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ABSTRACT

Instead of learning from scratch, fine-tuning a pre-trained model to fit a related
target dataset of interest or downstream tasks has been a handy trick to achieve
the desired performance. However, according to the study of Song et al. (2017),
standard fine-tuning may expose the information about target data if the pre-trained
model is supplied by a malicious provider. Instead of reckoning that data holders
are always expert to select reliable models and execute fine-tuning themselves,
this paper confronts this problem by exploring a new learning paradigm named
Fine-Tuning from limited FeedBacks (FTFB). The appealing trait of FTFB is that
the model tuning does not require directly seeing the target data but leveraging
the model performances as feedbacks instead. To learn from query-feedback, we
propose to fine-tune the pre-trained model on the parameter distribution with the
gradient descent scheme. For the deep models whose tuning parameters distribute
across multiple layers, a more query-efficient algorithm is further designed which
refines the model layer by layer sequentially with importance weight. Extensive
experiments on various tasks demonstrate that the proposed algorithms significantly
improve the pre-trained model with limited feedbacks only. For downstream tasks
which adopt inconsistent evaluation measurement with pre-training, such as fairness
or fault-intolerance, we verify our algorithms can also reach good performance.

1 INTRODUCTION

Fine-tuning has emerged as a powerful and widely used technique to learning tasks with insufficient
labelled data (Donahue et al., 2014; Devlin et al., 2019; Chen et al., 2020b; Shachaf et al., 2021).
Typically, a model pre-trained on a source task can be further used to tune on related downstream
tasks where relatively fewer samples are available. Thus, compared with training from scratch, this
simple practice does not need huge efforts but still produces satisfactory generalization models.

In this paper, we emphasize that although numerous pre-trained machine learning models are available
in recent years, they are not always trusted to deploy on target data for fine-tuning. One important
observation is that an intentionally back-door model can extract much data via various secret intrigues
if the model is assumed to be accessible after fine-tuning (Song et al., 2017). For example, target data
could be encoded in the least significant (lower) bits of the deep model parameters (white-box) or the
label vector of augmented data (black-box). In such cases, data holders who are not machine learning
experts but care about data privacy during tuning are easily deceived.

In practice, non-expert data holders may not adjust model parameters themselves, which comes to
a more general scenario as follows. Alice is a data holder who wants to obtain a predictive model
for her sensitive dataset. Bob possesses a model established based on a collection of public data.
Since Alice is neither able to develop a model herself nor inclined to share the data, she would like
Bob to adapt his model to her dataset under some mutually agreed protocols. For instance, Bob is
an ML service provider and Alice is a client. Even Bob is a potential attacker who wants to extract
Alice’s data, he still manages to tune his model to meet Alice’s need as he gets paid. We note that
this general two-party scenario absorbs the aforementioned special case where data holders execute
tuning process themselves given a suspicious pre-trained model.

One can see that the above data extraction happening in fine-tuning is related to the response of
the model. In this perspective, although often studied in a one-to-many context such as distributed
learning or federated learning (Popov et al., 2018; Jang et al., 2020), barely returning model gradients
over target data to do tuning seems to be a workaround. Unfortunately, gradients still carries much
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information which suffer data recovering risk (Zhu et al., 2019; Yin et al., 2021) even if there is not
an attacker intentionally causing back-doors. But this inspires us to rethink what is a good protocol?
The model response should be informative for tuning while not leaking the target data.

Query opens a window for users to visit the preserved information. To enable Bob to fine-tune
the model on his side and simultaneously guarantee that Alice’s data is least leaked, we propose
the setting of Fine-Tuning with limited FeedBacks (FTFB). Specifically, every time Bob submits a
candidate model to Alice as a query, Alice runs it on her dataset and returns the according performance
to Bob. This query-feedback procedure is not terminated until the satisfactory model performance is
achieved or the maximum query number is reached. We notice that some recent research (Turner et al.,
2021) tunes hyperparameter in a similar setting, but their goal is to fit both training and validation set
and they cannot directly apply to the optimization for thousands of parameters either.

We focus on how to deal with this restricted setting. In FTFB, we aim to leverage the query-feedback
information to fine-tune the pre-trained model so that it will gradually approach the desired unknown
model on Alice’s data. Our main idea is to characterize the geometry of model performance w.r.t.
model parameters and utilize the estimated gradient information to search for the better models. For
modern deep neural networks whose key parameters distribute on different layers, we introduce the
thought of sequentially layerwise tuning and importance weighting, which turns out dramatically
saving the query budget.

Our contributions

• Motivated by remedying data extraction problem in fine-tuning, we introduce the setting of Fine-
Tuning with limited FeedBacks (FTFB) which leverages limited historical model performances
as feedbacks to update pre-trained model. By limiting the length of performance score and query
number, we derive that this setting is flexibly controlled for information leakage about target data.

