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Abstract

Large language models are increasingly capa-
ble of generating fluent-appearing text with rel-
atively little task-specific supervision. But can
these models accurately explain classification
decisions? We consider the task of generat-
ing free-text explanations using a small num-
ber of human-written examples (i.e., in a few-
shot manner). We find that (1) higher-quality,
human-authored prompts result in higher qual-
ity generations; and (2) surprisingly, in a
head-to-head comparison, humans often pre-
fer explanations generated by GPT-3 to crowd-
sourced explanations in existing datasets. Our
human studies also show, however, that while
models often produce factual, grammatical,
and sufficient explanations, they have room to
improve along axes such as providing novel in-
formation and supporting the label. We create
a pipeline that combines GPT-3 with a super-
vised filter that incorporates binary acceptabil-
ity judgments from humans in the loop. De-
spite significant subjectivity intrinsic to judg-
ing acceptability, our approach is able to con-
sistently filter GPT-3 generated explanations
deemed acceptable by humans.

1 Introduction

As natural language understanding tasks have be-
come increasingly complex, the field of explainable
natural language processing (exXNLP) has embraced
explanations written in free-form natural language.
In contrast to extracting input highlighting expla-
nations, free-text rationales provide a natural inter-
face between machine computation and human end-
users (Hendricks et al., 2016; Camburu et al., 2018).
The dominant paradigm for producing free-text ex-
planations is via direct supervision, i.e., training an
autoregressive, generative language model to pre-
dict human-authored explanations directly (Kim
et al., 2018; Park et al., 2018; Ehsan et al., 2018;
Narang et al., 2020; Wiegreffe et al., 2021, i.a.).
However, collecting high-quality, human-written
explanations to serve as supervision is difficult
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Figure 1: Illustration of our overgeneration + filtra-
tion pipeline for producing human-acceptable explana-
tions for CommonsenseQA and SNLI (see examples in
Table 1). Authors of this work write explanations to
prompt GPT-3, generating 5 explanations per instance.
An acceptability filter, trained on human binary accept-
ability judgments, determines which of these generated
explanations are plausible. Evaluation is performed at
both the explanation and the instance level.

and expensive. More than 70% of existing free-
text explanation datasets are crowdsourced (Wiegr-
effe and Marasovi¢, 2021), and even the most
meticulous crowdworking efforts frequently fail
to elicit logically consistent and grammatical expla-
nations (leading downstream to poor-quality mod-
els) (Narang et al., 2020). Furthermore, a lack of
standardized crowdsourcing design has resulted in
highly varied datasets, which are hard to compare
or combine (Tan, 2021).

Recent progress in few-shot learning provides



a potentially promising alternate to large-scale
crowdsourcing. The in-context learning paradigm,
wherein powerful language models are prompted
in a few-shot manner with just a few examples, has
proven surprisingly effective across a range of NLP
tasks (Radford et al., 2019; Brown et al., 2020; Shin
et al., 2020; Schick and Schiitze, 2021a, i.a.). In
this work, we ask: can language models also gen-
erate reliable explanations? We present a human
subjects study with a surprising finding: in-context
learning with GPT-3 (Brown et al., 2020) produces
explanations competitive with crowdsourced expla-
nations in existing datasets (§2).

Two additional human subjects studies, how-
ever, demonstrate that GPT-3-generated explana-
tions still have significant room for improvement
along axes such as providing new information (i.e.
avoiding repetition) and supporting the label. In
particular, human subjects found less than half of
greedy-decoded GPT-3 generated explanations to
be acceptable with high agreement.

To further improve generation quality, we re-
frame the role of crowd annotators: instead of au-
thoring explanations as in prior work, we (1) repeat-
edly query GPT-3 to generate multiple candidate
explanations for each input instance; and (2) ask
crowdworks to rate the acceptability of each can-
didate generation. After showing that GPT-3 can
usually generate an explanation that humans find
acceptable within as few as five queries (§3), we
use a small number of these binary crowdworker
judgments to supervise an acceptability filtering
model, which can be applied to select high quality
candidates among GPT-3’s outputs (Figure 1; §4).

Despite intrinsic subjectivity in acceptability rat-
ings, our supervised model improves upon the
already-competitive few-shot paradigm by consis-
tently selecting (human-identified) high quality ex-
planations better than strong baselines. Human
evaluations reveal that the filtration model not only
improves acceptability, but also, other axes like
supporting the label and providing novel informa-
tion.

In summary, our main findings are:

1. in-context learning with GPT-3 produces sur-
prisingly competitive explanations, providing
a promising alternative to crowd-authored free-
text explanation corpora;

ii. binary human labeling can instead be leveraged
to train a filter that selects high-quality machine-
generated explanations; and

iii. in areas where GPT-3 struggles, including infor-
mation content, supporting the label, and overall
acceptability, our proposed overgenerate-and-
filter pipeline improves generated explanations.

We publicly release our code and human-annotated
data.!

2 In-Context Learning is Competitive
with Crowdsourced Datasets

Is in-context learning with GPT-3 a viable strategy

to generate free-text explanations? To this end, we

investigate three research questions:

* Are GPT-3-generated explanations preferable to
crowdsourced ones in existing datasets? (§2.1)

* Can improving prompt quality improve GPT-3-
generated explanations? (§2.2)

* Along what fine-grained dimensions are GPT-3-
generated explanations preferred? (§2.3)

Explanation tasks and datasets. We consider
two English tasks: CommonsenseQA and natural
language inference (NLI), shown in Table 1. Com-
monsenseQA (Talmor et al., 2019) is a multiple
choice task posed over commonsense questions.
Crowdsourced free-text explanations for instances
in CommonsenseQA are provided in the CoS-E
v1.11 (Rajani et al., 2019) and ECQA (Aggarwal
et al., 2021) datasets. ECQA explanations are coun-
terfactual, i.e., annotators were instructed to ex-
plain not only the correct answer choice but also
why the others are incorrect.” ECQA was released
to address the quality issues of CoS-E (Narang
et al., 2020); we consider both to provide perspec-
tive on the impact of prompt quality. Our second
task is NLI, which involves inferring whether a
given hypothesis sentence entails, contradicts, or is
neutral towards a premise. This task is instantiated
with the SNLI dataset (Bowman et al., 2015), and
crowdsourced free-text explanations are collected
in the e-SNLI dataset (Camburu et al., 2018). For
each task, we report results on a fixed, randomly-
sampled 250-instance test set not observed during
prompt design.

In-context learning for explanations. We use
GPT-3 Davinci (Brown et al., 2020), an autore-
gressive language model with ~175B parameters
trained on a large dataset of text scraped from the

'https://anonymous/

“We do not perform counterfactual human evaluations;
ECQA explanations are thus often viewed by annotators as
having “too much" information, see §2.3.
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SNLI (Bowman et al., 2015)

Premise: Dark-haired man wearing a watch and oven
mitt about to cook some meat in the kitchen.
Hypothesis: A man is cooking something to eat.
Label: entailment

e-SNLI (Camburu et al., 2018): Meat is cooked in a
kitchen, and is a food that you eat. Using an oven mitt
implies you’re about to cook with hot utensils.

GPT-3: Cooking is usually done to prepare food to eat.

CommonsenseQA (Talmor et al., 2019)

Question: What is the result of applying for job?
Answer Choices: anxiety and fear, increased workload,
praise, less sleep, or being employed

Correct Choice: being employed

CoS-E (Rajani et al., 2019): being employed applying
for job

ECQA (Aggarwal et al., 2021): Applying for a job is
followed by attending interview which results in being
employed. Applying for a job may not result in the other
options.

GPT-3: Applying for a job can result in being em-
ployed, which is a positive outcome.

Table 1: Task-specific instances, along with their
crowdsourced explanations from the respective
datasets, shown alongside explanations generated

greedily by GPT-3. In our experiments, the SNLI GPT-
3 explanation was preferred over its corresponding
e-SNLI explanation by 2/3 annotators. For Common-
senseQA, 3/3 preferred the GPT-3 explanation to the
CoS-E explanation, and 2/3 to the ECQA one.

internet. We prompt the model with several (ques-
tion, answer and explanation)® triplets followed by
an unexplained question-answer instance for which
we expect the model to generate an explanation.
We use a total of 115 randomly sampled train in-
stances to create our prompts; each prompt consists
of 8-24 randomly selected examples from this set.
For each instance, we generate a single explanation
with greedy decoding. More details about prompt
construction are in Appendix A; example prompts
are given in Tables 8-9.

