

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FROM PIXELS TO WORDS – TOWARDS NATIVE VISION- LANGUAGE PRIMITIVES AT SCALE

Anonymous authors

Paper under double-blind review

ABSTRACT

The edifice of native Vision-Language Models (VLMs) has emerged as a rising contender to typical modular VLMs, shaped by evolving model architectures and training paradigms. Yet, two lingering clouds cast shadows over its widespread exploration and promotion: (-) What fundamental constraints set native VLMs apart from modular ones, and to what extent can these barriers be overcome? (-) How to make research in native VLMs more accessible and democratized, thereby accelerating progress in the field. In this paper, we clarify these challenges and outline guiding principles for constructing native VLMs. Specifically, one native VLM primitive should: (i) effectively align pixel and word representations within a shared semantic space; (ii) seamlessly integrate the strengths of formerly separate vision and language modules; (iii) inherently embody various cross-modal properties that support unified vision-language encoding, aligning, and reasoning. Hence, we launch **NEO**, a novel family of native VLMs built from first principles, **greatly narrowing the gap with top-tier modular counterparts across diverse real-world scenarios**. With only 390M image-text examples, **NEO** efficiently develops visual perception from scratch while mitigating vision-language conflicts inside a dense and monolithic model crafted from our elaborate primitives. We position **NEO** as a cornerstone for scalable and powerful native VLM development, paired with a rich set of reusable components that foster a cost-effective and extensible ecosystem. Code and weights will be publicly available to promote further research.

1 INTRODUCTION

Recently, large Vision-Language Models (VLMs) (Bai et al., 2025; Zhu et al., 2025; Wang et al., 2025b; xAI, 2025; Anthropic, 2025; DeepMind, 2025; Hurst et al., 2024; OpenAI, 2025) have emerged as a major breakthrough, extending the strong text-processing capabilities of Large Language Models (LLMs) to multimodal understanding. Contemporary VLMs typically follow a modular design that integrates a pre-trained Visual Encoder (VE) (Radford et al., 2021; Chen et al., 2024f; Fang et al., 2023; Tschannen et al., 2025), a Projector (Alayrac et al., 2022; Liu et al., 2024a; Dai et al., 2024), and an LLM (Touvron et al., 2023; Yang et al., 2025; DeepSeek-AI et al., 2025), using next-token prediction as the primary objective. Through complex multi-stage post-training at scale, they incrementally overcome limitations in image resolution, aspect ratio, and visual encoding flexibility. Yet, modular designs still contend with strong inductive biases in pre-trained visual semantics, as well as complex infrastructure and scaling laws needed to harmonize their components.

Against this backdrop, native VLMs have arisen as a new avenue of exploration, with Fuyu (Bavishi et al., 2023) and EVE (Diao et al., 2024) pioneering a promising and practical route towards encoder-free VLMs with a monolithic framework. Subsequent efforts seek to learn vision perception from scratch and mitigate vision-language conflicts via visual encoder distillation (Diao et al., 2024; Li et al., 2025b; Wang et al., 2025a; Li et al., 2025a), mixed training data (Lei et al., 2025; Li et al., 2025a), and modality-specific decomposition (Diao et al., 2025; Luo et al., 2024; 2025; Li et al., 2025a). Nonetheless, constructing visual representations via mapping functions inside pre-trained LLMs often hinders efficiency (Chen et al., 2024d; Luo et al., 2024), destabilizes optimization (Team, 2024; Wang et al., 2024b), and disrupts original linguistic knowledge (Diao et al., 2024; Chen et al., 2024d), even under decoupled designs or large computational budgets (Beyer et al., 2024). Besides, HoVLE (Tao et al., 2025) and HaploVL (Yan et al., 2025) address this by projecting vision-language inputs into a shared embedding space in advance. However, their modality-sharing modules, whether

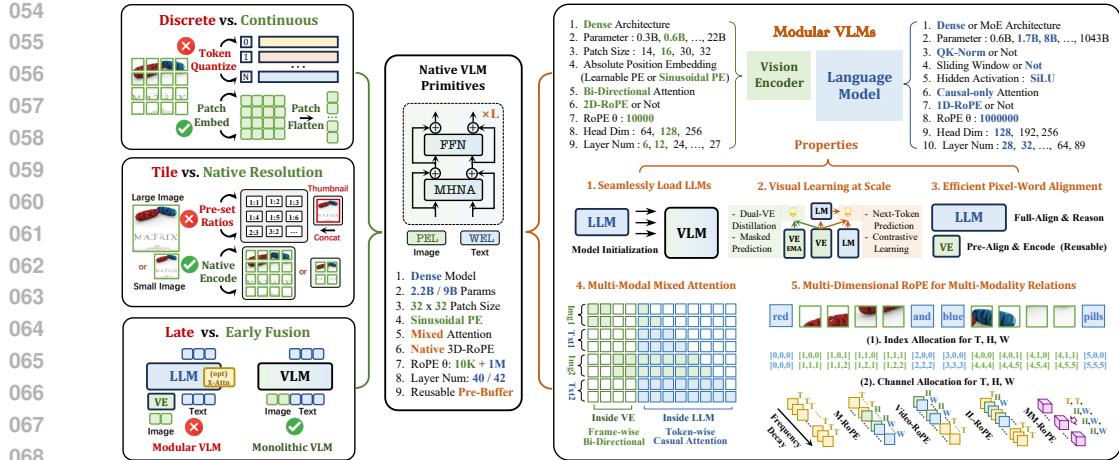


Figure 1: **Overview of our native vision-language frameworks**, which project arbitrary-resolution images into a continuous latent space, integrating the virtues of modular VLM architectures and enabling efficient vision-language encoding, alignment, and interaction in an early-fusion manner.

derived from the LLM or VE architectures, neglect intrinsic discrepancies in encoding and interaction across modalities, ultimately compromising VLM’s capacity to unify visual-linguistic properties.

Figure 1 outlines a central question: *What properties must native VLMs possess to compete with modular ones?* Modular VLMs decouple vision encoders from language models, allowing each to exploit modality-specific characteristics, *e.g.*, bi-directional versus causal attention, distinct positional embeddings, and varied network configurations. This separation accelerates the development of visual and linguistic competencies and permits flexible combinations of individual components. However, it fragments the training procedure, increases alignment costs, and leaves the intermodal balance unresolved. Motivated by these analyses, we formulate the following strategies accordingly:

(1) Native VLM Primitive. Native VLMs should embody a unified vision–language primitive that simultaneously integrates encoding, alignment, and reasoning across modalities in one single module. Its design should encompass three principles: (i) a Flexible Position Encoding scheme that generalizes effectively to dynamic spatial structures; (ii) a Multi-Head Native Attention (MHNA) that jointly processes visual–textual connectivity; (iii) Native Rotary Position Embedding (Native-RoPE) that preserves compatibility with pretrained LLM while absorbing VE’s interaction patterns. **Guided by these tenets, we evolve the LLM blocks into native VLM primitives with brand-new RoPE designs and modality-aware interaction patterns, thereby capturing multi-dimensional relationships for fine-grained and comprehensive correspondence from an intrinsically multimodal perspective.**

(2) Pre-Buffer and Post-LLM. The next crucial issue is to efficiently scale visual training while securing consistent pixel-word alignment. Here, we partition the monolithic backbone into pre-Buffer and post-LLM layers during pre-training, each rooted in identical native primitive architectures. This transient stage enables pretrained LLMs to steer visual learning and establish coherent relevance with later stages. As mid-training and supervised fine-tuning advance, the partition dissolves, yielding a unified architecture that autonomously allocates the VLM’s capacities to their respective functions. This end-to-end training reduces semantic biases of separate pretraining and large overheads of post-stage alignment, effectively bridging native and modular VLMs. Crucially, pre-Buffer persists as a reusable pretrained asset, facilitating sustainable resources for native VLM development.

We launch **NEO**, an innovative native VLM that reimagines multi-modal integration from first principles. Unlike typical modular designs, **NEO** rests on unified primitives that natively encode, align, and reason across modalities, forming coherent pixel–word correspondences from the outset. Through streamlined end-to-end training on 390M image–text samples, **NEO** acquires strong visual perception and approaches leading modular VLMs of comparable scale across diverse benchmarks. Beyond these results, **NEO** offers reusable components that simplify subsequent development and reduce barriers to promoting native exploration. This reveals that next-generation multimodal systems could also originate from architectures that are native, unified, and intrinsically multimodal.

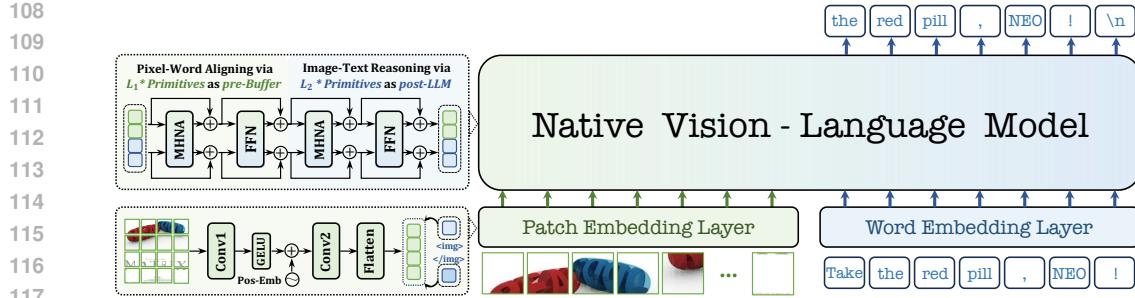


Figure 2: Overview of our proposed NEO architecture. We begin with lightweight patch and word embedding layers that encode images and text into token sequences, which are subsequently processed by a monolithic decoder-only architecture. The pre-Buffer and post-LLM components, each stacked with multiple native primitives, facilitate efficient and precise pixel–word alignment and reasoning.

2 RELATED WORKS

2.1 MODULAR VISION-LANGUAGE MODELS

Current Vision–Language Models (VLMs) have converged on a modular paradigm, where a pretrained Vision Encoder (VE) is paired with a Large Language Model (LLM) via lightweight adapters, *e.g.*, projection layers (Li et al., 2024a;b) or cross-attention mechanisms (Alayrac et al., 2022; Dai et al., 2024). This encoder-based architecture underlies various popular and leading vision–language systems, including InternVL (Zhu et al., 2025; Wang et al., 2025b), Qwen-VL (Wang et al., 2024a; Bai et al., 2025), Seed-VL (Guo et al., 2025), GLM-V (Hong et al., 2025), and Grok (xAI, 2024; 2025). By harnessing the complementary strengths of vision and language components, modular architectures, adhering to the “ViT-MLP-LLM” pipeline, achieve unprecedented performance across diverse multimodal benchmarks and have emerged as the dominant design principle in the field.

Despite empirical successes, modular VLMs remain constrained by multi-stage training and heterogeneous structures. Extensive post-training interventions are often required to mitigate rigid inductive biases in pretrained VEs (Wang et al., 2024a), which limit resolution flexibility, erode fine-grained details, and blunt sensitivity to features across scales. Besides, pretraining semantic biases and capacity trade-offs between VEs and LLMs collectively impede design simplicity, deployment efficiency, and seamless integration of vision and language, underscoring the urgent need for a monolithic backbone.

2.2 NATIVE VISION-LANGUAGE MODELS

Native VLMs embrace early-fusion integration rather than grafting VEs onto LLMs. Early Fuyu (Bavishi et al., 2023), EVE (Diao et al., 2024), and SOLO (Chen et al., 2024d), embed image patches via linear projections, whereas Chameleon (Team, 2024), MoMA (Lin et al., 2024), and MoT (Liang et al., 2024) transform images into symbolic sequences via discrete tokenizers. Later studies (Luo et al., 2024; Diao et al., 2025; Li et al., 2025b; Luo et al., 2025; Li et al., 2025a) leverage Mixture-of-Experts (MoE) or Divide-and-Conquer (DaC) strategies to suppress vision–language interference, while others (Diao et al., 2024; Li et al., 2025b; Wang et al., 2025a; Li et al., 2025a) upgrade visual encoder supervision to accelerate the acquisition of visual concepts. Empirical evidence (Beyer et al., 2024; Luo et al., 2024; Lei et al., 2025) reveals that, with sufficient data and progressive training, native VLMs rapidly approach modular counterparts, corroborating recent scaling-law insights (Shukor et al., 2025b;a). Besides, recent methods (Tao et al., 2025; Yan et al., 2025; Xiao et al., 2025) indicate that multi-modality encoding modules with the LLM or VE style slightly resolve vision–language misalignment, yet fail to fully integrate the distinct properties of each modality.