• To produce good generalization models for a tight query budget, we tailor-design the optimization
algorithm called Performance-guided Parameter Search (PPS) which fine-tunes the pre-trained
model via estimated gradients. Regarding tuning deep neural neural networks, Layerwise Coordi-
nate Parameter Search (LCPS) is further presented towards the query-efficiency goal.

• Besides experimentally justifying the proposed FTFB setting on different datasets including tabular
data, text and images, we verify the performance of our algorithms on different target tasks. In
particular, on image classification task, our method that only uses limited feedbacks even rival the
recent work (Wang et al., 2020) that accesses entire features of target data.
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Figure 1: (a) Learning settings comparison which differ by what
kind of information about target data is accessible. (b) Algorithm
sensitivity in terms of the precision of feedbacks

Generalizing a pre-trained model
to the target task motivates
the model fine-tuning setting.
Fig. 1(a) compares FTFB with
three most related learning set-
tings from the aspect of what
kind of target data information
is accessible for model tuning.
If the target data is labelled,
this literally comes to a super-
vised learning paradigm, i.e.,
the well-known fine-tuning tech-
nique (Donahue et al., 2014). As
source data typically does not in-
volve in tuning stage, fine-tuning
is viewed related to the setting of source-free Unsupervised Domain Adaptation (UDA) (Sahoo et al.,
2020; Li et al., 2020a; Liang et al., 2020; Wang et al., 2020). As all these works do not consider
data privacy, target data would be easily extracted by back-doors model even tuning process is not
observed by model provider (Song et al., 2017). Federated Learning (FL) (Shokri & Shmatikov,
2015) allows global model to fit local data by asking the derived gradients instead of uploading data
externally. This thought is therefore used to fine-tune the general model to user private data (Popov
et al., 2018). Although studied in a one-to-many sense, this setting seems as a workaround for our
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challenge. Unfortunately, data extraction can benefit from high-dimensional gradients, and the clean
gradients promote the gradient inversion technique (Yin et al., 2021) as well. Notably, the proposed
FTFB neither accesses target data features nor the corresponding labels; it instead only requires
limited evaluation performances of candidate models as feedbacks, such as test error or accuracy.

Although model performances are less informative compared with gradients, they can still be used
to intentionally encode some secrets about target data. However, we are able to avert this kind
information leakage by controlling the number of SGs (Significant Figures) for model evaluation
results. To confirm this thought we take classification accuracy as an example, and run our proposed
algorithm PPS (introduced in Section 3) by setting the number of SGs for accuracy from 2 to 5. The
experimental results are shown as Fig. 1(b) which suggests that 2-SG accuracy tends to collapse
during the tuning and 3-SG accuracy (e.g., 84.2%) is sufficient for model tuning. In other words,
model providers use 2-SG accuracy for tuning and leave the lowest one SG for secretes encoding will
fail in this task.

3 PROPOSED METHOD

Now we (Bob’s role) figure out how to utilize query-feedback information to fine-tune a given
pre-trained model under the setting of FTFB. The pre-trained model is denoted by FΘ0 which is
parameterized with Θ0. The optimization objective of pre-training is any feasible function which
could be agnostic to data holder. Let E(·) denote the evaluation function which measures the
classification performance on target data. To adapt the pre-trained model Θ0 to target data D, we
need to solve the following problem

Θ∗ = arg min
Θ

E(D; Θ) = arg min
∆

1

|D|
∑

(xi,yi)∈D

I(F (xi; Θ0 + ∆) 6= yi), (1)

where I(·) is the sign function, and ∆ represents the difference between the pre-trained model FΘ0

and the potential optimal model FΘ∗ . In this sense, ∆ is expected to compensate for the actual
discrepancy between source and target. If D is accessible, the standard fine-tuning is adopted to
optimize the problem (1) by first differentiating the sign function and then tuning the model with
the end-to-end back-propagation. In the proposed FTFB, however, D is merely visited by queries,
making the model evaluation isolated from the tuning process. But we still have chance to approach
the optimal model FΘ∗ by crafting promising updated models. For example, a simple and direct
strategy is to exhaustively vary model parameters and select the best one according to feedbacks.
This method is however impractical when we do not have any prior about the target data and thus the
query number in this case will be too large to tolerate.

Denoting the query number by q and the computation cost of each forward pass by m, we point
out the reasons for only limited feedbacks are three folds. (1) minimize the communication cost
q(|Θ|+ 1), (2) reduce the inference computation qm, (3) prevent unexpected data leakage. Note that
in the fine-tuning task, model parameters carry sufficient information to be queries, so we do not
need to upload the entire model (See Fig. 1(a)). The former two reasons are quite straightforward,
which is also referred in distributed learning work (Popov et al., 2018). As we have presented that
3-SG performance values cannot provide much space for data extraction in Fig. 1(b), other types of
information leakage are supposed to be small by again limiting the query number. A more concrete
example is discussed in Section 6.

