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Abstract
Large language models are increasingly capa-001
ble of generating fluent-appearing text with rel-002
atively little task-specific supervision. But can003
these models accurately explain classification004
decisions? We consider the task of generat-005
ing free-text explanations using a small num-006
ber of human-written examples (i.e., in a few-007
shot manner). We find that (1) higher-quality,008
human-authored prompts result in higher qual-009
ity generations; and (2) surprisingly, in a010
head-to-head comparison, humans often pre-011
fer explanations generated by GPT-3 to crowd-012
sourced explanations in existing datasets. Our013
human studies also show, however, that while014
models often produce factual, grammatical,015
and sufficient explanations, they have room to016
improve along axes such as providing novel in-017
formation and supporting the label. We create018
a pipeline that combines GPT-3 with a super-019
vised filter that incorporates binary acceptabil-020
ity judgments from humans in the loop. De-021
spite significant subjectivity intrinsic to judg-022
ing acceptability, our approach is able to con-023
sistently filter GPT-3 generated explanations024
deemed acceptable by humans.025

1 Introduction026

As natural language understanding tasks have be-027

come increasingly complex, the field of explainable028

natural language processing (exNLP) has embraced029

explanations written in free-form natural language.030

In contrast to extracting input highlighting expla-031

nations, free-text rationales provide a natural inter-032

face between machine computation and human end-033

users (Hendricks et al., 2016; Camburu et al., 2018).034

The dominant paradigm for producing free-text ex-035

planations is via direct supervision, i.e., training an036

autoregressive, generative language model to pre-037

dict human-authored explanations directly (Kim038

et al., 2018; Park et al., 2018; Ehsan et al., 2018;039

Narang et al., 2020; Wiegreffe et al., 2021, i.a.).040

However, collecting high-quality, human-written041

explanations to serve as supervision is difficult042
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“When eating a hamburger with friends, what is 
one trying to do?” have fun. Explanation: …

“Usually a hamburger with friends 
indicates a good time.”

Figure 1: Illustration of our overgeneration + filtra-
tion pipeline for producing human-acceptable explana-
tions for CommonsenseQA and SNLI (see examples in
Table 1). Authors of this work write explanations to
prompt GPT-3, generating 5 explanations per instance.
An acceptability filter, trained on human binary accept-
ability judgments, determines which of these generated
explanations are plausible. Evaluation is performed at
both the explanation and the instance level.

and expensive. More than 70% of existing free- 043

text explanation datasets are crowdsourced (Wiegr- 044

effe and Marasović, 2021), and even the most 045

meticulous crowdworking efforts frequently fail 046

to elicit logically consistent and grammatical expla- 047

nations (leading downstream to poor-quality mod- 048

els) (Narang et al., 2020). Furthermore, a lack of 049

standardized crowdsourcing design has resulted in 050

highly varied datasets, which are hard to compare 051

or combine (Tan, 2021). 052

Recent progress in few-shot learning provides 053
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a potentially promising alternate to large-scale054

crowdsourcing. The in-context learning paradigm,055

wherein powerful language models are prompted056

in a few-shot manner with just a few examples, has057

proven surprisingly effective across a range of NLP058

tasks (Radford et al., 2019; Brown et al., 2020; Shin059

et al., 2020; Schick and Schütze, 2021a, i.a.). In060

this work, we ask: can language models also gen-061

erate reliable explanations? We present a human062

subjects study with a surprising finding: in-context063

learning with GPT-3 (Brown et al., 2020) produces064

explanations competitive with crowdsourced expla-065

nations in existing datasets (§2).066

Two additional human subjects studies, how-067

ever, demonstrate that GPT-3-generated explana-068

tions still have significant room for improvement069

along axes such as providing new information (i.e.070

avoiding repetition) and supporting the label. In071

particular, human subjects found less than half of072

greedy-decoded GPT-3 generated explanations to073

be acceptable with high agreement.074

To further improve generation quality, we re-075

frame the role of crowd annotators: instead of au-076

thoring explanations as in prior work, we (1) repeat-077

edly query GPT-3 to generate multiple candidate078

explanations for each input instance; and (2) ask079

crowdworks to rate the acceptability of each can-080

didate generation. After showing that GPT-3 can081

usually generate an explanation that humans find082

acceptable within as few as five queries (§3), we083

use a small number of these binary crowdworker084

judgments to supervise an acceptability filtering085

model, which can be applied to select high quality086

candidates among GPT-3’s outputs (Figure 1; §4).087

Despite intrinsic subjectivity in acceptability rat-088

ings, our supervised model improves upon the089

already-competitive few-shot paradigm by consis-090

tently selecting (human-identified) high quality ex-091

planations better than strong baselines. Human092

evaluations reveal that the filtration model not only093

improves acceptability, but also, other axes like094

supporting the label and providing novel informa-095

tion.096

In summary, our main findings are:097

i. in-context learning with GPT-3 produces sur-098

prisingly competitive explanations, providing099

a promising alternative to crowd-authored free-100

text explanation corpora;101

ii. binary human labeling can instead be leveraged102

to train a filter that selects high-quality machine-103

generated explanations; and104

iii. in areas where GPT-3 struggles, including infor- 105

mation content, supporting the label, and overall 106

acceptability, our proposed overgenerate-and- 107

filter pipeline improves generated explanations. 108

We publicly release our code and human-annotated 109

data.1 110

2 In-Context Learning is Competitive 111

with Crowdsourced Datasets 112

Is in-context learning with GPT-3 a viable strategy 113

to generate free-text explanations? To this end, we 114

investigate three research questions: 115

• Are GPT-3-generated explanations preferable to 116

crowdsourced ones in existing datasets? (§2.1) 117

• Can improving prompt quality improve GPT-3- 118

generated explanations? (§2.2) 119

• Along what fine-grained dimensions are GPT-3- 120

generated explanations preferred? (§2.3) 121

Explanation tasks and datasets. We consider 122

two English tasks: CommonsenseQA and natural 123

language inference (NLI), shown in Table 1. Com- 124

monsenseQA (Talmor et al., 2019) is a multiple 125

choice task posed over commonsense questions. 126

Crowdsourced free-text explanations for instances 127

in CommonsenseQA are provided in the CoS-E 128

v1.11 (Rajani et al., 2019) and ECQA (Aggarwal 129

et al., 2021) datasets. ECQA explanations are coun- 130

terfactual, i.e., annotators were instructed to ex- 131

plain not only the correct answer choice but also 132

why the others are incorrect.2 ECQA was released 133

to address the quality issues of CoS-E (Narang 134

et al., 2020); we consider both to provide perspec- 135

tive on the impact of prompt quality. Our second 136

task is NLI, which involves inferring whether a 137

given hypothesis sentence entails, contradicts, or is 138

neutral towards a premise. This task is instantiated 139

with the SNLI dataset (Bowman et al., 2015), and 140

crowdsourced free-text explanations are collected 141

in the e-SNLI dataset (Camburu et al., 2018). For 142

each task, we report results on a fixed, randomly- 143

sampled 250-instance test set not observed during 144

prompt design. 145

In-context learning for explanations. We use 146

GPT-3 Davinci (Brown et al., 2020), an autore- 147

gressive language model with ~175B parameters 148

trained on a large dataset of text scraped from the 149

1https://anonymous/
2We do not perform counterfactual human evaluations;

ECQA explanations are thus often viewed by annotators as
having “too much" information, see §2.3.
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SNLI (Bowman et al., 2015)

Premise: Dark-haired man wearing a watch and oven
mitt about to cook some meat in the kitchen.
Hypothesis: A man is cooking something to eat.
Label: entailment

e-SNLI (Camburu et al., 2018): Meat is cooked in a
kitchen, and is a food that you eat. Using an oven mitt
implies you’re about to cook with hot utensils.
GPT-3: Cooking is usually done to prepare food to eat.