Notably, NEO redefines native VLMs as a unibody system built from first-principle primitives. Every network component, from native rotary position embeddings to multi-modality interaction patterns, ensures full compatibility with the intrinsic modeling patterns of VEs and LLMs. Meanwhile, NEO differs from existing modular VLMs via modality-agnostic pre-Buffer and end-to-end training, dramatically enhancing pixel–word alignment and pushing the frontier of native VLM research.

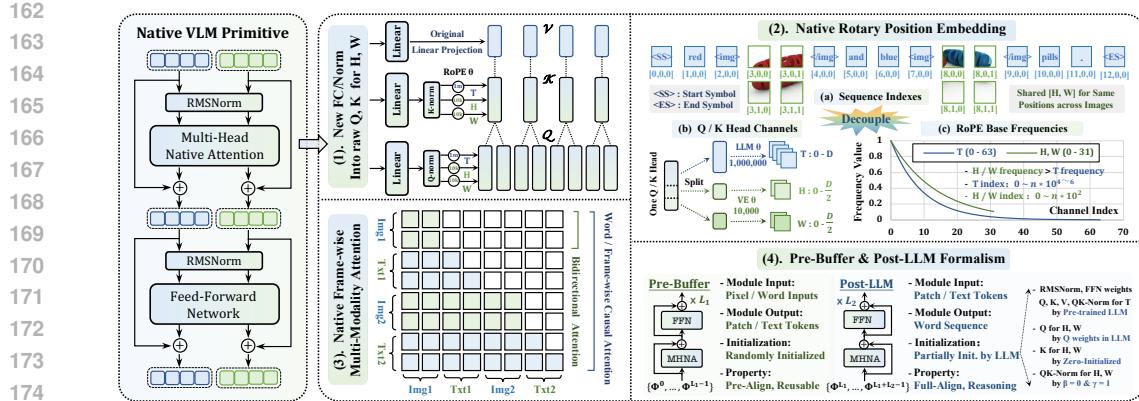


Figure 3: **Overview of our native primitive**, which integrates native attention with bi-directional dependencies within images and word / frame-wise causal interactions, together with native rotary position embeddings parameterized by modality-specific frequency, channel, and index allocation. It is inherently unified and intrinsically multimodal, substantially enhancing pixel–word correspondence.

3 METHODOLOGY

3.1 MODEL ARCHITECTURE

Figure 2 illustrates the proposed NEO framework, which comprises lightweight patch and word embedding layers, a pre-Buffer, and a post-LLM, built upon stacked native VLM primitives.

Patch and Word Embeddings. Given an image \mathbf{I} , we convert it into token sequences via a lightweight Patch Embedding Layer (PEL) with two Convolutional layers (Conv1–2) (Krizhevsky et al., 2012) and a Gaussian Error Linear Unit (GELU) (Hendrycks & Gimpel, 2016). For input text \mathbf{T} , we encode it into word tokens using the original LLM Tokenizer as Word Embedding Layer (WEL):

$$\mathbf{x}_v = \text{Conv2}(\text{GELU}(\text{Conv1}(\mathbf{I})) + \mathbf{PE}), \quad \mathbf{x}_t = \text{Tokenizer}(\mathbf{T}), \quad (1)$$

where $\mathbf{x}_v \in \mathbb{R}^{(h \times w) \times d}$ / $\mathbf{x}_t \in \mathbb{R}^{n \times d}$ denote visual / textual tokens, and \mathbf{PE} is 2D Sinusoidal Positional Encoding (Dosovitskiy et al., 2021). The stride of Conv1 / Conv2 is 16 / 2, *i.e.*, each visual token corresponds to a 32×32 image patch. Notably, Conv2 performs token folding like pixel unshuffle (Chen et al., 2024e), with the special $\langle \text{img} \rangle$ and $\langle / \text{img} \rangle$ tokens inserted at the boundaries of visual tokens, while mapping position and patch embeddings into a unified space. Afterward, visual and textual tokens are merged and propagated through the unified backbone.

Native VLM Primitive. It adopts RMSNorm (Zhang & Sennrich, 2019) and SwiGLU (Dauphin et al., 2017) consistent with LLM layers. Unlike prior methods that collapse visual tokens into 1D representations (Zhu et al., 2025; Wang et al., 2025b) or merely reallocate pre-trained LLM head dimensions across temporal (T), height (H), and width (W) (Wang et al., 2024a; Bai et al., 2025), we enlarge Query (Q) and Key (K) head dimensions and decouple H, W, and T relations in Figure 3(1), adding $\sim 10\%$ more parameters over the raw Transformer block. The T dimension is retained, and new H and W dimensions are added with their respective QK normalization (Yang et al., 2025).

This philosophy aligns with our **Native Rotary Position Embedding (Native-RoPE)** in Figure 3(2). (a) *Index Allocation*: For text, T index is retained while H / W indexes are zeroed. For images, each visual token has a constant T index, with unique H / W indexes encoding spatial location. Videos, treated as sequences of frames, increment T index per frame, while H / W indexes follow the same spatial scheme as images. In multimodal inputs, each modality’s T index starts from the maximum ID of the preceding modality, ensuring continuous and unambiguous positional encoding across modalities. This serves two purposes: (-) For image pairs, H / W indexes start independently from (0,0), and tokens at corresponding positions share identical dependency, strongly reinforcing correlations and interactions across matching regions (Liao et al., 2025; Wu et al., 2025); (-) For image-text pairs, H / W indexes are decoupled from T index and bounded within (0,0) and (H,W), preventing large T index growth from disproportionately affecting H / W indexes (Wang et al., 2024a; Bai et al., 2025) and thereby keeping spatial dependencies between long-range text and images.

Another key aspect is (b) *Channel* and (c) *Frequency Allocation*. Unlike recent 3D-RoPE methods (Bai et al., 2025; Wei et al., 2025; Yuan et al., 2025; Liao et al., 2025), we fully decompose the channel and frequency allocation of H, W, and T, equipped with additional Q/K head dimensions for H and W. This resolves two issues: (-) Zeroing H / W indexes for pure text would disrupt the modeling patterns and linguistic capacity of the LLM if restricted to its original channels. Repairing this disruption requires substantial resources; (-) Even with interleaved or segmented reallocation, H and W are theoretically equivalent but are assigned different frequencies. Meanwhile, the RoPE frequency in LLMs is far lower than that of visual encoders in Figure 3(2c). This mismatch limits the modeling of relative distances and local semantics. The problem is exacerbated by the disparity in scales, with temporal ranges spanning up to one million and spatial ranges only a few hundred.

Specifically, Native-RoPE assigns distinct base frequencies to T, H, and W within their own dimensions, *i.e.*, original LLM head dimension for T and new head dimension for H / W as follows:

$$\Theta_T = \left\{ \beta_T^{-\frac{2k}{d}} \mid k \in [0, \frac{d}{2}] \right\}, \quad \Theta_H = \left\{ \beta_H^{-\frac{4i}{d}} \mid i \in [0, \frac{d}{4}] \right\}, \quad \Theta_W = \left\{ \beta_W^{-\frac{4j}{d}} \mid j \in [0, \frac{d}{4}] \right\} \quad (2)$$

where β and Θ indicate the base and rotation frequency across H, W, and T. Notably, temporal T dimension captures both local and long-range relations, whereas spatial H / W dimensions emphasize local dependencies. This also opens avenues for broader applications, *e.g.*, video understanding (Wei et al., 2025), multimodal generation (Deng et al., 2025b), and editing (Deng et al., 2025a).

Inspired by prior works (Lei et al., 2025; Deng et al., 2025b; Li et al., 2025a; Beyer et al., 2024), we also treat one single image as a unified meta-unit for autoregressive modeling, denoted as **Native Multi-Modal Attention** with mixed masking in Figure 3(3). Text tokens adhere to standard causal attention, attending only to preceding tokens to maintain autoregressive generation. In contrast, image tokens employ full bidirectional attention, enabling exhaustive interactions among all visual tokens, akin to a visual encoder. This design captures rich spatial and contextual dependencies within images and facilitates vision-language correspondences, thereby supporting complex multimodal reasoning. We use FlexAttention (Dong et al., 2024) to minimize memory overhead and increase throughput, as variable-length block-wise attention is fully optimized through CUDA kernel modifications.

Pre-Buffer and Post-LLM. In Figure 3(4), we develop a modality-shared pre-Buffer to translate pixel-word inputs into a unified representation with minimal disturbance to the post-LLM, which inherits the linguistic proficiency and reasoning capabilities of pre-trained LLM. The layer depths L_1 and L_2 primarily refer to parameter counts and scaling properties (Tian et al., 2025) of existing VEs and LLMs to balance accuracy and efficiency. Here, we formulate one primitive Φ^l as follows:

$$x_m^{l'} = x_m^l + \text{MHNA}(\text{RMSNorm}(x_m^l)), \quad x_m^{l+1} = x_m^{l'} + \text{FFN}(\text{RMSNorm}(x_m^{l'})), \quad (3)$$

where $m \in \{v, t\}$ indicates input modality. Besides, $\{\Phi^0, \dots, \Phi^{L_1-1}\}$ and $\{\Phi^{L_1}, \dots, \Phi^{L_1+L_2-1}\}$ denotes pre-Buffer and post-LLM, respectively. Notably, we randomly initialize the entire pre-buffer, while the post-LLM inherits RMSNorm, Feed-Forward Network (FFN), and Q/K/QK-Norm parameters along the temporal dimension from a pretrained LLM. The temporal Q is reused to initialize Q for the H and W dimensions, their K weights are zero-initialized, and the corresponding QK-Norm is initialized with $\beta = 0$ and $\gamma = 1$. We further match the attention scaling to that of the pretrained LLM, thereby preserving its pre-training paradigm from the outset and enabling a progressive emergence of multimodal spatial reasoning within the post-LLM. Crucially, this separation exists only during pre-training. After that, these components are merged into a monolithic backbone that autonomously allocates capacity for encoding, alignment, and reasoning.

3.2 TRAINING PROCEDURE

Figure 4 illustrates the whole training pipeline, where the entire model is optimized end-to-end.

Pre-Training Stage. In this phase, NEO acquires fundamental visual concepts and contextual dependencies from scratch, guided by pre-trained patterns from LLMs. Training leverages 345M web-scale and synthetic image-caption pairs, including 100M English and 20M Chinese pairs from LAION-400M (Schuhmann et al., 2021), 150M English pairs from COYO-700M (Byeon et al., 2022), 20M long-caption examples from BLIP3o (Chen et al., 2025), and 5M short-caption pairs from OpenImages (Kuznetsova et al., 2018), recaptioned with a pre-trained InternVL2-8B model. The dataset is further enriched with 30M samples from LAION-COCO (Schuhmann et al., 2022)

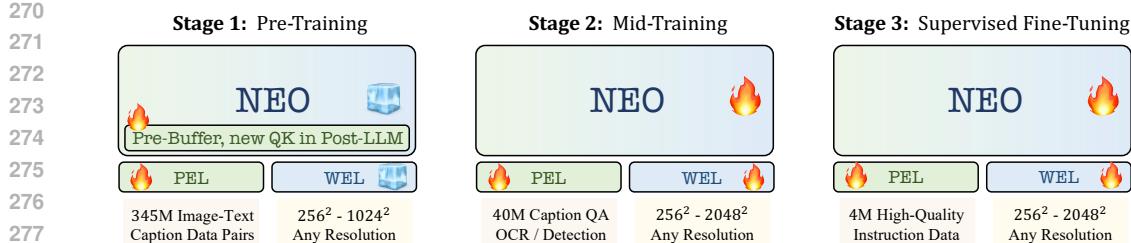


Figure 4: Overview of the entire training recipe. During pre-training, NEO learns visual perception from massive web-scale and synthetic image-caption pairs with frozen LLM weights to preserve linguistic knowledge. In mid-training and supervised fine-tuning, the full model is progressively optimized end-to-end using caption, conversation, OCR, detection, and high-quality instruction data.

and 20M examples from Wukong (Gu et al., 2022) with rich Optical Character Recognition (OCR) annotations. A 3:7 ratio of language to multi-modal data is incorporated to reconstruct text projections in the pre-Buffer. Only the patch embedding layer, the pre-Buffer, and extra QK linear weights and normalization in post-LLM, along with H and W, are optimized with a simple next-token prediction objective. Notably, the new QK heads not only counteract the LLM’s strong language bias that limits visual specialization but also safeguard its capabilities against the effects of low-quality data.

