtained with model of step ..



Under review as a conference paper at ICLR 2025

Given T' models, the Compatibility Matrix C € RT*T (Biondi et al.| [2023) represents all the models
combinations across multiple 7" steps. C is defined as

0 ift <k
Cip=1{ M(®2,87) ift=k. (8)
M(®2,®7) ift>k

Self-tests are reported in the main diagonal, while cross-tests in the lower sub-diagonal values. From
the compatibility matrix C, the following scalar metrics can be derived to evaluate compatibility and
accuracy across 1" steps of compatible learning:

* Average Compatibility (Biondi et al}|2023) AC' = 775 S (an > Ck,k>,
being 1 is the indicator function. It represents the normalized count of times compatibility

is achieved over T steps according to Eq.[7] AC shows how often compatibility is achieved
across 1" model updates.

* Average Accuracy (Biondi et al.,|2023) AA = T(%H) Zthl 22:1 C. r expressing the
average accuracy (in term of M) over 1’ steps, considering all the self-tests and cross-tests.

» Average Compatibility Accuracy ACA = ﬁ Z;'T:Q 22;11 Cirst. Copp > Cpp
expressing the average accuracy (in term of M) of cross-tests that satisfy Eq.[/|over T steps.
This metric computes the average accuracy only when compatibility is achieved.

In our experiments, we use the Recall@1 as performance metric M according to the cosine similarity

between query features <I>% and gallery features @g).

4.2 COMPARATIVE RESULTS

We performed a comparative analysis of PSP and LSP under two distinct scenarios. In the first
scenario, we evaluated compatibility across standard benchmarks, where the number of training
classes is extended across multiple steps. In the second scenario, we assessed compatibility of
publicly available pretrained models with an advanced network expressiveness across multiple steps.

Extended Class Results. Tab. [I| presents the compatibility performance for learning scenarios in
which the base model is updated with an extended number of training classes for each new step.
In these experiments, we compared PSP and LSP with BCT (Shen et al.| 2020), CoReS (Biondi
et al., [2023), LCE (Meng et al., 2021), AdvBCT (Pan et al., 2023)), and with a baseline method
where features are derived from the encoder output of the base model. We have also compared with
two approaches where the classifier of the base model follows a fixed Equiangular Tight Frame
(ETF) (Papyan et al.l 2020) configuration where classes are pre-allocated (Yang et al.,|2022) and the
base models is trained under cross-entropy loss (ETF-CE) or the dot-regression loss (ETF-DR). All
experiments are conducted using the public implementations of the methods on a Nvidia Quadro
RTX A6000 with 24GB and two Nvidia A100 GPUs, each with 40GB.

In Tab. [E, we report performance on the CIFAR100 (Krizhevskyl 2009) test set, with a ResNet18
network trained for 2, 5, 20, and 50 steps using the CIFAR100 training set. Tab.|lb|shows compatibility
performance on the TinyImageNet200 (Le & Yang, |2015) test set, with a ResNet18 network trained
for 2, 5, 20, and 50 steps using the TinyImageNet200 training set. Tab. [Ic|presents performance on
the ImageNet1k and Google Landmark v2 (Weyand et al., [2020) test sets, where the ResNet50 and
ResNet18 networks are trained for 2 and 5 steps using the ImageNetlk and Google Landmark v2
training sets, respectively. Each dataset is divided into steps, each with an equal number of training
classes, i.e., Xy = C/T fort = 1,2,...,T, where C represents the total number of classes in the
dataset. More info about datasets and implementation details are in Appendix [G]

Overall, Tab. E] shows that PSP and LSP achieve state-of-the-art results, confirming our theoretical
analysis. PSP and LSP outperform other approaches in terms of both AC and ACA, particularly in
the challenging scenarios with a large number of model updates. Notably, using logits as features
(LSP) generally achieves higher A A than using features derived from softmax outputs (PSP), but with
lower AC values. This is attributed to the wider spread in the feature distribution of logits, which
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Table 1: Experimental results on CIFAR100, TinyImageNet, ImageNet, and Google Landmarks
datasets in the case of extended training classes at each model update, evaluated using the AC', AA,
and AC A metrics, with Recall@1 as the performance metric (M). Dark blue numbers indicate the
highest values, while light blue the second-highest values for each metric and at each step value.