CommonsenseQA (Talmor et al., 2019)

Question: What is the result of applying for job?
Answer Choices: anxiety and fear, increased workload,
praise, less sleep, or being employed
Correct Choice: being employed

CoS-E (Rajani et al., 2019): being employed applying
for job
ECQA (Aggarwal et al., 2021): Applying for a job is
followed by attending interview which results in being
employed. Applying for a job may not result in the other
options.
GPT-3: Applying for a job can result in being em-
ployed, which is a positive outcome.

Table 1: Task-specific instances, along with their
crowdsourced explanations from the respective
datasets, shown alongside explanations generated
greedily by GPT-3. In our experiments, the SNLI GPT-
3 explanation was preferred over its corresponding
e-SNLI explanation by 2/3 annotators. For Common-
senseQA, 3/3 preferred the GPT-3 explanation to the
CoS-E explanation, and 2/3 to the ECQA one.

internet. We prompt the model with several (ques-150

tion, answer and explanation)3 triplets followed by151

an unexplained question-answer instance for which152

we expect the model to generate an explanation.153

We use a total of 115 randomly sampled train in-154

stances to create our prompts; each prompt consists155

of 8-24 randomly selected examples from this set.156

For each instance, we generate a single explanation157

with greedy decoding. More details about prompt158

construction are in Appendix A; example prompts159

are given in Tables 8-9.160

Crowdsourcing evaluation. Given that existing161

automatic metrics do not correlate well with human162

judgements of explanation quality (Clinciu et al.,163

2021; Kayser et al., 2021), we perform human-164

subjects studies on the Amazon Mechanical Turk165

(AMT) platform. We compensate crowdworkers at166

a rate of $15/hour. We present participants with a167

3For simplicity, because we aim focus on free-text expla-
nations (and not few-shot classification) we assume access to
the gold label. In early experiments where we also had GPT-3
predict the label, we didn’t observe significant differences in
explanation quality between correct/incorrect instances.

Preferred Explanation (%)

Dataset Gold-Standard Tie GPT-3 α

CoS-E 20.3 34.9 44.8 0.5
ECQA 52.7 12.9 34.4 0.2
e-SNLI 63.6 11.6 24.8 0.3

Table 2: Head-to-head human evaluation (3 annota-
tions each) for 250 explanations generated by GPT-3
vs. written by crowdworkers in the datasets along with
Krippendorff’s α. Results are shown as % preferences.
GPT-3 explanations were prompted with explanations
from the respective datasets.

dataset instance, gold label, and two explanations 168

for the instance generated under different condi- 169

tions (“head-to-head”). We then ask them to make 170

a preferential selection on a 5-point Likert scale, 171

collecting 3 annotations per data point. Appendix B 172

contains further details. We report inter-annotator 173

agreement using Krippendorff’s α (Krippendorff, 174

2011). 175

2.1 RQ1: Are GPT-3 explanations preferred 176

over crowdsourced ones? 177

We perform a head-to-head comparison of expla- 178

nations generated by GPT-3 with greedy decoding 179

vs. gold human-written explanations in the original 180

datasets. The crowdsourced explanations serve as 181

a reasonable upper bound for what a supervised ex- 182

planation generation model trained on them could 183

produce. Results are shown in Table 2. Some ex- 184

amples of GPT-3-preferred explanations are given 185

in Table 1. 186

For CoS-E, the GPT-3 greedily-decoded expla- 187

nations are frequently preferred or comparable to 188

crowdsourced explanations, which is not too sur- 189

prising for CoS-E, which has many ungrammatical 190

explanations (Narang et al., 2020). And, while 191

ECQA and e-SNLI explanations are strongly pre- 192

ferred to GPT-3, there are still a non-trivial number 193

of cases where GPT-3 explanations are competitive 194

(36.4% and 24.8%, respectively). 195

2.2 RQ2: Can improving prompt quality 196

improve GPT-3-generated explanations? 197

Given that low-quality training instances may re- 198

sult in low-quality predictions (especially in a few 199

shot setting), we ask: can we improve GPT-3 gen- 200

erations simply by conditioning on higher-quality 201

instances? For prompt construction, we replace the 202

115 crowdsourced explanations from the original 203

datasets with explanations carefully written by the 204
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Specific Generally False Ungrammatical None Introduced No Not Enough Not Acceptable
-1

-0.5
0

0.5
1 GPT-3

CoS-E

General Generally True Grammatical Introduced Yes Too Much Acceptable

Sometimes/
Partially True

Enough

-1
-0.5

0
0.5

1 GPT-3
ECQA

Generality Factuality Grammar New Info Supports LabelAmount Info* Acceptability
-1

-0.5
0

0.5
1 GPT-3

e-SNLI

Figure 2: Absolute evaluation for GPT-3 and crowdsourced explanations for CommonsenseQA via CoS-E (top)
and ECQA (middle) datasets, and for NLI via the e-SNLI dataset (bottom). The distribution of mean scores of 3
annotators for each instance in the test set is plotted. All attributes besides Factuality and Amount Info are binary.
*Amount Info is the only attribute for which a value of 0 is preferred to a value of 1.

Preferred GPT-3 Explanation (%)

Dataset Gold Prompts Tie Our Prompts α

CoS-E 6.9 13.5 79.6 0.2
ECQA 15.9 9.5 74.7 0.3
e-SNLI 30.8 26.8 42.4 0.5

Table 3: Head-to-head human evaluation for 250 expla-
nations generated by GPT-3 conditioned on either our
handwritten explanations or gold crowdsourced expla-
nations from the associated datasets.

authors of this paper (see Table 10 for examples).205

Our prompts are used to generate a different set of206

GPT-3 explanations on the same test data.207

We perform a head-to-head human evaluation of208

the GPT-3 generations conditioned on the expla-209

nations we authored vs. those conditioned on the210

gold crowdsourced explanations generated in §2.1.211

Results in Table 3) show that, for all three corpora,212

generations conditioned on our explanations outper-213

form generations conditioned on crowdsourced ex-214

planations. This effect is especially pronounced for215

CommonsenseQA; GPT-3 even reproduces known216

data artifacts in the CoS-E corpus when prompted217

with explanations from it (such as the phrase “rivers218

flow trough valleys”, which appears 10 times in the219

prompt set). We repeat the experiment of §2.1,220

but with our prompts instead of dataset prompts.221

Preferred Explanation (%)

Dataset Gold-Standard Tie GPT-3 α

CoS-E 7.2 13.9 78.9 0.5
ECQA 44.5 9.7 45.7 0.4
e-SNLI 49.6 9.7 40.7 0.2

Table 4: Head-to-head human evaluation for 250 expla-
nations generated by GPT-3 vs. written by crowdwork-
ers in the datasets. GPT-3 explanations were prompted
with explanations handwritten by the authors.

With this change, GPT-3 generations are even more 222

competitive (Table 4). For all three datasets, more 223

than half the time, in-context learning results in 224

an explanation at least as good as a human writ- 225

ten explanation. These results provide evidence 226

that in-context can enable end-user control over 227

explanation format and quality by authoring as few 228

as 8-24 examples. For subsequent experiments, 229

we use the explanations written by the authors as 230

prompts. 231

2.3 RQ3: What types of explanations does 232

GPT-3 output? 233

Pairwise evaluations can only offer perspective on 234

the relative quality of generated explanations. Are 235

crowd annotators simply comparing explanations 236

on surface-level features like grammaticality? 237
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To understand finer-grained characteristics of ex-238