According to Nesterov & Spokoiny (2017), the desired query number q is supposed to be positively
correlated with the dimension of model parameters |Θ|. In real applications (Sun et al., 2019; Liang
et al., 2020; Wang et al., 2020), only a small proportion of model parameters, i.e., θ ⊆ Θ, are typically
tuned. The query number q is thus acceptable especially when |θ| � |Θ| holds (Wang et al., 2020).
For convenience, the tuned parameters θ are dubbed as “key parameters” used in the rest of the paper.

3.1 PERFORMANCE-GUIDED PARAMETER SEARCH

In a general FTFB setting, the specific form of evaluation function E′(·) could be agnostic to model
provider, but it is still required to know whether the minimized or maximized feedback score is
preferred (Refer to the experiments in Section 6). Although problem (1) cannot be optimized with an
end-to-end manner, we realise that data holder, i.e., Alice, executes an evaluation function E′(·) in
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a similar way to the computation of the loss term in Eq. (1). That means the feedbacks imply the
information about both the target data D and evaluation function E′(·).

Our main idea is continuously exploring the promising direction from a collection of query-feedback
pairs to update key parameters θ under the gradient descent scheme. Inspired by black-box opti-
mization (Audet & Hare, 2017), our work focus on tuning model parameters. Concretely, taking
advantages of the reparameterization trick in Natural Evolution Strategies (NES) (Wierstra et al.,
2014), we propose to treat key parameters θ as a random variable and search for the optimal value by
characterizing its distribution. Let ω denote the parameters of density π(θ|ω). Suppose we are told
that the minimized evaluation function E′(·) is preferred. Instead of directly minimizing its value,
we minimize its expectation under the search distribution, i.e., density π(θ|ω),

J(ω) = Eπ(θ|ω)[E
′(D; θ)] =

∫
E′(D; θ)π(θ|ω) dθ. (2)

Note θ is a random variable and Eq. (2) is a function w.r.t. ω. Minimizing Eq. (2) derives the gradient:

∇ωJ(ω) = Eπ(θ|ω)[E
′(D; θ)∇ω log π(θ|ω)] ' 1

b

b∑
i=1

E′(D; θi)∇ω log π(θi|ω) (3)

The left-hand equation uses the so called ’log-likelihood trick’ which enables the gradient decoupled
from the evaluation function E′(·). The right-hand expression is attained by using the sampled
θ1, ..., θb to estimate the gradient of density parameter ω.

In a manner similar to NES, π(·) is instanced by Gaussian distribution for closed-form deriva-
tion. By using the reparameterization trick, we sample the query model for the first round
and update around the current model θ0, i.e., θ1 = θ0 + σδ, where σ is the variance and
δ ∼ N (0, I). To reduce sampling variance, we adopt antithetic sampling (Geweke, 1988)
which is demonstrated to stabilize the update. That is, we always sample a pair of Gaussian
noises δj and δb−j+1 = −δj , generating a population of b perturbations totally. As a result,
gradient estimation with these points yields the following stochastic gradient descent update,

Algorithm 1 Performance-guided Parameter
Search (PPS)

Input: variance σ, query budget q, batch size b
1: for t = 0, ..., bq/bc do
2: Sample {δj}b/2j=1 ∼ N (0, I), and for each j

get δb−j+1 = −δj
3: Generate candidate models {θi}bi as queries

where θi = θt + σδi
4: Collect feedbacks {E′(D; θi)}bi=1
5: Update θt+1 by Eq. (4)
6: end for

Output: θbq/bc+1

source 0
source 1
target 0
target 1

(a) Pre-training (b) FTFB on target

Figure 2: Example of FTFB optimized by PPS.

θt+1 ← θt − η

σb

b∑
i=1

δiE
′(D; θt + σδi) (4)

Eq. (4) presents a first-order optimization
method in which E′(D; θt + σδi) is a scalar.
The high order information could be taken into
consideration for obtaining more precise gradi-
ent if |θ| is not large, which is left to our future
work. Alg. 1 summarizes this procedure, called
Performance-guided Parameters Search (PPS).
Particularly, to reduce the impact of the scale
of model performance, in practice we normalize
the feedbacks before using them, following the
strategy of Li et al. (2019).