(a) CIFAR100.
2 steps 5 steps 20 steps 50 steps
METHOD AC AA ACA AC AA ACA AC AA ACA AC AA ACA
Baseline 0 29.63 0 0 13.60 0 0 0422 0 0 0229 0
BCT (Shen et al.|[2020) 1 4640 50.21 040 2993 11.78 0.13 1947 0520 0.01 1578 0.84
CoReS (Biondi et al.[[2023) 0  38.75 0 0 29.63 0 0.07 24.06 0026 0 22.87 0.27
ETF-CE (Yang et al.[|2022) 0  38.37 0 0 2726 0 0 2043 0 0 1943 0
ETF-DR (Yang et al.|[2022) 0 36.04 0 0 24.66 0 0 18.83 0 0 16.87 0
LCE (Meng et al.|[2021) 1 4348 40.71 0.10 32.63 0463 0 2095 0025 O 13.81 0.03
AdvBCT (Pan et al.[[2023) 0 3532 0 040 26.13 11.67 0.02 1979 00.19 0 1470 0.03
PSP 1 3631 29.05 090 26.04 21.76 0.52 20.56 12.99 0.39 19.42 10.76
LSP 1 41.14 3638 0.70 30.36 2191 0.44 24.11 13.26 0.36 22.68 11.25
(b) TinyImageNet200.
2 steps 5 steps 20 steps 50 steps
METHOD AC AA ACA AC AA ACA AC AA ACA AC AA ACA
Baseline 0 21.72 0 0 09.61 0 0 02.86 0 0 0143 0
BCT (Shen et al.|2020) 1 3529 3789 1 2442 2292 0.64 18.17 1475 0.08 1541 02.29
CoReS (Biondi et al.[|2023) 0  27.60 0 0.60 21.55 12.69 0.62 17.82 09.99 0.55 17.06 09.79
ETF-CE (Yang et al.[[2022) 0 29.46 0 020 21.66 05.66 0.12 1722 03.68 0.03 16.14 01.01
ETF-DR (Yang et al.[[2022) 0  29.90 0 0 2134 0 0.04 16.58 01.47 0.05 15.66 01.81
LCE (Meng et al.[[2021) 1 3211 30.37 0.60 2448 1692 0.02 16,51 0090 0 11.10 0
AdvBCT (Pan et al.[[2023) 0 2490 0 0.70 18.99 1393 0.26 14.65 0441 0 09.34 0
PSP 1 2988 2505 0.90 2193 17.99 091 17.53 1533 090 16.63 14.95
LSP 1 3244 2926 1 2510 2348 0.83 2046 17.34 0.80 1948 16.01

(c) Large scale datasets: ImageNetlk and Google Landmark v2. “nan” indicates a training error with non-
numeric values; “oom” means training requires extra GPU memory; “Xx” denotes values cannot be computed
due to method limitations.

ImageNetlk Google Landmark v2
2 steps 5 steps 2 steps 5 steps

METHOD AC AA ACA AC AA ACA AC AA ACA AC AA ACA
Baseline 0 3752 0 0 16.18 0 0 07.66 0 0 0787 0
BCT (Shen et al.|[2020) 1 5753 58.10 0.20 3496 5.28 1 1098 09.12 0 08.46 0
CoReS (Biondi et al.[[2023) 0  46.11 0 0 37.67 0 oom oom oom oOom OOm oom
ETF-CE (Yang et al.|[2022) 0 48.67 0 0 3352 0 X X X X X X
ETF-DR (Yang et al.[[2022) 0 46.35 0 0 31.27 0 X X X X X X
LCE (Meng et al.|[2021) 0 4722 0 0 32.67 0 1 0941 08.03 040 10.31 3.80
AdvBCT (Pan et al.]|2023) nan nan nan nan nan nan 1 11.12 09.67 0 10.73 0
PSP 1 49.10 3980 1 3520 31.09 1 08.74 0824 090 0853 7.21
LSP 1  50.73 45.62 0.50 38.03 14.28 1 09.31 08.36 0.80 09.36 7.34

yields higher open-set accuracy but less compatibility due to reduced alignment with the simplex
configuration. Consequently, LSP often achieves higher AC A values than PSP.

Other methods, while reporting comparable AC' performance with PSP and LSP with small number
of model updates, exhibit a clear performance decay when the number of steps increases. This can be
due to the interaction that the updated models have with the old ones, observed in both the case of
regularization-based methods like BCT and mapping-based methods like LCE. In scenarios with a
small number of tasks, these methods report higher A A, likely due to the lower model expressiveness
of PSP and LSP when trained with a limited number of classes, as it corresponds to the size of the
representation space. Additional performance details can be observed in the compatibility matrices
of Appendix [H]for the 5-step scenario on CIFAR100.

Advanced Network Architectures Results. Tab. [2| presents the compatibility performance of
various pretrained models on ImageNet1k (Russakovsky et al.,|2015) to demonstrate that by simply
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Table 2: Experimental results on ImageNetlk, CIFAR100 and Places365 in the case of advanced
network architectures (AlexNet, ResNet50, RegNetX_3.2GF, ResNet152, and MaxViT_T), evaluated
using the AC, AA, and AC' A metrics, with Recall@1 as the performance metric (M). Models
are pretrained on ImageNetlk. Dark blue numbers indicate the highest values, while light blue the
second-highest values.