planations, we design a second human study to col-239

lect absolute Likert-scale judgments across seven240

axes of quality (with each explanation judged by241

3 annotators). The first three axes capture surface-242

level features: generality, grammaticality, and fac-243

tuality. The next three capture richer aspects of244

explanation quality: whether new information is245

introduced (a requirement for non-vacuous explana-246

tions), whether explanations support the gold label,247

and whether the amount of information given is248

sufficient. Finally, we ask for an overall judgement249

of quality: is the explanation acceptable? We ex-250

plain our design process in Appendix B.2. Results251

on the crowdsourced and GPT-3 explanations for252

both tasks are given in Figure 2.4253

For both tasks, GPT-3 explanations do well in254

all 3 surface-level categories, with statistically sig-255

nificantly greater ratings in generality and gram-256

maticality (and factuality for CommonsenseQA)257

compared to crowdsourced explanations, and dis-258

tributional means close to 1. In these categories,259

there is little room for improvement.260

On the other hand, GPT-3 explanations do not261

contain as much new information as ECQA and262

e-SNLI explanations, and have substantial room263

to improve (mean=0.1 for both tasks compared to264

0.6 for ECQA and 0.2 for SNLI; these differences265

are statistically significant at p ≤ 0.01). GPT-266

3 explanations are substantially more supportive267

of the label over CoS-E, but not as supportive as268

ECQA or e-SNLI (all statistically significant at269

p ≤ 0.1). Indeed, the mean rating of GPT-3 ex-270

planations for label support is 0.5 for Common-271

senseQA and −0.1 for NLI, demonstrating room272

for improvement. These axes are crucial to ensur-273

ing explanations are not vacuous and are on-topic.274

Finally, GPT-3 explanations are judged as accept-275

able at higher rates than CoS-E or ECQA explana-276

tions, but not e-SNLI explanations. Mean scores of277

0.5 (CommonsenseQA) and 0.0 (NLI) indicate that278

GPT-3 explanations have room to improve overall.279

3 Beyond Greedy Explanations280

While GPT-3 explanations demonstrate strength281

across surface-level features, and are surprisingly282

competitive in head-to-head settings, they can still283

be improved. Borrowing our acceptability crite-284

4Means, standard errors, and Wilcoxon signed rank test
results are in Table 16; Krippendorff’s α is 0.48 for Common-
senseQA annotations and 0.31 for SNLI — see Table 14.

ria from §2.3, when considering GPT-3 explana- 285

tions rated positively by 3/3 annotators as “accept- 286

able”, only 46.3% of our greedily decoded GPT-3- 287

generated explanations for CommonsenseQA and 288

31.5% for NLI satisfy this criteria.5 289

Inspired by work in other generation tasks 290

(Holtzman et al., 2020; Massarelli et al., 2020; 291

Holtzman et al., 2021), we hypothesize that equally 292

or more informative explanations can be generated 293

by sampling stochastically. We sample 4 additional 294

generations from GPT-3 for each instance, to com- 295

plement the greedy generation. We again crowd- 296

source 3 binary acceptability annotations for each 297

new explanation. 298

While sampled explanations exhibit lower 3/3 299

acceptability than the greedy-decoded explanations 300

(25.1% for CommonsenseQA; 11.3% for e-SNLI), 301

their addition surprisingly results in a much higher 302

proportion of instances that have at least one ac- 303

ceptable explanation in the set of 5. The greedy ex- 304

planation was judged to be 3/3 acceptable in 46.3% 305

of instances for CommonsenseQA and 31.5% for 306

NLI; this increases to 79.5% and 51.2%, respec- 307

tively, when sampled explanations are included.6 308

4 Improving Explanation Generation 309

with Acceptability Filtering 310

The challenge of overgeneration is that GPT-3 311

alone cannot discern which of its samples are ac- 312

ceptable. We explore training a supervised filter on 313

the collected labels. Our key intuition is that by 314

re-framing the role of annotators from explanation 315

authors to binary judges, we can alleviate the need 316

to collect a large-scale explanations dataset—the 317

result is a simpler, cheaper, and easier crowdsourc- 318

ing setup to administer (§4.1). Moreover, we 319

find that the filter can be trained with a relatively 320

small amount of binary human judgments (§4.2). 321

Figure 1 presents an overview of our pipeline. 322

4.1 Acceptability Annotations 323

We generate train/validation sets by repeating the 324

procedure of generating 1 greedy and 4 sampled 325

explanations for 991 and 1K instances, respec- 326

tively, of the CommonsenseQA and SNLI training 327

sets. Combining these with the annotated test sets 328

from previous experiments results in a dataset of 329

1241/1250 instances in a 72/8/20% train/val/test 330

5In §4, we show that these are not upper-bounds caused by
intrinsic subjectivity, and that they can be improved upon.

6Appendix C provides statistics for the case where 2/3 is
the acceptability threshold, with very similar findings.
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ratio for each task. We again collect 3 binary ac-331

ceptability ratings for each instance, resulting in332

~6200 instance-explanation pairs and ~19k individ-333

ual annotations per task. Table 11 contains statis-334

tics. In addition, to ensure that models trained on335

these corpora do not overfit not overfit to specfic336

annotators (Geva et al., 2019), we collect an ad-337

ditional set of judgments for the test set of SNLI338

from a group of annotators who did not participate339

in any of our previous annotation tasks (“Test2”).340

Krippendorff’s α for all acceptability annotations341

is 0.34 for CommonsenseQA and 0.39 for SNLI342

(see Table 13).343

While we evaluate at test-time with the schema344

that instances that 3/3 annotators deem accept-345

able are acceptable and all others (0/3, 1/3, 2/3)346

are deemed unacceptable, preliminary experiments347

show that treating 2/3 and 3/3 agreement instances348

as acceptable and 0/3, 1/3 instances unacceptable349

during training performs best on the 3/3 evaluation350

criterion at test-time.7 We also train a variant where351

we randomly select one annotation from the three352

as the gold label (“without human agreement”).353

4.2 Acceptability Filter354

Concretely, given the problem instance (e.g.,355

premise/hypothesis for NLI), the gold label, and356

the (generated) explanation, the acceptability filter357

predicts whether the explanation is acceptable. We358

fine-tune two sequence-to-sequence architectures,359

T5-Large (Raffel et al., 2020) and T0-3B (Sanh360

et al., 2021). Each model is trained 5x with differ-361

ent random seeds. Further training details are given362

in Appendix D.363

Baselines. We train an explanation-only base-364

line, which receives as input only the explanation;365

similar baselines have been proposed for NLI (Po-366

liak et al., 2018; Gururangan et al., 2018). These367

models represent the hypothesis that annotator rat-368

ings can be reconstructed with only surface features369

of the explanation candidates, e.g., grammatical-370

ity. We also consider a negative log-likelihood371

(NLL) baseline, which uses GPT-3’s estimated372

probability as the acceptability classification score.373

This is a slightly more competitive baseline than374

greedy; greedy usually (but not always) produces375

the highest-likelihood explanation.8376

7Our results don’t significantly change if a 2/3 cutoff is
used at test time instead: Appendix E contains the results.

8According to GPT-3, a sampled explanation has a lower
NLL than greedy for only 2.8% and 3.6% of instances, respec-
tively, of our CommonsenseQA and SNLI test sets.

“Select-1” Acc@3/3 Expl.-level AP@3/3

Dev Test Dev Test

Random 26.83.2 30.62.1 27.41.1 31.60.4
Constant — — 27.9 31.8
NLL 41.8 52.0 42.4 45.6

T5-L Expl.-only 40.23.9 49.81.1 43.51.5 50.01.9
T0-3B Expl.-only 42.61.4 47.31.6 41.12.0 54.11.7

T5-L w/o HA 46.62.3 55.43.2 47.02.3 56.93.6
T5-L 46.42.9 55.42.1 45.13.4 58.31.5
T0-3B w/o HA 48.42.0 57.42.8 44.52.3 59.82.7
T0-3B 48.60.9 59.91.1 49.71.6 64.01.5

Oracle U.B. 78.0 82.0 100.0 100.0

Table 5: Results for acceptability classifiers trained
on CommonsenseQA. Subscripts indicate standard er-
ror over models trained with 5 different random seeds.
“w/o HA” = without human agreement. “Oracle U.B”
indicates upper bound based on dataset properties (§3).