We present a toy example to verify the algorithm
PPS. A 3-MLP network is firstly pre-trained on
source data (two Gaussians with the variance
of [0.7, 0.7]) and is then fine-tuned on target
data (another two Gaussians with the variance
of [0.1, 1.5]) with model test error as feedback.
Fig. 8(d) presents that the classifier is able to cor-
rectly classify two classes of source data after
pre-training, but fails on target data. By em-
pirically setting the last layer network as key
parameters, we fine-tune the pre-trained classifier following the steps of Alg. 1, where only a half
of randomly selected target data are used to evaluate the query models. Given a query budget as
400, Fig. 8(b) shows that the pre-trained classifier finally adapts to the target data successfully. As
most model parameters are frozen during fine-tuning, we observe that the tuned model eventually
maintains a good classification performance on source task as well.
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3.2 LAYERWISE COORDINATE PARAMETER SEARCH

In many applications, θ often consist of parameters distributed on different layers of deep neural
networks. For example, one can narrow the domain discrepancy by adjusting the batch normalization
layers (Li et al., 2016; Wang et al., 2020). Without loss of generality, we decompose key parameters
layerwise, i.e., θ = {θ1, θ2, ..., θK}, where θk(1 ≤ k ≤ K) represents the k-th layer parameters.
Obviously, treating θ as an entirety to do sampling ignores the intrinsic connections among the
chained parameters; parameters on later layers cannot immediately capture the change happening
in the former layers in each round gradient estimation. As a result, the model converge slowly and
cannot get good performance with given a tight query budget.

Based on the above observation, we tune key parameters θ more naturally, following the thought
of greedy search. Specifically, every time we only focus on updating a single layer’s parameters θk
while freezing the remaining parameters, i.e., θ− {θk}. This is similar to sequentially training neural
networks (Belilovsky et al., 2019). However, they try to scale to accessible large dataset training
while we are targeting the query-efficient tuning. Furthermore, recent works (Kirkpatrick et al., 2017;
Li et al., 2020b) claim that different layers should have different levels of impact, which inspires us
to assign more query budget to important layers. Technically, we define the sampling probability of
k-th layer in the form of

pk =
eαk∑K
i=1 e

αi

, (5)

where αk denotes the importance of the k-th layer. Instead of applying the static weight, we follow
the idea of Exp3 algorithm in multi-arm bandit (Seldin et al., 2013) and propose a new adaptive
update rule for the layer importance: by first treating the average improvement in each step as the
immediate reward and maximizing the cumulative reward, i.e., total improvement,

αt+1
k = αtk + β(Ē′

t+1
k (D; θ)− Ē′t+1

k−1(D; θ)), (6)

Algorithm 2 Layerwise Coordinate Parameter Search
(LCPS)
Input: Pre-trained model θ, query budget q, learning rates

η, β, batch size b, variance σ, unit queries u
1: for t = 0, ..., bq/bc do
2: for k = 1, ...,K do
3: Update θ

t+ 1
2

k with u queries by Eq. (4)
4: Compute It+1

k = Ē′
t+1
k (D; θ)− Ē′t+1

k−1(D; θ)
5: end for
6: αt+1

k ← αt
k + βIt+1

k # Eq. (6)
7: Compute pt by Eq. (5)
8: for j = 1, ..., b(b−Ku)/uc do
9: Sample a layer k with ptk

10: Update θt+1
k with u queries by Eq. (4)

11: end for
12: end for
Output: θbq/bc+1

where Ē′t+1
k (D; θ) denotes the average func-

tion value over the queries of k-th layer at
round t + 1. It turns out achieving small
cumulative regret as claimed by Exp3 algo-
rithm. To obtain the sampling probability, we
keep a unit execution for every layer, where
u1 quires are consumed. The complete algo-
rithm, named Layerwise Coordinate Param-
eter Search (LCPS), is formally summarized
into Alg. 2. We clarify three points about this
algorithm. (1) For clearer statement, we in-
troduce the auxiliary variable It+1

k to denote
the immediate reward for (t + 1)-th itera-
tion (Step 4). (2) For each outer iteration,
θk is at least updated once, denoted by θt+

1
2

k
(Step 3). (3) In practice, we recycle the re-
maining queries if they are not run out during
the reassignment (Step 8-11).

4 EXPERIMENT

4.1 DATASETS AND EXPERIMENTAL SETUP

The datasets in our experiments are organized as follows. The first two datasets UCI-Adult (Kohavi,
1996) and Review (McAuley & Leskovec, 2013) are used following the work (Chen et al., 2020a)
which studies privacy leakage in deep transfer learning. The corrupted CIFAR-10 (Hendrycks &
Dietterich, 2019) is employed following the source-free UDA work (Wang et al., 2020).

1As the number of parameters in different layers varies, u is not identical for different layers in practice. We
use the same u for the convenient statement here.
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Adult Census Income dataset comes from the UC Irvine repository which has 14 properties such
as country, age, work-class,education, etc. We use the records with country of “U.S" to pre-train a
binary classifier and use “non-U.S" records as unobserved target data. Review dataset is constructed
from Amazon review data with two categories of products selected, i.e., “Electronics" and “Watches".
In our setting, the data-rich category “Electronics" is used to pre-train a prediction model which
maps user comments to the rate score ranging from one to five, and “Watches" is treated as the target
data. CIFAR-10-C is original developed to benchmark the model robustness and different types of
corruption have been included. We use these corrupted images to mimic the inaccessible target data
which has an unexpected distribution shift with the clean source data.