ImageNetlk CIFAR100 Places365
Features derived from  AC  AA  ACA AC AA ACA AC AA ACA
Encoder outputs 0 21.63 0 0 18.83 0 0 8.38 0
Softmax outputs (PSP) 1 7434 76.12 09 37.62 33.24 0.9 1592 14.08
Logits (LSP) 0.7 60.68 37.61 04 4560 17.58 0.2 2136 4.06

using features derived from softmax outputs and logits models result to be compatible. In this case,
we mimic a scenario in which a base model is updated five times every time with the same training
data (aka ImageNet1k) but with a more advanced network architecture. Specifically, we started with
AlexNet (Krizhevsky et al.|2012) than updated with ResNet50 (He et al.| 2016), RegNetX_3.2GF
(Radosavovic et al., 2020), ResNet152, and MaxViT_T (Tu et al., 2022). We evaluated how the
compatible performance on the ImageNetlk dataset (closed-set results), the CIFAR100 dataset (open-
set results) and Places365 (Zhou et al.| 2017)(fine-grained open-set results) of PSP, LSP, and the
baseline approach, in which features are derived from the softmax outputs, the logits, and the encoder
outputs, respectively. In this case, none of the other compared methods can be applied as they require
to train the updated model in order to optimize some additional loss functions or some specific
modules, such as mapping functions or fixed classifiers.

In closed-set scenarios on ImageNet1k, softmax outputs (PSP) demonstrated the best compatibility
performance due to their high alignment with target labels, leading to high AC' and AA. However,
this alignment poses challenges in open-set scenarios like CIFAR100 and Places365, as highlighted by
(Wang & Isola,|2020; (Chen et al.,|[2022), where the alignment reduces transferability and overall open-
set accuracy AA. Conversely, LSP, while offering lower accuracy in open sets compared to closed
sets, achieves a higher overall accuracy, indicating a more robust and transferable representation.
Additional performance details can be observed in the compatibility matrices of Appendix [I| for both
the closed-set and open-set scenario. Appendix [J] presents the same experimental setup, focusing on
the more expressive ViT (Dosovitskiy et al.,|2020) architectures.

This experiments highlights not only the compatibility performance of PSP and LSP, but also how our
methods can be applied directly to all the publicly available pretrained models without any additional
modifications or training but simply through direct inference.

Limitations. PSP and LSP require that the ordering of classes does not change across model
updates or, in the case of extended training classes, follows an extension within a nested dataset
structure that does not alter the original sequence. Although this condition may seem restrictive, it can
be mitigated if the permutations of the class order is known. A further limitation of our framework
is that the representation size increases linearly with the number of classes (as can be seen from
Eq.[2|and Eq. @, as in the case of other methods (Biondi et al., 2023} |Yang et al., 2022} |Biondi et al.|
2024) that leverage feature representations configured as simplex. This can result in feature vectors
with small dimensions, which may lead to reduced model expressiveness, or feature vector with high
dimensions, which may lead to increased memory requirements.

5 CONCLUSIONS

This paper showed that independently trained DNNs can be made compatible simply using feature
representations derived from softmax outputs and logits. We demonstrated that these representations
are configured in simplex configurations that remain aligned across multiple model updates through
projections. This results into stationary representations, which satisfy both the criteria of the definition
of compatibility, recently shown to be not strictly feasible. Experiments confirmed the theoretical
results, showing that our framework achieves state-of-the-art compatibility performance, particularly
in scenarios with many model updates. Notably, our methodology achieves compatibility between
publicly available pretrained models without requiring any additional training or adaptation.
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A PROOF FOR PROPOSITION

Proposition. Assuming an increase in the number of classes to C* from C* at a new step t, the class
prototypes of the newly added classes are orthogonal with respect to the prototypes from the previous
step k.

Proof. To simplify the notation in the following discussion, we will denote C'* by d. Without loss of
generality we demonstrate this proposition for a step ¢ with an increment of one class relative to the
previous step k, such that C* = C* 4 1 = d + 1. This proof can be easily extended to model updates
where more than one class are mtroduced.
Given a generic prototypes vector vfj of the Probability Simplex A~! in R?, where d is the number
of classes at task k and y is a generic class, its vector is defined by the direction from the center
k= ézzzl e, to the correspoding class vertex ey, i.e v’yC = e, — ot = e, — él. The j-th
component v¥ ; of v is defined as follow:

Vol ifj#y
v 1-1 ifj=y

When a new class is added to the training set, there is an orthogonal extension of the one-hot encoded
label for the new added class. This causes a shift of the class prototypes as the evolving center of the

new Probability Simplex A¢ in R4 is defined as o' = +1 Zd+1 e, = ey 77 1. The prototype
vector of the new added class d + 1 is is then defined as VdJrl =eg.1 — o'

To prove the orthogonality of the prototype of the new class with the class prototypes of the base
model at step k, let compute the dot product between v, 1 and a generic prototype V,’; € R4,

Let firstly compute the norm the two vectors. The norm of V;j is:

% d e 22 4 k)2 p )2 41 (d—1)?
vyl =D (h) = | D (wh) + (@) = | D+~ =
j=1 j=1 j=1
J#y J#y
_\/d—l L -1 _\/d—l
o d? d? B d
Thus, the normalized vector is
V;j _ey—ok _eyfél
IVEIl - Jamr e
d a4