Crowdsourcing evaluation. Given that existing
automatic metrics do not correlate well with human
judgements of explanation quality (Clinciu et al.,
2021; Kayser et al., 2021), we perform human-
subjects studies on the Amazon Mechanical Turk
(AMT) platform. We compensate crowdworkers at
a rate of $15/hour. We present participants with a

3For simplicity, because we aim focus on free-text expla-
nations (and not few-shot classification) we assume access to
the gold label. In early experiments where we also had GPT-3
predict the label, we didn’t observe significant differences in
explanation quality between correct/incorrect instances.

Preferred Explanation (%)

Dataset Gold-Standard Tie GPT-3 «
CoS-E 20.3 349 448 05
ECQA 52.7 129 344 02
e-SNLI 63.6 11.6 248 03

Table 2: Head-to-head human evaluation (3 annota-
tions each) for 250 explanations generated by GPT-3
vs. written by crowdworkers in the datasets along with
Krippendorff’s a.. Results are shown as % preferences.
GPT-3 explanations were prompted with explanations
from the respective datasets.

dataset instance, gold label, and two explanations
for the instance generated under different condi-
tions (“head-to-head”). We then ask them to make
a preferential selection on a 5-point Likert scale,
collecting 3 annotations per data point. Appendix B
contains further details. We report inter-annotator
agreement using Krippendorff’s o (Krippendortf,
2011).

2.1 RQ1: Are GPT-3 explanations preferred
over crowdsourced ones?

We perform a head-to-head comparison of expla-
nations generated by GPT-3 with greedy decoding
vs. gold human-written explanations in the original
datasets. The crowdsourced explanations serve as
a reasonable upper bound for what a supervised ex-
planation generation model trained on them could
produce. Results are shown in Table 2. Some ex-
amples of GPT-3-preferred explanations are given
in Table 1.

For CoS-E, the GPT-3 greedily-decoded expla-
nations are frequently preferred or comparable to
crowdsourced explanations, which is not too sur-
prising for CoS-E, which has many ungrammatical
explanations (Narang et al., 2020). And, while
ECQA and e-SNLI explanations are strongly pre-
ferred to GPT-3, there are still a non-trivial number
of cases where GPT-3 explanations are competitive
(36.4% and 24.8%, respectively).

2.2 RQ2: Can improving prompt quality
improve GPT-3-generated explanations?

Given that low-quality training instances may re-
sult in low-quality predictions (especially in a few
shot setting), we ask: can we improve GPT-3 gen-
erations simply by conditioning on higher-quality
instances? For prompt construction, we replace the
115 crowdsourced explanations from the original
datasets with explanations carefully written by the



General Generally True  Grammatical

Introduced

Too Much Acceptable

TT7¢¢+Y

1 EE GPT3
0.5 BN CoS-E
Enough
01 Sometimes/
Partially True
-0.51
-1 1 !
Specific Generally False Ungrammatleal None Introduced Not Enough Not Acceptable
1 B GPT3
0.51 BN ECQA
0-
-0.51
114
I GPT-3
[ e-SNLI

Genelrality Factlllality Grammar

New Info Supportls Label Amount Info* Accepiability

Figure 2: Absolute evaluation for GPT-3 and crowdsourced explanations for CommonsenseQA via CoS-E (top)
and ECQA (middle) datasets, and for NLI via the e-SNLI dataset (bottom). The distribution of mean scores of 3
annotators for each instance in the test set is plotted. All attributes besides Factuality and Amount Info are binary.
* Amount Info is the only attribute for which a value of 0 is preferred to a value of 1.

Preferred GPT-3 Explanation (%)

Dataset Gold Prompts Tie Our Prompts «
CoS-E 69 135 79.6 0.2
ECQA 159 9.5 74.7 03
e-SNLI 30.8  26.8 424 05

Table 3: Head-to-head human evaluation for 250 expla-
nations generated by GPT-3 conditioned on either our
handwritten explanations or gold crowdsourced expla-
nations from the associated datasets.

authors of this paper (see Table 10 for examples).
Our prompts are used to generate a different set of
GPT-3 explanations on the same test data.

We perform a head-to-head human evaluation of
the GPT-3 generations conditioned on the expla-
nations we authored vs. those conditioned on the
gold crowdsourced explanations generated in §2.1.
Results in Table 3) show that, for all three corpora,
generations conditioned on our explanations outper-
form generations conditioned on crowdsourced ex-
planations. This effect is especially pronounced for
CommonsenseQA; GPT-3 even reproduces known
data artifacts in the CoS-E corpus when prompted
with explanations from it (such as the phrase “rivers
flow trough valleys”, which appears 10 times in the
prompt set).  We repeat the experiment of §2.1,
but with our prompts instead of dataset prompts.

Preferred Explanation (%)

Dataset Gold-Standard Tie GPT-3 «
CoS-E 72 139 789 05
ECQA 44.5 9.7 457 04
e-SNLI 49.6 9.7 40.7 0.2

Table 4: Head-to-head human evaluation for 250 expla-
nations generated by GPT-3 vs. written by crowdwork-
ers in the datasets. GPT-3 explanations were prompted
with explanations handwritten by the authors.

With this change, GPT-3 generations are even more
competitive (Table 4). For all three datasets, more
than half the time, in-context learning results in
an explanation at least as good as a human writ-
ten explanation. These results provide evidence
that in-context can enable end-user control over
explanation format and quality by authoring as few
as 8-24 examples. For subsequent experiments,
we use the explanations written by the authors as
prompts.

2.3 RQ3: What types of explanations does
GPT-3 output?

Pairwise evaluations can only offer perspective on
the relative quality of generated explanations. Are
crowd annotators simply comparing explanations
on surface-level features like grammaticality?



To understand finer-grained characteristics of ex-
planations, we design a second human study to col-
lect absolute Likert-scale judgments across seven
axes of quality (with each explanation judged by
3 annotators). The first three axes capture surface-
level features: generality, grammaticality, and fac-
tuality. The next three capture richer aspects of
explanation quality: whether new information is
introduced (a requirement for non-vacuous explana-
tions), whether explanations support the gold label,
and whether the amount of information given is
sufficient. Finally, we ask for an overall judgement
of quality: is the explanation acceptable? We ex-
plain our design process in Appendix B.2. Results
on the crowdsourced and GPT-3 explanations for
both tasks are given in Figure 2.4

For both tasks, GPT-3 explanations do well in
all 3 surface-level categories, with statistically sig-
nificantly greater ratings in generality and gram-
maticality (and factuality for CommonsenseQA)
compared to crowdsourced explanations, and dis-
tributional means close to 1. In these categories,
there is little room for improvement.

On the other hand, GPT-3 explanations do not
contain as much new information as ECQA and
e-SNLI explanations, and have substantial room
to improve (mean=0.1 for both tasks compared to
0.6 for ECQA and 0.2 for SNLI; these differences
are statistically significant at p < 0.01). GPT-
3 explanations are substantially more supportive
of the label over CoS-E, but not as supportive as
ECQA or e-SNLI (all statistically significant at
p < 0.1). Indeed, the mean rating of GPT-3 ex-
planations for label support is 0.5 for Common-
senseQA and —0.1 for NLI, demonstrating room
for improvement. These axes are crucial to ensur-
ing explanations are not vacuous and are on-topic.
Finally, GPT-3 explanations are judged as accept-
able at higher rates than CoS-E or ECQA explana-
tions, but not e-SNLI explanations. Mean scores of
0.5 (CommonsenseQA) and 0.0 (NLI) indicate that
GPT-3 explanations have room to improve overall.

3 Beyond Greedy Explanations

While GPT-3 explanations demonstrate strength
across surface-level features, and are surprisingly
competitive in head-to-head settings, they can still
be improved. Borrowing our acceptability crite-

“Means, standard errors, and Wilcoxon signed rank test
results are in Table 16; Krippendorff’s o is 0.48 for Common-
senseQA annotations and 0.31 for SNLI — see Table 14.

ria from §2.3, when considering GPT-3 explana-
tions rated positively by 3/3 annotators as “accept-
able”, only 46.3% of our greedily decoded GPT-3-
generated explanations for CommonsenseQA and
31.5% for NLI satisfy this criteria.’

Inspired by work in other generation tasks
(Holtzman et al., 2020; Massarelli et al., 2020;
Holtzman et al., 2021), we hypothesize that equally
or more informative explanations can be generated
by sampling stochastically. We sample 4 additional
generations from GPT-3 for each instance, to com-
plement the greedy generation. We again crowd-
source 3 binary acceptability annotations for each
new explanation.