Throughout all above datasets, the target data are equally split into two parts. One is support set that
is used for evaluating the query model during fine-tuning process, and the other is holdout set on
which the model generalization is assessed.

Implementation Details. Specifically, we apply 3-MLP for UCI-Adult with the penultimate layer
of 80 nodes. Following the thought of Kristiadi et al. (2020), we simply perturb the weights of
the last layer which exactly contains 80 parameters for binary classification. Regarding the score
prediction on Amazon reviews, our implementation is based on the torchtext library, in which the
first layer is a mapping from the vocabulary to a latent representation, followed by three convolutional
layers and a linear transformation to label space. The weights of the first layer are treated as the
key parameters because they are found to contribute more to the task compared with other layers
(This hindsight option is indeed attained by the experimental findings shown as Appendix B.2). For
corrupted CIFAR-10 we use residual networks (He et al., 2016) with 26 layers which is implemented
by pycls library (Radosavovic et al., 2019). Following Wang et al. (2020), we modulate features on
target data by estimating normalization statistics and update transformation parameters channel-wise.
It turns out the tuned parameters make up less than 1% of the whole model.

4.2 SETTING JUSTIFICATION

We experimentally justify the proposed FTFB setting by conducting our algorithms on different tasks.
Besides the naive baseline of directly deploying the pre-trained model on target data (dubbed as ‘INI’
for ‘initial’) and standard fine-tuning (dubbed as ’OPT’ for ‘optimal’), we include Random Search
(RS) strategy (Bergstra & Bengio, 2012) as another compared method (refer to Appendix B.5 for
details of RS).

Income classification. We apply Alg. 1 to the Adult dataset with the query budget q = 1K. Fig. 3(a)
shows the classification performance on support set and holdout set, respectively. We observe that
PPS significantly improves the performance of INI and approaches the OPT at q = 1K. RS only
shows a subtle improvement to pre-trained model and thus not query-efficient in this task.

Rate prediction. Alg. 1 is also run on Amazon where different vocabularies are available. If a good
vocabulary is carefully selected (Fig. 3(b)), the improvement space w.r.t. pre-trained model is quite
limited. The accuracy implemented by PPS only increases 1.3% and 0.4% on support set and holdout
set respectively, even 1K queries are consumed. By contrast, if no good vocabulary is applied shown
as Fig. 3(c), we observe that PPS rapidly boosts the pre-trained model within a smaller number of
queries. Again, PPS is superior to RS by around 5% when q = 200. However, PPS converges after
200 queries which has a big gap with OPT’s performance. This failure case implies that PPS cannot
escape from a local optimum in this task.

Corrupted image classification. We run Alg. 2 on CIFAR-10-C with the query number of 1K to
tune normalization layers. In this group of experiments, more baselines are included, such as test-time
Batch Normalization (BN) (Ioffe & Szegedy, 2015), and test-time adaptation work Tent (Wang et al.,
2020). Fig. 4(a) presents the average errors of tuning and testing performance for different methods.
Generally, OPT obtains the best performance by using support data for end-to-end tuning. Given
q = 1K, the average error of LCPS is observed better than Tent which accesses entire features
of the support set. Let us have a close look to the specific results over each type of corruption in
Fig. 4(b). It is observed that Tent updates towards a wrong direction on some particular corruptions,
such as ‘motion’ and ‘bright’, making even worse performance compared with BN. However, this
performance drop does not happen to ours as LCPS implicitly learns from true label information.
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# Query 200 300 RS OPT

Support 56.7 56.8 51.5 61.5
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Figure 3: Performance comparison on (a) Adult and (b-c) Amazon. Note that ’good INI’ and ’bad
INI’ correspond to the different selections of vocabulary.

Method Support set Holdout set

INI 40.8 41.1
BN 17.2 17.3
RS (q = 3K) 16.7 17.0
PPS (q = 3K) 15.1 15.5
LCPS (q = 1K) 13.8 13.9
Tent (access X) 14.4 14.8
OPT (access X,Y ) 8.5 8.8

(a) Average error (%) over 15 types of corruptions,
where RS, PPS, LCPS and Tent are implemented

based on test-time BN.
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Figure 4: (a) Comparison of different model adaptation methods on CIFAR-10-C dataset for the
highest severity. (b) Performance of LCPS and Tent on CIFAR-10-C in terms of various corruptions.

Overall, the above experiments justify that our proposed setting of FTFB can be implemented by
algorithms PPS and LCPS, which forges a cornerstone for this new fine-tuning setting.

4.3 BEYOND STANDARD ACCURACY
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Figure 5: Discrimination level reduction for
model fairness tuning.

The evaluation function E′(·) on target data may
be different from that during pre-training. In this
subsection, we study downstream tasks which post
extra requirements about fairness or fault-intolerance.

