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Abstract

One of the most reliable ways to create deploy-001
able models for specialized tasks is to obtain an002
adequate amount of high-quality task-specific003
data. However, for specialized tasks, often004
such datasets do not exist. Existing methods005
address this by creating such data from large006
language models (LLMs) and then distilling007
such knowledge into smaller models. How-008
ever, these methods are limited by the qual-009
ity of the LLMs output, and tend to gener-010
ate repetitive or incorrect data. In this work,011
we present Retrieval Based Distillation (Re-012
Base), a method that first retrieves data from013
rich online sources and then transforms them014
into domain-specific data. This method greatly015
enhances data diversity. Moreover, ReBase gen-016
erates Chain-of-Thought reasoning and distills017
the reasoning capacity of LLMs. We test our018
method on 4 benchmarks and results show that019
our method significantly improves performance020
by up to 10.76% on SQuAD, 1.37% on MNLI,021
and 1.94% on BBH.022

1 Introduction023

How can we effectively obtain high-quality mod-024

els for specific tasks? Large Language Models025

(LLMs) have shown impressive generalization abil-026

ities and can, to some extent, perform specific tasks027

using only the task instructions and few-shot in-028

context examples (GPT, 2024; Bubeck et al., 2023;029

AI@Meta, 2024). However, these models can con-030

tain tens or hundreds of billions of parameters,031

making them computationally expensive to use in032

practice, and in many cases these models under-033

perform smaller models fine-tuned on task-specific034

data (Mosbach et al., 2023; Bertsch et al., 2024).035

One bottleneck to creating such fine-tuned mod-036

els is the lack of large corpora of task-specific data037

(Villalobos et al., 2022). Therefore, a key issue for038

this problem is how to obtain adequate high qual-039

ity data that meets the user’s need. Recent works040

have used distillation from LLMs to generate syn-041
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Figure 1: Motivation of ReBase. Previous methods
either uses manually annotated data or use LLMs to
generate synthetic data. This is either too costly or lacks
diversity/quality. ReBase retrieves data from existing ex-
amples then uses an LLM to create new domain-specific
data based on the retrieved content.

thetic training data (Ye et al., 2022b,a; Gao et al., 042

2023; Jung et al., 2024; Viswanathan et al., 2023; 043

Yu et al., 2023a; Honovich et al., 2022; Yu et al., 044

2023b; Wang et al., 2023a). These methods use the 045

user’s instruction and a small number of in-context 046

examples as the prompt to let LLMs generate la- 047

beled, domain-specific data. These data are then 048

used to finetune the models to be deployed. Such 049

methods have shown potential to improve a small 050

model’s ability to follow a specific set of instruc- 051

tions. However, these methods often suffer from 052

diversity issues: the generated examples tend to 053

be very similar, reducing performance of the fine- 054

tuned models (Ye et al., 2022b,a). 055

In response to these challenges, we propose 056

Retrieval Based Distillation (ReBase). As shown 057

in Figure 1, ReBase is a framework that first re- 058

trieves data from an abundant and reliable labeled 059

data source, then transforms them into the con- 060

tent and format necessary for the user’s task. This 061

data is then used to train a domain-specific model. 062
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Initially, ReBase scrapes online data and encodes063