The norm of v, . 1» the prototype vector of the new added class d + 1, is

d+1 d

2 2
t
Vil = Z (UZHL]') = Z (vd+1 g) (U§l+1,d+1> =

_Zd:1+d2_d+d2_d
B j:l(d+1)2 (d+1)2 \[(d+1)2 " (@d+1)2 Vd+1

Thus, the normalized vector is

1
Vi _egr1— 0 €dp1— gyl
vi - 4 d

IVa.l \ d+1 \ a1

The dot product between the two normalized vectors is calculated by padding the smaller one with
one component of the vector with value equal to zero, to match their dimensions since v’; is in R? and
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Va4 is in R, This padding operation does not impact the normalization of the vector. Therefore,

k
1
k
vy = (ey — dl,O)

the padded vector v is:

Then the dot product is given by:

d k k
vy . Vap =S Vyy Vil i Vyy Vil 4 Jyd+1 Uy -1 )
||V]y€|| ||V¢ti+1|| = ||V]y€|| ||V¢ti+1|| ||V§|| HV§+1” ||V’73|| HVZ-HH

J#y

As vy 4,1 = 0, Eg. EI simplifies to

k t
Vy Vd+1 .

d—1 d—1
. fr— —_ pr— 0
k T
vaH ||Vd+1H d(d+1) /dgl /dil d(d+1) /dgl /dil

It follows that, the dot product between a generic prototype vector v’yC from the Probability Simplex
A9~1 and the prototype vector of the newly added class vh 1 from the Probability Simplex A4 is:

k. oyt _
Vy Vg = 0.

Thus, the two vectors are orthogonal. O

B PROOF FOR PROPOSITION 2]

Proposition. Let VZ € R be the prototype vector for class y within the Probability Simplex AC-T,
Define its projection as ul, = Py vl where Py ), = [VF|0] with VF = [vF ]g’il € RE*<C" 4nd
0 € R(C=CN%C" s 4 zero matrix. Then the resulting projected prototype uZ is aligned with the
prototype v within AC*-1,

Proof. To simplify the notation in the following discussion, we will denote C* by d. Without loss of
generality , we demonstrate this proposition for a step ¢ with an increment of one class relative to the
previous step k, such that C* = C* +1 = d + 1. This proof can be easily extended to model updates
where more than one class are introduced.

Let VZ = e, — o' the prototype vector in R*1 of y-th class following the direction from the center
ol = ﬁ ZZS e, of the Probability Simplex A? in R%*! to its y-th vertex e,. Let P, 5, € R¥x(d+1)
be the projection matrix composed by V¥ = [vk ]9_, € R¥*?, which is the matrix formed by the
prototype vectors v;j as defined in Eq. 5| and the last column a zero vector, denoted as 0 € R?¥!,
This matrix P j, projects a vector vty from R4t down to A%~! in R? centered in the orgin of the

axes. The vector v! can be explicitly express through its components as

Yy
V?tJj: _d%rll lfj#y
’ l—g7 ifj=y

We define the projection of v} :
ll:z = Pt,k VZ

Since Py, = [V*] 0], when we apply the transformation Py ;. to v/, only the first d components
are considered (ignoring the (d + 1)-th component) thanks to the vector of zeros 0. Therefore, the
projected vector uty € R% is obtained by multiply VZ with V*:

u; = Vkvz.
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This operation can be decomposed into two parts, corresponding to the components of the vector vz,
which is the y-th component of u’. The first one is the y-th element of the vector relative to vertex e,

t _ t
Uy y yy yy+ZVyJ yj_ Y,y Zvyj

3751/ J#u
where v are the columns of V*. Substituting the value of v in the equation, it can be simplified to
ot - d—1 d
v g d+1
_d-1 n d—1 1 1 _
S d+1 dd+1) d vV

The second part is relative to the components of vt where the value of e, is equal to O:

_ d—1
1 d—1 1
ut = vk ot Z t __7Vt'_~_ V%‘_ vt —

Y, viVyy T yu y7
j=1 J
# J

1 d d-1 1 1 1 1,
T Tddri 4 <_d+l)_d(d_2)<_d+1>__d_vy’j'

Thus, each component of the projected vector u‘; and v’yc are equal, then the two vectors are equivalent:

ug =Py v; = VZ.
It follows that u!, € R, the projection of v/, € R**!, is aligned with the prototype vector v} € R
through a projection matrix Py ;. O

C PROOF FOR THEOREM

Theorem (Probability Simplex Compatibility Theorem). Assuming the number of classes changes
from C* at step k to C* at step t, where C* > C*, the normalized softmax features of two models,
independently trained at these respective steps, are compatible as formulated in Def.

Proof. In light of Proposition [2} the projected normalized softmax outputs of two independently
trained models, one with an increased or equal class count C*, can be considered embedded within a

common hypersphere S€" 1

To simplify the notation in the following discussion, we will denote the number of classes C*
by d. Let now consider X,Y € S?! be two[ﬂ independent random vectors drawn from the von
Mises-Fisher (vMF) distributions with parameters (g1, 1) and (us, ko), respectively. The vMF
distribution on the unit hypersphere S%~1 is characterized by the mean direction g € S¢~1, a unit
vector indicating the direction around which the data is concentrated, and the concentration parameter
k > 0, a non-negative scalar that determines the concentration of the distribution around p. Larger
values of « correspond to higher concentration around the mean direction.