While sampled explanations exhibit lower 3/3
acceptability than the greedy-decoded explanations
(25.1% for CommonsenseQA; 11.3% for e-SNLI),
their addition surprisingly results in a much higher
proportion of instances that have at least one ac-
ceptable explanation in the set of 5. The greedy ex-
planation was judged to be 3/3 acceptable in 46.3%
of instances for CommonsenseQA and 31.5% for
NLI; this increases to 79.5% and 51.2%, respec-
tively, when sampled explanations are included.®

4 TImproving Explanation Generation
with Acceptability Filtering

The challenge of overgeneration is that GPT-3
alone cannot discern which of its samples are ac-
ceptable. We explore training a supervised filter on
the collected labels. Our key intuition is that by
re-framing the role of annotators from explanation
authors to binary judges, we can alleviate the need
to collect a large-scale explanations dataset—the
result is a simpler, cheaper, and easier crowdsourc-
ing setup to administer (§4.1). Moreover, we
find that the filter can be trained with a relatively
small amount of binary human judgments (§4.2).
Figure 1 presents an overview of our pipeline.

4.1 Acceptability Annotations

We generate train/validation sets by repeating the
procedure of generating 1 greedy and 4 sampled
explanations for 991 and 1K instances, respec-
tively, of the CommonsenseQA and SNLI training
sets. Combining these with the annotated test sets
from previous experiments results in a dataset of
1241/1250 instances in a 72/8/20% train/val/test
>In §4, we show that these are not upper-bounds caused by
intrinsic subjectivity, and that they can be improved upon.

® Appendix C provides statistics for the case where 2 /3 is
the acceptability threshold, with very similar findings.



ratio for each task. We again collect 3 binary ac-
ceptability ratings for each instance, resulting in
~6200 instance-explanation pairs and ~19% individ-
ual annotations per task. Table 11 contains statis-
tics. In addition, to ensure that models trained on
these corpora do not overfit not overfit to specfic
annotators (Geva et al., 2019), we collect an ad-
ditional set of judgments for the test set of SNLI
from a group of annotators who did not participate
in any of our previous annotation tasks (“Test2”).
Krippendorff’s « for all acceptability annotations
is 0.34 for CommonsenseQA and 0.39 for SNLI
(see Table 13).

While we evaluate at test-time with the schema
that instances that 3/3 annotators deem accept-
able are acceptable and all others (0/3,1/3,2/3)
are deemed unacceptable, preliminary experiments
show that treating 2/3 and 3 /3 agreement instances
as acceptable and 0/3, 1/3 instances unacceptable
during training performs best on the 3/3 evaluation
criterion at test-time.” We also train a variant where
we randomly select one annotation from the three
as the gold label (“without human agreement”).

4.2 Acceptability Filter

Concretely, given the problem instance (e.g.,
premise/hypothesis for NLI), the gold label, and
the (generated) explanation, the acceptability filter
predicts whether the explanation is acceptable. We
fine-tune two sequence-to-sequence architectures,
T5-Large (Raffel et al., 2020) and TO-3B (Sanh
et al., 2021). Each model is trained 5x with differ-
ent random seeds. Further training details are given
in Appendix D.

Baselines. We train an explanation-only base-
line, which receives as input only the explanation;
similar baselines have been proposed for NLI (Po-
liak et al., 2018; Gururangan et al., 2018). These
models represent the hypothesis that annotator rat-
ings can be reconstructed with only surface features
of the explanation candidates, e.g., grammatical-
ity. We also consider a negative log-likelihood
(NLL) baseline, which uses GPT-3’s estimated
probability as the acceptability classification score.
This is a slightly more competitive baseline than
greedy; greedy usually (but not always) produces
the highest-likelihood explanation.®

"Our results don’t significantly change if a 2/3 cutoff is
used at test time instead: Appendix E contains the results.

8 According to GPT-3, a sampled explanation has a lower

NLL than greedy for only 2.8% and 3.6% of instances, respec-
tively, of our CommonsenseQA and SNLI test sets.

“Select-1” Acc@3/3  Expl.-level AP@3/3

Dev Test Dev Test
Random 26.83.2 30.62.1 27.41 1 31.60.4
Constant — — 27.9 31.8
NLL 41.8 52.0 42.4 45.6
T5-L Expl.-only 40.23.9 49.81 1 43.51.5 50.01.9
TO-3B Expl.-only  42.61.4 47316 41.129 54.11.7
T5-L w/o HA 46.62.3 55.43.2 47.02.3 56.93.6
T5-L 46.42.9 55.49.1 45.13.4 58.315
TO0-3B w/o HA 48.42,[) 57-42.8 44.52,3 59.82(7
TO-3B 48.60.9 59.911 49.7,6 64.015
Oracle U.B. 78.0 82.0 100.0 100.0

Table 5: Results for acceptability classifiers trained
on CommonsenseQA. Subscripts indicate standard er-
ror over models trained with 5 different random seeds.
“w/o HA” = without human agreement. “Oracle U.B”
indicates upper bound based on dataset properties (§3).

4.3 Evaluation

We consider three evaluation settings. The first
is instance-level (“select-1”), where the system
returns 1 explanation selected from the set of 5
for each instance. We return the explanation with
the highest model-estimated probability and report
instance-level accuracy, i.e., the % of instances for
which a gold acceptable explanation is selected.
We also evaluate at the explanation-level,
where we treat each explanation independently and
compute metrics over the full dataset. This aligns
with the binary classification training of the mod-
els (cross-entropy on the explanation labels) and
is suited for the setting in which we want to return
all of the acceptable explanations per instance. In
this setting, we report average precision (AP), an
estimate of area under the precision-recall curve.
Finally, we perform an absolute human evalu-
ation (§2.3) on the subset of instances where the
filter model does not select the greedy explanation
as the best, i.e., comparing “select-1" performance
to a greedy baseline on the instances where it dif-
fers. For CommonsenseQA/SNLI, n = 156/91.

4.4 Results

Classifier performance is given in Tables 5-6.

Effect of model size. On CommonsenseQA, TO-
3B outperforms T5-Large by ~2-4% select-1 accu-
racy and ~5-6% explanation-level AP across splits.
We use T0-3B in subsequent experiments.

NLL baseline vs. full model. For both tasks
on both validation and test sets, TO-3B outper-
forms the NLL baseline substantially. On Com-
monsenseQA, we observe a 7-8% gain in instance-



General Generally True ~ Grammatical Introduced

Too Much Acceptable

1
0.51
0
-0.51
-1

Sometimes/
Partially True
Enough

0 CoQA Greedy
Il CoQA Filtered

Spe'ciﬁc Generally False Ungrammaucal None Imroduced

Not Enouch Not Acceptable

TIYTEE+1

I SNLI Greedy
I SNLI Filtered

Generality Factuality Grammar

New Info Suppor&s Label Amount Info* Accep{ability

Figure 3: Absolute evaluation results in the “select-1” setting for the instances where our best-performing filter
model does not select the greedy explanation (156 instances for CommonsenseQA (top); 91 for NLI (bottom)).
See caption of Figure 2 and the Appendix-Table 17 for more details.

“Select-1” Acc@3/3
Test Test2

Explanation-level AP@3/3
Dev Test Test2

Dev

Random 15.20.7  14.701  13.60.3  15.00.6 14.403  13.80.2
Constant — — — 15.2 14.5 13.7
NLL 33.0 32.0 31.6 29.9 32.7 28.5
Expl.-only 3020 30921 27818  30.625 30.613  25.923
w/o HA 38219 38518 36.214 49353 48533 52853
Full 37.80.s 38.Tor 35.012 46.836 47.635 49.54s8
Oracle UB. 51.0 52.4 46.4 100.0 100.0 100.0

Table 6: Results for SNLI explanation acceptability; all
model results are on TO-3B. See Table 5’s caption.

level accuracy, and a gain of 18% explanation-level
AP on the test set. This provides strong evidence
that the supervised model is able to incorporate
binary human feedback to predict acceptable expla-
nations at a level much higher that GPT-3 achieves
on its own. Our filter model predicts a different
explanation than NLL in the “select-1" setting for
124 out of 250 instances for CommonsenseQA, and
for 42 out of 250 for NLI; we present examples in
Table 7 and Table 12.