Fairness. The Adult dataset contains sensitive at-
tributes, e.g., gender and country, and is often used
for model fairness (Zafar et al., 2017) assessment.
In this experiment, demographic parity is adopted
as the fairness metric. Suppose data holder aims to
obtain a classifier which is expected to be unbiased
on gender z (z = 1 denotes male and z = 0 is for fe-
male) for a higher salary (> $5k annual year), and the
corresponding discrimination level of demographic
parity is then defined by Γ(D; θ) = |P (Fθ = 1|z =
1)− P (Fθ = 1|z = 0)|. In this case, the data holder returns a 2D tuple with one entry for accuracy
and the other for discrimination level, i.e., (E′,Γ). As two metrics compete with each other, we
alternatively update their respective gradient as Alg. 3 in Appendix B.6.

Fig. 5 shows the results of 100 executions of PPS under the above setting. Every star and point denotes
the converged model on support set and holdout set respectively. The lower-right is preferred. At the
first sight, model performance on support set and holdout set are approximately equally distributed,
implying the good model generalization of our method. It is also observed that the pre-trained model
reaches the discrimination level of 0.20, which is dramatically reduced to a low level (< 0.05) by PPS.
The points falling in the green region refer to the models which achieve considerable improvement
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over the pre-trained model in terms of both classification accuracy and model fairness, making up
about 90% of the whole set.

Fault-intolerance. For fault-intolerance problems such as medical diagnosis, top-K metric rather
than single output prediction is required for producing lower error. We take multi-class classification
task over CIFAR-10-C as an example. Suppose that data holder expects a lower classification error
on top-5 predictions. In experiment, we replace the standard error with the top-5 error, and report the
results on two corruption types, i.e., Gaussian and Impulse noise.
Table 1: Evaluation error (%) with top-1 and top-5 metric for FTFB on two types of corruptions
(Gaussian and Impulse noises) over CIFAR-10-C.

Corruptions Gaussian Impulse
Top-1 Top-5 Top-1 Top-5

Evaluation error Top-1 20.0± 0.13 1.9± 0.03 25.9± 0.09 3.1± 0.05
Top-5 21.5± 0.18 1.7± 0.04 30.5± 0.14 2.9± 0.03

Table 1 exhibits the errors of tuning with top-1 and top-5 evaluation functions respectively. The
results show that : 1) Although top-1 evaluation has already achieved small error on top-5 metric, this
error could be further reduced by the the proposed LCPS when top-5 is directly used as the evaluation
metric under the FTFB setting. 2) However, it is with the sacrifice of other metric. Notably, for
impulse noise corruption, the error decreases by 0.2 on top-5 but its top-1 error increase by 4.6%.

The applied fairness metric is a group level measure which is hard to optimize for standard sample-
wise loss. Top-K error is non-differentiable which is implemented by extra operation like truncation.
That means they both need extra consideration in standard fine-tuning task, but could be fully
innocently used in our setting.

4.4 ABLATION STUDY

We empirically verify the three important factors that may have impact on the results, and leave the
discussion about other parameters to Appendix B.4.

Batch size. We vary the batch size of the Adult dataset from 2 to 80 and collect the accuracy in
Fig. 6(a). In terms of the support set, the optimal performance reaches when the batch size is 10. In
terms of the holdout set, it achieves its optima with the batch size ranging from 8 to 20, which is
consistent with the suggested setting of 4 + b3 log dc (d is the dimension) in Wierstra et al. (2014). It
is important to confirm this point as proper batch size saves query budget.

Support set. We explore the effects of the size of support set by varying its ratio from 10% to 90%
on Adult target data, and theirs results are shown as Fig. 6(b). As the size of support set increases, it
becomes harder to fit all the supported samples given the query budget, but model generalization, i.e.,
the accuracy on holdset set, improves gradually. Additionally, we can see smaller size of the support
set leads to larger variance. In particular, when more than 50% of full support data (> 1000 samples)
is used, the model generalization becomes steady with a slight fluctuation only.

Layer importance. To confirm the contribution of layer importance, we run our LCPS on CIFAR-
10-C in terms of Gaussian noise corruption. Fig. 6(c) displays the results of LCPS with and without
layer importance. We notice that LCPS with layer weights requires fewer queries, i.e., converges
faster, than LCPS without layer weights, showing a valuable property for the limited queries cases.

5 RELATED WORK

Data privacy. Preventing adversarial inference of the data information during learning motivates our
proposed setting. Recent study (Song et al., 2017) shows that the training data can be remembered
by the deep model no matter it is accessed in a form of white-box or black-box. This alarms us
that standard fine-tuning would expose data in a similar way if it was used by an attacker. Other
work studies data privacy from different perspectives including cryptography (Chaum et al., 1988),
differential privacy (Dwork et al., 2006), membership inference (Chen et al., 2020a), and federated
learning (Shokri & Shmatikov, 2015). We focus on data extraction attack in this work, and leave
other privacy concerns to future study.
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Figure 6: Ablation study on three factors: batch size, support size, and layer importance (K queries).