Mid-Training Stage. The objective at this stage is to strengthen the alignment between visual and linguistic capabilities while progressively enhancing recognition of high-resolution images, complex scenes, object scales, spatial grounding, and compact OCR content. The training data is drawn from the pre-training corpus of InternVL-1.5 (Chen et al., 2024f), comprising 40M samples across image captioning, conversation, detection, and OCR data, which account for approximately 66%, 11%, 8%, and 15% of the total, respectively. A 3:7 ratio of language to multi-modal data is again applied. The entire architecture is updated with the same loss functions to consolidate vision-language alignment, thereby equipping NEO with the foundational abilities required for various visual scenarios.

Supervised Fine-Tuning Stage. During the SFT stage, NEO’s ability to follow complex linguistic instructions and varied dialogue patterns is further enhanced, a critical step towards real-world deployment. The full network is optimized across diverse high-quality, multi-source instruction datasets. Following Mono-InternVL (Luo et al., 2024), we employ about 4M bilingual instructions for supervised learning, covering tasks such as visual question answering, multimodal dialogue, mathematics, and knowledge reasoning. Details of the instruction data are provided in the Appendix.

4 EXPERIMENTS

4.1 TRAINING SETTINGS

Our NEO models are built on Qwen3-1.7B and Qwen3-8B (Yang et al., 2025) as the LLMs. The pre-Buffer employs $L_1 = 12$ primitive layers for NEO-2.2B and $L_1 = 6$ for NEO-9B. We extend only the QK head dimension in raw transformer layers, introducing roughly 10% extra parameters over the original design. The base RoPE frequencies β_T , β_H , and β_W are set to 1×10^6 , 1×10^4 , and 1×10^4 , respectively. NEO is trained on sixteen 8-GPU (80G) nodes using the AdamW optimizer (Loshchilov & Hutter, 2019). The maximum learning rates for pre-training, mid-training, and SFT are 8×10^{-4} , 4×10^{-5} , and 5×10^{-5} , with a warm-up ratio of 0.01 and a cosine decay scheduler across all stages.

4.2 MAIN RESULTS

We conduct standard evaluations with VLMEvalKit (Duan et al., 2024) on diverse benchmarks, covering chart, diagram, and document understanding tasks, e.g., AI2D (Kembhavi et al., 2016), DocVQA (Clark & Gardner, 2018), ChartQA (Masry et al., 2022), InfoVQA (Mathew et al., 2022), TextVQA (Singh et al., 2019), and OCRBench (Liu et al., 2023e); visual perception and challenging reasoning tasks, e.g., MMMU (Yue et al., 2024), MMBench-EN (MMB) (Liu et al., 2024b), MMVet (Yu et al., 2024), MMStar (Chen et al., 2024c), SEEDBench-IMG (SEED-I) (Li et al., 2023a); hallucination tasks, e.g., POPE (Li et al., 2023b) and HallusionBench (HallIB) (Guan et al., 2024).

324 Table 1: **Comparison with modular and native VLMs on general vision-language benchmarks.**
 325 “# Data” denotes the dataset scale during pre-training, mid-training, and supervised fine-tuning. \dagger
 326 indicates models that employ reinforcement learning (RL). **Bold** highlights the highest performance.
 327

Model	LLM	# Data	MMMU	MMB	MMVet	MMStar	SEED-I	POPE	HallB
▼ Modular Vision-Language Models (2B)									
Qwen2-VL	Qwen2-1.5B	- / - / -	41.1	74.9	49.5	48.0	-	-	41.7
InternVL2.5	InternLM2.5-1.8B	>6B / 100M / 16M	43.6	74.7	60.8	53.7	-	90.6	42.6
Qwen2.5-VL \dagger	Qwen2.5-1.5B	- / - / -	51.2	79.1	61.8	55.9	-	-	46.3
InternVL3 \dagger	Qwen2.5-1.5B	>6B / 100M / 22M	48.6	81.1	62.2	60.7	-	89.6	42.5
Encoder-Based	Qwen3-1.7B	>6B / 40M / 4M	47.1	75.8	37.4	52.7	73.6	87.0	44.4
▼ Native Vision-Language Models (2B)									
Mono-InternVL	InternLM2-1.8B	1.2B / 143M / 7M	33.7	65.5	40.1	-	67.4	-	34.8
Mono-InternVL-1.5	InternLM2-1.8B	400M / 150M / 7M	39.1	64.0	54.0	-	66.9	-	32.5
HoVLE	InternLM2-1.8B	550M / 50M / 7M	32.2	73.3	43.8	-	70.9	87.4	38.4
OneCAT	Qwen2.5-1.5B	436M / 70M / 13M	39.0	72.4	42.4	-	70.9	-	-
NEO	Qwen3-1.7B	345M / 40M / 4M	48.6	76.0	49.6	54.2	74.2	87.5	43.1
▼ Modular Vision-Language Models (8B)									
Qwen2-VL	Qwen2-7B	- / - / -	54.1	83	62.0	60.7	-	88.1	50.6
InternVL2.5	InternLM2.5-7B	>6B / 50M / 4M	56.0	84.6	62.8	64.4	-	90.6	50.1
Qwen2.5-VL \dagger	Qwen2.5-7B	- / - / -	55.0	83.5	67.1	63.9	-	86.4	52.9
InternVL3 \dagger	Qwen2.5-7B	>6B / 100M / 22M	62.7	83.4	81.3	68.2	-	91.1	49.9
Encoder-Based	Qwen3-8B	>6B / 40M / 4M	54.1	84	60.0	63.5	76.2	87.8	51.4
▼ Native Vision-Language Models (8B)									
Fuyu	Persimmon-8B	- / - / -	27.9	10.7	21.4	-	59.3	84.0	-
Chameleon	from scratch	1.4B / 0M / 1.8M	25.4	31.1	8.3	-	30.6	19.4	17.1
EVE	Vicuna-7B	33M / 0M / 1.8M	32.6	52.3	25.7	-	64.6	85.0	26.4
SOLO	Mistral-7B	44M / 0M / 2M	-	67.7	30.4	-	64.4	78.6	-
Emu3	from scratch	- / - / -	31.6	58.5	37.2	-	68.2	85.2	-
EVEv2	Qwen2.5-7B	77M / 15M / 7M	39.3	66.3	45.0	-	71.4	87.6	-
BREEN	Qwen2.5-7B	13M / 0M / 4M	42.7	71.4	38.9	51.2	-	-	37.0
VoRA	Qwen2.5-7B	30M / 0M / 0.6M	32.0	61.3	33.7	-	68.9	85.5	-
SAIL	Mistral-7B	512M / 86M / 6M	-	70.1	46.3	53.1	72.9	85.8	54.2
NEO	Qwen3-8B	345M / 40M / 4M	54.6	82.1	53.6	62.4	76.3	88.4	46.4

356
 357 Following InternVL3 (Zhu et al., 2025), we construct the *Encoder-Based* by combining Qwen3 (Yang
 358 et al., 2025) and InternViT-300M (Zhu et al., 2025). In the mid-training stage, we first train the
 359 projector on 10M samples, and further unfreeze the vision encoder utilizing another 30M samples.
 360

361 **Comparison with Modular VLMs.** In Table 1 and Table 2, NEO achieves highly competitive
 362 performance against Encoder-Based counterparts at the 2B and 8B scales. Impressively, NEO largely
 363 narrows the performance gap with top-tier modular VLMs, e.g., Qwen2-VL (Wang et al., 2024a),
 364 InternVL2.5 (Chen et al., 2024e), Qwen2.5-VL (Bai et al., 2025), and InternVL3 (Zhu et al., 2025)
 365 across multiple benchmarks, despite using relatively limited training data and without reinforcement
 366 learning. These results highlight the effectiveness of an end-to-end training strategy and a unified
 367 model design with Native-RoPE and multi-modality interaction patterns. Moreover, the performance
 368 gap between Encoder-Based variants and state-of-the-art methods on MMMU, MMVet, TextVQA,
 369 and *etc*, indicates that NEO still suffers from the limitation in training data scale and quality.

370 **Comparison with Native VLMs.** From Table 1 and Table 2, NEO delivers substantial gains on
 371 visual-centric benchmarks over the best competitors, e.g., Mono-InterVL (Luo et al., 2024; 2025),
 372 HoVLE (Tao et al., 2025), OneCAT (Li et al., 2025a), EVE (Diao et al., 2024; 2025), Emu3 (Wang
 373 et al., 2024b), BREEN (Li et al., 2025b), VoRA (Wang et al., 2025a), and SAIL (Lei et al., 2025).
 374 By seamlessly integrating post-LLM components with the pre-Buffer for large-scale visual learning,
 375 NEO aligns visual inputs with textual features from scratch and supports complex visual reasoning,
 376 even without visual encoder supervision (Diao et al., 2024; Tao et al., 2025; Li et al., 2025a; Wang
 377 et al., 2025a; Li et al., 2025b), highlighting the strengths of its native primitive designs and training
 378 strategies. These design choices allow NEO to surpass many native VLMs using fewer training
 379 resources, demonstrating the advantages of our primitives with efficient data-scaling capability.