4.3 Evaluation 377

We consider three evaluation settings. The first 378

is instance-level (“select-1”), where the system 379

returns 1 explanation selected from the set of 5 380

for each instance. We return the explanation with 381

the highest model-estimated probability and report 382

instance-level accuracy, i.e., the % of instances for 383

which a gold acceptable explanation is selected. 384

We also evaluate at the explanation-level, 385

where we treat each explanation independently and 386

compute metrics over the full dataset. This aligns 387

with the binary classification training of the mod- 388

els (cross-entropy on the explanation labels) and 389

is suited for the setting in which we want to return 390

all of the acceptable explanations per instance. In 391

this setting, we report average precision (AP), an 392

estimate of area under the precision-recall curve. 393

Finally, we perform an absolute human evalu- 394

ation (§2.3) on the subset of instances where the 395

filter model does not select the greedy explanation 396

as the best, i.e., comparing “select-1” performance 397

to a greedy baseline on the instances where it dif- 398

fers. For CommonsenseQA/SNLI, n = 156/91. 399

4.4 Results 400

Classifier performance is given in Tables 5-6. 401

Effect of model size. On CommonsenseQA, T0- 402

3B outperforms T5-Large by ~2-4% select-1 accu- 403

racy and ~5-6% explanation-level AP across splits. 404

We use T0-3B in subsequent experiments. 405

NLL baseline vs. full model. For both tasks 406

on both validation and test sets, T0-3B outper- 407

forms the NLL baseline substantially. On Com- 408

monsenseQA, we observe a 7-8% gain in instance- 409

6



Specific Generally False Ungrammatical None Introduced No Not Enough Not Acceptable
-1

-0.5
0

0.5
1 CoQA Greedy

CoQA Filtered

General Generally True Grammatical Introduced Yes Too Much Acceptable

Sometimes/
Partially True

Enough

Generality Factuality Grammar New Info Supports LabelAmount Info* Acceptability
-1

-0.5
0

0.5
1 SNLI Greedy

SNLI Filtered

Figure 3: Absolute evaluation results in the “select-1” setting for the instances where our best-performing filter
model does not select the greedy explanation (156 instances for CommonsenseQA (top); 91 for NLI (bottom)).
See caption of Figure 2 and the Appendix-Table 17 for more details.

“Select-1” Acc@3/3 Explanation-level AP@3/3

Dev Test Test2 Dev Test Test2

Random 15.20.7 14.70.1 13.60.3 15.00.6 14.40.3 13.80.2
Constant — — — 15.2 14.5 13.7
NLL 33.0 32.0 31.6 29.9 32.7 28.5

Expl.-only 30.20.8 30.92.1 27.81.8 30.62.5 30.61.3 25.92.3
w/o HA 38.21.9 38.51.8 36.21.4 49.35.3 48.53.3 52.85.3

Full 37.80.8 38.70.7 35.01.2 46.83.6 47.63.5 49.54.8

Oracle U.B. 51.0 52.4 46.4 100.0 100.0 100.0

Table 6: Results for SNLI explanation acceptability; all
model results are on T0-3B. See Table 5’s caption.

level accuracy, and a gain of 18% explanation-level410

AP on the test set. This provides strong evidence411

that the supervised model is able to incorporate412

binary human feedback to predict acceptable expla-413

nations at a level much higher that GPT-3 achieves414

on its own. Our filter model predicts a different415

explanation than NLL in the “select-1” setting for416

124 out of 250 instances for CommonsenseQA, and417

for 42 out of 250 for NLI; we present examples in418

Table 7 and Table 12.419

Explanation only vs. full model. Our results420

suggest that our models are leveraging feature in-421

teractions between the instance and explanation to422

make their predictions:9 without instance-level con-423

text, the explanation-only baselines are on average424

more than 5 points worse across metrics. Though425

they underperform significantly relative to the full426

model, explanation-only baselines do fare surpris-427

ingly well, indicating that shallow features like428

factuality and grammaticality may represent latent429

9Because the input instances are identical in the select-1
setting between the 5 explanation candidates, any improve-
ment over the explanation-only baseline is evidence of feature
interactions, specifically.

factors in human acceptability judgments. 430

The effect of multiple training annotations. In 431

some cases, performance improves if the training 432

instances are labeled with the consensus of three 433

annotators (vs. the singularly annotated case “w/o 434

HA"), though the effects are not consistent. In 435

most cases, using consensus agreement results in 436

reduced variance across random seeds. However, 437

given that training on consensus requires 3x the 438

annotations, the gains may not outweigh the data 439

collection effort. 440

Our model doesn’t overfit to specific annota- 441

tors. Reassuringly, the performance of our model 442

when evaluated on the NLI test set labeled by sepa- 443

rate annotators (“Test2”) is comparable to the orig- 444

inal test set (instance-level accuracy drops a few 445

points, but explanation-level AP slightly rises). Im- 446

portantly, we also reach the same conclusions on 447

this test set regarding the superior performance of 448

our model with respect to the baselines. 449

Our model improves generated explanations 450

along desirable traits. We present our absolute 451

human evaluation for greedy vs. filtered explana- 452

tions from GPT-3 in Figure 3— for both tasks, 453

explanations filtered by our model more readily 454

introduce new information, support the label, and 455

contain at least enough information for both tasks 456

(in addition to being more acceptable). Interest- 457

ingly, greedy explanations still prevail in surface- 458

level features (grammaticality and, in the case of 459

CommonsenseQA, factuality). All of these differ- 460

ences are statistically significant at small values of 461

p (see Table 17). The differences in generality (and 462
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SNLI

Premise: An officer in a black uniform and hat stands
to the left of a large structure with other officers in the
background.
Hypothesis: An officer enjoys coffee in a shop.
Label: contradiction
NLL-Predicted Explanation: An officer in a black
uniform and hat is not necessarily an officer enjoying
coffee in a shop.
Filter-Predicted Explanation: An officer in a struc-
ture standing to one side is not the same as enjoying
coffee in a shop.

CommonsenseQA

Question: Where would there be an auditorium with
only a single person speaking?
Answer choices: theater, park, university campus,
crowd, or lights
NLL-Predicted Explanation: An auditorium is a large
room used for lectures, and a single person speaking is
likely to be a lecture.
Filter-Predicted Explanation: On university or
university-like campuses, the auditoriums are often used
for lectures or other University events, where a single
person might be speaking.

Table 7: Randomly-selected instances that our filter
model predicts differently than NLL at the “select-1”
task and got correct, but NLL got incorrect.

factuality for NLI) are not significant.10463

In summary. We have demonstrated the effec-464

tiveness of modeling binary crowd judgements465

of acceptability as a means to select candidates466

from GPT-3 which are deemed acceptable at a high467

agreement. For the method that does not leverage468

human agreement, this is done with only ~5k bi-469

nary annotations. We additionally demonstrate that470

our filtered explanations improve upon greedy gen-471

erations in fine-grained categories that probe their472

topical relevance and meaningful content. The473

gap between our best model and the upper-bound474

oracle indicates that there is still substantial room475

for improvement in both task settings. Future work476

may investigate sampling more explanations, or477

incorporating other sources of supervision signal.478

5 Related Work479

Free-text explanation generation. The earliest480

neural free-text explanation models did so for com-481

puter vision applications (Hendricks et al., 2016;482

Park et al., 2018; Kim et al., 2018) and NLI (Cam-483

buru et al., 2018). These methods relied on su-484

pervised datasets to train the explanation genera-485

tor. Others have proposed to generate explanations486

10Krippendorff’s α for these experiments is 0.32 for Com-
monsenseQA and 0.33 for SNLI.