them into a large datastore; Then, ReBase uses the064

user’s instruction and the user’s provided exam-065

ples to retrieve the most relevant items from the066

large datastore. Finally, using an LLM, ReBase067

transforms the retrieved data point into a data that068

contains a query and an answer field for the spe-069

cific task, this includes transforming the content070

and transforming the format. Different from previ-071

ous methods, ReBase can effectively retrieve data072

from multiple dataset sources, enhancing the data’s073

content diversity and avoids the issue where one074

or a few datasets do not contain sufficient informa-075

tion to fulfill the task’s requirements. Moreover,076

ReBase adds a Chain-of-Thought transformation077

phase (Wei et al., 2022) where the LLM transforms078

the output into a step-by-step reasoning. This en-079

ables the small model to be trained on the reasoning080

generation by the large model, which is especially081

useful for reasoning tasks (Suzgun et al., 2022).082

We test ReBase on a variety of benchmarks,083

including the BBH (Suzgun et al., 2022) bench-084

mark, the MNLI (Williams et al., 2018) benchmark,085

SQuAD (Rajpurkar et al., 2016), and MCoNaLa086

code generation (Wang et al., 2023b). We found087

that ReBase improves the performance on BBH088

for 1.94%, on SQuAD for 10.76%, and on MNLI089

for 1.37% over previous methods. Our method090

suggests the benefit of using data retrieved from091

multiple sources to train a specific model.092

2 Problem Formulation093

We formulate the problem as follows: Input: The094

input contains an instruction of a task and few-shot095

examples. Output: The output contains a new096

dataset with the field (query, answer) that could be097

used to directly finetune a model. It also contains098

a task-expert model trained for this task. Objec-099

tive: Our high-level objective is to generate a high-100

quality dataset that effectively boosts a model’s per-101

formance on this task. Specifically, we assume that102

we have access to the abundant existing datasets on-103

line and access to LLMs. Our goal is to effectively104

harness the ability of LLMs and use the rich con-105

tent of the existing datasets to create a high-quality106

dataset for the new task. Then use this dataset to107

train a task-expert model.108

3 Method109

In this section, we introduce the steps of Re-110

Base: datastore construction, datastore retrieval,111

and dataset transformation. An overview of our 112

method pipeline is shown in Figure 2. 113

3.1 Datastore Construction 114

Our datastore construction process begins with 115

collecting datasets from Hugging Face Datasets 116

(Lhoest et al., 2021), which consists of over 75,000 117

datasets. A Hugging Face dataset contains a dataset 118

description that describes the purpose of the dataset. 119

It also contains multiple rows entries and columns. 120

Each row represents a data entry, and each column 121

represents a specific attribute of that data entry. (eg. 122

row_id, content, source_url, label) 123

For each row in these datasets, we do not di- 124

rectly encode the entire row entry because some 125

attributes are redundant and may introduce noise 126

(eg. attributes such as row_id or url are often not 127

useful.) Instead, we encode each column separately. 128

Specifically, for the jth row entry in dataset i, we 129

iterate through each column c in the row entry and 130

encode it into a vector: 131

vi,j,c = Encode (column_value) . 132

This vector has a unique identifier in the format: 133

{dataset_id, row_num, col_name} 134

We then add the key-value pair ((i, j, c), vi,j,c) to 135

the datastore. Additionally, for each dataset i, we 136

encode its corresponding dataset description: 137

vi = Encode (dataset_description) . 138

This value is identified by the dataset id i. We put 139

the key-value pair ((i), vi) into the datastore. 140

3.2 Datastore Retrieval 141

In the datastore retrieval phase, our goal is to find 142

relevant data across the different datasets. This pro- 143

cess involves several steps to ensure the selection 144

of the most relevant data. 145

First, we encode the user-provided instructions 146

into vI using the same encoder used for the datas- 147

tore. Then, we encode the user-provided examples. 148

Each example should contain two fields: The query 149

q and the answer ans. We encode them separately 150

into vq and vans. 151

Then, for each item vi,j,c in the datastore, we 152

compute a cosine similarity between vq and vi,j,c 153

to obtain a query score S(i,j,c)
query for the item (i, j, c). 154

Similarly, we compute a cosine similarity between 155

vans and vi,j,c to obtain an answer score S(i,j,c)
ans 156
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1. Datastore Construction 2. Data Retrieval 3. Data Transformation

Multiple 
Datasets

Single 
Encoded 

Datastore

Instruction: Given a Japanese Instruction, 
write a python code.

Example: Input:データベースの設定を表示する
Output:print(settings.DATABASES)

Retrieved Data:
1. {‘dataset_id’:‘mbpp’,‘config_id’:‘sanitized’,‘row_id’:‘2’}

“Write a function to reverse words seperated by spaces 
in a given string.”, "def reverse_words(s):\n return ' 
'.join(reversed(s.split()))”

2. {‘dataset_id’: ‘mbpp’,‘config_id’:‘sanitized’,‘row_id’:‘26’}
…

LLM 
Transformer

Transformed Data:
1. {Input: “以下は、与えられた⽂字列内の
空⽩で区切られた単語を逆順にする関数
です”, Output: "def reverse_words(s):\n 
return ' '.join(reversed(s.split()))”}

2. …

Figure 2: Pipeline of ReBase. First, ReBase iterates over a large number of datasets available on Hugging Face
Datasets and encodes each item in this datasets to build a large datastore. Then, ReBase uses the instruction and
few-shot examples provided by the new task to retrieve the relevant items from the datastore. Finally, ReBase uses
an LLM to generate new data for the target task from the retrieved data.

for the key (i, j, c). If the user provides multiple157

examples, denote Qquery and Qans as the sets of158

encoded vectors for all user-provided query and159

answer examples, respectively. Then, for each item160

vi,j,c in the datastore, the query and answer scores161

for the key (i, j, c) are calculated as:162

S(i,j,c)
query =

1

|Qquery|
∑

q∈Qquery

cos_sim(q, vi,j,c)163

S(i,j,c)
ans =

1

|Qans|
∑

q∈Qans

cos_sim(q, vi,j,c)164

Next, for each row (i, j), we define the query165

score and answer score for the row entry as the max-166

imum query and answer scores across all columns:167

S(i,j)
query = max

c
S(i,j,c)

query168

S(i,j)
ans = max

c
S(i,j,c)

ans169

Additionally, for each dataset i, we calculate170

a dataset score based on the cosine similarity be-171

tween the encoded dataset description vi and the172

encoded task instruction vI :173

S(i)
dataset = cos_sim(vi, vI)174

The final score for each row (i, j) in the datas-175

tore is calculated as the average of its query score,176

answer score, and dataset score:177

S(i,j)
final =

1

3
(S(i,j)

query + S(i,j)
ans + S(i)