The probability density function (pdf) of the vMF distribution is given by:
f(xp,5) = ca(k) exp (kp'x), x €871,

where c4(x) is the normalization constant ensuring that the pdf integrates to one over the unit sphere.
The normalization constant is defined as:
d/2—1

(2m) 42191 (K)’

IThis assumption of two random vectors is because we focus only on a single pairwise class interaction,
since all other interactions are symmetrically similar due to the simplex symmetry and therefore do not change.

ca(k) =

17



Under review as a conference paper at ICLR 2025

and I, (k) is the modified Bessel function of the first kind of order v:

o= ()5

=0

The goal is to compute the expected value of the cosine distance 1 — cos #, where 6 is the angle
between X and Y: § = arccos (X 'Y). We aim to derive E[1 — cos ] as a function of the angle
between g1 and po, and the concentration parameters 1 and rKo.

To compute E[1 — cos 0], we start by observing that:
E[l —cosf] =1-E[X"Y]. (10)

Assuming X and Y independenﬂ, the expectation of their inner product can be expressed as the

product of their expectations: E [XTY]| = E [X]" E[Y]. The expected values of X and Y are
given by:

E[X] = mq (k1) p1,
E[Y] = ma (k2) p2,
where the mean resultant length m (k) is defined as:
my(k) = Laj2(x)
d = —F.
Iqja-1(k)

This quantity represents the expected value of the cosine of the angle between a random vector X
drawn from the vMF distribution and the mean direction g:

E [MTX] =mgq(kK).
Substituting the expressions for E [X] and E [Y], we obtain:

E [XTY] = (ma (k1) )" (ma (r2) p2) = ma (1) ma (r2) p] po.
The inner product g w1 equals cos o, where « is the angle between the mean directions g4 and f1o:

cosa = pu o.

Therefore, we have:
E [XTY} =mgq (k1) mg (K2) cos a.

Substituting back into Eq. [I0] we find:
E[l — cost] =1 —mgq (k1) mg (k2) cos a. (11)

This expression relates the expected value of the cosine distance to the angle o between the mean
directions and the concentration parameters x; and k5. It is important to note that this computation
does not require any approximation, as we have directly calculated E[1 — cos 6] using the properties
of the von Mises-Fisher distribution and the independence of X and Y.

Since the mean resultant length m (k) is a strictly increasing function of « for k > 0, it follows that:
ma(nr) > ma(k), v > 1. (12)

This implies that higher concentration parameters result in random vectors that are more tightly
clustered around their mean directions, leading to higher values of m4(x).

2This assumption is based on the hypothesis that the deep neural network models show sufficient expres-
siveness to learn any tasks, as presented within the Unconstrained Feature Model and Layered Peeled Model
frameworks [Mixon et al.|(2022)); Fang et al.|(2021)), respectively. The assumption is supported by the Neural
Collapse phenomenon Papyan et al.|(2020), observed in different networks and datasets, including two-layer
neural networks with independent input feature. This equivalence supports the notion that typical neural network
architectures have sufficient capacity to learn features as statistically independent random variables.
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Figure 5: Analytic expression of expected cosine distances between PSP feature representation from
two different random variables, each following a distinct von Mises-Fisher distribution, across various
dimensions of the representation space during two learning phases. These phases are identified by the
time step k to refer to the base model and ¢ to refer to the updated model. Both E[D; ;] and E[Dy, ;]
are analyzed, where E[D;, ] is the expected cosine distance between a more concentrated distribution
at step ¢ respect to the distribution at step k. (a) In the case of the same class, the value of E[D; x|
remains consistently lower than E[D, 1], which on average satisfies the condition of Eq. (b) In
the case of a different class, the value of E[D; ;] remains consistently higher than E[Dy, 1], which on
average satisfies the condition of Eq. @}

According to this analysis, an increase in concentration parameters leads to a decrease in E[1 — cos 6]
when the mean directions are less than 7/2 and an increase in E[1 — cos §] when they exceed 7 /2.
This observation highlights the influence of directional concentration and angular displacement on
distribution behavior.

We assume that after an update the newly learned information improves the model’s discrimination
capability. Consequently, this leads to a greater concentration in the von Mises-Fisher (vMF)
distribution of the updated model’s class features, consistent with the condition 1 > 1 as specified in
Eq.[T12] According to this, the application of Eq. [IT|between a base and an updated model consistently
verifies the compatibility as in Def. [1| Fig.[5|shows this behavior while varying the classes d. If
there is not new information to improves the model’s discrimination capability, this leads to equal
concentration in the von Mises-Fisher (vMF) distribution of the updated model’s class features,
corresponding to the condition = 1. As the mean resultant length m (k) does not change with the
model update, the inequalities of Def. [T]are satisfied (it correspond to the trivial solution discussed by
Shen et al.| (2020)). ]

D PROOF FOR PROPOSITION 3]

Proposition. As the softmax outputs approach the vertices of the Probability Simplex, the corre-

sponding logits vectors assume a simplex configuration, with class prototypes aligning to the vectors
specified in Eq.