or clarifications to improve task performance in a 487

supervised (Rajani et al., 2019) or unsupervised 488

(Shwartz et al., 2020) manner. Yordanov et al. 489

(2021) study transfer learning between datasets for 490

few-shot generation. 491

Latcinnik and Berant (2020) proposed a method 492

to generate free-text explanations supervised only 493

on task signal, and Brahman et al. (2021) used 494

sources of weak supervision to generate expla- 495

nations for defeasible inference. Paranjape et al. 496

(2021) design hand-crafted templates which they 497

use with mask-infilling to produce contrastive ex- 498

planations from pretrained language models. Con- 499

current work (Marasović et al., 2021) also investi- 500

gates prompting; they study the effects of prompt 501

format and model size on explanation quality. In 502

contrast, we investigate generated explanations 503

through fine-grained crowdsourcing evaluations, 504

study the effect of prompt quality, and investigate 505

a filtration method trained on human acceptability 506

judgements. 507

Supervising on human preferences. Prior work 508

has used binary judgements from crowdworkers to 509

fit models to human preferences for summarization 510

(Ziegler et al., 2019; Stiennon et al., 2020). West 511

et al. (2021) demonstrate that GPT-3 + a super- 512

vised acceptability filter can generate a high-quality 513

causal knowledge graph: in addition to their work 514

being conducted in a different domain, our success 515

conditions and evaluation metrics differ because 516

we must produce a prediction for each instance 517

(whereas they can simply discard bad generations). 518

6 Conclusion 519

We demonstrate GPT-3’s capacity to generate free- 520

text explanations for NLP task instances in a few- 521

shot setting. We further improve this capability via 522

an overgenerate + filter approach, where the filter 523

is trained on supervision from human acceptabil- 524

ity ratings. We hope our results can guide future 525

work on free-text explanations via neural or neuro- 526

symbolic systems (Brahman et al., 2021; Majumder 527

et al., 2021; Saha et al., 2021). 528

While human rationales for decision making are 529

not necessarily the same as model rationales, the 530

goal behind modeling human acceptability is to 531

build trust with a human user. This trust may or 532

may not be warranted (Jacovi et al., 2021); future 533

work would be well-suited to further investigate 534

generated explanations for incorrect label predic- 535

tions, which could mislead end users. 536
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Let’s explain classification decisions.
A young boy wearing a tank-top is climbing a tree.
question: A boy was showing off for a girl.
true, false, or neither? neither
why? A boy might climb a tree to show off for a girl,
but he also might do it for fun or for other reasons.
###
A person on a horse jumps over a broken down airplane.
question: A person is outdoors, on a horse.
true, false, or neither? true
why? Horse riding is an activity almost always done
outdoors. Additionally, a plane is a large object and is
most likely to be found outdoors.
###
There is a red truck behind the horses.
question: The horses are becoming suspicious of my
apples.
true, false, or neither? false
why? The presence of a red truck does not imply there
are apples, nor does it imply the horses are suspicious.
###
A dog carries an object in the snow.
question: A dog is asleep in its dog house.
true, false, or neither? false
why?

Table 8: Example of a prompt with 3 training examples
for SNLI: presented are the premise/hypothesis pairs,
the gold labels, and the explanations (written by us)
that act as input to GPT-3 (in practice, we use 8-24 ex-
amples per prompt). The text generated by the model
acts as the free-text explanation. In this case, the model
greedily auto-completes (given 12 examples): “A dog
cannot carry something while asleep”.

A Prompt Construction881

Following Perez et al. (2021), we avoid prompt tun-882

ing on the full training and development sets of the883

datasets studied, in order to ensure that our methods884

represent a true few-shot setting. To develop the ini-885

tial prompt design, we experimented with no more886

than 10 different layouts in the GPT-3 Sandbox887

platform using 15 training examples on the CoS-E888

and e-SNLI datasets. For subsequent prompt de-889

sign, we again used these 15 training examples for890

each dataset from which we sampled 6 prompts,891

along with a fixed 100-example “development set”892

randomly drawn from the training set. We preserve893

the “few-shot” approach by using a maximum of894

these same 115 instances to develop our prompt-895

ing methods. For these 115 examples, the authors896

of this paper manually wrote high-quality expla-897

nations to be used as prompt examples (Table 10).898

As presented in Table 8, we found that structuring899

SNLI as a question-answering task achieved the900

best performance, similarly to Zhao et al. (2021).901

We provide an example of our SNLI prompt in902

Table 8 and CommonsenseQA in Table 9.903

Let’s explain classification decisions.
question: When remembering a tragedy in the past, what
do many people feel?
pain, depression, knowing, knowledge, or nostalgia?
depression
why? Remembering a past tradedy can resurface feel-
ings that arose in response to that tragedy. Because
tragedies are not positive events, it’s possible that sad-
ness and depression could arise from remembering it.
###
question: What do people do sometimes when they find
a good deal?
race cars, murder each other, believe in god, fight each
other, or fear death?
fight each other
why? Malls sometimes have sales, e.g., on black fri-
day, when they offer good deals; however, the items
are sometimes in limited supply, which can cause al-
tercations between folks, each trying to buy the same
item.
###
question: What does someone who has a greed for en-
ergy do?
buy food, lie, get, cause businesses to grow, or win?
buy food
why? When consumed, food provides energy and satis-
fies the greed for it.
###
question: Immediately after peeing, a person’s bladder
is what?
full, empty, filled, stretchable, or collapsed?
empty
why?

Table 9: Example of a prompt with 3 training examples
for CommonsenseQA: presented are the question and
answer choices, the gold labels, and the explanations
(written by us) that act as input to GPT-3 (in practice,
we use 8-24 examples per prompt). The text generated
by the model acts as the free-text explanation. In this
case, the model greedily auto-completes (given 8 exam-
ples): “After peeing, the bladder is empty.”

In-context learning methods have been shown to 904

have high variance based on hyperparameters in- 905

cluding example order, number of examples given, 906

and which examples are given (Jiang et al., 2020; 907

Zhao et al., 2021; Lu et al., 2021). While these 908

values have not been standardized, two prominent 909

papers, Schick and Schütze (2021b) and Brown 910

et al. (2020), use 32 and 64 prompt examples, re- 911

spectively. Due to the 2049-token limit of the Ope- 912

nAI GPT-3 API and the fact that the addition of 913

explanations elongates each prompt instance, we 914

find the maximum number of examples the API 915

can accommodate is 24 for CoS-E, e-SNLI, and 916

our handwritten explanations and 16 for ECQA. 917

The focus of this work is not on finding the opti- 918

mal prompt, but on developing a general strategy 919

for few-shot explanation generation that could be 920
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successful when no additional (large) validation921

set for tuning is available. Therefore, to provide922

as robust of an expected performance estimate as923

possible, we do not tune the additional hyperpa-924

rameters, instead sampling them to approximate925

performance.11 Namely, while prior work uses one926

fixed prompt for all instances and varies the random927

seed, we approximate the same expected perfor-928

mance by sampling a new set of prompts for each929

instance. We also sample the number of prompts930

for each instance (and shuffle their order) from931

the values {8, 16, 24} for CommonsenseQA exper-932

iments, {8, 16} for experiments using ECQA ex-933

planations, and {12, 18, 24} for SNLI experiments934

(to maintain label balance). To overcome label935

bias in prompt ordering, for tasks with distinct an-936

swer choices per instance (CommonsenseQA), we937

shuffle the answer choices. For tasks with fixed an-938

swer choices (SNLI), we sample an equal number939

of prompt instances for each label (so number of940

prompt instances is a multiple of 3).941

Table 10 shows a few non-cherry-picked ex-942

amples of our handwritten explanations used as943

prompts relative to the datasets.944

B Crowdsourcing Details945

B.1 Head-to-Head Interface Details946

We show the user the task input and gold label,947

and ask them to select which of two explanations948

best explains the answer. We instruct workers to949

consider the gold label to be correct even if they950

disagree with it (CommonsenseQA instances can951

be subjective) and to ignore minor grammar and952

spelling mistakes such as improper upper-casing.953

Figures 4 and 5 show the evaluation interface.954

B.2 Absolute Interface Details955

Figures 6 and 7 show the absolute evaluation inter-956

face (minus the acceptability attribute, which is col-957

lected in a separate run of the study). Our interface958

is inspired by prior work from psychology and the959

social sciences (Leake, 1991; Gopnik, 1998; Lom-960

brozo, 2007; Zemla et al., 2017; Chiyah Garcia961

et al., 2018; Clinciu et al., 2021; Sulik et al., 2021).962

We iterated over 3-4 versions of the questions and963

UI design until we had optimized agreement rates964

as much as possible. Our resulting two-part evalua-965

tion consists of 7 questions:966

11Perez et al. (2021) show that performing cross-validation
or tuning via maximum description length over a small valida-
tion set does not significantly outperform random sampling of
these values.