Transfer learning. Our FTFB setting conceptually falls in transfer learning (Bengio, 2012) field
from the learning paradigm as our goal is also transferring model for emerging test data. Domain
adaptation (Quiñonero-Candela et al., 2009; Ganin & Lempitsky, 2015; Tzeng et al., 2015; Long
et al., 2015), one of its trending subtopic, utilizes labelled source data to assist the learning of
unlabelled target data, typically with a transductive learning manner. Recent works (Chidlovskii et al.,
2016; Wang et al., 2020; Liang et al., 2020; Li et al., 2020a) further propose the setting of test-time
adaptation which study how to adapt a pre-trained model to the test data free of source data, training
loss, or even target labels. Our work is closely related to this thought, but they assume that test data
features are at least observed, which does not satisfy the privacy need in our problem.

Black-box optimization: The technique we use to solve FTFB problem stems from the idea of black-
box optimization. In black-box optimization, Bayesian optimization and derivative-free methods are
widely used in hyper-parameter tuning (Turner et al., 2021) and black-box adversarial attacks (Ilyas
et al., 2018). Our algorithms belong to the (gradient approximation) derivative-free regime. Directly
applying derivative-free method (e.g., CMA-ES (Hansen, 2006)) in our application is not sample
efficiency due to the high-dimensional nature of parameters in deep networks. Instead of treating the
parameters of deep neural networks as a standard black-box optimization problem, we investigate the
the layer-wise structure of the parameters. Our LCPS algorithm is applicable to the model parameters
which are of higher dimension and even chained together.

6 DISCUSSION

Summary. This paper presents a pioneer work of studying how to fine-tune a pre-trained model with
only limited feedbacks to reduce the risk of data extraction proposed by Song et al. (2017). In this
restrictive setting, data holders accept candidate models as queries and return the model performances
as feedbacks. Compared with other related fine-tuning settings such as source-free UDA or FL,
one can sense that the core thought of this setting is to preserve data privacy with the extra cost
of communications between data holder and model provider. Therefore, to save the query budget,
we do fine-tuning by characterizing the geometry of the objective w.r.t model parameters, which is
inspired by black-box optimization technique. For more general cases where tuning parameters are
high-dimensional and distributed across different layers of neural networks, we further propose a
layerwise coordinate descent algorithm for practical usage. Extensive experimental results justify our
setting and also show some potential applications, such as fair learning on private data, learning with
indifferential metric, etc.

Future Works. (1) Our proposed optimization algorithms are developed on the idea of NES (Wierstra
et al., 2014) which is actually not the unique choice for model parameters search. There are a number
of surrogate objectives available from the literature (Vu et al., 2017). Recent study (Turner et al.,
2021) finds out that the ensemble of some surrogates achieves superior results for the hyperparameter
tuning task. Inspired by this finding, we will try to improve the query-efficiency of our algorithms in
future work. (2) Apart from the data extraction risk, Membership Inference Attack (MIA) (Shokri
et al., 2017), another prevalent type of the information leakage, also exists in the proposed setting of
FTFB. Specifically, MIA tries to determine whether a specific instance was included in the target
datas. Although this problem could be handled by Differential Privacy (DP) (Dwork et al., 2006) that
aims to compensate the difference of the absence of every instance, a remaining challenge should be
noticed, i.e., will the correlation of sequential queries in FTFB require a new composition theory for
DP? We will explore this interesting question in the next work.
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A MORE DETAILS ABOUT METHOD

A.1 GRADIENT DERIVATION OF EQ. (2)

∇ωJ(ω) = ∇ω
∫
E′(D; θ)π(θ|ω) dθ

=

∫
E′(D; θ)∇ωπ(θ|ω) dθ

=

∫
E′(D; θ)

π(θ|ω)

π(θ|ω)
∇ωπ(θ|ω) dθ

=

∫
π(θ|ω)E′(D; θ)∇ω log π(θ|ω) dθ

= Eπ(θ|ω)[E
′(D; θ)∇ω log(π(θ|ω))]

(7)
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We assume that π(·) is a Gaussian distribution which takes advantages of exponential family. The
gradient w.r.t. the variance therein typically demands more queries and more computation cost for
the high-dimensional parameters, so we prefer the first-order optimization in this work.

A.2 TWO-PARTY SCENARIO EXPLANATION

In introduction, we claimed that the presented two-party scenario absorbs the special case where data
holders execute tuning process themselves. This factually is supported by our algorithms introduced
in Section 3. If data holders do not trust the provided model, they can exactly adopt the same way as
used in two-party scenario, i.e., updating model by using their estimated gradients. This will avert the
data extraction risk (Song et al., 2017) in both white and black model cases.