Explanation only vs. full model. Our results
suggest that our models are leveraging feature in-
teractions between the instance and explanation to
make their predictions:® without instance-level con-
text, the explanation-only baselines are on average
more than 5 points worse across metrics. Though
they underperform significantly relative to the full
model, explanation-only baselines do fare surpris-
ingly well, indicating that shallow features like
factuality and grammaticality may represent latent

Because the input instances are identical in the select-1
setting between the 5 explanation candidates, any improve-
ment over the explanation-only baseline is evidence of feature
interactions, specifically.

factors in human acceptability judgments.

The effect of multiple training annotations. In
some cases, performance improves if the training
instances are labeled with the consensus of three
annotators (vs. the singularly annotated case “w/o
HA"), though the effects are not consistent. In
most cases, using consensus agreement results in
reduced variance across random seeds. However,
given that training on consensus requires 3x the
annotations, the gains may not outweigh the data
collection effort.

Our model doesn’t overfit to specific annota-
tors. Reassuringly, the performance of our model
when evaluated on the NLI test set labeled by sepa-
rate annotators (“Test2”) is comparable to the orig-
inal test set (instance-level accuracy drops a few
points, but explanation-level AP slightly rises). Im-
portantly, we also reach the same conclusions on
this test set regarding the superior performance of
our model with respect to the baselines.

Our model improves generated explanations
along desirable traits. We present our absolute
human evaluation for greedy vs. filtered explana-
tions from GPT-3 in Figure 3— for both tasks,
explanations filtered by our model more readily
introduce new information, support the label, and
contain at least enough information for both tasks
(in addition to being more acceptable). Interest-
ingly, greedy explanations still prevail in surface-
level features (grammaticality and, in the case of
CommonsenseQA, factuality). All of these differ-
ences are statistically significant at small values of
p (see Table 17). The differences in generality (and



SNLI

Premise: An officer in a black uniform and hat stands
to the left of a large structure with other officers in the
background.

Hypothesis: An officer enjoys coffee in a shop.
Label: contradiction

NLL-Predicted Explanation: An officer in a black
uniform and hat is not necessarily an officer enjoying
coffee in a shop.

Filter-Predicted Explanation: An officer in a struc-
ture standing to one side is not the same as enjoying
coffee in a shop.

CommonsenseQA

Question: Where would there be an auditorium with
only a single person speaking?

Answer choices: theater, park, university campus,
crowd, or lights

NLL-Predicted Explanation: An auditorium is a large
room used for lectures, and a single person speaking is
likely to be a lecture.

Filter-Predicted Explanation: On university or
university-like campuses, the auditoriums are often used
for lectures or other University events, where a single
person might be speaking.

Table 7: Randomly-selected instances that our filter
model predicts differently than NLL at the “select-1"
task and got correct, but NLL got incorrect.

factuality for NLI) are not significant.'”

In summary. We have demonstrated the effec-
tiveness of modeling binary crowd judgements
of acceptability as a means to select candidates
from GPT-3 which are deemed acceptable at a high
agreement. For the method that does not leverage
human agreement, this is done with only ~5k bi-
nary annotations. We additionally demonstrate that
our filtered explanations improve upon greedy gen-
erations in fine-grained categories that probe their
topical relevance and meaningful content. The
gap between our best model and the upper-bound
oracle indicates that there is still substantial room
for improvement in both task settings. Future work
may investigate sampling more explanations, or
incorporating other sources of supervision signal.

5 Related Work

Free-text explanation generation. The earliest
neural free-text explanation models did so for com-
puter vision applications (Hendricks et al., 2016;
Park et al., 2018; Kim et al., 2018) and NLI (Cam-
buru et al., 2018). These methods relied on su-
pervised datasets to train the explanation genera-
tor. Others have proposed to generate explanations

10K rippendorff’s « for these experiments is 0.32 for Com-
monsenseQA and 0.33 for SNLI.

or clarifications to improve task performance in a
supervised (Rajani et al., 2019) or unsupervised
(Shwartz et al., 2020) manner. Yordanov et al.
(2021) study transfer learning between datasets for
few-shot generation.

Latcinnik and Berant (2020) proposed a method
to generate free-text explanations supervised only
on task signal, and Brahman et al. (2021) used
sources of weak supervision to generate expla-
nations for defeasible inference. Paranjape et al.
(2021) design hand-crafted templates which they
use with mask-infilling to produce contrastive ex-
planations from pretrained language models. Con-
current work (Marasovic et al., 2021) also investi-
gates prompting; they study the effects of prompt
format and model size on explanation quality. In
contrast, we investigate generated explanations
through fine-grained crowdsourcing evaluations,
study the effect of prompt quality, and investigate
a filtration method trained on human acceptability
judgements.

Supervising on human preferences. Prior work
has used binary judgements from crowdworkers to
fit models to human preferences for summarization
(Ziegler et al., 2019; Stiennon et al., 2020). West
et al. (2021) demonstrate that GPT-3 + a super-
vised acceptability filter can generate a high-quality
causal knowledge graph: in addition to their work
being conducted in a different domain, our success
conditions and evaluation metrics differ because
we must produce a prediction for each instance
(whereas they can simply discard bad generations).

6 Conclusion

We demonstrate GPT-3’s capacity to generate free-
text explanations for NLP task instances in a few-
shot setting. We further improve this capability via
an overgenerate + filter approach, where the filter
is trained on supervision from human acceptabil-
ity ratings. We hope our results can guide future
work on free-text explanations via neural or neuro-
symbolic systems (Brahman et al., 2021; Majumder
et al., 2021; Saha et al., 2021).

While human rationales for decision making are
not necessarily the same as model rationales, the
goal behind modeling human acceptability is to
build trust with a human user. This trust may or
may not be warranted (Jacovi et al., 2021); future
work would be well-suited to further investigate
generated explanations for incorrect label predic-
tions, which could mislead end users.
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Let’s explain classification decisions.

A young boy wearing a tank-top is climbing a tree.
question: A boy was showing off for a girl.

true, false, or neither? neither

why? A boy might climb a tree to show off for a girl,
but he also might do it for fun or for other reasons.
H#H##

A person on a horse jumps over a broken down airplane.
question: A person is outdoors, on a horse.

true, false, or neither? true

why? Horse riding is an activity almost always done
outdoors. Additionally, a plane is a large object and is
most likely to be found outdoors.

###

There is a red truck behind the horses.

question: The horses are becoming suspicious of my
apples.

true, false, or neither? false

why? The presence of a red truck does not imply there
are apples, nor does it imply the horses are suspicious.
H#H##

A dog carries an object in the snow.

question: A dog is asleep in its dog house.

true, false, or neither? false

why?

Table 8: Example of a prompt with 3 training examples
for SNLI: presented are the premise/hypothesis pairs,
the gold labels, and the explanations (written by us)
that act as input to GPT-3 (in practice, we use 8-24 ex-
amples per prompt). The text generated by the model
acts as the free-text explanation. In this case, the model
greedily auto-completes (given 12 examples): “A dog
cannot carry something while asleep”.

A Prompt Construction

Following Perez et al. (2021), we avoid prompt tun-
ing on the full training and development sets of the
datasets studied, in order to ensure that our methods
represent a true few-shot setting. To develop the ini-
tial prompt design, we experimented with no more
than 10 different layouts in the GPT-3 Sandbox
platform using 15 training examples on the CoS-E
and e-SNLI datasets. For subsequent prompt de-
sign, we again used these 15 training examples for
each dataset from which we sampled 6 prompts,
along with a fixed 100-example “development set”
randomly drawn from the training set. We preserve
the “few-shot” approach by using a maximum of
these same 115 instances to develop our prompt-
ing methods. For these 115 examples, the authors
of this paper manually wrote high-quality expla-
nations to be used as prompt examples (Table 10).
As presented in Table 8, we found that structuring
SNLI as a question-answering task achieved the
best performance, similarly to Zhao et al. (2021).
We provide an example of our SNLI prompt in
Table 8 and CommonsenseQA in Table 9.
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Let’s explain classification decisions.

question: When remembering a tragedy in the past, what
do many people feel?

pain, depression, knowing, knowledge, or nostalgia?
depression

why? Remembering a past tradedy can resurface feel-
ings that arose in response to that tragedy. Because
tragedies are not positive events, it’s possible that sad-
ness and depression could arise from remembering it.
##H#

question: What do people do sometimes when they find
a good deal?

race cars, murder each other, believe in god, fight each
other, or fear death?

fight each other

why? Malls sometimes have sales, e.g., on black fri-
day, when they offer good deals; however, the items
are sometimes in limited supply, which can cause al-
tercations between folks, each trying to buy the same
item.