378 Table 2: **Comparison with modular and native VLMs on visual question answering benchmarks.**
 379 Any Res., Tile-wise, Any Rat., and Fix Res. refer to any resolution, image tile splitting, any aspect
 380 ratio, and fixed resolution. MoE and DaC are Mixture-of-Experts and Divide-and-Conquer models.
 381

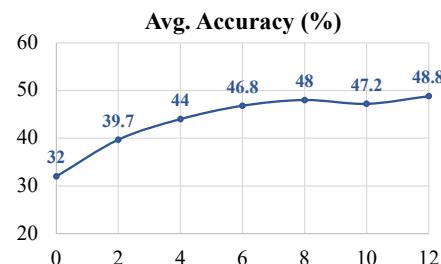
382 Model	383 Input	384 RoPE	385 Backbone	386 AI2D	387 DocVQA	388 ChartQA	389 InfoVQA	390 TextVQA	391 OCRBench
▼ Modular Vision-Language Models (2B)									
384 Qwen2-VL	385 Any Res.	386 M-RoPE	387 Dense	388 74.7	389 90.1	390 73.5	391 65.5	392 79.7	393 80.9
384 InternVL2.5	385 Tile-wise	386 1D-RoPE	387 Dense	388 74.9	389 88.7	390 79.2	391 60.9	392 74.3	393 80.4
384 Qwen2.5-VL [†]	385 Any Res.	386 M-RoPE	387 Dense	388 81.6	389 93.9	390 84.0	391 77.1	392 79.3	393 79.7
384 InternVL3 [†]	385 Tile-wise	386 1D-RoPE	387 Dense	388 78.7	389 88.3	390 80.2	391 66.1	392 77.0	393 83.5
Encoder-Based									
384	385 Tile-wise	386 1D-RoPE	387 Dense	388 77.4	389 89.9	390 78.4	391 65.9	392 73.3	393 83.5
▼ Native Vision-Language Models (2B)									
384 Mono-InternVL	385 Tile-wise.	386 1D-RoPE	387 MoE	388 68.6	389 80.0	390 73.7	391 43.0	392 72.6	393 76.7
384 Mono-InternVL-1.5	385 Tile-wise.	386 1D-RoPE	387 DaC	388 67.4	389 81.7	390 72.2	391 47.9	392 73.7	393 80.1
384 HoVLE	385 Tile-wise.	386 1D-RoPE	387 Dense	388 73.0	389 86.1	390 78.6	391 55.7	392 70.9	393 74.0
384 OneCAT	385 Any Res.	386 M-RoPE	387 Dense	388 72.4	389 87.1	390 76.2	391 56.3	392 67.0	393 –
NEO									
384	385 Any Res.	386 Native-RoPE	387 Dense	388 80.1	389 89.9	390 81.2	391 63.2	392 74.0	393 77.1
▼ Modular Vision-Language Models (8B)									
384 Qwen2-VL	385 Any Res.	386 M-RoPE	387 Dense	388 83.0	389 94.5	390 83	391 76.5	392 84.3	393 86.6
384 InternVL2.5	385 Tile-wise	386 1D-RoPE	387 Dense	388 84.5	389 93.0	390 84.8	391 77.6	392 79.1	393 82.2
384 Qwen2.5-VL [†]	385 Any Res.	386 M-RoPE	387 Dense	388 83.9	389 95.7	390 87.3	391 82.6	392 84.9	393 86.4
384 InternVL3 [†]	385 Tile-wise	386 1D-RoPE	387 Dense	388 85.2	389 92.7	390 86.6	391 76.8	392 80.2	393 88
Encoder-Based									
384	385 Tile-wise	386 1D-RoPE	387 Dense	388 82.9	389 92.1	390 83.5	391 75	392 77.1	393 85.3
▼ Native Vision-Language Models (8B)									
401 Fuyu	402 Any Res.	403 1D-RoPE	404 Dense	405 64.5	406 –	407 –	408 –	409 –	410 36.6
401 Chameleon	402 Fix Res.	403 1D-RoPE	404 Dense	405 46.0	406 1.5	407 2.9	408 5.0	409 4.8	410 0.7
401 EVE	402 Any Rat.	403 1D-RoPE	404 Dense	405 61.0	406 53.0	407 59.1	408 25.0	409 56.8	410 39.8
401 SOLO	402 Any Res.	403 1D-RoPE	404 Dense	405 61.4	406 –	407 –	408 –	409 –	410 12.6
401 Emu3	402 Fix Res.	403 1D-RoPE	404 Dense	405 70	406 76.3	407 68.6	408 43.8	409 64.7	410 68.7
401 EVEv2	402 Any Rat.	403 1D-RoPE	404 DaC	405 74.8	406 –	407 73.9	408 –	409 71.1	410 70.2
401 BREEN	402 Any Res.	403 1D-RoPE	404 MoE	405 76.4	406 –	407 –	408 –	409 65.7	410 –
401 VoRA	402 Any Res.	403 1D-RoPE	404 Dense	405 61.1	406 –	407 –	408 –	409 58.7	410 –
401 SAIL	402 Any Res.	403 M-RoPE	404 Dense	405 76.7	406 –	407 –	408 –	409 77.1	410 78.3
NEO									
401	402 Any Res.	403 Native-RoPE	404 Dense	405 83.1	406 88.6	407 82.1	408 60.9	409 75.0	410 77.7

411 Despite strong results, NEO lags on knowledge-/OCR-heavy tasks, *e.g.*, MMMU, InfoVQA, and
 412 TextVQA. *Interestingly, NEO-9B does not surpass NEO-2B on DocVQA and InfoVQA*, indicating
 413 limitations in our current training corpus. Even so, NEO performs well under constraints, highlighting
 414 the native VLM as a scalable paradigm. Larger datasets and resources can unlock its full potential.
 415

416 4.3 ABLATION STUDIES

417 Unless otherwise specified, we report the average evaluation results, denoted as **Avg.**, across ten
 418 vision-language benchmark datasets in Table 3. The pre-Buffer and new head dimensions in the
 419 post-LLM are trained on 20M pre-training samples, followed by full-backbone fine-tuning on 2M
 420 SFT instruction data. These constitute the standard training settings for our ablation studies.
 421

422 **Hyperparameters of the Pre-Buffer Layer.** Figure 5
 423 illustrates the relationship between the number of pre-
 424 Buffer layers and the model’s average accuracy, using
 425 Qwen3-1.7B as the post-LLM. Performance improves
 426 consistently as the layer count increases, but gains begin
 427 to saturate beyond eight layers. *Inspired by the parameter*
 428 *counts of popular VEs* (Chen et al., 2024f; Radford et al.,
 429 2021; Zhai et al., 2023) and the scaling properties (Tian
 430 et al., 2025) between existing VEs and LLMs, we select
 431 12 and 6 layers for NEO-2.2B and NEO-9B to balance
 432 the trade-off between performance and efficiency.



433 Figure 5: Configurations of pre-Buffer.

Table 3: Configurations of attention and RoPE. MMS, CQA, IVQA, and OCRB denote MMStar, ChartQA, InfoVQA, and OCRBench. \star indicates that the base RoPE frequencies for height and width are set to 1M. To ensure fairness, we add new head dimensions of equal size across all models.

Model	Attention	RoPE	MMMU	MMB	MMS	SEED-I	AI2D	CQA	IVQA	TVQA	OCRB	POPE	Avg.
A	Causal	1D-RoPE	40.2	48.6	36.1	55.3	63.6	16.1	22.5	16.2	13.9	78.6	39.1
B	Mixed	1D-RoPE	40.8	48.8	36.4	57.3	63.7	16.0	21.9	17.4	16.0	79.2	39.8
C	Mixed	IL-RoPE	40.0	47.3	36.3	57.6	62.0	18.8	23.4	17.9	13.2	78.8	39.5
D	Mixed	M-RoPE	40.3	49.6	37.2	57.8	64.2	23.7	25.2	20.4	18.8	79.3	41.7
E	Mixed	MM-RoPE	40.5	50.8	37.6	58.2	65.8	25.7	26.3	22.1	18.2	78.8	42.4
F	Mixed	Video-RoPE	40.6	51.3	37.8	58.8	64.3	27.4	26.1	23.7	21.3	81.0	43.2
G	Causal	Native-RoPE	40.2	49.2	36.3	57.1	63.7	19.2	23.5	19.5	16.7	77.8	40.3
H	Mixed	Native-RoPE	40.7	51.9	38.2	58.9	65.8	30.6	26.9	24.1	23.2	80.0	44.0
I	Mixed	Native-RoPE \star	40.4	50.4	36.9	57.0	64.1	25.6	25.2	21.7	20.1	78.7	42.0

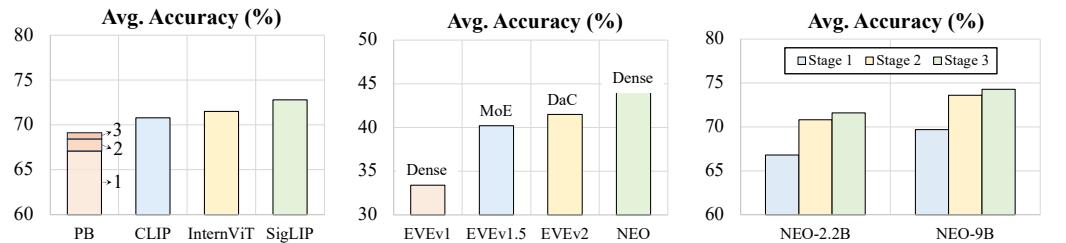


Figure 6: Pre-Buffer vs. VEs. Figure 7: Neo vs. EVE series. Figure 8: Three training processes.

Configurations of Native Primitives. Table 3 compares various attention and RoPE designs. The pre-Buffer depth is 4, and the post-LLM is initialized with Qwen3-1.7B. All models share the same new QK head dimensions and normalization. (1) *Attention mode*. Comparing models A/B and G/H reveals consistent gains of mixed attention over causal one, reflecting its stronger capacity to model comprehensive dependencies and cross-modal alignment. (2) *RoPE mode*. Native-RoPE outperforms 1D-RoPE (Zhu et al., 2025), IL-RoPE (Liao et al., 2025), M-RoPE (Bai et al., 2025), MM-RoPE (Yuan et al., 2025), and Video-RoPE (Wei et al., 2025), with at least a 0.8% gain. This validates the importance of disentangling height, width, and temporal components in RoPE to enhance spatial-temporal representations and fine-grained interactions. By contrast, setting the base RoPE frequency to 1M for height and width severely impairs the ability to perceive local semantics.

Comparison between Pre-Buffer and Vision Encoders. In Figure 6, PB 1–3 denotes the Pre-Buffer obtained from stage 1–3. For fairness, all post-LLMs are initialized by Qwen3-1.7B (Yang et al., 2025) combined by pre-trained pre-Buffer, CLIP-vit-large-patch14 (Radford et al., 2021), InternViT-300M (Chen et al., 2024e), and SigLIP-so400m-patch14-384 (Zhai et al., 2023). During pre-training, we train the projector for encoder-based methods and the newly added QK parameters for all models. During SFT, we unfreeze the entire backbone. After two-stage re-training, PB3 delivers strong performance, trailing CLIP / InternViT / SigLIP by only 1.7 / 2.4 / 3.7% on average across diverse benchmarks. Notably, despite using only 22M training samples, PB3 is just 2.5% below the full NEO model, substantially reducing the training cost of developing native VLMs for future research.

Comparison between NEO and Native VLM variants. Existing native VLMs in Table 1 and 2 differ dramatically in training pipelines, data volume/quality, and base LLM choice. To isolate model architectural effects, we compare our NEO with representative EVEv1.0 (Dense), EVEv1.5 (Mixture-of-Experts), and EVEv2.0 (Divide-and-Conquer), all built on Qwen3-1.7B. From Figure 7, EVEv1.0, EVEv1.5, and EVEv2.0 achieves 33.4%, 40.2%, and 41.5%, respectively, compared with 44.0% for our NEO. This confirms that the gains stem from our pre-buffer, native RoPE design, and interaction patterns, rather than from a newer backbone or larger and higher-quality data alone.

Performance Gains across Stages. Figure 8 presents the result evolution across training stages. In Stages 1 and 2, the model is fine-tuned on 2M SFT examples. Performance improves consistently as training data scales increase across 2.2B and 9B model sizes. Following progressive training, NEO shows strong multimodal capabilities, enabling robust performance across diverse real-world tasks.

486

5 CONCLUSION

488 We introduce NEO, a native VLM that seamlessly integrates vision and language into a single unified
 489 framework, eliminating the need for separate visual encoders or ad-hoc alignment modules. By
 490 leveraging hybrid attention and modality-aware rotary position embeddings, NEO captures rich,
 491 fine-grained interactions between pixels and words from the outset. Its pre-Buffer and post-LLM
 492 training paradigm ensures efficient convergence and robust alignment while maintaining end-to-end
 493 learning. Experiments show that this unified design not only advances multimodal understanding
 494 and reasoning but also lays the foundation for reusable, scalable components. Our native primitives
 495 highlight a promising path toward intrinsically multimodal, unified, and adaptable architectures.

496

497 ETHICS STATEMENT

498 All resources are drawn from open-access datasets with explicitly defined usage policies. Our work
 499 seeks to advance multimodal learning capabilities without introducing ethical or safety concerns
 500 beyond those already associated with existing models. Nevertheless, risks such as dataset biases and
 501 potential misuse cannot be entirely ruled out. We emphasize the importance of careful data curation,
 502 responsible deployment, and transparent reporting as essential practices to mitigate these challenges.