dataset)178

Finally, we sort all rows (i, j) based on their final 179

scores in descending order and select the top N 180

items with the highest scores. Using the selected 181

(i, j) identifiers, we query the original jth row in 182

dataset i and retrieve the original rows entry con- 183

taining all the columns. This approach ensures that 184

the selected data is highly relevant to the user’s 185

task, considering both the alignment on the user 186

provided examples and the overall dataset context. 187

3.3 Data Transformation 188

After retrieving the relevant data, we employ a 189

large language model (LLM) to transform the data 190

into a format and content suitable for the spe- 191

cific task. This transformation process includes 192

the following steps: 1. Salient Field Classifica- 193

tion: The LLM identifies the relevant fields in 194

each retrieved row based on the domain-specific 195

requirements. 2. Content Adaptation: The LLM 196

transforms the content to align with the target do- 197

main, ensuring it meets the specific needs of the 198

task. 3. Chain-of-Thought (CoT) Generation: 199

For reasoning-intensive tasks, the LLM generates 200

outputs using CoT, providing detailed step-by-step 201

reasoning to enhance the quality and accuracy of 202

the transformed data. 203

In our experiments, we use Claude 3 Haiku (An- 204

thropic., 2024) as the LLM underlying the dataset 205

transformer due to its competitive performance / 206

cost tradeoff. The detailed prompt used to instruct 207

the LLM is provided in the Appendix B. For tasks 208

that require complex reasoning, such as the BIG- 209

Bench Hard tasks, previous works have shown that 210

Chain-of-Thought (CoT) (Wei et al., 2022) reason- 211

ing can greatly improve the model’s performance 212
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BBH-Snarks

Retrieved Row Item: "{'dataset_id': 
'hate_speech_portuguese', 'row_id': '520’}”

Retrieved Row Content: { "text": "@mdaring Não 
importa. Pode colocar no outro exemplo uma crítica 
tb q não fale de 'vitimismo' que dá no mesmo. ”
(English translation: “@mdaring It doesn't matter. In 
the other example, you can also put a criticism that 
doesn't talk about 'victimism' which amounts to the 
same thing”), "label": "no-hate"}

Re
tr
ie
ve
d

Query:  Which statement is sarcastic? Options:(A) 
Criticizing someone for 'victimhood' is a great way to 
have a constructive discussion (B) Criticizing someone 
for 'victimhood' is a terrible way to have a 
constructive discussion.

Answer: Let’s think step by step. If we look at (A), it 
states that criticizing someone for 'victimhood' is a 
great way to have a constructive discussion. […]
The answer is (A).

Tr
an

sf
or
m
ed

Figure 3: Examples of ReBase transformations on
BBH. In the data transformation stage, ReBase takes
in the original full row of the retrieved data and use
the content to generate a new data with the field query
and answer. The LLM need to identify the necessary
fields in the row. For the BBH task, the transformation
contains chain-of-thought reasoning.

on reasoning tasks (Suzgun et al., 2022) and fine-213

tuning on CoT data can further boost the reasoning214

ability (Chung et al., 2024) and can distill the rea-215

soning capacity in LLMs to smaller models (Ho216

et al., 2022). Therefore, we leverage Chain-of-217

Thought generation. For these tasks, we prompt218

the LLM to generate a CoT reasoning followed219

by the final for the answer part instead of directly220

generating the final answer. The generated CoT221

data is then used for further training to improve222

the downstream model’s performance as well. We223

demonstrate the transformation process in Figure224

3. Our transformation approach ensures that the225

transformed data is tailored to the new task in terms226

of both content and format and can be directly used227

for further finetuning. This process also incorpo-228

rates the reasoning process of LLMs and distills229

such reasoning capacities to the task expert model.230

4 Experiments231

In this section, we present our experiment settings,232

experiment results, analysis, and ablations.233

4.1 Experiment Settings 234

Datasets The datasets we used in this work in- 235

clude: (i) MultiNLI (MNLI) (Williams et al., 236

2018) tests the model’s ability to recognize textual 237

entailment between two sentences. It is one of the 238

largest corpora for natural language inference, con- 239

taining 433k samples across 10 distinct domains. 240

We chose this task to test the method’s performance 241

on traditional language understanding. (ii) SQuAD 242

(Rajpurkar et al., 2016) is a reading comprehen- 243

sion dataset that contains questions and context 244

based on Wikipedia articles. We choose this task 245

as another standard language understanding task. 246

(iii) MCoNaLa (Wang et al., 2023b) is a multilin- 247

gual benchmark to test models’ ability to generate 248

code from multi-lingual natural language intents. 249

We focus on the Japanese-to-Python subtask, as 250

it is a challenging task with no task-specific anno- 251

tated data available. (IV) BIG-Bench Hard (BBH) 252

(Suzgun et al., 2022) is a challenging reasoning 253

benchmark. It is a subset of BIG-Bench (BIG- 254

bench Authors, 2023) containing challenging tasks 255

where LLMs underperform humans. We select this 256

dataset to test whether ReBase can generate data 257

for highly challenging reasoning tasks. 258

Baselines (1) Prompt2Model (Viswanathan 259

et al., 2023) This method retrieves a model 260

from Hugging Face via the task instruction, 261

then finetunes this model using both synthe- 262

sized and retrieved datasets (without transform- 263

ing the latter). (2) Synthesized Data We 264

use the dataset generation method described by 265

Prompt2Model (Viswanathan et al., 2023) to ob- 266

tain synthesized data and use it to finetune a LLM. 267

This generation process uses dynamic temperature 268

and prompt sampling to increase the synthesized 269

data’s diversity and demonstrates impressive data 270

synthesize ability. (3) Few-Shot Prompting For 271

this, we directly prompt the pretrained LLM with 272

few-shot examples without any finetuning. 273

Implementation Details We use a pre- 274

trained model1 from the Sentence Transformers 275

toolkit (Reimers and Gurevych, 2019) to encode 276

all data in the datastore construction phase. We 277

use 3K examples for MNLI and SQuAD and 278

1K for MCoNaLa and each BBH task. We use 279

Claude 3 Haiku model to transform the data. 280

To more accurately simulate the case in which 281

we are tackling a new task without training 282

1distiluse-base-multilingual-cased
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Model Data MNLI MCoNaLa SQuAD BBH BBH-NLP BBH-Alg