#iH#

question: What does someone who has a greed for en-
ergy do?

buy food, lie, get, cause businesses to grow, or win?
buy food

why? When consumed, food provides energy and satis-
fies the greed for it.

#H##

question: Immediately after peeing, a person’s bladder
is what?

full, empty, filled, stretchable, or collapsed?

empty

why?

Table 9: Example of a prompt with 3 training examples
for CommonsenseQA: presented are the question and
answer choices, the gold labels, and the explanations
(written by us) that act as input to GPT-3 (in practice,
we use 8-24 examples per prompt). The text generated
by the model acts as the free-text explanation. In this
case, the model greedily auto-completes (given 8 exam-
ples): “After peeing, the bladder is empty.”

In-context learning methods have been shown to
have high variance based on hyperparameters in-
cluding example order, number of examples given,
and which examples are given (Jiang et al., 2020;
Zhao et al., 2021; Lu et al., 2021). While these
values have not been standardized, two prominent
papers, Schick and Schiitze (2021b) and Brown
et al. (2020), use 32 and 64 prompt examples, re-
spectively. Due to the 2049-token limit of the Ope-
nAl GPT-3 API and the fact that the addition of
explanations elongates each prompt instance, we
find the maximum number of examples the API
can accommodate is 24 for CoS-E, e-SNLI, and
our handwritten explanations and 16 for ECQA.

The focus of this work is not on finding the opti-
mal prompt, but on developing a general strategy
for few-shot explanation generation that could be



successful when no additional (large) validation
set for tuning is available. Therefore, to provide
as robust of an expected performance estimate as
possible, we do not tune the additional hyperpa-
rameters, instead sampling them to approximate
performance.!! Namely, while prior work uses one
fixed prompt for all instances and varies the random
seed, we approximate the same expected perfor-
mance by sampling a new set of prompts for each
instance. We also sample the number of prompts
for each instance (and shuffle their order) from
the values {8, 16, 24} for CommonsenseQA exper-
iments, {8, 16} for experiments using ECQA ex-
planations, and {12, 18,24} for SNLI experiments
(to maintain label balance). To overcome label
bias in prompt ordering, for tasks with distinct an-
swer choices per instance (CommonsenseQA), we
shuffle the answer choices. For tasks with fixed an-
swer choices (SNLI), we sample an equal number
of prompt instances for each label (so number of
prompt instances is a multiple of 3).

Table 10 shows a few non-cherry-picked ex-
amples of our handwritten explanations used as
prompts relative to the datasets.

B Crowdsourcing Details

B.1 Head-to-Head Interface Details

We show the user the task input and gold label,
and ask them to select which of two explanations
best explains the answer. We instruct workers to
consider the gold label to be correct even if they
disagree with it (CommonsenseQA instances can
be subjective) and to ignore minor grammar and
spelling mistakes such as improper upper-casing.
Figures 4 and 5 show the evaluation interface.

B.2 Absolute Interface Details

Figures 6 and 7 show the absolute evaluation inter-
face (minus the acceptability attribute, which is col-
lected in a separate run of the study). Our interface
is inspired by prior work from psychology and the
social sciences (Leake, 1991; Gopnik, 1998; Lom-
brozo, 2007; Zemla et al., 2017; Chiyah Garcia
et al., 2018; Clinciu et al., 2021; Sulik et al., 2021).
We iterated over 3-4 versions of the questions and
UI design until we had optimized agreement rates
as much as possible. Our resulting two-part evalua-
tion consists of 7 questions:

"Perez et al. (2021) show that performing cross-validation
or tuning via maximum description length over a small valida-

tion set does not significantly outperform random sampling of
these values.
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SNLI (Bowman et al., 2015)

Premise: A person on a horse jumps over a broken
down airplane.

Hypothesis: A person is training his horse for a compe-
tition.

Label: neutral

Our Explanation: While it is possible that jumping a
horse over an obstacle is part of a training routine for
a competition, it is also possible that the horse ride is
being done for pleasure, not necessarily for a competion
(sp)-

e-SNLI Explanation: the person is not necessarily
training his horse

Premise: Children smiling and waving at camera
Hypothesis: There are children present

Label: entailment

Our Explanation: Since the children are part of the
event of smiling at the camera, they are present at the
event under discussion.

e-SNLI Explanation: The children must be present to
see them smiling and waving.

CommonsenseQA (Talmor et al., 2019)

Question: A cat can’t talk, but a cat can what?
Answer choices: sleep all day, meow, shed fur, see
king, live many years

Our Explanation: A cat can meow as a way to vocal-
ize.

CoS-E Explanation: the cat is a small carnivorous
mammal

ECQA Explanation: A cat can meow but cannot see
the king. Meowing is how a cat communicates and
not by sleeping all day, shedding fur or by living many
years.

Question: "There are 10 apples on an apple tree. Three
fall off. Now there are X apples." What is this an exam-
ple of?

Answer choices: park, coloring book, garden center,
math problem, gravity

Our Explanation: A math problem is usually posed as
a question that requires some operation such as subtrac-
tion or addition to answer.

CoS-E Explanation: webmath is designed to help you
solve

ECQA Explanation: Math problem is an arithmetical
problem of addition, subtraction, multiplication or divi-
sion. So “There are 10 apples on an apple tree. Three
fall off. Now there are X apples.” is a math problem.
All the other options aren’t problems to be examples of
the given question.

Table 10: Examples of explanations used as prompts
from various sources, including our handwritten expla-
nations. Correct answers for CommonsenseQA are un-
derlined.

Part 1: Context-Independent Evaluation We
first assess the explanation in isolation, i.e., these
questions are presented to the user without reveal-
ing the question/context that the explanation is at-
tempting to address:

1. How factual is this statement? (generally false,



sometimes or partially true, generally true, or
need more information to judge). This question
is designed to test both generality (can the expla-
nation’s truthfulness be ascertained or is more in-
formation needed?) and factuality, which aligns
with “compatibility with receiver’s existing be-
liefs” and that the best explanation is the “most
likely” explanation from the receiver/user’s per-
spective (Lombrozo, 2007; Zemla et al., 2017;
Sulik et al., 2021). Generality is coded based
on whether a truthfulness answer is selected
(considered to be general) or whether the “need
more information to judge” choice is selected
(considered not to be general).

2. Is this statement grammatical? (yes or no) This
question is designed to test for clarity, aligning
with characteristics such as coherence (Lei et al.,
2016) and human-likeness and understandability
(Ehsan et al., 2019).

Part 2: Context-Dependent Evaluation We
next show the user the question (premise and hy-
pothesis for SNLI) and gold answer that the expla-
nation was conditioned on. We then ask:

1. Does the explanation provide new facts, infor-
mation or reasoning not stated in the question
and answer? (yes or no) In our preliminary
experiments, we found some explanations sim-
ply restate the question declaratively with the
answer filled in. This question addresses the dis-
tinction between “validity” and “utility” (Leake,
1991): an explanation can be valid (i.e., a restate-
ment of the question with the answer filled-in
might be correct), but not useful; utility is de-
fined by whether an explanation “satisfies an
explainer’s need for information”. And while
utility is best understood in the context of real-
world applications (Lai et al., 2020), we nonethe-
less aim to identify vacuous explanations that
do not provide new information.

2. Is the new information relevant to justifying the
answer? (yes or no) New information, if pro-
vided, “should be compatible with our existing
beliefs, and consistent with the evidence and
with itself” (Zemla et al., 2017). This ques-
tion is designed to test whether the information
provided supports the label. The specific inter-
pretation of “relevance” is purposefully left to
the annotator.'?
2This decision is inspired by prior work in psychology,

which finds that explanations are only good “to the extent
that people find [them] satisfying” (Gopnik, 1998; Sulik et al.,

3. How much information does the explanation
have to justify the answer? (not enough, enough,
or too much) This question is designed to test
the extent to which the provided novel informa-
tion is adequate or sufficient (Kim et al., 2016;
Lei et al., 2016; Ehsan et al., 2019).13

4. Is the explanation acceptable? (yes or no) The
final question is designed to assess annotators’
overall judgement of the explanation as a whole.

We only ask Question 2 if the answer to Question 1
is “yes” and Question 3 if the answer to Question
2 is yes, because they regard the new facts, infor-
mation, or reasoning. We found that most prior
work tends to lump added-value, relevance, and
adequacy judgements into one “informativeness”
judgement (Clinciu et al., 2021), which we felt was
too course to allow for meaningful error analysis.