503

504 REPRODUCIBILITY STATEMENT

505 We place strong emphasis on reproducibility, providing detailed descriptions to facilitate replication
 506 and validation. Information about dataset selection, training strategies, and evaluation settings is
 507 provided in Sec. 3.2 and Sec. 4.1. We commit to releasing the code, model weights, and detailed
 508 documentation to allow the community to reproduce our findings in future research.

511

512 REFERENCES

513 Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
 514 Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, Roman Ring, Eliza Rutherford,
 515 Serkan Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro, Jacob L. Menick,
 516 Sebastian Borgeaud, Andy Brock, Aida Nematzadeh, Sahand Sharifzadeh, Mikolaj Binkowski,
 517 Ricardo Barreira, Oriol Vinyals, Andrew Zisserman, and Karén Simonyan. Flamingo: a visual
 518 language model for few-shot learning. In *Advances of Neural Information Processing Systems*,
 519 New Orleans, LA, USA, 2022.

520 Anthropic. Claude 3.7 sonnet: A hybrid reasoning ai model, 2025. URL <https://www.anthropic.com/news/clause-3-7-sonnet>.

521 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 522 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Ming-Hsuan Yang, Zhaohai Li, Jianqiang
 523 Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen
 524 Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report.
 525 *CoRR*, abs/2502.13923, 2025.

526 Yuelin Bai, Xinrun Du, Yiming Liang, Yonggang Jin, Junting Zhou, Ziqiang Liu, Feiteng Fang,
 527 Mingshan Chang, Tianyu Zheng, Xincheng Zhang, et al. Coig-cqia: Quality is all you need for
 528 chinese instruction fine-tuning. *CoRR*, abs/2403.18058, 2024.

529 Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, and
 530 Sağnak Taşırlar. Introducing our multimodal models, 2023. URL <https://www.adept.ai/blog/fuyu-8b>.

531 Lucas Beyer, Andreas Steiner, André Susano Pinto, Alexander Kolesnikov, Xiao Wang, Daniel Salz,
 532 Maxim Neumann, Ibrahim Alabdulmohsin, Michael Tschannen, Emanuele Bugliarello, Thomas
 533 Unterthiner, Daniel Keysers, Skanda Koppula, Fangyu Liu, Adam Grycner, Alexey A. Gritsenko,
 534 Neil Houlsby, Manoj Kumar, Keran Rong, Julian Eisenschlos, Rishabh Kabra, Matthias Bauer,
 535 Matko Bosnjak, Xi Chen, Matthias Minderer, Paul Voigtlaender, Ioana Bica, Ivana Balazevic, Joan

540 Puigcerver, Pinelopi Papalampidi, Olivier J. Hénaff, Xi Xiong, Radu Soricut, Jeremiah Harmsen,
 541 and Xiaohua Zhai. Paligemma: a versatile 3b vlm for transfer. *CoRR*, abs/2407.07726, 2024.

542

543 Ali Furkan Biten, Rubèn Tito, Andrés Mafla, Lluís Gómez i Bigorda, Marçal Rusiñol, C. V. Jawahar,
 544 Ernest Valveny, and Dimosthenis Karatzas. Scene text visual question answering. In *IEEE
 545 International Conference on Computer Vision*, pp. 4290–4300, Seoul, Korea (South), 2019.

546

547 Minwoo Byeon, Beomhee Park, Haecheon Kim, Sungjun Lee, Woonhyuk Baek, and Saehoon Kim.
 548 Coyo-700m: Image-text pair dataset, 2022. URL [https://github.com/kakaobrain/
 549 coyo-dataset](https://github.com/kakaobrain/coyo-dataset).

550

551 Jie Cao and Jing Xiao. An augmented benchmark dataset for geometric question answering through
 552 dual parallel text encoding. In *International Conference on Computational Linguistics*, pp. 1511–
 553 1520, 2022.

554

555 Guiming Hardy Chen, Shunian Chen, Ruifei Zhang, Junying Chen, Xiangbo Wu, Zhiyi Zhang,
 556 Zhihong Chen, Jianquan Li, Xiang Wan, and Benyou Wang. Allava: harnessing gpt4v-synthesized
 557 data for a lite vision-language model. *CoRR*, abs/2402.11684, 2024a.

558

559 Jiupei Chen, Zhiyang Xu, Xichen Pan, Yushi Hu, Can Qin, Tom Goldstein, Lifu Huang, Tianyi Zhou,
 560 Saining Xie, Silvio Savarese, Le Xue, Caiming Xiong, and Ran Xu. Blip3-o: A family of fully
 561 open unified multimodal models-architecture, training and dataset. *CoRR*, abs/2505.09568, 2025.

562

563 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Conghui He, Jiaqi Wang, Feng Zhao, and Dahua Lin.
 564 Sharegpt4v: improving large multi-modal models with better captions. In *European Conference
 565 on Computer Vision*, volume 15075, pp. 370–387, Milan, Italy, 2024b.

566

567 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi
 568 Wang, Yu Qiao, Dahua Lin, and Feng Zhao. Are we on the right way for evaluating large vision-
 569 language models? In *Advances of Neural Information Processing Systems*, Vancouver, BC, Canada,
 570 2024c.

571

572 Yangyi Chen, Xingyao Wang, Hao Peng, and Heng Ji. A single transformer for scalable vision-
 573 language modeling. *CoRR*, abs/2407.06438, 2024d.

574

575 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong
 576 Ye, Hao Tian, Zhaoyang Liu, Lixin Gu, Xuehui Wang, Qingyun Li, Yimin Ren, Zixuan Chen,
 577 Jiapeng Luo, Jiahao Wang, Tan Jiang, Bo Wang, Conghui He, Botian Shi, Xingcheng Zhang, Han
 578 Lv, Yi Wang, Wenqi Shao, Pei Chu, Zhongying Tu, Tong He, Zhiyong Wu, Huipeng Deng, Jiaye
 579 Ge, Kai Chen, Min Dou, Lewei Lu, Xizhou Zhu, Tong Lu, Dahua Lin, Yu Qiao, Jifeng Dai, and
 580 Wenhui Wang. Expanding performance boundaries of open-source multimodal models with model,
 581 data, and test-time scaling. *CoRR*, abs/2412.05271, 2024e.

582

583 Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong,
 584 Kongzhi Hu, Jiapeng Luo, Zheng Ma, Ji Ma, Jiaqi Wang, Xiaoyi Dong, Hang Yan, Hewei Guo,
 585 Conghui He, Botian Shi, Zhenjiang Jin, Chao Xu, Bin Wang, Xingjian Wei, Wei Li, Wenjian
 586 Zhang, Bo Zhang, Pinlong Cai, Licheng Wen, Xiangchao Yan, Min Dou, Lewei Lu, Xizhou Zhu,
 587 Tong Lu, Dahua Lin, Yu Qiao, Jifeng Dai, and Wenhui Wang. How far are we to gpt-4v? closing
 588 the gap to commercial multimodal models with open-source suites. *CoRR*, abs/2404.16821, 2024f.

589

590 Chee Kheng Chng, Yuliang Liu, Yipeng Sun, Chun Chet Ng, Canjie Luo, Zihan Ni, ChuanMing
 591 Fang, Shuaítao Zhang, Junyu Han, Errui Ding, et al. Icdar2019 robust reading challenge on
 592 arbitrary-shaped text-rrc-art. In *International Conference on Document Analysis and Recognition*,
 593 pp. 1571–1576, 2019.

594

595 Christopher Clark and Matt Gardner. Simple and effective multi-paragraph reading comprehension.
 596 In *Annual Meeting of the Association for Computational Linguistics*, pp. 845–855, Melbourne,
 597 Australia, 2018.

598

599 Wenliang Dai, Nayeon Lee, Boxin Wang, Zhuoling Yang, Zihan Liu, Jon Barker, Tuomas Rintamaki,
 600 Mohammad Shoeybi, Bryan Catanzaro, and Wei Ping. NVLM: open frontier-class multimodal
 601 llms. *CoRR*, abs/2409.11402, 2024.

594 Abhishek Das, Satwik Kottur, Khushi Gupta, Avi Singh, Deshraj Yadav, José M. F. Moura, Devi
 595 Parikh, and Dhruv Batra. Visual dialog. In *IEEE Conference on Computer Vision and Pattern*
 596 *Recognition*, pp. 1080–1089, Honolulu, HI, USA, 2017.

597 Yann N. Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated
 598 convolutional networks. In *International Conference on Machine Learning*, volume 70, pp.
 599 933–941, Sydney, NSW, Australia, 2017.

600 Google DeepMind. Gemini 2.5 pro: Google’s most advanced reasoning model, 2025. URL <https://deepmind.google/models/gemini/pro/>.

601 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
 602 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
 603 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
 604 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
 605 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
 606 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
 607 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
 608 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
 609 Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
 610 Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
 611 Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
 612 Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
 613 Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
 614 Shuiping Yu, Shunfeng Zhou, Shuting Pan, and S. S. Li. Deepseek-r1: Incentivizing reasoning
 615 capability in llms via reinforcement learning. *CoRR*, abs/2501.12948, 2025.

616 Chaorui Deng, Deyao Zhu, Kunchang Li, Chenhui Gou, Feng Li, Zeyu Wang, Shu Zhong, Weihao Yu,
 617 Xiaonan Nie, Ziang Song, Shi Guang, and Haoqi Fan. Emerging properties in unified multimodal
 618 pretraining. *CoRR*, abs/2505.14683, 2025a.

619 Haoge Deng, Ting Pan, Haiwen Diao, Zhengxiong Luo, Yufeng Cui, Huchuan Lu, Shiguang Shan,
 620 Yonggang Qi, and Xinlong Wang. Autoregressive video generation without vector quantization. In
 621 *International Conference on Learning Representations*, Singapore, 2025b.

622 Haiwen Diao, Yufeng Cui, Xiaotong Li, Yueze Wang, Huchuan Lu, and Xinlong Wang. Unveiling
 623 encoder-free vision-language models. *CoRR*, abs/2406.11832, 2024.

624 Haiwen Diao, Xiaotong Li, Yufeng Cui, Yueze Wang, Haoge Deng, Ting Pan, Wenxuan Wang,
 625 Huchuan Lu, and Xinlong Wang. Evev2: Improved baselines for encoder-free vision-language
 626 models. *CoRR*, abs/2502.06788, 2025.

627 Juechu Dong, Boyuan Feng, Driss Guessous, Yanbo Liang, and Horace He. Flex attention: A
 628 programming model for generating optimized attention kernels. *CoRR*, abs/2412.05496, 2024.

629 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 630 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
 631 and Neil Houlsby. An image is worth 16x16 words: transformers for image recognition at scale.
 632 In *International Conference on Learning Representations*, Austria, 2021.

633 Haodong Duan, Junming Yang, Yuxuan Qiao, Xinyu Fang, Lin Chen, Yuan Liu, Xiaoyi Dong, Yuhang
 634 Zang, Pan Zhang, Jiaqi Wang, Dahua Lin, and Kai Chen. Vlmevalkit: An open-source toolkit for
 635 evaluating large multi-modality models. In *ACM International Conference on Multimedia*, pp.
 636 11198–11201, Melbourne, VIC, Australia, 2024.

637 Yuxin Fang, Wen Wang, Binhui Xie, Quan Sun, Ledell Wu, Xinggang Wang, Tiejun Huang, Xinlong
 638 Wang, and Yue Cao. EVA: exploring the limits of masked visual representation learning at scale.
 639 In *IEEE Conference on Computer Vision and Pattern Recognition*, pp. 19358–19369, Vancouver,
 640 BC, Canada, 2023.

641 Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in
 642 vqa matter: elevating the role of image understanding in visual question answering. In *IEEE*
 643 *Conference on Computer Vision and Pattern Recognition*, pp. 6325–6334, Honolulu, HI, USA,
 644 2017.

648 Jiaxi Gu, Xiaojun Meng, Guansong Lu, Lu Hou, Niu Minzhe, Xiaodan Liang, Lewei Yao, Runhui
 649 Huang, Wei Zhang, Xin Jiang, Chunjing Xu, and Hang Xu. Wukong: A 100 million large-scale
 650 chinese cross-modal pre-training benchmark. In *Advances of Neural Information Processing
 651 Systems*, New Orleans, LA, USA,, 2022.