SNLI (Bowman et al., 2015)

Premise: A person on a horse jumps over a broken
down airplane.
Hypothesis: A person is training his horse for a compe-
tition.
Label: neutral
Our Explanation: While it is possible that jumping a
horse over an obstacle is part of a training routine for
a competition, it is also possible that the horse ride is
being done for pleasure, not necessarily for a competion
(sp).
e-SNLI Explanation: the person is not necessarily
training his horse

Premise: Children smiling and waving at camera
Hypothesis: There are children present
Label: entailment
Our Explanation: Since the children are part of the
event of smiling at the camera, they are present at the
event under discussion.
e-SNLI Explanation: The children must be present to
see them smiling and waving.

CommonsenseQA (Talmor et al., 2019)

Question: A cat can’t talk, but a cat can what?
Answer choices: sleep all day, meow, shed fur, see
king, live many years
Our Explanation: A cat can meow as a way to vocal-
ize.
CoS-E Explanation: the cat is a small carnivorous
mammal
ECQA Explanation: A cat can meow but cannot see
the king. Meowing is how a cat communicates and
not by sleeping all day, shedding fur or by living many
years.

Question: "There are 10 apples on an apple tree. Three
fall off. Now there are X apples." What is this an exam-
ple of?
Answer choices: park, coloring book, garden center,
math problem, gravity
Our Explanation: A math problem is usually posed as
a question that requires some operation such as subtrac-
tion or addition to answer.
CoS-E Explanation: webmath is designed to help you
solve
ECQA Explanation: Math problem is an arithmetical
problem of addition, subtraction, multiplication or divi-
sion. So “There are 10 apples on an apple tree. Three
fall off. Now there are X apples.” is a math problem.
All the other options aren’t problems to be examples of
the given question.

Table 10: Examples of explanations used as prompts
from various sources, including our handwritten expla-
nations. Correct answers for CommonsenseQA are un-
derlined.

Part 1: Context-Independent Evaluation We 967

first assess the explanation in isolation, i.e., these 968

questions are presented to the user without reveal- 969

ing the question/context that the explanation is at- 970

tempting to address: 971

1. How factual is this statement? (generally false, 972
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sometimes or partially true, generally true, or973

need more information to judge). This question974

is designed to test both generality (can the expla-975

nation’s truthfulness be ascertained or is more in-976

formation needed?) and factuality, which aligns977

with “compatibility with receiver’s existing be-978

liefs” and that the best explanation is the “most979

likely” explanation from the receiver/user’s per-980

spective (Lombrozo, 2007; Zemla et al., 2017;981

Sulik et al., 2021). Generality is coded based982

on whether a truthfulness answer is selected983

(considered to be general) or whether the “need984

more information to judge” choice is selected985

(considered not to be general).986

2. Is this statement grammatical? (yes or no) This987

question is designed to test for clarity, aligning988

with characteristics such as coherence (Lei et al.,989

2016) and human-likeness and understandability990

(Ehsan et al., 2019).991

Part 2: Context-Dependent Evaluation We992

next show the user the question (premise and hy-993

pothesis for SNLI) and gold answer that the expla-994

nation was conditioned on. We then ask:995

1. Does the explanation provide new facts, infor-996

mation or reasoning not stated in the question997

and answer? (yes or no) In our preliminary998

experiments, we found some explanations sim-999

ply restate the question declaratively with the1000

answer filled in. This question addresses the dis-1001

tinction between “validity” and “utility” (Leake,1002

1991): an explanation can be valid (i.e., a restate-1003

ment of the question with the answer filled-in1004

might be correct), but not useful; utility is de-1005

fined by whether an explanation “satisfies an1006

explainer’s need for information”. And while1007

utility is best understood in the context of real-1008

world applications (Lai et al., 2020), we nonethe-1009

less aim to identify vacuous explanations that1010

do not provide new information.1011

2. Is the new information relevant to justifying the1012

answer? (yes or no) New information, if pro-1013

vided, “should be compatible with our existing1014

beliefs, and consistent with the evidence and1015

with itself” (Zemla et al., 2017). This ques-1016

tion is designed to test whether the information1017

provided supports the label. The specific inter-1018

pretation of “relevance” is purposefully left to1019

the annotator.121020

12This decision is inspired by prior work in psychology,
which finds that explanations are only good “to the extent
that people find [them] satisfying” (Gopnik, 1998; Sulik et al.,

3. How much information does the explanation 1021

have to justify the answer? (not enough, enough, 1022

or too much) This question is designed to test 1023

the extent to which the provided novel informa- 1024

tion is adequate or sufficient (Kim et al., 2016; 1025

Lei et al., 2016; Ehsan et al., 2019).13 1026

4. Is the explanation acceptable? (yes or no) The 1027

final question is designed to assess annotators’ 1028

overall judgement of the explanation as a whole. 1029

We only ask Question 2 if the answer to Question 1 1030

is “yes” and Question 3 if the answer to Question 1031

2 is yes, because they regard the new facts, infor- 1032

mation, or reasoning. We found that most prior 1033

work tends to lump added-value, relevance, and 1034

adequacy judgements into one “informativeness” 1035

judgement (Clinciu et al., 2021), which we felt was 1036

too course to allow for meaningful error analysis. 1037

B.3 Acceptability Interface Details 1038

Figures 8 and 9 show the binary acceptability in- 1039

terface used to collect training and test data for the 1040

overgeneration filter model. 1041

B.4 Quality Control and Payment 1042

We use Amazon Mechanical Turk (AMT), and cal- 1043

culate pay on a rate of $15/hour. Every few batches, 1044

we check to ensure that the median time taken per- 1045

annotator amounts to approximately this pay rate. 1046

While annotators do tend to speed up the more 1047

HITs we released, first-round median times were 1048

approximately 30 seconds per head-to-head evalu- 1049

ation HIT (thus paid at $0.12 each), 1 minute per 1050

absolute evaluation HIT (thus paid at $0.25 each), 1051

and 35-39 seconds per acceptability HIT (5 expla- 1052

nations; paid at $0.20 each). 1053

We require annotators to be located in either Aus- 1054

tralia, Canada, New Zealand, the United Kingdom, 1055

or the United States, as a proxy for English compe- 1056

tency.14 We require a past HIT approval rate of > 1057

98% and > 5000 HITs approved. We do not allow 1058

annotators to participate who were previously on a 1059

block list from our past AMT studies. 1060

2021).
13In practice, we do not find Turkers use the “too much

information” option often, except in the case of ECQA dataset
explanations. We included the option because succinctness is
an oft-cited explanatory virtue (Lombrozo, 2007; Zemla et al.,
2017; Chiyah Garcia et al., 2018).