B.3 Acceptability Interface Details

Figures 8 and 9 show the binary acceptability in-
terface used to collect training and test data for the
overgeneration filter model.

B.4 Quality Control and Payment

We use Amazon Mechanical Turk (AMT), and cal-
culate pay on a rate of $15/hour. Every few batches,
we check to ensure that the median time taken per-
annotator amounts to approximately this pay rate.
While annotators do tend to speed up the more
HITs we released, first-round median times were
approximately 30 seconds per head-to-head evalu-
ation HIT (thus paid at $0.12 each), 1 minute per
absolute evaluation HIT (thus paid at $0.25 each),
and 35-39 seconds per acceptability HIT (5 expla-
nations; paid at $0.20 each).

We require annotators to be located in either Aus-
tralia, Canada, New Zealand, the United Kingdom,
or the United States, as a proxy for English compe-
tency.'* We require a past HIT approval rate of >
98% and > 5000 HITs approved. We do not allow
annotators to participate who were previously on a
block list from our past AMT studies.

2021).

BIn practice, we do not find Turkers use the “too much
information” option often, except in the case of ECQA dataset
explanations. We included the option because succinctness is
an oft-cited explanatory virtue (Lombrozo, 2007; Zemla et al.,
2017; Chiyah Garcia et al., 2018).

4We realize this is a broad assumption and likely sub-
optimal. However, colleagues have found that broadening
the geographical requirements often still leads to >90% of
annotators in the US or Canada, due to AMT’s pay structure
being optimal in these countries.



Annotators must complete a qualifying exam in
order to participate in the main annotation tasks.
The qualifying exam consists of 3 HITs in the same
format as the main absolute evaluation task for
CommonsenseQA We pay $2.25 for the qualify-
ing exam. There are 9-18 questions in total (3-6
questions per HIT), some of which are only answer-
able conditioned on previous answers. A user who
answers “no” to question 3, for example, will not
be asked to answer questions 4 and 5. Given the
challenging and sometimes ambiguous nature of
some of the questions, for the first run of the quali-
fication exam, we manually awarded qualifications
by inspecting the annotators’ answers. Scores for
the first run compared to our answers (out of 17
annotators attempting) ranged from 5 to 14 out of
18. The median accuracy was 11 out of 18, and we
find that awarding the qualification to those with
scores at or above the median aligns closely with
our manual inspection. We thus use this score to
assign qualifications in future iterations.

Because it is necessary that annotators under-
stand the task before they can evaluate explanation
quality (Wiegreffe and Marasovi¢, 2021), for tasks
that are more difficult, i.e., NLI, we additionally
require annotators to pass (score of 7 or above) a
task-specific qualification exam with 8 questions,
paid at $1.25.

In order to track quality throughout evaluation,
we compute inter-annotator agreement using Krip-
pendorff’s o and use a hidden built-in Javascript
function to compute time per HIT spent. If any an-
notator completed the tasks in an unreasonably low
time, or removing their annotations substantially
improves Krippendorff’s o, we remove their anno-
tations and re-annotate their instances. We addition-
ally ensure that each experiment has a substantial
number of distinct crowdworkers to mitigate indi-
vidual annotator bias, reporting this as well as the
mean and median number of HITs completed by
each in Table 15.

B.5 Statistics

The number of distinct crowd annotators and the
median and mean number of HITs completed for
each experiment can be found in Table 15. More
detailed breakdowns of inter-annotator agreement
for some experiments are in Tables 13 and 14.
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Dataset  Split # Instances by Agreement Total
0/3 173 23 33
Com.QA Train 932 1078 1194 1296 4500
Dev 105 91 132 127 455
Test 298 227 328 397 1250
SNLI Train 2372 805 621 702 4500
Dev 272 87 65 76 500
Test 678 225 166 181 1250
Test2 666 234 179 171 1250

Table 11: Statistics of our acceptability annotations.

C 2/3 Acceptability Statistics

When we treat explanations rated by at least 2/3
annotators as “acceptable”, for CommonsenseQA,
77.9% of greedy-decoded explanations are accept-
able; for SNLI, 51.0%. 50.5% of sampled expla-
nations are acceptable; for SNLI, 23.5%. Out of
the set of 5 (1 greedy + 4 stochastic), 97.7% of
CommonsenseQA instances have at least one ac-
ceptable explanation, and 79.5% of SNLI.

D Filter Model Details

We split the 4,955 distinct annotated explana-
tions for CommonsenseQA (5000 for SNLI) into
a train/dev set of 4500/455 (4500/500 for SNLI),
where all 5 explanations for a given instance are
placed in the same set to avoid leakage. We
present statistics on the label distribution in Ta-
ble 11. Along with the metric settings reported in
the paper (“select-1” and explanation-level), we
computed a metric that is instance-level but con-
siders all explanations by computing metrics over
the 5 explanations of an instance and then averag-
ing across instances, finding in practice that the
results are highly similar to the explanation-level
evaluation.

We use Huggingface Datasets (Lhoest et al.,
2021) and Huggingface Transformers (Wolf et al.,
2020) for implementation. The T5-Large model is
trained using a learning rate of 1 — 4 with linear
decay, a batch size of 64, and default values for
Adam (Kingma and Ba, 2015), gradient clipping,
and dropout. We train for a maximum 200 epochs,
performing early stopping on the validation loss
with a patience of 10 epochs.

For T0-3B, we train with a batch size of 50. We
use AdaFactor (Shazeer and Stern, 2018) with a
linear warmup of 500 steps. We conduct an initial
hyperparameter sweep over learning rate, consid-
ering 12 — 5,5E — 05,5E — 06. The learning



SNLI (Bowman et al., 2015)

Premise: There are two kilted men, one of them older
and is holding bagpipes with the other one with a drum.
Hypothesis: Two kiled (sp) men hold bagpipes

Label: contradiction

NLL-Predicted Explanation: The two kilted men are
not holding bagpipes, they are holding a bagpipe and a
drum.

Filter-Predicted Explanation: Just because there are
kilted men does not necessarily mean that they are hold-
ing bagpipes. This can be seen from the older kilted
man is holding the bagpipes rather than the kilder (sp)
one.

CommonsenseQA (Talmor et al., 2019)

Question: The hardcovers were especially tall, so he
removed a shelf on the what to make room?

Answer choices: hold alcohol, grocery store, bookcase,
nightstand, or chest of drawers

NLL-Predicted Explanation: Bookcases are tall, and
so if they are full of hardcover books, they might need
to be removed to make room for other things.
Filter-Predicted Explanation: People keep books on
bookshelves, and bookcases are very commonly used
to hold books. Since hardcover books can be pretty
tall, it takes up extra vertical space which would require
removal of an upper shelf of the bookcase.

Table 12: Randomly-selected instances that our filter
model predicted differently than NLL at the “select-1"
task, and got incorrect but NLL got correct.

rate that achieves the best validation loss for the
full-information model and the explanation-only
model is 1E — 5, which we use for all training
experiments. We format inputs to the model as
follows:

if explanation_only:
input_string = (f"explanation: {expl}.
Is this explanation good or bad?")
else:
input_string = (
"{question} answer: {gold_label}.
"explanation: {expl}. "
Is this explanation good or bad?")

For CommonsenseQA, question, expl, and
gold_label are: the commonsense QA ques-
tion (with answer options omitted), the expla-
nation candidate from GPT-3, and the true an-
swer among the 5 options, respectively; for SNLI,
premise: hypothesis: ., the ex-
planation candidate from GPT-3, and one of en-
tailment/contradiction/neutral, respectively.

E Additional Filter Results

In the main experiments, at evaluation time, we
labelled an explanation as acceptable if 3/3 anno-
tators agreed on it. Here, we report results if this
threshold is relaxed to 2/3. Overall, the results
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| Dataset Split Krippendorff’s « |
CommonsenseQA  Training + Validation 0.32

‘ Test 0.40 ‘
SNLI Training + Validation 0.51
Test 0.50
Test2 0.47

Table 13: Inter-annotator agreement for acceptability
AMT studies.

are comparable: TO-3B outperforms the baselines
according to both select-1 accuracy and AP (see
Table 18 and Table 19).