652

653 Tianrui Guan, Fuxiao Liu, Xiyang Wu, Ruiqi Xian, Zongxia Li, Xiaoyu Liu, Xijun Wang, Lichang
 654 Chen, Furong Huang, Yaser Yacoob, Dinesh Manocha, and Tianyi Zhou. Hallusionbench: an
 655 advanced diagnostic suite for entangled language hallucination and visual illusion in large vision-
 656 language models. In *IEEE Conference on Computer Vision and Pattern Recognition*, pp. 14375–
 657 14385, Seattle, WA, USA, 2024.

658

659 Dong Guo, Faming Wu, Feida Zhu, Fuxing Leng, Guang Shi, Haobin Chen, Haoqi Fan, Jian Wang,
 660 Jianyu Jiang, Jiawei Wang, et al. Seed1. 5-vl technical report. *CoRR*, abs/2505.07062, 2025.

661

662 Conghui He, Zhenjiang Jin, Chao Xu, Jiantao Qiu, Bin Wang, Wei Li, Hang Yan, Jiaqi Wang, and
 663 Dahua Lin. Wanjuan: A comprehensive multimodal dataset for advancing english and chinese
 664 large models. *CoRR*, abs/2308.10755, 2023.

665

666 Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). *CoRR*, abs/1606.08415, 2016.

667

668 Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo Wang, Guobing Gan, Haomiao Tang, Jiale Cheng,
 669 Ji Qi, Junhui Ji, Lihang Pan, et al. Glm-4.1 v-thinking: Towards versatile multimodal reasoning
 670 with scalable reinforcement learning. *CoRR*, abs/2507.01006, 2025.

671

672 Drew A. Hudson and Christopher D. Manning. GQA: a new dataset for real-world visual reasoning
 673 and compositional question answering. In *IEEE Conference on Computer Vision and Pattern
 674 Recognition*, pp. 6700–6709, Long Beach, CA, USA, 2019.

675

676 Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 677 trow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Madry, Alex Baker-Whitcomb, Alex
 678 Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex Nichol, Alex Paino, Alex
 679 Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis, Alexis Conneau, Ali Kamali,
 680 Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin Tootoonchian, Ananya Kumar,
 681 Andrea Vallone, Andrej Karpathy, Andrew Braunstein, Andrew Cann, Andrew Codispoti, Andrew
 682 Galu, Andrew Kondrich, Andrew Tulloch, Andrey Mishchenko, Angela Baek, Angela Jiang, An-
 683 toine Pelisse, Antonia Woodford, Anuj Gosalia, Arka Dhar, Ashley Pantuliano, Avi Nayak, Avital
 684 Oliver, Barret Zoph, Behrooz Ghorbani, Ben Leimberger, Ben Rossen, Ben Sokolowsky, Ben
 685 Wang, Benjamin Zweig, Beth Hoover, Blake Samic, Bob McGrew, Bobby Spero, Bogo Giertler,
 686 Bowen Cheng, Brad Lightcap, Brandon Walkin, Brendan Quinn, Brian Guarraci, Brian Hsu, Bright
 687 Kellogg, Brydon Eastman, Camillo Lugaresi, Carroll L. Wainwright, Cary Bassin, Cary Hudson,
 688 Casey Chu, Chad Nelson, Chak Li, Chan Jun Shern, Channing Conger, Charlotte Barette, Chelsea
 689 Voss, Chen Ding, Cheng Lu, Chong Zhang, Chris Beaumont, Chris Hallacy, Chris Koch, Christian
 690 Gibson, Christina Kim, Christine Choi, Christine McLeavey, Christopher Hesse, Claudia Fischer,
 691 Clemens Winter, Coley Czarnecki, Colin Jarvis, Colin Wei, Constantin Koumouzelis, and Dane
 692 Sherburn. Gpt-4o system card. *CoRR*, abs/2410.21276, 2024.

693

694 Jimmycarter. Textocr gpt-4v dataset, 2023. URL <https://huggingface.co/datasets/jimmycarter/textocr-gpt4v>.

695

696 Kushal Kafle, Brian L. Price, Scott Cohen, and Christopher Kanan. DVQA: understanding data
 697 visualizations via question answering. In *IEEE Conference on Computer Vision and Pattern
 698 Recognition*, pp. 5648–5656, Salt Lake City, UT, USA, 2018.

699

700 Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Min Joon Seo, Hannaneh Hajishirzi, and Ali Farhadi.
 701 A diagram is worth a dozen images. In *European Conference on Computer Vision*, volume 9908,
 702 pp. 235–251, Amsterdam, The Netherlands, 2016.

703

704 Aniruddha Kembhavi, Minjoon Seo, Dustin Schwenk, Jonghyun Choi, Ali Farhadi, and Hannaneh
 705 Hajishirzi. Are you smarter than a sixth grader? textbook question answering for multimodal
 706 machine comprehension. In *IEEE Conference on Computer Vision and Pattern Recognition*, pp.
 707 4999–5007, 2017.

702 Geewook Kim, Teakgyu Hong, Moonbin Yim, JeongYeon Nam, Jinyoung Park, Jinyeong Yim,
 703 Wonseok Hwang, Sangdoo Yun, Dongyoon Han, and Seunghyun Park. Ocr-free document
 704 understanding transformer. In *European Conference on Computer Vision*, volume 13688, pp.
 705 498–517, Tel Aviv, Israel, 2022.

706 Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie
 707 Chen, Yannis Kalantidis, Li-Jia Li, David A. Shamma, Michael S. Bernstein, and Li Fei-Fei.
 708 Visual genome: connecting language and vision using crowdsourced dense image annotations.
 709 *International Journal of Computer Vision*, 123(1):32–73, 2017.

710 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional
 711 neural networks. In *Advances of Neural Information Processing Systems*, pp. 1106–1114,
 712 Lake Tahoe, Nevada, US, 2012.

713 Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper R. R. Uijlings, Ivan Krasin, Jordi Pont-Tuset,
 714 Shahab Kamali, Stefan Popov, Matteo Mallochi, Tom Duerig, and Vittorio Ferrari. The open images
 715 dataset v4: unified image classification, object detection, and visual relationship detection at scale.
 716 *CoRR*, abs/1811.00982, 2018.

717 LAION. Gpt-4v dataset, 2023. URL <https://huggingface.co/datasets/laion/gpt4v-dataset>.

718 Weixian Lei, Jiacong Wang, Haochen Wang, Xiangtai Li, Jun Hao Liew, Jiashi Feng, and Zilong
 719 Huang. The scalability of simplicity: Empirical analysis of vision-language learning with a single
 720 transformer. *CoRR*, abs/2504.10462, 2025.

721 Paul Lerner, Olivier Ferret, Camille Guinaudeau, Hervé Le Borgne, Romaric Besançon, José G
 722 Moreno, and Jesús Lovón Melgarejo. Viquae, a dataset for knowledge-based visual question
 723 answering about named entities. In *ACM SIGIR Conference on Research and Development in
 724 Information Retrieval*, pp. 3108–3120, 2022.

725 Bo Li, Kaichen Zhang, Hao Zhang, Dong Guo, Renrui Zhang, Feng Li, Yuanhan
 726 Zhang, Ziwei Liu, and Chunyuan Li. Llava-next: stronger llms supercharge multi-
 727 modal capabilities in the wild, 2024a. URL <https://llava-v1.github.io/blog/2024-05-10-llava-next-stronger-llms/>.

728 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Yanwei Li,
 729 Ziwei Liu, and Chunyuan Li. Llava-onevision: easy visual task transfer. *CoRR*, abs/2408.03326,
 730 2024b.

731 Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yixiao Ge, and Ying Shan. Seed-bench: bench-
 732 marking multimodal llms with generative comprehension. *CoRR*, abs/2307.16125, 2023a.

733 Han Li, Xinyu Peng, Yaoming Wang, Zelin Peng, Xin Chen, Rongxiang Weng, Jingang Wang,
 734 Xunliang Cai, Wenrui Dai, and Hongkai Xiong. Onecat: Decoder-only auto-regressive model for
 735 unified understanding and generation. *CoRR*, abs/2509.03498, 2025a.

736 Tianle Li, Yongming Rao, Winston Hu, and Yu Cheng. BREEN: bridge data-efficient encoder-free
 737 multimodal learning with learnable queries. *CoRR*, abs/2503.12446, 2025b.

738 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating object
 739 hallucination in large vision-language models. In *Conference on Empirical Methods in Natural
 740 Language Processing*, pp. 292–305, Singapore, 2023b.

741 Zhiowwan Li, Xingrui Wang, Elias Stengel-Eskin, Adam Kortylewski, Wufei Ma, Benjamin
 742 Van Durme, and Alan L Yuille. Super-clevr: A virtual benchmark to diagnose domain robust-
 743 ness in visual reasoning. In *IEEE Conference on Computer Vision and Pattern Recognition*, pp.
 744 14963–14973, 2023c.

745 Weixin Liang, Lili Yu, Liang Luo, Srinivasan Iyer, Ning Dong, Chunting Zhou, Gargi Ghosh, Mike
 746 Lewis, Wen-tau Yih, Luke Zettlemoyer, and Xi Victoria Lin. Mixture-of-transformers: A sparse
 747 and scalable architecture for multi-modal foundation models. *CoRR*, abs/2411.04996, 2024.

756 Chao Liao, Liyang Liu, Xun Wang, Zhengxiong Luo, Xinyu Zhang, Wenliang Zhao, Jie Wu, Liang
 757 Li, Zhi Tian, and Weilin Huang. Mogao: An omni foundation model for interleaved multi-modal
 758 generation. *CoRR*, abs/2505.05472, 2025.

759

760 Xi Victoria Lin, Akshat Shrivastava, Liang Luo, Srinivasan Iyer, Mike Lewis, Gargi Ghosh, Luke
 761 Zettlemoyer, and Armen Aghajanyan. Moma: efficient early-fusion pre-training with mixture of
 762 modality-aware experts. *CoRR*, abs/2407.21770, 2024.

763

764 Adam Dahlgren Lindström and Savitha Sam Abraham. Clevr-math: A dataset for compositional
 765 language, visual and mathematical reasoning. *CoRR*, abs/2208.05358, 2022.

766

767 Fangyu Liu, Guy Emerson, and Nigel Collier. Visual spatial reasoning. *Transactions of the Association
 768 for Computational Linguistics*, 11:635–651, 2023a.

769

770 Fuxiao Liu, Kevin Lin, Linjie Li, Jianfeng Wang, Yaser Yacoob, and Lijuan Wang. Aligning large
 771 multi-modal model with robust instruction tuning. *CoRR*, 2023b.

772

773 Fuxiao Liu, Xiaoyang Wang, Wenlin Yao, Jianshu Chen, Kaiqiang Song, Sangwoo Cho, Yaser Yacoob,
 774 and Dong Yu. Mmc: Advancing multimodal chart understanding with large-scale instruction
 775 tuning. *CoRR*, abs/2311.10774, 2023c.

776

777 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In *Advances
 778 of Neural Information Processing Systems*, New Orleans, LA, USA, 2023d.

779

780 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 781 tuning. In *IEEE Conference on Computer Vision and Pattern Recognition*, pp. 26286–26296,
 782 Seattle, WA, USA, 2024a.

783

784 Xi Liu, Rui Zhang, Yongsheng Zhou, Qianyi Jiang, Qi Song, Nan Li, Kai Zhou, Lei Wang, Dong
 785 Wang, Minghui Liao, et al. Icdar 2019 robust reading challenge on reading chinese text on
 786 signboard. *CoRR*, abs/1912.09641, 2019.

787

788 Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi
 789 Wang, Conghui He, Ziwei Liu, Kai Chen, and Dahu Lin. Mmbench: is your multi-modal model
 790 an all-around player? In *European Conference on Computer Vision*, volume 15064, pp. 216–233,
 Milan, Italy, 2024b.