14We realize this is a broad assumption and likely sub-
optimal. However, colleagues have found that broadening
the geographical requirements often still leads to >90% of
annotators in the US or Canada, due to AMT’s pay structure
being optimal in these countries.
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Annotators must complete a qualifying exam in1061

order to participate in the main annotation tasks.1062

The qualifying exam consists of 3 HITs in the same1063

format as the main absolute evaluation task for1064

CommonsenseQA We pay $2.25 for the qualify-1065

ing exam. There are 9-18 questions in total (3-61066

questions per HIT), some of which are only answer-1067

able conditioned on previous answers. A user who1068

answers “no” to question 3, for example, will not1069

be asked to answer questions 4 and 5. Given the1070

challenging and sometimes ambiguous nature of1071

some of the questions, for the first run of the quali-1072

fication exam, we manually awarded qualifications1073

by inspecting the annotators’ answers. Scores for1074

the first run compared to our answers (out of 171075

annotators attempting) ranged from 5 to 14 out of1076

18. The median accuracy was 11 out of 18, and we1077

find that awarding the qualification to those with1078

scores at or above the median aligns closely with1079

our manual inspection. We thus use this score to1080

assign qualifications in future iterations.1081

Because it is necessary that annotators under-1082

stand the task before they can evaluate explanation1083

quality (Wiegreffe and Marasović, 2021), for tasks1084

that are more difficult, i.e., NLI, we additionally1085

require annotators to pass (score of 7 or above) a1086

task-specific qualification exam with 8 questions,1087

paid at $1.25.1088

In order to track quality throughout evaluation,1089

we compute inter-annotator agreement using Krip-1090

pendorff’s α and use a hidden built-in Javascript1091

function to compute time per HIT spent. If any an-1092

notator completed the tasks in an unreasonably low1093

time, or removing their annotations substantially1094

improves Krippendorff’s α, we remove their anno-1095

tations and re-annotate their instances. We addition-1096

ally ensure that each experiment has a substantial1097

number of distinct crowdworkers to mitigate indi-1098

vidual annotator bias, reporting this as well as the1099

mean and median number of HITs completed by1100

each in Table 15.1101

B.5 Statistics1102

The number of distinct crowd annotators and the1103

median and mean number of HITs completed for1104

each experiment can be found in Table 15. More1105

detailed breakdowns of inter-annotator agreement1106

for some experiments are in Tables 13 and 14.1107

Dataset Split # Instances by Agreement Total
0/3 1/3 2/3 3/3

Com.QA Train 932 1078 1194 1296 4500
Dev 105 91 132 127 455
Test 298 227 328 397 1250

SNLI Train 2372 805 621 702 4500
Dev 272 87 65 76 500
Test 678 225 166 181 1250
Test2 666 234 179 171 1250

Table 11: Statistics of our acceptability annotations.

C 2/3 Acceptability Statistics 1108

When we treat explanations rated by at least 2/3 1109

annotators as “acceptable”, for CommonsenseQA, 1110

77.9% of greedy-decoded explanations are accept- 1111

able; for SNLI, 51.0%. 50.5% of sampled expla- 1112

nations are acceptable; for SNLI, 23.5%. Out of 1113

the set of 5 (1 greedy + 4 stochastic), 97.7% of 1114

CommonsenseQA instances have at least one ac- 1115

ceptable explanation, and 79.5% of SNLI. 1116

D Filter Model Details 1117

We split the 4,955 distinct annotated explana- 1118

tions for CommonsenseQA (5000 for SNLI) into 1119

a train/dev set of 4500/455 (4500/500 for SNLI), 1120

where all 5 explanations for a given instance are 1121

placed in the same set to avoid leakage. We 1122

present statistics on the label distribution in Ta- 1123

ble 11. Along with the metric settings reported in 1124

the paper (“select-1” and explanation-level), we 1125

computed a metric that is instance-level but con- 1126

siders all explanations by computing metrics over 1127

the 5 explanations of an instance and then averag- 1128

ing across instances, finding in practice that the 1129

results are highly similar to the explanation-level 1130

evaluation. 1131

We use Huggingface Datasets (Lhoest et al., 1132

2021) and Huggingface Transformers (Wolf et al., 1133

2020) for implementation. The T5-Large model is 1134

trained using a learning rate of 1E − 4 with linear 1135

decay, a batch size of 64, and default values for 1136

Adam (Kingma and Ba, 2015), gradient clipping, 1137

and dropout. We train for a maximum 200 epochs, 1138

performing early stopping on the validation loss 1139

with a patience of 10 epochs. 1140

For T0-3B, we train with a batch size of 50. We 1141

use AdaFactor (Shazeer and Stern, 2018) with a 1142

linear warmup of 500 steps. We conduct an initial 1143

hyperparameter sweep over learning rate, consid- 1144

ering 1E − 5, 5E − 05, 5E − 06. The learning 1145
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SNLI (Bowman et al., 2015)

Premise: There are two kilted men, one of them older
and is holding bagpipes with the other one with a drum.
Hypothesis: Two kiled (sp) men hold bagpipes
Label: contradiction
NLL-Predicted Explanation: The two kilted men are
not holding bagpipes, they are holding a bagpipe and a
drum.
Filter-Predicted Explanation: Just because there are
kilted men does not necessarily mean that they are hold-
ing bagpipes. This can be seen from the older kilted
man is holding the bagpipes rather than the kilder (sp)
one.

CommonsenseQA (Talmor et al., 2019)

Question: The hardcovers were especially tall, so he
removed a shelf on the what to make room?
Answer choices: hold alcohol, grocery store, bookcase,
nightstand, or chest of drawers
NLL-Predicted Explanation: Bookcases are tall, and
so if they are full of hardcover books, they might need
to be removed to make room for other things.
Filter-Predicted Explanation: People keep books on
bookshelves, and bookcases are very commonly used
to hold books. Since hardcover books can be pretty
tall, it takes up extra vertical space which would require
removal of an upper shelf of the bookcase.

Table 12: Randomly-selected instances that our filter
model predicted differently than NLL at the “select-1”
task, and got incorrect but NLL got correct.

rate that achieves the best validation loss for the1146

full-information model and the explanation-only1147

model is 1E − 5, which we use for all training1148

experiments. We format inputs to the model as1149

follows:1150

if explanation_only:1151
input_string = (f"explanation: {expl}.1152
Is this explanation good or bad?")1153

else:1154
input_string = (1155
"{question} answer: {gold_label}. "1156
"explanation: {expl}. "1157
Is this explanation good or bad?")1158

For CommonsenseQA, question, expl, and1159

gold_label are: the commonsense QA ques-1160

tion (with answer options omitted), the expla-1161

nation candidate from GPT-3, and the true an-1162

swer among the 5 options, respectively; for SNLI,1163

premise: ... hypothesis: ..., the ex-1164

planation candidate from GPT-3, and one of en-1165

tailment/contradiction/neutral, respectively.1166

E Additional Filter Results1167

In the main experiments, at evaluation time, we1168

labelled an explanation as acceptable if 3/3 anno-1169

tators agreed on it. Here, we report results if this1170

threshold is relaxed to 2/3. Overall, the results1171

Dataset Split Krippendorff’s α

CommonsenseQA Training + Validation 0.32
Test 0.40

SNLI Training + Validation 0.51
Test 0.50
Test2 0.47

Table 13: Inter-annotator agreement for acceptability
AMT studies.

are comparable: T0-3B outperforms the baselines 1172

according to both select-1 accuracy and AP (see 1173

Table 18 and Table 19). 1174
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AMT Study Dataset Generality Factuality Grammar New Info Supports Label Amount Info Acceptability Aggregate

GPT-3 Greedy Com.QA 0.37 0.32 -0.01 0.09 0.45 0.21 0.28 0.38
GPT-3 Greedy SNLI 0.25 0.57 0.39 -0.01 0.04 0.17 0.52 0.40
Dataset CoS-E 0.71 0.38 0.36 0.42 0.68 0.08 0.25 0.59
Dataset ECQA 0.01 0.21 0.30 0.00 0.03 0.25 0.04 0.20
Dataset e-SNLI 0.37 0.23 0.37 -0.14 -0.12 0.04 0.15 0.19
GPT-3 Filtered Com.QA 0.25 0.18 0.25 0.11 0.27 0.15 0.30 0.32
GPT-3 Filtered SNLI 0.41 0.19 0.07 0.17 0.08 0.13 0.50 0.33

Table 14: Inter-annotator agreement for absolute-comparison AMT studies, using Krippendorff’s α computed on
an interval scale from -1 to 1. The aggregate score is computed by treating the annotations along each attribute as
separate instances and computing agreement across the entire set.