AMT Study

Dataset ‘Generality Factuality Grammar New Info Supports Label Amount Info Acceptability | Aggregate

GPT-3 Greedy Com.QA 0.37 0.32 -0.01 0.09 0.45 0.21 0.28 0.38
GPT-3 Greedy SNLI 0.25 0.57 0.39 -0.01 0.04 0.17 0.52 0.40
Dataset CoS-E 0.71 0.38 0.36 0.42 0.68 0.08 0.25 0.59
Dataset ECQA 0.01 0.21 0.30 0.00 0.03 0.25 0.04 0.20
Dataset e-SNLI 0.37 0.23 0.37 -0.14 -0.12 0.04 0.15 0.19
GPT-3 Filtered Com.QA 0.25 0.18 0.25 0.11 0.27 0.15 0.30 0.32
GPT-3 Filtered SNLI 0.41 0.19 0.07 0.17 0.08 0.13 0.50 0.33

Table 14: Inter-annotator agreement for absolute-comparison AMT studies, using Krippendorff’s o computed on
an interval scale from -1 to 1. The aggregate score is computed by treating the annotations along each attribute as
separate instances and computing agreement across the entire set.

AMT Study Task/Dataset # Annotators Median # HITs (Mean) ‘
GPT-3 Greedy w/ Dataset Prompts vs. Dataset Com.QA/CoS-E 16 31.5 (46.9)
Com.QA/ECQA 13 35(57.7)
e-SNLI 12 39 (62.5)
GPT-3 Greedy: Author-written vs. Dataset Prompts Com.QA/CoS-E 7 84 (107.1)
Com.QA/ECQA 13 49 (57.7)
e-SNLI 8 43.5 (93.8)
GPT-3 Greedy w/ Author-written Prompts vs. Dataset Com.QA/CoS-E 8 90 (93.8)
Com.QA/ECQA 17 27 (44.1)
e-SNLI 8 93 (93.8)
GPT-3 Greedy (Absolute) Com.QA 13 51 (57.7)
SNLI 12 14 (62.5)
Dataset (Absolute) CoS-E 14 58 (53.6)
ECQA 19 7 (39.5)
e-SNLI 13 16 (57.7)
Acceptability (Training and Validation Data) Com.QA (2973 HITs) 34 70 (87.4)
SNLI (3000 HITs) 14 128.5 (214.3)
Acceptability (Test Data) Com.QA 17 32 (44.1)
SNLI 11 26 (68.1)
SNLI (Test2) 7 65 (107.1)
CoS-E 13 48 (57.7)
ECQA 16 38.5 (46.9)
e-SNLI 9 60 (83.3)
GPT-3 Filtered (Absolute) Com.QA (468 HITs) 10 44.5 (46.8)
SNLI (273 HITs) 6 53 (45.5)

Table 15: Total # of annotators and mean # HITs completed per-annotator for each AMT study (out of 750 total #
HITs unless otherwise specified = 3 annotators for each of 250 test instances).

Set of Test Explanations ‘ Generality Factuality Grammar New Info  Supports Label Amount Info Acceptability ‘
GPT-3 Greedy for Com.QA | 0.9 +0.4F 08+0.4 247" 1.0+0.1% 01£06 05+0.7217" -0.1+0.4186)" 0.5+0.6%
CoS-E -02+09 05£0.5(131) —-0.3+0.7 01+£0.8 —0.3£0.9(190) —0.5£0.5(78) -09+£04
GPT-3 Greedy for Com.QA | 0.9 +0.4V 0.8+ 0.4% (247) 1.0+ 0.1} 0.1+£0.6 0.5+ 0.7 (217) —0.1 + 0.4 (186) 0.5 +0.6%
ECQA 0.8+04 0.6 4 0.4 (249) 01407 06+05" 07+05 47" 0.5£0.5 (239)i 0.1£0.6
GPT-3 Greedy for SNLI 0.7+0.5" 0.7+0.5(246) 1.0+0.2f 0.1+£0.6 —0.1£0.6* —0.2 £ 0.4 (203) 0.0£0.8
e-SNLI 0.6£0.6 0.8 £ 0.4 (236) 09+04 0.2£0.5Y 0.2+ 0.5 —0.1+£0.4 (238)" 0.7 + 0.4%

Table 16: Statistics from the graphs plotted in Figure 2. Mean =+ standard error presented; numbers in parenthesis
indicate the number of datapoints, if not 250. *For SNLI, we modified the evaluation framework such that “Sup-
ports Label” was always answered instead of being conditioned on “New Info”. Statistical significance results
using a one-sided Wilcoxon signed-rank test at p-values of I = 0.00001, = 0.0001, V = 0.01, A = 0.1 indicates
that the median difference between the marked score distribution and the unmarked score distribution is greater

than 0.
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Generality Factuality Grammar New Info Supports Label Amount Info Acceptability ‘

GPT-3 Greedy for Com.QA 0.9+0.4(156) 0.8+0.4(153)Y 1.0£0.1(156)} 0.1+ 0.6 (156) 0.5+0.7(135) —0.1+0.5(117) 0.3£0.7 (156)
GPT-3 Filtered for Com.QA | 0.9 + 0.3 (156)" 0.7+ 0.3 (155) 0.840.4(156) 0.7+0.4(156)" 0.9+0.4 (154" 02+03(152! 0.6+0.6 (156)"

GPT-3 Greedy for SNLI 0.8£0.4(91) 0.6+ 0.6 (91) 0.9+ 0.3 (91) 0.0+0.6(091) —0.2£0.6*(91) —0.2+0.5(66) —0.5+0.7 (91)
GPT-3 Filtered for SNLI 0.8 £0.5(91) 0.7+0.4(83) 0.740.4 (91) 0.5+0.6 (9D 05+05° (9D  0.0+0.3 @89 0.1+0.8 (91)*

‘ Set of Test Explanations

Table 17: Statistics from the graphs plotted in Figure 3. See the caption of Table 16 for further details.

“Select-1” Acc@2/3  Explanation-level AP@2/3

JModel/Split— Dev Test Dev Test
Random 57.30,4 57.90,4 56.20,5 58.00,9
Constant — — 56.9 58.0
NLL 79.1 79.6 77.5 75.0
TO-3B Expl.-only 77135 75.81.2 75.62.0 77.31.4
TO-3B 86.60.9 85.80.7 85.605 87.00.8
Oracle Upper-Bound 97.8 97.6 100.0 100.0

Table 18: Results for acceptability classifiers trained on CommonsenseQA, with “acceptability” defined as: “at
least 2/3 annotators labelled as acceptable." Subscripts indicate standard error over models trained with 5 different
random seeds.

“Select-1” Acc@2/3 Explanation-level AP@2/3
1Model/Split— Dev Test Test2 Dev Test Test2
Random 28.20.5 27.80.2 28.00.1 28.10.9 27.60.3 28.30.6
Constant — — — 28.2 27.8 28.0
NLL 51.0 51.2 50.4 47.7 47.5 46.1
TO-3B EXpl.-Ol’lly 47.01,0 50.52,1 50.6248 48.91‘4 45.21,5 44.921
TO-3B 57819 60315 59223 66.733 64.733 67.13¢
Oracle Upper-Bound 76.0 81.2 77.6 100.0 100.0 100.0

Table 19: Results for acceptability classifiers trained on SNLI with “acceptability” defined as: “at least 2/3 an-
notators labelled as acceptable." Subscripts indicate standard error over models trained with 5 different random
seeds.
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Instructions (click to expand/collapse)

Thanks for participating in this HIT!

You will read multiple-choice questions about daily life. For each question, an answer has been selected and 2
explanations for the answer have been given. Your task is to select the explanation that best explains the answer.

Each HIT contains 3 parts:

Question A question such as "If a lantern is not for sale, where is it likely to be?"
Answer A selected answer, such as "house" (may or may not be correct).
Explanations Two explanations for the Answer.

A couple of notes:

You may disagree with the Answer, but you should pretend it is correct when selecting the best Explanation.

You can ignore minor grammar and spelling mistakes. Some sentences will be lowercased incorrectly;
please ignore this.

If you find the Explanations similarly good (or bad), select the one you think is the best and then select "I voted, but
this one is close because the explanations are similar.”

If you find the Explanations equally good (or bad) and cannot choose, select "Both equally good.” or "Both equally
bad.”

Examples (click to expand/collapse)

Question: ${question}
Answer: ${gold_label}

Which explanation better explains the answer?
${explanation_1}
${explanation_2}
Both equally good.
Both equally bad.

| voted, but this one is close because the explanations are similar.

(Optional) Please let us know if anything was unclear, if you

experienced any issues, or if you have any other feedback for
us.

INY

Figure 4: An overview of the user interface of our head-to-head comparison AMT studies for CommonsenseQA.