Retrieved Prompt2Model (Synth+Ret) - 13.1 61.5 - - -

Llama3-8B 3-shots Prompting 44.4 28.4 55.6 56.8 65.3 50.0
Llama3-8B Synthesized 72.9 37.0 69.6 65.0 68.1 62.5
Llama3-8B ReBase (Transformed) 74.3 38.2 80.4 66.9 69.5 64.9

Table 1: Main quantatitive results. We test on the MNLI, MCoNaLa, SQuAD, and BBH benchmarks. We also
report the BBH-NLP and BBH-Algorithm which contains different subsets of BBH. We found that training on
ReBase transformed data attains the best performance across theses tasks.

data, we prevent the retriever from retrieving283

any data from the target task’s original training284

set. For model training, we choose the most285

recent open-source LLM Llama3-8B (AI@Meta,286

2024) as the base model for both the synthesized287

method and ReBase. We train the model using288

QLoRA (Dettmers et al., 2023) which requires289

only one NVIDIA A6000 48GB GPU. We provide290

training details in Appendix D291

Metrics We report ChrF++ (Popović, 2015)292

score for MCoNaLa, this metric was similarly used293

for evaluation by Viswanathan et al. (2023). For294

MNLI, we report the accuracy. For SQuAD, we use295

same exact match metric in (Rajpurkar et al., 2016).296

For BBH, we use the evaluation script from Yue297

et al. (2023) to first extract the answer in the gener-298

ated sentence and then report the accuracy.299

4.2 Results300

Quantitative Results We present our main re-301

sults in Table 1. For MNLI, BBH, SQuAD, and302

MCoNaLa ReBase outperforms the data synthesis303

method by 1.37%, 1.94%, 10.76%, 1.2% respec-304

tively. Specifically on BBH, ReBase outperforms305

by 1.39% on the BBH-NLP split and 2.37% on306

the BBH-Alg split. On the question answering307

benchmark SQuAD, ReBase outperforms synthe-308

sized method by 10.76%. These results demon-309

strate the ReBase’s effectiveness by retrieving then310

transforming the data compared with directly gen-311

erating all the data using LLM.312

Qualitative Results We present the qualitative313

results in Figure 4 to demonstrate the data obtained314

through ReBase and the data obtained through syn-315

thesized method in the MCoNaLa benchmark and316

SQuAD benchmark. In MCoNaLa, the task is to317

generate data with a Japanese instruction as input318

and a corresponding python program as output. We319

found that ReBase outputs data samples that con-320

tains more programs with higher diversity and pro-321

grams that require more complicated reasoning pro-322

cess such as dynamic programming whereas syn- 323

thesized method only gives simple instructions that 324

require a few lines of codes. In SQuAD, the task 325

is to generate data with a question and a context as 326

input and an answer to the question as output. We 327

found that ReBase greatly increases the question 328

diversity in terms of content and creates questions 329

that require more complicated reasoning where as 330

the synthesized data only asks questions that are 331

simpler, more well known, and more straightfor- 332

ward. Interestingly, we found that ReBase does not 333

increase the length of the context part in the data 334

compared with synthesized data. We provide more 335

results in Appendix F. 336

4.3 Analysis 337

Dataset Source One of the benefits of construct- 338

ing the database is that the model can retrieve from 339

multiple dataset sources to get the relevant items 340

from each of them. To analysis how this effects 341

the data for each task, we analyzed the number 342

of different datasets in its retrieved data for each 343

task. We present the result in Table 2. The re- 344

sults demonstrate that all the tasks retrieves from 345

at least 20 different dataset sources. MCoNaLa 346

and SQuAD retrieves from more than 50 different 347

datasets. BBH tasks retrieves from 35 datasets on 348

average. MNLI retrieves from 20 datasets. We 349

provide a more detailed data source analysis in 350

Appendix A. 351

Dataset Diversity Previous works have shown 352

that synthesized data lacks in diversity (Ye et al., 353

2022a) and sometimes produces near-duplicate 354

samples (Gandhi et al., 2024). We study whether 355

ReBase increases the datasets’ diversity. We follow 356

DataTune (Gandhi et al., 2024) to conduct diversity 357

analysis on MCoNaLa, MNLI, and SQuAD. First, 358

we calculate the uniqueness of the dataset sam- 359

ples on these three benchmarks. We use ROUGE- 360

L (Lin, 2004) to determine whether a sentence is 361

unique in the dataset (Wang et al., 2022). Specif- 362
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MCoNaLa: Given a Japanese instruction, write code

配列`nums`の中にある重複する要素をす
べて削除する

SQuAD: Answer a question based on a context

(Remove duplicate elements in array `nums`)

Question: What is the largest mammal in the world? 
Context: Mammals are a group of vertebrate 
animals that are characterized by  […]

Answer: Blue whale

Question: On which river is the city that hosted the 1900 
Summer Olympics located?
Context: The 1900 Summer Olympics, officially known as 
the [..] were celebrated in Paris, France.