AMT Study Task/Dataset # Annotators Median # HITs (Mean)

GPT-3 Greedy w/ Dataset Prompts vs. Dataset Com.QA/CoS-E 16 31.5 (46.9)
Com.QA/ECQA 13 35 (57.7)
e-SNLI 12 39 (62.5)

GPT-3 Greedy: Author-written vs. Dataset Prompts Com.QA/CoS-E 7 84 (107.1)
Com.QA/ECQA 13 49 (57.7)
e-SNLI 8 43.5 (93.8)

GPT-3 Greedy w/ Author-written Prompts vs. Dataset Com.QA/CoS-E 8 90 (93.8)
Com.QA/ECQA 17 27 (44.1)
e-SNLI 8 93 (93.8)

GPT-3 Greedy (Absolute) Com.QA 13 51 (57.7)
SNLI 12 14 (62.5)

Dataset (Absolute) CoS-E 14 58 (53.6)
ECQA 19 7 (39.5)
e-SNLI 13 16 (57.7)

Acceptability (Training and Validation Data) Com.QA (2973 HITs) 34 70 (87.4)
SNLI (3000 HITs) 14 128.5 (214.3)

Acceptability (Test Data) Com.QA 17 32 (44.1)
SNLI 11 26 (68.1)
SNLI (Test2) 7 65 (107.1)
CoS-E 13 48 (57.7)
ECQA 16 38.5 (46.9)
e-SNLI 9 60 (83.3)

GPT-3 Filtered (Absolute) Com.QA (468 HITs) 10 44.5 (46.8)
SNLI (273 HITs) 6 53 (45.5)

Table 15: Total # of annotators and mean # HITs completed per-annotator for each AMT study (out of 750 total #
HITs unless otherwise specified = 3 annotators for each of 250 test instances).

Set of Test Explanations Generality Factuality Grammar New Info Supports Label Amount Info Acceptability

GPT-3 Greedy for Com.QA 0.9± 0.4‡ 0.8± 0.4 (247)† 1.0± 0.1‡ 0.1± 0.6 0.5± 0.7 (217)‡ −0.1± 0.4 (186)‡ 0.5± 0.6‡
CoS-E −0.2± 0.9 0.5± 0.5 (131) −0.3± 0.7 0.1± 0.8 −0.3± 0.9 (190) −0.5± 0.5 (78) −0.9± 0.4

GPT-3 Greedy for Com.QA 0.9± 0.4∨ 0.8± 0.4‡ (247) 1.0± 0.1‡ 0.1± 0.6 0.5± 0.7 (217) −0.1± 0.4 (186) 0.5± 0.6‡
ECQA 0.8± 0.4 0.6± 0.4 (249) 0.1± 0.7 0.6± 0.5‡ 0.7± 0.5 (247)∧ 0.5± 0.5 (239)‡ 0.1± 0.6

GPT-3 Greedy for SNLI 0.7± 0.5∧ 0.7± 0.5 (246) 1.0± 0.2† 0.1± 0.6 −0.1± 0.6∗ −0.2± 0.4 (203) 0.0± 0.8
e-SNLI 0.6± 0.6 0.8± 0.4 (236) 0.9± 0.4 0.2± 0.5∨ 0.2± 0.5∗‡ −0.1± 0.4 (238)∧ 0.7± 0.4‡

Table 16: Statistics from the graphs plotted in Figure 2. Mean ± standard error presented; numbers in parenthesis
indicate the number of datapoints, if not 250. ∗For SNLI, we modified the evaluation framework such that “Sup-
ports Label” was always answered instead of being conditioned on “New Info”. Statistical significance results
using a one-sided Wilcoxon signed-rank test at p-values of ‡ = 0.00001, † = 0.0001, ∨ = 0.01, ∧ = 0.1 indicates
that the median difference between the marked score distribution and the unmarked score distribution is greater
than 0.
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Set of Test Explanations Generality Factuality Grammar New Info Supports Label Amount Info Acceptability

GPT-3 Greedy for Com.QA 0.9± 0.4 (156) 0.8± 0.4 (153)∨ 1.0± 0.1 (156)‡ 0.1± 0.6 (156) 0.5± 0.7 (135) −0.1± 0.5 (117) 0.3± 0.7 (156)
GPT-3 Filtered for Com.QA 0.9± 0.3 (156)∧ 0.7± 0.3 (155) 0.8± 0.4 (156) 0.7± 0.4 (156)‡ 0.9± 0.4 (154)‡ 0.2± 0.3 (152)‡ 0.6± 0.6 (156)∨

GPT-3 Greedy for SNLI 0.8± 0.4 (91) 0.6± 0.6 (91) 0.9± 0.3 (91)‡ 0.0± 0.6 (91) −0.2± 0.6∗ (91) −0.2± 0.5 (66) −0.5± 0.7 (91)
GPT-3 Filtered for SNLI 0.8± 0.5 (91) 0.7± 0.4 (88) 0.7± 0.4 (91) 0.5± 0.6 (91)‡ 0.5± 0.5∗ (91)‡ 0.0± 0.3 (89)† 0.1± 0.8 (91)‡

Table 17: Statistics from the graphs plotted in Figure 3. See the caption of Table 16 for further details.

“Select-1” Acc@2/3 Explanation-level AP@2/3

↓Model/Split→ Dev Test Dev Test

Random 57.30.4 57.90.4 56.20.5 58.00.9
Constant — — 56.9 58.0
NLL 79.1 79.6 77.5 75.0

T0-3B Expl.-only 77.13.5 75.81.2 75.62.0 77.31.4

T0-3B 86.60.9 85.80.7 85.60.5 87.00.8

Oracle Upper-Bound 97.8 97.6 100.0 100.0

Table 18: Results for acceptability classifiers trained on CommonsenseQA, with “acceptability" defined as: “at
least 2/3 annotators labelled as acceptable." Subscripts indicate standard error over models trained with 5 different
random seeds.

“Select-1” Acc@2/3 Explanation-level AP@2/3

↓Model/Split→ Dev Test Test2 Dev Test Test2

Random 28.20.5 27.80.2 28.00.1 28.10.9 27.60.3 28.30.6
Constant — — — 28.2 27.8 28.0
NLL 51.0 51.2 50.4 47.7 47.5 46.1

T0-3B Expl.-only 47.01.0 50.52.1 50.62.8 48.91.4 45.21.5 44.92.1

T0-3B 57.81.9 60.31.5 59.22.3 66.73.3 64.73.3 67.13.6

Oracle Upper-Bound 76.0 81.2 77.6 100.0 100.0 100.0

Table 19: Results for acceptability classifiers trained on SNLI with “acceptability" defined as: “at least 2/3 an-
notators labelled as acceptable." Subscripts indicate standard error over models trained with 5 different random
seeds.

19



Figure 4: An overview of the user interface of our head-to-head comparison AMT studies for CommonsenseQA.
The top shows the instructions and the bottom the actual task. The Examples tab is collapsed here; shown in full
in Figure 5.
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Figure 5: The Examples tab given in the user interface of our head-to-head comparison AMT studies for Common-
senseQA. The full interface is shown in Figure 4.
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Figure 6: An overview of the user interface template of our absolute comparison AMT studies for Common-
senseQA. The top shows the instructions and the bottom the actual task. Only part 1 of the task is shown here (part
2 appears once part 1 is submitted). The Main Example and More Examples tabs illustrating both parts 1 and 2 are
collapsed here; see Figure 7.
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Figure 7: The Main Example given in the user interface template of our absolute comparison AMT studies for
CommonsenseQA. This format follows the actual task layout. The full interface is shown in Figure 6.
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Figure 8: An overview of the user interface of our explanation acceptability AMT studies for CommonsenseQA.
The top shows the instructions and the bottom the actual task. The "examples" tab is collapsed here; shown in full
in Figure 9.
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Figure 9: The examples given in the user interface of our explanation acceptability AMT studies for Common-
senseQA. The full interface is shown in Figure 8.
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