Proof. The cross-entropy loss function for a single sample x with class label y (one-hot encoded as
y) and its softmax probabilities o (z) is:

eZv
L(o(2),y) = ~log(o(z),) = —log <c>
Zj:l €™
where o(z),, z, indicates the y-th component of the softmax output and logits vector, being o (-) the

softmax function. The gradient of the cross-entropy loss with respect to the j-th component of the
logits vector z is:

oc .« folz); -1 ifj=y
32]‘ a U(Z)J yj - {U(Z)j lfj 75 Y

19



Under review as a conference paper at ICLR 2025

being y; the j-th component of the one-hot encoded labels y.
Using gradient descent, the update rule for the j-th component z; of the logits vector z is:
oL
"0z,
where 7 is the learning rate. Substituting the gradients, we get:
z; < z; —n(o(z); —y;) = {Zj :Zf(iz)ij -b nicfjj;yy

Since o(z), is optimized to be 1 and o(z); with j # y to be 0, the gradient updates increase the logit
value for the correct class label y while decreasing the logits for the other classes j # ¥, pushing the
logits vector z towards the direction of the class prototype vector vy =y — 0 = e, — o.

Zj(-Zj—

If we reasonable to assume that, at the beginning of training, logits are distributed near the center of
the origin of the axes, doing a gradient step update, we get

Z,:{0+n(1—é) =nv, ifj=y
T0+n(=g)  =nv ifj#y
being v, = [v1,v2,...,0Uy,...,vc].

This implies that, at each update, logits align towards the direction of respective class prototype. [J

E PSP AND LSP CONVERGENCE TO SIMPLEX CONFIGURATION

In this section, we leverage the Neural Collapse (NC) hypothesis (Papyan et al., 2020) to show that,
in the terminal phase of training, logits are configured in a simplex and present a wider spread in
feature distributions with respect to softmax outputs. This evidence holds for several datasets and
neural network architectures.

Let h; , a feature extracted by a model in response to an image x; of class y, ¢, = avg{h, ,} the
feature class-mean and p = avg{u, fory =1,2,...,C} the mean of class-means. It follows that:

(NC1) Variability collapse: The within-class covariance of features collapse to zero:
avg{hiy — py} =0

(NC2) Equinorm and Equidistance of Features Class-means: The class means of features tend
to form a simplex. A simplex is a symmetric structure whose vertices lie on a hyper-sphere
(i.e., they have same norm) and are placed at the maximum possible distance from each
other. Being y’ # y a generic other class, it holds that:

|H,U,y 7/"’G||2 - ||My' 7/"G||2| —0 Vy,y’

_ C 1
(Bys fry) — méy,y’ -1 Yy, y'

(NC3) Convergence to self-duality: Class-means and classifiers weights converge to each other.

H Wir IMHF

In the case of softmax outputs and logits, NC3 reduces to evaluate the distance of features

with respect to V¥ = [vF ]S, € RY %Y, that is the matrix obtained by stacking the

prototype vectors v’; defined in Eq. Efor each class y, i.e.,

— 0

H ||V’“||F |M||F

(NC4): Simplification to NCC: When a feature point h* has to be classified, the decision rule
reduces to choose the nearest class-means.

argmax h* — argmin |[h* — py[|2
y y
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Figure 6: Neural Collapse hypothesis evaluated for softmax outputs (blue lines), logits (orange
lines), and encoder outputs (green lines) across different network architecture and datasets, showing
logits presenting a reduced alignment to the simplex configuration with a wider spread in feature
distribution. This can be beneficial for a robust and transferable representation.

where fi, = (1, — pa) /||ty — |2 are the renormalized the class-means, M = [p, — ug]gzl is
the matrix obtained by stacking the class-means into columns, W is the classifier weights matrix,
and d,, . is the Kronecker delta symbol.

Fig.[6] presents NC hypothesis plots for softmax outputs (blue), logits (orange), and encoder outputs
(green) across different network architectures (ResNet18, ResNet50, and DenseNet) and datasets
(CIFAR100 and TinyImageNet200). The figure shows consistent trends across various neural
networks and datasets for softmax outputs, logits, and encoder outputs. This behavior suggests that
logits may balance the trade-off between alignment and generalization better than softmax outputs
and encoder outputs, as described in/Chen et al.| (2022)). The NC2 and NC3 curves show that logits are
the less collapsed onto the simplex vertices—indicating reduced alignment—with a broader spread
feature distribution—indicating better generalization, as evidenced by the NC1 values. This because
although logits present a spread comparable to the encoder outputs one, their alignment towards the
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fixed simplex reference V* is more complex to obtain. This does not hold for softmax outputs as they
converge towards the vertices of the Probability Simplex every time the training loss approaches zero.