Answer: Seine River

Question: How many of the nine regions of England are 
surrounded by the waters of the Atlantic Ocean?
Context: The nine regions of England are […]

Answer: One

Question: What is the largest planet in our solar system? 
Context: The solar system consists of the Sun and 
everything that orbits around it, including planets […]

Answer:Jupiter

nums = list(set(nums))

配列 `A`, `B`, `C`から、それぞれ3つの要素を
選び、その合計が最⼩になるようにする
(Select three elements each from arrays `A`, `B`, 
and `C` so that their sum is the minimum)

def soln(A, B, C):
a, b, c = A[0], B[0], C[0]
min_sum = abs(a - b + \

abs(b - c) + abs(c - a)
for i in range(len(A)):
for j in range(len(B)):

for k in range(len(C)):
curr_sum = abs(A[i]- B[j]) + \

abs(B[j] - C[k]) + \
abs(C[k] - A[i])

if curr_sum < min_sum:
min_sum = curr_sum

a, b, c = A[i], B[j], C[k]
return a, b, c
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Figure 4: Qualitative Examples on ReBase (Transformed) compared to directly synthesized data (Generated).
ReBase outputs data that are more diverse while directly synthesized data tend to be simpler and replicate. In
MCoNaLa, we found that ReBase generates samples that contains dynamic programming, counting, mathematical
calculations whereas directly synthesized dataset is limited to simpler commands such as printing or simple list
operation. In SquAD, we found that ReBase generates samples that contain diverse and harder questions whereas
directly synthesized data asks simpler questions.

Benchmark # of Sources

MCoNaLa 67
MNLI 20
SQuAD 55

BBH (total) 35
BBH-NLP 36
BBH-Alg 46

Table 2: Dataset source analysis. For datasets gen-
erated by ReBase, we calculate the number of unique
datasets that it retrieves from. Results show that each
benchmark above retrieves from at least 20 different
datasets. Detailed information is in Appendix A.

ically, for a sentence s, if the ROUGE-L score363

between s and every other sentence s′ is smaller364

than a threshhold T , we decide this sentence to365

be unique. In our experiment, we use the thresh-366

hold 0.7. The results are shown in the Unique Per-367

centage column of Table 3, we found that ReBase368

significantly increases the percentage of unique369

samples in the dataset compared with synthesized370

data. The synthesized data yields less than 50%371

of non-duplicate samples across the three bench-372

marks, while ReBase results in more than 70% non- 373

duplicate samples across the three benchmarks. 374

We also calculate the average unique unigrams, 375

and unique bigrams per created example to measure 376

the lexical difference. The results are demonstrated 377

in Table 3. We found that ReBase significantly 378

increases the average unique unigrams and bigrams 379

on the three benchmarks. 380

Embedding Visualization We conduct embed- 381

ding visualization on SQuAD and MNLI to visual- 382

ize the datasets. We use MiniLM v2 (Wang et al., 383

2021) to encode each sentence and then project the 384

embeddings into a 2D space using t-SNE (van der 385

Maaten and Hinton, 2008). The results are shown 386

in Figure 5. We found that the data generated by 387

ReBase are more widely scattered across the em- 388

bedding space compared to the synthesized data, 389

which have smaller coverage. Additionally, we 390

observed that the total coverage of ReBase and syn- 391

thesized data is greater, indicating the potential for 392

further combining ReBase and synthesized data to 393

create a more powerful dataset. 394
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Figure 5: Embedding Visualization Result of MNLI
and SQuAD. The data generated by ReBase are more
widely scattered across the embedding space compared
to the synthesized data.

Task Method Unique Unique Unique
Unigrams Bigrams Percent

MCo
NaLa

Syn 0.56 0.36 25.90%
ReBase 1.85 1.99 75.42%

MNLI Syn 0.62 2.00 21.61%
ReBase 3.28 12.21 71.05%

SQuAD Syn 2.20 10.94 37.69%
ReBase 6.31 29.33 96.56%

Table 3: Dataset Diversity Analysis. We report the data
uniqueness percentage, the average unique unigrams
and unique bigrams per sample. We found that ReBase
significantly increases the number of average unique
unigrams, average unique bigrams, and the unique per-
centage of the dataset, suggesting the ReBase promotes
data diversity in the dataset.