791

792 Yuliang Liu, Zhang Li, Hongliang Li, Wenwen Yu, Mingxin Huang, Dezheng Peng, Mingyu Liu,
 793 Mingrui Chen, Chunyuan Li, Lianwen Jin, and Xiang Bai. On the hidden mystery of ocr in large
 794 multimodal models. *CoRR*, abs/2305.07895, 2023e.

795

796 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Conference
 797 on Learning Representations*, New Orleans, LA, USA, 2019.

798

799 Pan Lu, Ran Gong, Shibiao Jiang, Liang Qiu, Siyuan Huang, Xiaodan Liang, and Song-Chun Zhu.
 800 Inter-gps: Interpretable geometry problem solving with formal language and symbolic reasoning.
 801 *CoRR*, abs/2105.04165, 2021.

802

803 Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
 804 Peter Clark, and Ashwin Kalyan. Learn to explain: multimodal reasoning via thought chains for
 805 science question answering. In *Advances of Neural Information Processing Systems*, volume 35,
 806 pp. 2507–2521, New Orleans, LA, USA, 2022a.

807

808 Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu, Tanmay Rajpurohit, Peter
 809 Clark, and Ashwin Kalyan. Dynamic prompt learning via policy gradient for semi-structured
 810 mathematical reasoning. *CoRR*, abs/2209.14610, 2022b.

811

812 Gen Luo, Xue Yang, Wenhan Dou, Zhaokai Wang, Jifeng Dai, Yu Qiao, and Xizhou Zhu. Mono-
 813 internvl: pushing the boundaries of monolithic multimodal large language models with endogenous
 814 visual pre-training. *CoRR*, abs/2410.08202, 2024.

815

816 Gen Luo, Wenhan Dou, Wenhao Li, Zhaokai Wang, Xue Yang, Changyao Tian, Hao Li, Weiyun
 817 Wang, Wenhui Wang, Xizhou Zhu, Yu Qiao, and Jifeng Dai. Mono-internvl-1.5: Towards cheaper
 818 and faster monolithic multimodal large language models. *CoRR*, abs/2507.12566, 2025.

810 Junhua Mao, Jonathan Huang, Alexander Toshev, Oana Camburu, Alan L. Yuille, and Kevin Murphy.
 811 Generation and comprehension of unambiguous object descriptions. In *IEEE Conference on*
 812 *Computer Vision and Pattern Recognition*, pp. 11–20, Las Vegas, NV, USA, 2016.

813

814 Kenneth Marino, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi. OK-VQA: a visual
 815 question answering benchmark requiring external knowledge. In *IEEE Conference on Computer*
 816 *Vision and Pattern Recognition*, pp. 3195–3204, Vienna, Austria, 2019.

817 Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq R. Joty, and Enamul Hoque. Chartqa: a
 818 benchmark for question answering about charts with visual and logical reasoning. In *Annual*
 819 *Meeting of the Association for Computational Linguistics*, pp. 2263–2279, Dublin, Ireland, 2022.

820

821 Minesh Mathew, Viraj Bagal, Rubèn Tito, Dimosthenis Karatzas, Ernest Valveny, and C. V. Jawahar.
 822 Infographicvqa. In *IEEE Winter Conference on Applications of Computer Vision*, pp. 2582–2591,
 823 Waikoloa, HI, USA, 2022.

824

825 Nitesh Methani, Pritha Ganguly, Mitesh M Khapra, and Pratyush Kumar. Plotqa: Reasoning over
 826 scientific plots. In *IEEE Winter Conference on Applications of Computer Vision*, pp. 1527–1536,
 827 2020.

828

829 Anand Mishra, Shashank Shekhar, Ajeet Kumar Singh, and Anirban Chakraborty. OCR-VQA: visual
 830 question answering by reading text in images. In *International Conference on Document Analysis*
 831 and *Recognition*, pp. 947–952, Sydney, Australia, 2019.

832

833 OpenAI. Gpt-5: A unified multimodal model, 2025. URL <https://openai.com/gpt-5>.

834

835 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 836 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
 837 Learning transferable visual models from natural language supervision. In *International Conference*
 838 *on Machine Learning*, volume 139, pp. 8748–8763, virtual, 2021.

839

840 Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis,
 841 Arush Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. LAION-400M: open dataset of
 842 clip-filtered 400 million image-text pairs. *CoRR*, abs/2111.02114, 2021.

843

844 Christoph Schuhmann, Andreas Köpf, Richard Vencu, Theo Coombes, and Romain Beaumont. Laion
 845 coco: 600m synthetic captions from laion2b-en, 2022. URL <https://laion.ai/blog/laion-coco/>.

846

847 Dustin Schwenk, Apoorv Khandelwal, Christopher Clark, Kenneth Marino, and Roozbeh Mottaghi.
 848 A-OKVQA: a benchmark for visual question answering using world knowledge. In *European*
 849 *Conference on Computer Vision*, volume 13668, pp. 146–162, Tel Aviv, Israel, 2022.

850

851 Sanket Shah, Anand Mishra, Naganand Yadati, and Partha Pratim Talukdar. Kvqa: Knowledge-
 852 aware visual question answering. In *AAAI Conference on Artificial Intelligence*, volume 33, pp.
 853 8876–8884, 2019.

854

855 Baoguang Shi, Cong Yao, Minghui Liao, Mingkun Yang, Pei Xu, Linyan Cui, Serge Belongie, Shijian
 856 Lu, and Xiang Bai. Icdar2017 competition on reading chinese text in the wild (rctw-17). In
 857 *International Conference on Document Analysis and Recognition*, volume 1, pp. 1429–1434. IEEE,
 858 2017.

859

860 Mustafa Shukor, Louis Béthune, Dan Busbridge, David Grangier, Enrico Fini, Alaaeldin El-Nouby,
 861 and Pierre Ablin. Scaling laws for optimal data mixtures. *CoRR*, abs/2507.09404, 2025a.

862

863 Mustafa Shukor, Enrico Fini, Victor Guilherme Turrisi da Costa, Matthieu Cord, Joshua M. Susskind,
 864 and Alaaeldin El-Nouby. Scaling laws for native multimodal models. *CoRR*, abs/2504.07951,
 865 2025b.

866

867 Oleksii Sidorov, Ronghang Hu, Marcus Rohrbach, and Amanpreet Singh. Textcaps: a dataset for
 868 image captioning with reading comprehension. In *European Conference on Computer Vision*,
 869 volume 12347, pp. 742–758, Glasgow, UK, 2020.

864 Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
 865 and Marcus Rohrbach. Towards vqa models that can read. In *IEEE Conference on Computer*
 866 *Vision and Pattern Recognition*, pp. 8317–8326, Long Beach, CA, USA, 2019.

867 Yipeng Sun, Zihan Ni, Chee-Kheng Chng, Yuliang Liu, Canjie Luo, Chun Chet Ng, Junyu Han,
 868 Errui Ding, Jingtuo Liu, Dimosthenis Karatzas, et al. Icdar 2019 competition on large-scale street
 869 view text with partial labeling-rrc-lsvt. In *International Conference on Document Analysis and*
 870 *Recognition*, pp. 1557–1562, 2019.

871 Chenxin Tao, Shiqian Su, Xizhou Zhu, Chenyu Zhang, Zhe Chen, Jiawen Liu, Wenhui Wang, Lewei
 872 Lu, Gao Huang, Yu Qiao, and Jifeng Dai. Hovle: Unleashing the power of monolithic vision-
 873 language models with holistic vision-language embedding. In *IEEE Conference on Computer*
 874 *Vision and Pattern Recognition*, pp. 14559–14569, Nashville, TN, USA, 2025.

875 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
 876 Liang, and Tatsunori B Hashimoto. Alpaca: A strong, replicable instruction-following model.
 877 *Stanford Center for Research on Foundation Models*. <https://crfm.stanford.edu/2023/03/13/alpaca.html>, 3(6):7, 2023.

878 Chameleon Team. Chameleon: mixed-modal early-fusion foundation models. *CoRR*, abs/2405.09818,
 879 2024.

880 Teknium. Openhermes 2.5: An open dataset of synthetic data for generalist llm assistants, 2023.
 881 URL <https://huggingface.co/datasets/teknium/OpenHermes-2.5>.

882 Changyao Tian, Hao Li, Gen Luo, Xizhou Zhu, Weijie Su, Hanming Deng, Jinguo Zhu, Jie Shao,
 883 Ziran Zhu, Yunpeng Liu, et al. Navil: Rethinking scaling properties of native multimodal large
 884 language models under data constraints. *CoRR*, abs/2510.08565, 2025.

885 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaee, Nikolay
 886 Bashlykov, Soumya Batra, Prajwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian
 887 Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin
 888 Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar
 889 Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann,
 890 Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana
 891 Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor
 892 Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan
 893 Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang,
 894 Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang,
 895 Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez, Robert Stojnic, Sergey
 896 Edunov, and Thomas Scialom. Llama 2: open foundation and fine-tuned chat models. *CoRR*,
 897 abs/2307.09288, 2023.

898 Michael Tschannen, Alexey A. Gritsenko, Xiao Wang, Muhammad Ferjad Naeem, Ibrahim Alab-
 899 dulmohsin, Nikhil Parthasarathy, Talfan Evans, Lucas Beyer, Ye Xia, Basil Mustafa, Olivier J.
 900 Hénaff, Jeremiah Harmsen, Andreas Steiner, and Xiaohua Zhai. Siglip 2: Multilingual vision-
 901 language encoders with improved semantic understanding, localization, and dense features. *CoRR*,
 902 abs/2502.14786, 2025.

903 Andreas Veit, Tomas Matera, Lukas Neumann, Jiri Matas, and Serge Belongie. Coco-text: Dataset
 904 and benchmark for text detection and recognition in natural images. *CoRR*, abs/1601.07140, 2016.

905 Han Wang, Yongjie Ye, Bingru Li, Yuxiang Nie, Jinghui Lu, Jingqun Tang, Yanjie Wang, and Can
 906 Huang. Vision as lora. *CoRR*, abs/2503.20680, 2025a.

907 Junke Wang, Lingchen Meng, Zejia Weng, Bo He, Zuxuan Wu, and Yu-Gang Jiang. To see is to
 908 believe: prompting GPT-4V for better visual instruction tuning. *CoRR*, abs/2311.07574, 2023.

909 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 910 Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
 911 Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: enhancing vision-language model's
 912 perception of the world at any resolution. *CoRR*, abs/2409.12191, 2024a.

918 Weiyun Wang, Zhangwei Gao, Lixin Gu, Hengjun Pu, Long Cui, Xingguang Wei, Zhaoyang Liu,
 919 Linglin Jing, Shenglong Ye, Jie Shao, et al. Internvl3.5: Advancing open-source multimodal
 920 models in versatility, reasoning, and efficiency. *CoRR*, abs/2508.18265, 2025b.

921

922 Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan
 923 Zhang, Yueze Wang, Zhen Li, Qiying Yu, Yingli Zhao, Yulong Ao, Xuebin Min, Tao Li, Boya Wu,
 924 Bo Zhao, Bowen Zhang, Liangdong Wang, Guang Liu, Zheqi He, Xi Yang, Jingjing Liu, Yonghua
 925 Lin, Tiejun Huang, and Zhongyuan Wang. Emu3: next-token prediction is all you need. *CoRR*,
 926 abs/2409.18869, 2024b.

927

928 Xilin Wei, Xiaoran Liu, Yuhang Zang, Xiaoyi Dong, Pan Zhang, Yuhang Cao, Jian Tong, Haodong
 929 Duan, Qipeng Guo, Jiaqi Wang, Xipeng Qiu, and Dahu Lin. Videorope: What makes for good
 930 video rotary position embedding? *CoRR*, abs/2502.05173, 2025.