The top shows the instructions and the bottom the actual task. The Examples tab is collapsed here; shown in full
in Figure 5.
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Examples (click to expand/collapse)

Example #1

Question: If a lantern is not for sale, where is it likely to be?
Answer: house

Which explanation better explains the answer?

A house has lanterns.

people keep furniture, such as lanterns, at their houses for personal use in their daily living.

The better explanation is
people keep furniture, such as lanterns, at their houses for personal use in their daily living., JUeXeIETRN Y

"house" answers the part of the question that specifies "not for sale", which the first choice does not explain.

Example #2

Question: "there are 10 apples on an apple tree. three fall off. now there are x apples." what is this an
example of?
Answer: math problem

Which explanation better explains the answer?
The example is of a question that involves performing subtraction.

webmath is designed to help you solve

ALY EUEEDIELEWLL NS The example is of a question that involves performing subtraction RITEI=Tdelals]

explanation is nonsensical.

Example #3

Question: Where is the most likely place for more than one stadium?
Answer: large city

Which explanation better explains the answer?

a stadium requires a lot of space.

a good place for more than one stadium is a place with a lot of people.

LULR LGS (IERENLLN a good place for more than one stadium is a place with a lot of people JUE=NGIEIRE

why a large city would have multiple stadiums. The first explanation is factually correct, but does not explain, for
example, why a large city would have more space than a rural area.

Figure 5: The Examples tab given in the user interface of our head-to-head comparison AMT studies for Common-
senseQA. The full interface is shown in Figure 4.
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Instructions (click to expand/collapse)

Thanks for participating in this HIT!

You will read multiple-choice questions about daily life. For each question, an answer has been selected and a
statement explaining the answer has been given.

Part 1: Please read the statement and answer questions related to its factuality and grammaticality (2 questions).

Part 2: Please read the instance that the statement explains and answer questions about the explanation quality (1-
3 guestions).

An instance contains 3 parts:

Question A question such as "If a lantern is not for sale, where is it likely to be?"
Answer A selected answer, such as "house" (may or may not be correct).
Explanation The statement from Part 1, which explains the Answer.

[Important!] You may disagree with the Answer, but you should pretend it is correct when judging the
Explanation.

[Important!] Some sentences will be lowercased incorrectly; please ignore this.

[Important!] You will not be able to change your answers to Part 1 after moving on to Part 2.

Main Example (click to expand/collapse)

More Examples (click to expand/collapse)

Part 1: Please read the below statement and answer the following questions:

${predicted_explanation}

1) How factual is this statement?

Generally False = Sometimes or Partially True = Generally True = Needs More Information to Judge

2) Is this statement grammatical?

No Yes

Submit Part 1

Figure 6: An overview of the user interface template of our absolute comparison AMT studies for Common-
senseQA. The top shows the instructions and the bottom the actual task. Only part 1 of the task is shown here (part

2 appears once part 1 is submitted). The Main Example and More Examples tabs illustrating both parts 1 and 2 are
collapsed here; see Figure 7.
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Main Example (click to expand/collapse)

Part 1: Please read the below statement and answer the following questions:

people keep furniture, such as lanterns, at their houses for personal use in their daily living.

1) How factual is this statement?

Generally False = Sometimes or Partially True = Generally True = Need More Information to Judge

This statement is [Me(SEERITEN.

2) Is this statement grammatical?

No  Yes

The correct answer is .

Part 2: Please read the instance that the statement explains and answer the following questions:

Question: If a lantern is not for sale, where is it likely to be?

Answer: house
Explanation: people keep furniture, such as lanterns, at their houses for personal use in their daily living.

3) Does the Explanation provide new facts, information, or reasoning not stated in the Question and

Answer?
Examples

No Yes

The correct answer is {338, because the explanation introduces the fact that lanterns are a type of furniture,

and that people do not usually keep furniture in their house for selling.

4) Is the new information relevant to justifying the Answer? Examples

No  Yes

The correct answer is .

5) How much information does the Expl/anation have to justify the Answer? Examples

Not Enough Enough Too Much

The correct answer is m

Figure 7: The Main Example given in the user interface template of our absolute comparison AMT studies for
CommonsenseQA. This format follows the actual task layout. The full interface is shown in Figure 6.
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Instructions (click to expand/collapse)

Thanks for participating in this HIT!

You will read questions about daily life. For each question, an answer has been selected and 5 explanations have
been given.

Your task is to judge whether each explanation is acceptable.

Each HIT contains 3 parts:

Question A guestion such as "If a lantern is not for sale, where is it likely to be?"
Answer A selected answer, such as "house" (may or may not be correct).
Explanations Five explanations for the Answer.

A couple of notes:

* You may disagree with the Answer, but you should pretend it is correct when judging the Explanations.

¢ Some sentences have minor grammar and spelling mistakes, don't end on a period, or cut off partway
through because they are long. Please ignore these, and judge on the part of the sentence that is presented.

e New! If at least part of the explanation is acceptable and sufficient (even if some other part is nonsensical
or rambling), please mark is as acceptable.

Examples (click to expand/collapse)

Question: ${question}
Answer: ${gold_label}

Which explanations are acceptable? Select all that you believe adequately explain the answer (this may be none).
${explanation_1}
${explanation_2}
${explanation_3}
${explanation_4}

${explanation_5}

(Optional) Please let us know if anything was unclear, if you
experienced any issues, or if you have any other feedback
for us.

Figure 8: An overview of the user interface of our explanation acceptability AMT studies for CommonsenseQA.
The top shows the instructions and the bottom the actual task. The "examples" tab is collapsed here; shown in full
in Figure 9.
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Examples (click to expand/collapse)

Example #1:

Question: A bald eagle flies over St. Paul, where is it?
Answer: minnesota

Which explanations are acceptable? Select all that you believe adequately explain the answer (this may be
none).
Bald eagles are native to the United States, but are rarer in Minnesota
than in other states because Minnesota has a small supply of their
primary foods (fish, mice, etc)).

St. Paul is a city in Minnesota, so a bald eagle flying over it would likely
live in Minnesota.

St. Paul is in Minnesota.

The question assumes that you've seen the bald eagles that live in
Minnesota.

Bald eagles live in northern North America, and can be found
anywhere there. Given that one is flying over St. Paul, it must be either
migrating, or it could be a photographer, making its appearance in the
city unusual.

Possible answer:

Bald eagles are native to the United States, but are rarer in
Minnesota than in other states because Minnesota has a small
supply of their primary foods (fish, mice, etc.).

The question assumes that you've seen the bald eagles that live in
Minnesota.

Bald eagles live in northern North America, and can be found
anywhere there. Given that one is flying over St. Paul, it must be
either migrating, or it could be a photographer, making its
appearance in the city unusual.

One possible answer is that only the second and third explanations are acceptable. The first, fourth, and fifth
explanations do not provide an explanation for the fact that St. Paul is in Minnesota.

Another possible answer is that only the third explanation is acceptable (since the second explanation incorrectly
states that the bald eagle /ives in Minnesota). However, we prefer that you err on the side of being forgiving if
part of the explanation is correct.

Example #2:

Question: Even if was clean and chlorinated, shallow water wouldn't make for much summer fun in
your backyard what?
Answer: swimming pool

Which explanations are acceptable? Select all that you believe adequately explain the answer (this may be
none).

It would be illegal to use and non-sanitary to use a lake or other body
of water as a swimming pool.

Pools seem to be the kind of shallow water that people would swim in
for fun.

Swimming pools get deeper than puddles or ponds.

Pools are the only body of water that contain both swimming-friendly
water and shallow water.

Swimming pools are often used for summer fun.
Possible answer:

It would be illegal to use and non-sanitary to use a lake or other
body of water as a swimming pool.

Pools seem to be the kind of shallow water that people would swim
in for fun.

Pools are the only body of water that contain both swimming-
friendly water and shallow water.

The question implies that the answer must be a body of water that can get deep, and must be able to be used for
summer fun.

One possible answer is that only the fifth explanation is acceptable. The first, second, and fourth explanations do

not explain that pools can get deep or that pools can be used for summer fun. The fifth explanation explains at
least one of these facts.

Another possible answer is that both the third and the fifth explanations are acceptable, since the third

explanation indirectly states that pools can get deep (although it is somewhat debatable if they are deeper than
ponds).

Figure 9: The examples given in the user interface of our explanation acceptability AMT studies for Common-
senseQA. The full interface is shown in Figure 8.
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