4.4 Ablations395

Ablations on Filtering We noticed that for some396

tasks that are not associated with very relevant397

documents in the datastore, the transformed data398

contains noise that may impair the data quality.399

Training on such data may reduce the performance400

and make the model underperform the pretrained401

model. Therefore, we conduct experiments on us-402

ing an LLM as a filterer and filter out the data that403

doesn’t comply to the format or contains irrelevant404

noise in the content. The detailed prompt used to405

instruct the LLM is provided in the Appendix B.406

We use GPT-3.5-turbo as the filterer and then use407

the filtered data to train Llama3-8B on the 27 tasks408

on BBH and MCoNaLA, the results are shown in409

Table 4. We found that filtering doesn’t increase410

the overall performance on BBH and MCoNaLa.411

While filtering can enhance performance on certain412

tasks where training on ReBase harms performance,413

it decreases performance on others. Such perfor-414

mance drop is potentially due to the decrease in415

dataset size. Figure 6 shows the percentage of re-416

BBH BBH-NLP BBH-Alg MCoNaLa

Filtered 65.71 69.15 62.96 37.24
ReBase 66.90 69.45 64.85 38.24

Table 4: Results of the filtered ReBase dataset. We
use the filtered dataset to test on BBH, BBH-NLP, BBH-
Alg, and MCoNaLa. We found that filtering does not
increase the overall performance on three benchmarks,
suggesting that dataset size, in addition to noise, also
impacts performance. We provide detailed illustration
of the BBH tasks in Figure 6 and further discussion in
Appendix C.

Data Size BBH BBH-NLP BBH-Alg

200 59.19 61.17 57.60
400 64.70 68.36 61.76
600 62.40 65.36 60.03
800 65.65 68.52 63.36
1000 66.90 69.45 64.85

Table 5: Results on using different dataset size on the
BBH benchmark. Generally, we found the increasing
the dataset size boosts the performance. Suggesting the
importance of obtaining adequate data for a task.

maining data after filtering for each BBH task and 417

the effect of filtering on the scores. We provide 418

details on filtering in Appendix C. 419

Ablating on Data Size In our experiments, we 420

use a data size of 1k for both ReBase and synthe- 421

sized data. In this experiment, we study the effect 422

of data size by varying the amount of data we use 423

to train the model. Specifically, we vary the data 424

size by 200, 400, 600, 800, and 1000 and then test 425

on BBH. For experiment on dataset size K, we use 426

the retrieved data with the top K highest scores. We 427

report the results in Table 5. The results show that 428

using 1k data achieves the best performance. In 429

general, scaling up the dataset size enhances the 430

performance. This highlights the importance of 431

obtaining adequate data for a given task. 432

Ablating the Data Generation Model In experi- 433

ments, up to this point we have mainly used Claude 434

3 Haiku (Anthropic., 2024) for the transformation 435

and data synthesis. In this experiment, we test the 436

effect of using a different, more expensive model, 437

GPT-4, instead. We use data size 1k and report 438

the performance in Table 6. Interesrtingly, with 439

synthesized data, GPT-4 significantly outperforms 440

Haiku, but with ReBase the gap closes significantly, 441

demonstrating that ReBase may allow more com- 442

putationally efficient models to serve as teachers 443

7



Figure 6: The bars represent the percentage of remaining data after filtering for each BBH task. The shaded area in
the figure indicates the range of pretrained scores, transformed scores, and filtered data training scores for each task.
We show the full names of the abbreviated task names in Appendix E

GPT-4 Claude3-Haiku
Acc Cost Acc Cost

Synthesized 37.88 $9.53 36.98 $0.11
ReBase 38.48 $8.03 38.24 $0.11

Table 6: Ablation on the LLM used on the MCoNaLa
task. We conduct experiments on using GPT-4 and
Claude 3 Haiku on MCoNaLa and report ChrF++ score.
We found that using the more powerful GPT-4 model
boosts performance for both the synthesized dataset and
ReBase but also costs 100 times more than using the
Claude 3 Haiku model.

for data distillation. In fact, Haiku with ReBase444

outperforms GPT-4 without ReBase, at nearly two445

orders of magnitude less cost.446

5 Related Work447

Retrieval-Augmented Generation (RAG)448

Retrieval-Augmented Generation (RAG) (Lewis449

et al., 2020; Gao et al., 2024; Asai et al., 2023;450

Chen et al., 2017) retrieves from external knowl-451

edge to help the LLM answer open-domain452

questions. Recent works demonstrate that RAG453

can greatly boost the reasoning ability of LLMs454

(Jiang et al., 2023; Shao et al., 2023). IAG (Zhang455

et al., 2023) leverages both retrieved knowledge456

and inductive knowledge derived from LLMs to457

answer open-domain questions. Inspired by the458

success of RAG, we study how retrieving from459

external knowledge improves dataset quality and460

further improves model performance.461

Data Synthesis Recent studies use LLMs as 462

dataset generators (Patel et al., 2024; Song et al., 463

2024) and focus on improving the generated data’s 464

quality. Zerogen (Ye et al., 2022b) uses pretrained 465

LLMs to generate datasets directly under zero-shot 466

setting. Progen (Ye et al., 2022a), Sungen (Gao 467

et al., 2023), and Impossible Distillation (Jung 468

et al., 2024) uses feedback from smaller models 469

to distill the generated data. AttrPrompt (Yu et al., 470

2023a) improves data quality by improving the 471

prompt. Unnatural Instructions (Honovich et al., 472

2022), ReGen (Yu et al., 2023b), and S3 (Wang 473

et al., 2023a) improves the data quality by using 474

other datasets as reference. We explores the use of 475

both RAG and LLM’s generation ability to create a 476

diverse and reliable dataset for specific tasks. 477

6 Conclusion 478

In this paper, we present ReBase, a framework that 479

uses retrieval and transformation to create diverse 480

and high-quality domain-specific dataset to train 481

task-expert models. Our method shows significant 482

improvement over conventional dataset generation 483

methods. We establish the benefit of leveraging 484

examples retrieved from a large, heterogenous data- 485

store to create task-specific training data. We be- 486

lieve this work motivates future work on retrieving 487

labeled examples from a prompt; improved exam- 488

ple retrieval could lead to significantly improved 489

retrieval-based distillation. 490
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Limitations491