F PSEUDO-CODE

As shown in Alg.[I] the pseudocode outlines the computation of PSP or LSP feature vectors. It
accepts inputs of class counts from base and updated models, and the softmax or logit outputs from
updated model queries. The output is a normalized feature vector ht. The procedure ‘GetPSPFeatures*
constructs a transformation matrix used to transform and then normalize the feature vector.

Algorithm 1 Compute PSP (LSP) Feature Representation

1: Input: Number of classes C*, C? of the base and updated models respectively, and the softmax
(for PSP) or logits (for LSP) output vector f* of some query input data x obtained with the
updated model at step ¢.

2: Output: The PSP (LSP) feature representation vector denoted as h'.
3: procedure GETPSPFEATURES(f!, C*, C*)

4: Pk,k = Ick - %Jck

5: 0 = ZeroMatrix(C* — C*,C¥)

6: Pt,k = [Pk,k | 0}

7: ht = Pt,]gft

8  h'= g

9: return h’

0:

—

end procedure

G IMPLEMENTATION DETAILS

In the following we report the implementations details we used in our experiments. All the values
reported in Sec. [ are obtained with the same training hyperparameters on a Nvidia Quadro A6000
GPU with 24GB and two Nvidia A100 GPUs, each with 40GB.

CIFARI100 (Krizhevskyl 2009). Images are 32x32. A ResNetl8 architecture was used with the
following hyper-parameters for training: number of epochs 120; batch size 128; SGD optimizer with
learning rate that starts from 0.1 and is divided by 10 after 80 and 100 epochs. SGD momentum 0.9
and weight decay is set to 5 - 107%. A temperature factor of 12 has been used in the cross-entropy
loss to scale logits vectors during training. Training images were subjected to random cropping,
horizontal flipping, and tensor normalization. CIFAR100 classes are divided to have at each step an
equal number of new classes, i.e., X; = 100/T fort =1,2,...,T.

TinyImageNet200 (Le & Yang| 2015). Images are resized to 64 x64. A ResNetl8 architecture was
used with the following hyper-parameters for training: number of epochs 90; batch size 256; SGD
optimizer with learning rate that starts from 0.1 and is divided by 10 after 50 and 70 epochs. SGD
momentum 0.9 and weight decay is set to 5 - 10~%. A temperature factor of 12 has been used in the
cross-entropy loss to scale logits vectors during training. Training images were subjected to random
cropping, horizontal flipping, and tensor normalization. TinyImageNet200 classes are divided to have
at each step an equal number of new classes, i.e., X; = 200/T fort =1,2,...,T.

ImageNet1K (Russakovsky et al.,|2015). Images are resized to 224 x224. A ResNet50 architecture
was used with the following hyper-parameters for training: number of epochs 90; batch size 1536;
SGD optimizer with learning rate that starts from 0.1 and is divided by 10 after 30 and 60 epochs.
SGD momentum 0.9 and weight decay is set to 1 - 10~%. Training images were subjected to random
cropping, horizontal flipping, color jitter, and tensor normalization. ImageNet1k classes are divided
to have at each step an equal number of new classes, i.e., X; = 1000/T fort = 1,2,...,T.
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Google Landmarks v2 (Weyand et al., [2020). Images are resized to 224x224. A ResNetl8
architecture, pretrained with ImageNet1k, was used with the following hyper-parameters for training:
number of epochs 30; batch size 512; SGD optimizer with learning rate that starts from 0.1 and is
divided by 10 after 5, 10 and 20 epochs. SGD momentum 0.9 and weight decay is set to 5 - 1074,
Training images were subjected to random cropping and tensor normalization. Initial step of Google
Landmarks v2 has 24393 classes, the others have same number of classes where the remaining classes
are divided to have at each step an equal number of new classes, i.e., X; = (81313 — 24393) /T for
t=2,3,...,T.

H EXTENDED CLASS SETTING: COMPATIBILITY MATRICES

Tab. [I] summarizes the compatibility performance of all methods, including PSP and LSP. The
results demonstrate that using features derived from softmax outputs and logits provides highest
compatibility performance, especially in the case of multiple model updates.

To provide a more in depth insight into how performance varies across update steps for both self-tests
and cross-tests, Fig[7]presents the compatibility matrices for the CIFAR100 5-step update scenario for
each method. The main diagonals of the compatibility matrices (self-tests) capture the performance
improvements obtained by adding new classes in the training, as they evaluate the Recall@1 of the
model when both query and gallery features are extracted using the same model. The off-diagonal
values represent the cross-test values, namely the performance of using the newer model as query-set
feature extractor and the older one to obtain features of the gallery-set.