B MORE DETAILS ABOUT EXPERIMENTS

B.1 EXPERIMENTAL SETTING

Hyperparameters From the gradient based update of Eq. equation 4, the learning rate η and variance
σ can be seen as an entirety. In experiments, we simply set ησ = 0.01, which usually comes to the
good results. Regarding crafting the candidate model, we typically set σ = 0.1 which leads to a
moderate exploration throughout all experiments. The batch size b in our experiments is simply set as
d
8 or d

16 , in which the better result is reported in paper. We emphasize that this is only necessary if the
query budget is tight, as they converge to the similar results. In Alg. 2, the learning rate β is simply
set as 1.

We use the NVIDIA Quadro RTX 6000 Passive with 11,000M Memory (GPU) for all my experiments.
Our project is based on public packages which are available for academic research under the license.

B.2 EVIDENCE OF FINE-TUNING ON PARTIAL PARAMETERS ONLY

We take the experiment for Amazon as an example, where the whole network is tuned with standard
fine-tuning. We start with the good initial model, and the experimental results are shown as Fig.
8. The experiments demonstrate that with the optimization of standard fine-tuning, the tuning loss
(on support set) significantly decreases while the generalization loss (on holdout set) increases
dramatically. The corresponding accuracy also deviates from each other. Therefore, we conclude that
when the whole network is fine-tuned for Amazon, the model tends to overfit on the support set only.
We use this example to support our claim that in real applications the fine-tuning most time applies
partial model parameters instead of the entire model.
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Figure 7: Overfitting problem when tuning the whole network on Amazon.

B.3 ANTITHETIC SAMPLING

We verify the necessity of antithetic sampling in our toy examples. Without applying antithetic
sampling, our algorithm PPS perform terribly on target data (see Fig. 8(a)). By increasing the
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batch size, the performance improves but cannot rival the reported result in the main paper (Fig.
8(b&c)). We also try to use more queries but it turns out ineffective by Fig. 8(d). In particular, we
notice the slight fluctuations always occur in decision boundary. In future work, we will explore this
phenomenon from the view of robustness and variance control.
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Figure 8: Toy examples of FTFB without antithetic sampling for candidate model crafting. In (a)-(c),
the batch size b is 80, 160, and 320, respectively, with the query budget of 8,000. In (d), the batch
size is 80 with the query budget of 16,000.

B.4 EFFICIENCY OF UPDATING ALL TUNING PARAMETERS

For CIFAR-10-C, the network involves 8, 064 batch normalization parameters. Therefore, if we
choose to fine-tune the model by updating all the model parameters, we basically query for 504 (i.e.,
b = d

16 ) times for only one step update. With one step update for all the parameters, we find that the
updated model gets even worse than the pre-trained model sometimes, because it searches a large
space and updates model once. By contrast, our layerwise algorithm updates model for 54 times with
the same query budget, decreasing the error from 25.77% to 24.65% on support set.

VisDA-C. VisDA-C poses a challenging task of object recognition for 12 classes where the pre-
trained model is built on synthesized data while the test data is collected from real scenes. Res-Net50
is employed and this group of experiments are performed based on the recent work (Liang et al.,
2020) where the whole feature module is proposed to tune. Our experiments for object recognition
on VisDa-C reaches the error of 45.5% on support set by only updating BN parameters, which is
comparable with Tent (45.6%), while it needs around 4K queries.

B.5 RANDOM SEARCH

Random Search is previously used for hyperparamter tuning, which is demonstrated more efficient
than grid search (Bergstra & Bengio, 2012). In our experiments, RS is used slightly different from
the original paper. As model parameters are not explicitly bounded and we use “dynamic random
search”. Basically, every time we find some models which have better performances as seeds. Then
we sample around them for multiple times and replace the seeds by more promising models. This
thought is quite similar to evolutionary algorithm, but our experiments reveal it is not efficient for
high-dimensional model parameters searching. Fig. 9 shows RS on CIFAR10-C with a random
initialization. The tuning error (on support set) is around 85% at the beginning. By executing RS, the
error is decreased and it eventually converges to 83%, showing an inefficient searching process in
this challenging case.

B.6 FAIR CLASSIFICATION

In fair classification task, we fine-tune a pre-trained model to the target data where model accuracy
and fairness are both required. We adopt discrimination parity as the fairness metric in this experiment.
By setting the weight (ρ) of two measurements we update model as Alg. 3. ρ = 0.8 is used in our
experiment.
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Figure 9: Random search results for high-dimensional parameters tuning.

Algorithm 3 Performance-guided Parameter Search (PPS) for Fair Classification

Input: variance σ, query budget q, batch size b, weight factor ρ
for t = 0, ..., bq/bc do

Sample {δj}b/2j=1 ∼ N (0, I), and for each j get δb−j+1 = −δj
Generate candidate models {θi}bi as queries where θi = θt + σδi
Collect feedbacks {Acc(D; θi)}bi=1 and {Dis(D; θi)}bi=1

θt+1 ← θt − η
σb

∑b
i=1 δi[ρDis(D; θt + σδi)− Acc(D; θt + σδi)]

end for
Output: θbq/bc+1
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