Our work has several limitations that we must ac-492

knowledge. First, due to the relative high quality493

of proprietary data generator models (e.g. Claude494

3 Haiku and GPT-4), we solely used these in our495

experiments. Thus it remains unclear to what ex-496

tent that ReBase could work for other LMs, such497

as open-source LMs. Similarly, by using propri-498

etary data generator models, we cannot know for499

sure what the size of these models is. We there-500

fore cannot make any claims about the ability to do501

dataset transformation in compute-constrained set-502

tings where models like Claude 3 Haiku or GPT-4503

are computationally or financially infeasible. Fi-504

nally, our method is restricted to searching against505

dataset rows from Hugging Face Datasets. While506

this represents a large amount of data, we could507

likely broaden the applicability of our work by508

searching over larger, noisy collections of text509

(such as Common Crawl or Dolma (Soldaini et al.,510

2024)). We leave this as an important next step for511

future work.512

Ethics Statement513

Our work raises three key ethical concerns.514

The first is that, by improving the ability to syn-515

thetically generate training data for a variety of516

tasks, our work could increase the accessibility517

of language technologies for those with the in-518

tention to do harm. We argue that this harm is519

outweighed by the possible benefits of widening520

access to highly-effective language modeling to521

practitioners who are unable to deploy very large522

LMs themselves. Nonetheless, we hope that users523

of our research will take care to write and vali-524

date prompts for dataset generation to minimize525

the harms of the resultant data.526

Second, the development of automated dataset527

curation methods for model training are provid-528

ing a method for model developers to create, use,529

and distribute training data that has never been530

vetted by human annotators. We hope that prac-531

titioners will take care to manually sample and532

inspect generated data before training and deploy-533

ing user-facing models. Similarly, our experiments534

use proprietary language models for transforming535

retrieved examples into task-specific data. Training536

on this task-specific data may amplify biases from537

these language models.538

Finally, if our work was adopted at a large scale,539

this could affect the important role that crowdwork-540

ers play in the AI development ecosystem. System- 541

atically disincentivizing the participation of crowd- 542

workers in the AI economy could have long-term 543

effects that need to be studied in future work. 544
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A BBH Data Source Details748

In this section, we provide a detailed analysis of749

BBH tasks dataset source. In the main text, we750

report the number of different data sources (the751

number of distince (dataset, dataset_config) pairs)752

that each task retrieves from. In this part, we report753

the number of different datasets. We report the av-754

erage of all the BBH tasks and present the statistics755

in Table 7. In Figure 7, we demonstrate the number756

of data sources for each BBH task. We found that757

most tasks retrieves from 30 data sources. Ob-758

ject Counting and Word Counting retrieves from759

up to 120 data sources while Boolean Expressions760

retrieves from 4 data sources. This suggests that761

the number of dataset sources can greatly vary de-762

pending on the task type.763

B Prompts764

We present the prompt that we used to transform a765

retrieved row entry and the prompt we used to filter766

the data.767

B.1 Transform Prompt768

“‘ I would like you to create questions for a test.769

The directions for the test are:770

'''771

{task_description}772

'''773

The format should be in json like this:774

{example}775

Now I will provide you with a JSON file from a776

different dataset. Please create a question where777

the format and type of question is similar to the ex-778

amples provided above, but the content is inspired779

by the example provided below. You need to decide780

which part of the dataset to use.781

{dataset_row}782

Your response MUST be a JSON with exactly 2783

fields: "input" and "output".784

Response (JSON ONLY): ”’785

B.2 Filter Prompt786

“‘ You will be given a task description. Your task is787

to determine whether a data is fitful for this task.788

# Instruction:789

{task_description}790

# Fitful Examples that meet the task’s request: 791

{example} 792

Now, there is a new data. Your task is to determine 793

whether this data is fitful for this task. 794

New Data: 795

{{ 796

"input": "{input_data}", 797

"output": "{output_data}", 798

}} 799

Response (Yes or No): ”’ 800

C Ablation on Filtering 801

C.1 Pipeline 802

A filter pipeline is demonstrated in Figure 8 where 803

the LLM filters out the samples that contain noise 804

or are unanswerable given the task instruction and 805

few-shot examples. 806

Task Instruction + Examples

Today is the first day of January 2023. 
What is the date of the last day of the year 
in MM/DD/YYYY?
Options:
(A) 12/31/2022(B) 12/31/2023(C) 
01/01/2023(D) 12/31/2024(E) 01/01/2024

The flowering plant tulip releases oxygen 
during the day but not during the night. 
What is the date 30 days before today in 
MM/DD/YYYY?
Options:
(A) 04/12/2022 (B) 11/12/2021 (C) 
11/22/2021 (D) 11/12/2020 (E) 
11/12/2019 (F) 11/12/2018

Given a small set of sentences about a 
particular date, answer the provided question.