I ADVANCED NETWORK ARCHITECTURES: COMPATIBILITY MATRICES

Fig. [8] presents the compatibility matrices for PSP, LSP, and the baseline approach over 5 steps
in the scenario of advanced network architectures. We utilized publicly available ImageNetlk
pretrained modelsE| to simulate a scenario where, starting from AlexNet as the base model, the
network architectures are sequentially updated to ones with increasing expressiveness (ResNet50,
RegNetX_3.2GF, ResNet152, and MaxViT_T). The matrices show that using softmax outputs as
features (PSP) consistently achieves the highest number of compatible representations, both for
ImageNetlk (Fig.[8a] Fig.[8b] Fig.[8c), CIFAR100 (Fig.[8d] Fig.8¢] and Fig. [Bf), and Places365
(Fig.[8gl Fig.[8hl and Fig.[8i). While LSP is less compatible than PSP, it reports comparable Recall@1
values in the closed-set (ImageNetlk) scenario and higher values in the open-set (CIFAR100 and
Places365) scenario. Notably, there is no significant drop in performance also compared to the
baseline approach, which uses the standard practice of extracting features from the output of the
encoder of the model. This confirm that LSP better manage the trade-off between alignment and
generalization than both PSP and the baseline approach, as demonstrated in Appendix [E]

J ADVANCED NETWORK ARCHITECTURES SETTING WITH VIT

Tab. 3| summarizes the compatibility performance using ViT (Dosovitskiy et all,[2020) as network
architecture. The results show that features derived from softmax outputs (PSP) and logits (LSP)
makes models with increasing ViT complexity compatible. These findings are consistent with
those discussed in Sec. ] for advanced network architectures. To provide a more detailed view of
performance in this context, Fig. [0] presents the compatibility matrices for PSP, LSP, and the baseline
approach. We evaluate the compatibility of three ImageNet1k-pretrained ViT models, starting with
ViT-B-32 as the base model and sequentially updating to more expressive architectures, ViT-B-16
and ViT-L-16. The matrices reveal that PSP achieves the highest compatibility score across datasets:
in both the closed-set setting with ImageNetlk (Fig.[9a] Fig. Fig. and in the open-set one with
CIFAR100 (Fig.[Pd] Fig.[Pe| and Fig.[0f) and Places365 (Figil% Fi% and Fig. 0i).

Shttps://pytorch.org/vision/stable/models.html
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Figure 7: Compatibility matrices for PSP, LSP, and all other methods for the CIFAR100 5-step update
setting, presented in Tab. The reported values are Recall@1 between query features fb(% and
gallery features @%). Entries that do not satisfy the compatibility condition (Eq. i are highlighted
with a light-red background.

Table 3: Experimental results on ImageNetlk, CIFAR100 and Places365 in the case of advanced
network architectures (ViT-B-32, ViT-B-16, ViT-L-16), evaluated using the AC, AA, and ACA
metrics, with Recall@1 as the performance metric (M). Models are pretrained on ImageNetlk. Dark
blue numbers indicate the highest values, while light blue the second-highest values.

ImageNetlk CIFAR100 Places365
Features derived from  AC ~ AA  ACA AC AA ACA AC AA ACA
Encoder outputs 0 38.62 0 0 34.94 0 0 15.10 0
Softmax outputs (PSP) 1 78.93  80.52 0.66 52.60 37.94 1 18.31 17.60
Logits (LSP) 0.66 71.82 45.90 0.23 61.78 20.29 0.23 2570 7.988

24



Under review as a conference paper at ICLR 2025

0.00 0.00

73.68 [

[ 012 ] 0.04 ] 75.38 [

5(0.09] 0.10 ] 80.86

1 2 3 4 5
Gallery features by ¢,

(a) Baseline

1

<

>

22{117]

wn

(]

o
%3
()

g
Salos2 Joos Ji44] 6376
=}

(4

5{142 o071 Jo9s ] o082} 60.88

1 2 3 4 5
Gallery features by ¢,

(d) Baseline

1
<
>
22{039]
(%]
(]
g
23[030 ] 0.10]
[
L
ZalossJo3s J o34 ]
3
o

5022 ] 026 F 030 ] 018

1 2 3 4
Gallery features by ¢«

5

(g) Baseline

Figure 8: Compatibility Matrices of PSP, LSP, and baseline approach for 5 step in the case of
advanced network architectures (AlexNet, ResNet50, RegNetX _3.2GF, ResNet152, and MaxViT_T).
All the models were pretrained on ImageNetlk. (a), (b), (c) report the closed-set Recall@1 on the
ImageNetlk dataset; (d), (e), (f) the open-set Recall@1 on the CIFAR100 dataset, (g), (h), (i) the
fine-grained open-set Recall@1 on the Places365 dataset. Entries that do not satisfy compatibility
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Figure 9: Compatibility Matrices of PSP, LSP, and baseline approach for 3 step in the case of
advanced ViT network architectures (ViT-B-32, ViT-B-16, ViT-L-16). All the models were pretrained
on ImageNetlk. (a), (b), (c) report the closed-set Recall@1 on the ImageNet1k dataset; (d), (e), (f)
the open-set Recall@1 on the CIFAR100 dataset; (g), (h), (i) the open-set Recall@1 on the Places365
dataset. Entries that do not satisfy compatibility Eq. |Z| are highlighted with light-red background.
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