931

932 Chenyuan Wu, Pengfei Zheng, Ruiran Yan, Shitao Xiao, Xin Luo, Yueze Wang, Wanli Li, Xiyan
 933 Jiang, Yixin Liu, Junjie Zhou, Ze Liu, Ziyi Xia, Chaofan Li, Haoge Deng, Jiahao Wang, Kun Luo,
 934 Bo Zhang, Defu Lian, Xinlong Wang, Zhongyuan Wang, Tiejun Huang, and Zheng Liu. Omnigen2:
 935 Exploration to advanced multimodal generation. *CoRR*, abs/2506.18871, 2025.

936 xAI. Grok-1.5 vision preview, 2024. URL <https://x.ai/blog/grok-1.5v>.

937 xAI. Grok 3: xAI's flagship ai model, 2025. URL <https://x.ai/news/grok-3>.

938

939 Yicheng Xiao, Lin Song, Rui Yang, Cheng Cheng, Zunnan Xu, Zhaoyang Zhang, Yixiao Ge, Xiu Li,
 940 and Ying Shan. Haploomni: Unified single transformer for multimodal video understanding and
 941 generation. *CoRR*, abs/2506.02975, 2025.

942

943 Rui Yan, Lin Song, Yicheng Xiao, Runhui Huang, Yixiao Ge, Ying Shan, and Hengshuang Zhao.
 944 Haplov1: A single-transformer baseline for multi-modal understanding. *CoRR*, abs/2503.14694,
 945 2025.

946

947 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 948 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 949 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jian Yang,
 950 Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang, Le Yu, Lianghao Deng,
 951 Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui Men, Ruize Gao, Shixuan
 952 Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang Ren, Xinyu Wang, Xinyu
 953 Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger Zhang, Yu Wan, Yuqiong Liu,
 954 Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan Qiu. Qwen3 technical report.
 955 *CoRR*, abs/2505.09388, 2025.

956

957 Licheng Yu, Patrick Poirson, Shan Yang, Alexander C. Berg, and Tamara L. Berg. Modeling context
 958 in referring expressions. In *European Conference on Computer Vision*, volume 9906, pp. 69–85,
 959 Amsterdam, The Netherlands, 2016.

960

961 Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo
 962 Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
 963 large language models. *CoRR*, abs/2309.12284, 2023.

964

965 Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang,
 966 and Lijuan Wang. Mm-vet: evaluating large multimodal models for integrated capabilities. In
 967 *International Conference on Machine Learning*, Vienna, Austria, 2024.

968

969 Hangjie Yuan, Weihua Chen, Jun Cen, Hu Yu, Jingyun Liang, Shuning Chang, Zhihui Lin, Tao Feng,
 970 Pengwei Liu, Jiazheng Xing, Hao Luo, Jiasheng Tang, Fan Wang, and Yi Yang. Lumos-1: On
 971 autoregressive video generation from a unified model perspective. *CoRR*, abs/2507.08801, 2025.

972

Tai-Ling Yuan, Zhe Zhu, Kun Xu, Cheng-Jun Li, Tai-Jiang Mu, and Shi-Min Hu. A large chinese
 973 text dataset in the wild. *Journal of Computer Science and Technology*, 34(3):509–521, 2019.

972 Xiang Yue, Yuansheng Ni, Tianyu Zheng, Kai Zhang, Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu
 973 Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Botao Yu, Ruibin Yuan, Renliang Sun, Ming Yin,
 974 Boyuan Zheng, Zhenzhu Yang, Yibo Liu, Wenhao Huang, Huan Sun, Yu Su, and Wenhui Chen.
 975 MMMU: a massive multi-discipline multimodal understanding and reasoning benchmark for expert
 976 agi. In *IEEE Conference on Computer Vision and Pattern Recognition*, pp. 9556–9567, Seattle,
 977 WA, USA, 2024.

978 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
 979 image pre-training. In *IEEE International Conference on Computer Vision*, pp. 11941–11952,
 980 Paris, France, 2023.

981 Biao Zhang and Rico Sennrich. Root mean square layer normalization. In *Advances of Neural
 982 Information Processing Systems*, pp. 12360–12371, Vancouver, BC, Canada, 2019.

983 Bo Zhao, Boya Wu, and Tiejun Huang. SVIT: scaling up visual instruction tuning. *CoRR*,
 984 abs/2307.04087, 2023.

985 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 986 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
 987 chatbot arena. *Advances of Neural Information Processing Systems*, 36:46595–46623, 2023.

988 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
 989 Duan, Weijie Su, Jie Shao, Zhangwei Gao, Erfei Cui, Xuehui Wang, Yue Cao, Yangzhou Liu,
 990 Xingguang Wei, Hongjie Zhang, Haomin Wang, Weiye Xu, Hao Li, Jiahao Wang, Nianchen Deng,
 991 Songze Li, Yinan He, Tan Jiang, Jiapeng Luo, Yi Wang, Conghui He, Botian Shi, Xingcheng
 992 Zhang, Wenqi Shao, Junjun He, Yingtong Xiong, Wenwen Qu, Peng Sun, Penglong Jiao, Han
 993 Lv, Lijun Wu, Kaipeng Zhang, Huipeng Deng, Jiaye Ge, Kai Chen, Limin Wang, Min Dou,
 994 Lewei Lu, Xizhou Zhu, Tong Lu, Dahua Lin, Yu Qiao, Jifeng Dai, and Wenhui Wang. Internvl3:
 995 Exploring advanced training and test-time recipes for open-source multimodal models. *CoRR*,
 996 abs/2504.10479, 2025.

997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025

1026 **A APPENDIX**
10271028 **USAGE OF LARGE LANGUAGE MODELS**
10291030 During manuscript preparation, large language models were used solely as writing assistants. They
1031 helped to check grammar, refine sentence structure, and provide style alternatives. All content related
1032 to methodology, experiments, and conclusions was developed entirely by the authors. LLM outputs
1033 were reviewed critically, and only human-verified edits were incorporated into the final text.1034 **A.1 SUPERVISED FINE-TUNING DATASETS**
10351036 **Table 4: Dataset summary in supervised fine-tuning stage.**

Task	Dataset
Captioning	TextCaps (en) (Sidorov et al., 2020), ShareGPT4V (en&zh) (Chen et al., 2024b)
General QA	VQAv2 (en) (Goyal et al., 2017), GQA (en) (Hudson & Manning, 2019), OKVQA (en) (Marino et al., 2019), VSR (en) (Liu et al., 2023a), VisualDialog (en) (Das et al., 2017)
Science	AI2D (en) (Kembhavi et al., 2016), ScienceQA (en) (Lu et al., 2022a), TQA (en) (Kembhavi et al., 2017)
Chart	ChartQA (en) (Masry et al., 2022), MMC-Inst (en) (Liu et al., 2023c), DVQA (en) (Kafle et al., 2018), PlotQA (en) (Methani et al., 2020), LRV-Instruction (en) (Liu et al., 2023b)
Mathematics	GeoQA+ (en) (Cao & Xiao, 2022), TabMWP (en) (Lu et al., 2022b), MathQA (en) (Yu et al., 2023), CLEVR-Math/Super (en) (Lindström & Abraham, 2022; Li et al., 2023c), Geometry3K (en) (Lu et al., 2021)
Knowledge	KVQA (en) (Shah et al., 2019), A-OKVQA (en) (Schwenk et al., 2022), ViQuAE (en) (Lerner et al., 2022), Wikipedia (en&zh) (He et al., 2023)
OCR	OCRVQA (en) (Mishra et al., 2019), InfoVQA (en) (Mathew et al., 2022), TextVQA (en) (Singh et al., 2019), ArT (en&zh) (Chng et al., 2019), COCO-Text (en) (Veit et al., 2016), CTW (zh) (Yuan et al., 2019), LSVT (zh) (Sun et al., 2019), RCTW-17 (zh) (Shi et al., 2017), ReCTs (zh) (Liu et al., 2019), SynthDoG (en&zh) (Kim et al., 2022), ST-VQA (en) (Biten et al., 2019)
Document Grounding	DocVQA (en) (Clark & Gardner, 2018), Common Crawl PDF (en&zh)
Conversation	RefCOCO/+g (en) (Yu et al., 2016; Mao et al., 2016), Visual Genome (en) (Krishna et al., 2017)
Text-only	LLaVA-150K (en&zh) (Liu et al., 2023d), LVIS-Instruct4V (en) (Wang et al., 2023), ALLaVA (en&zh) (Chen et al., 2024a), Laion-GPT4V (en) (LAION, 2023), TextOCR-GPT4V (en) (Jimmycarter, 2023), SVIT (en&zh) (Zhao et al., 2023)

1055 **A.2 IMPLEMENTATION DETAILS**
10561057 **Table 5: Implementation details in the pre-training, mid-training and supervise fine-tuning.**

Configuration	Pre-Training	Mid-Training	Supervised Fine-Tuning
Resolution	$256^2 - 1,024^2$	$256^2 - 2,048^2$	$256^2 - 2,048^2$
Optimizer		AdamW	
Optimizer hyperparameters	$\beta_1 = 0.9, \beta_2 = 0.999, eps = 1e^{-8}$		
Learning rate schedule	cosine with min lr	cosine with min lr	cosine decay
Peak learning rate	$8e^{-4}$	$4e^{-5}$	$5e^{-5}$
Min learning rate ratio	0.05	0.1	—
Weight decay		0.01	
Training steps	190k	50k	6k
Warm-up steps	2k	200	200
Max sample length	8,192	8,192	8,192
Global batch size	2,560	1,200	650
Text-only ratio	0.3	0.3	—
Numerical precision		bfloating16	

1080 A.3 LIMITATION AND DISCUSSION
10811082 In this study, we innovate network architectures and training strategies for efficiently building native
1083 vision-language models. The full promise of NEO has remained largely untapped, hindered by
1084 scarce training data and limited computational resources, especially in knowledge-intensive and
1085 OCR-focused domains. Yet, strikingly, our NEO rivals state-of-the-art VLMs despite these severe
1086 constraints. We envision subsequent directions of NEO for the native VLM community as follows:1087 **Contextual relevance to recent advancements.** Recent models such as Qwen3VL highlight concepts
1088 that resonate with our design choices, including dense linking of visual-language features, relative
1089 positional encodings, and architectural details like patch embedding and bias. In particular, the
1090 DeepStack approach underscores the importance of establishing strong pixel-word associations from
1091 the earliest stages, reinforcing the significance of densely integrated visual-language representations.1092 **Maximizing the potential via large investment.** It is in great demand for continuously investing
1093 substantial resources, especially during the pre-training stage, to fully unlock NEO’s performance
1094 and approach the upper bound of the native model. At the same time, selectively open-sourcing
1095 key components during intermediate development can reduce follow-up training costs for future
1096 researchers and attract more research to native visual-language models. Moreover, the fundamental
1097 models from this work provide a valuable baseline for advancing reinforcement learning research.1098 **Explorations of full-spectrum model capacities.** Expanding the full model sizes remains a critical
1099 factor in advancing various real-world applications. Even with limited resources, NEO-2.2B closely
1100 matches those of modular visual-language models with equivalent capacity, suggesting that the design
1101 philosophy of models in the 0.6 to 8 billion parameter range has matured. Such architectures not only
1102 achieve high performance but also facilitate the deployment of lightweight models at the edge, which
1103 is crucial for scenarios with limited computational resources or strict real-time requirements.1104 **Upgrading architectures and applications.** To date, our work has focused on dense models for
1105 image-text understanding, while a sparse divide-and-conquer architecture is simultaneously under
1106 active development. Notably, we regard NEO not merely as an autoregressive VLM but as a new
1107 paradigm for visual-language intelligence. Its principle is to leverage end-to-end training within a
1108 unified architecture, eliminating manually imposed biases and scaling-up complexities by allowing
1109 data and models to dictate the learning process. Besides, our efforts are designed not merely to
1110 improve performance but to establish a definitive baseline for visual-language generation, long video
1111 understanding, and embodied AI. Crucially, NEO’s architecture systematically integrates the demands
1112 of video generation and related tasks, including attention mechanisms and rotary positional encodings,
1113 from the ground up. Although currently focused on text and images, NEO is poised to push the
1114 boundaries of what is possible across a wide spectrum of application scenarios and input modalities.

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133