Yes

No

Figure 8: Filter Pipeline. We instruct the LLM to filter
with task instruction and few examples. Then, we input
the current example to the model and let the model
choose whether the current example can be used to train
a model for the task.

C.2 Analysis 807

We observed that most tasks maintain a high per- 808

centage of data after filtering. Most tasks retain 809

over 80% or even 90% of the original data. This 810

suggests that ReBase transformed data is generally 811

plausible and usable for downstream finetuning and 812

the filtering process does not substantially reduce 813

the dataset size. However, there are some excep- 814

tions. For date_understanding, formal_fallacies , 815

sports_understanding, dyck_languages, navigate, 816

and web_of_lies, the percentage of the remaining 817

data drops below 50% or even under 20%. 818
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Task Name Abbreviation

multistep_arithmetic_two multi_arith_2
salient_translation_error_detection salient_trans_err_detect
tracking_shuffled_objects_three_objects track_shuffled_3_obj
tracking_shuffled_objects_five_objects track_shuffled_5_obj
tracking_shuffled_objects_seven_objects track_shuffled_7_obj
logical_deduction_three_objects logical_deduction_3_obj
logical_deduction_five_objects logical_deduction_5_obj
logical_deduction_seven_objects logical_deduction_7_obj

Table 7: BBH task abbreviation clarification. We show the mapping between the original BBH task name and the
abbreviation that we used in our paper.

Figure 7: The number of Dataset Sources for each BBH task. The bars represent the number of unique data
sources retrieved for BBH tasks (This is calculated as the number of unique (dataset, config) pairs of the retrieved
data). We found that most BBH tasks retrieve data from around 30 sources, demonstrating the diversity data source
of ReBase. Among the BBH tasks, Object Counting and Word Sorting retrieves from more than 120 sources while
Boolean Expression retrieves from only 4 sources. The suggests that the amount of dataset sources is largely relevant
to the task.

Task # of Dataset # of Dataset Source

BBH (total) 24 42
BBH-NLP 21 36
BBH-Alg 27 46

Table 8: Detailed BBH dataset source. We also report
the number of unique datasets for each task. On a dataset
level, the BBH retrieves from 24 different datasets on
average, suggesting that the retrieved data comes from
very diverse sources.

We observed that filtering can be beneficial 819

in certain cases but not always. When the fil- 820

tering removes a large amount of data, perfor- 821

mance tends to decline. For instance, tasks 822

such as date_understanding, formal_fallacies, 823

dyck_languages, and navigate decline after filter- 824

ing. However, sports_understanding shows im- 825

provement in performance after filtering nearly 826

50% of the data. 827

D Training Details 828

We provide details on our model training experi- 829

ments. In our experiments, we use QLora to train 830

meta-llama/Meta-Llama-3-8B for 1 epoch using a 831
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MCoNaLa: Given a Japanese instruction, write code

⽂字列 'hello' を3回繰り返して表示する

(Display the string 'hello' repeatedly three times)

print('hello' * 3)

整数 n, a, b, c を受け取り、n を a, b, c 
の⻑さの最⼤の分割数に分割する関
数を作成する

(Write a function that takes integers n, a, b, c 
and divides n into the largest number of 
divisions of length a, b, c.)

def maximum_segments(n, a, b, c):
    dp = [0] * (n + 1)
    for i in range(1, n + 1):
        dp[i] = max(dp[i - a] + 1 if i >= a else 0, 
                   dp[i - b] + 1 if i >= b else 0,
                   dp[i - c] + 1 if i >= c else 0)
    return dp[n]
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MCoNaLa: Given a Japanese instruction, write code

ファイル‘sample.txt’の内容を⾏ごとに
読み込み、各⾏の単語数を表示する

(Read the file 'sample.txt' line by line and 
display the number of words in each line.)

with open('sample.txt', 'r') as f:
    for line in f:
        print(len(line.split()))

nCr mod pの値を計算する関数を書い
てください

def nCr_mod_p(n, r, p):
if (r > n - r):

r = n - r
C = [0 for i in range(r + 1)]
C[0] = 1
for i in range(1, n + 1):

for j in range(min(i, r), 0, -1):
C[j] = (C[j] + C[j-1]) % p

return C[r]
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(Write a function to calculate the value of nCr mod p)

Figure 9: Additional Qualitative Examples on ReBase compared to directly synthesized data. In MCoNaLa,
ReBase outputs math modula and dynamic programming programs whereas synthesized method is limited to simple
operations.

learning rate of 3e-4, a batch size of 2 per device,832

warmup steps of 20, and gradient accumulation833

steps of 4. We use 8-bit AdamW optimizer with834

a weight decay of 0.001 and a linear learning rate835

scheduler.836

E BBH Task Abbreviation837

Due to the length of some task names, abbrevia-838

tions are used in the figure. The full names can be839

found in Table 7.840

F Additional Qualitative Results841

In Figure 9, we show more examples of the data842

generated by ReBase and the synthesized data. We843

found that ReBase generates data that contains com-844

plicated math calculaitons and dynmaic program-845

ming. Whereas synthesized data is limited to sim-846

ple operations.847
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