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ABSTRACT

Bayesian optimization (BO) is a popular framework for optimizing black-box
functions, leveraging probabilistic models such as Gaussian processes. Conven-
tional BO algorithms, however, assume static query costs, which limit their appli-
cability to real-world problems with dynamic cost structures such as geological
surveys or biological sequence design, where query costs vary based on the pre-
vious actions. We propose a novel nonmyopic BO algorithm named LookaHES
featuring dynamic cost models to address this. LookaHES employs a neural net-
work policy for variational optimization over multi-step lookahead horizons to
enable planning under dynamic cost environments. Empirically, we benchmark
LookaHES on synthetic functions exhibiting varied dynamic cost structures. We
subsequently apply LookaHES to a real-world application in protein sequence
design using a large language model policy, demonstrating its scalability and ef-
fectiveness in handling multi-step planning in a large and complex query space.
LookaHES consistently outperforms its myopic counterparts in synthetic and real-
world settings, significantly improving efficiency and solution quality. Our imple-
mentation is available at https://github.com/sangttruong/nonmyopia.
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Figure 1: Comparison of myopic and nonmyopic Bayesian optimization in a dynamic cost envi-
ronment. The receptive field, shown as the unshaded region, is defined as the subset of the input
space that the decision-maker (DM) considers when selecting the next query. The myopic strategy
(left) has a narrow receptive field, as the DM focuses only on short-term gains. In contrast, in the
nonmyopic strategy (right), the receptive field expands by considering future queries, allowing the
DM to “invest” - making queries that may initially seem suboptimal but unlock better opportunities
in the future (see the acquisition value in the bottom row). Nonmyopic policy enables the DM to
navigate the cost structure strategically, ultimately reaching high-value regions that would have been
inaccessible with a purely myopic strategy. See Section 3.1 for a detailed discussion.

1 INTRODUCTION

Bayesian optimization (BO) (Kushner, 1962; 1964; Shahriari et al., 2016; Frazier, 2018; Garnett,
2022) is a powerful tool for optimizing black-box functions by employing a probabilistic surrogate
model, typically a Gaussian process (GP), together with an acquisition function, to balance explo-
ration and exploitation of the unknown objective function. In conventional BO, query costs are
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typically assumed to be static. The assumption of static query costs can be an obstacle to applying
BO in practical applications where query costs may vary dynamically on a per-iteration basis (Agli-
etti et al., 2021; Lee et al., 2021; Folch et al., 2022; 2024). For instance, in geological surveys, the
cost of querying a location varies based on its proximity to the previous query due to transportation
expenses (Bordas et al., 2020). Another example is biological sequence design, where editing one
token at a time incurs a low cost, but moving beyond the edit distance of one token becomes pro-
hibitively expensive (Guo et al., 2004; Błażej et al., 2017). These environments exhibit a dynamic
cost structure, where the query cost at a given location might depend on the last query or even the
entire query history. Incorporating these cost structures into the decision-making process can signif-
icantly improve the solution quality returned by BO algorithms. These cost structures dynamically
constrain the effective input space where the decision-making algorithm can move, requiring the
agent to plan its decision by looking at multiple steps in the future.

As cost structures become more complex and interdependent, myopic strategies may fail to capture
long-term benefits, highlighting the need for nonmyopic BO. Nonmyopic BO incorporates looka-
head steps to make more informed decisions at the current timestep (González et al., 2016; Astudillo
et al., 2021; Yue & Kontar, 2020; Jiang et al., 2020a). One potential approach to solve nonmyopic
BO in a dynamic cost environment is to view it as a Markov Decision Process (MDP) (Garcia &
Rachelson, 2013; Puterman, 2014). MDPs are commonly used to model sequential decision-making
problems. In this context, where we aim to determine the optimal next action in a sample-efficient
manner, an MDP frames the decision process as a cost-constrained model-based reinforcement
learning (CMBRL) problem, where the queried inputs are states and actions influence the transi-
tions between consecutive states. Traditional CMBRL approaches, which rely on world models to
simulate the environment (Janner et al., 2019; Wang & Ba, 2020; Hafner et al., 2021; Hamed et al.,
2024), are not directly suitable to non-myopic BO settings.

On the one hand, off-the-shelf CMBRL methods are inadequate for meeting the diverse requirements
of many nonmyopic BO applications in dynamic cost settings. Specifically, they often struggle with
large, complex, and semantically rich action spaces, as they are typically integrated with simple
neural network policies designed for small, discrete action spaces (Janner et al., 2019; Wang & Ba,
2020; Hafner et al., 2021). In the above example of biological sequences, using a simple model is
often inadequate to incorporate domain knowledge during policy optimization. A policy with strong
domain knowledge is critical when dealing with high-dimensional and complex action spaces, like
editing sequences, where each action has rich semantic meaning and can significantly impact the
outcomes (Stolze et al., 2015). Recent literature has demonstrated that using pre-trained Large Lan-
guage Models (LLMs) that encode vast quantities of domain-specific knowledge as the policy offers
an exciting approach to exploit the semantic structures in various real-world action spaces (Palo
et al., 2023; Zhuang et al., 2024; Hazra et al., 2024). Unfortunately, existing RL frameworks de-
signed to work with LLMs primarily focus on myopic policies in contextual bandit settings (Ouyang
et al., 2024). Recent popular frameworks (von Werra et al., 2020; Hu et al., 2024; Zheng et al., 2024;
Harper et al., 2019) mainly focus on techniques for single-turn reinforcement learning. Hence, these
existing frameworks can not be directly applied in a nonmyopic BO setting. On the other hand,
these methods are unnecessarily complex for various applications in nonmyopic BO. For example,
in biological sequence design, a biologist edits specific amino acids in the initial sequence. These
edits deterministically define state transitions, eliminating the need for a stochastic model.

Another limitation of CMBRL is its difficulty in managing reward uncertainties (Ez-zizi et al., 2023).
In nonmyopic BO, handling uncertainty is essential (Treven et al., 2024; Sun et al., 2024) for effec-
tively balancing exploitation and exploration (Zangirolami & Borrotti, 2024). Typically, CMBRL
algorithms utilize neural reward models which tend to be poorly calibrated (Minderer et al., 2021;
Zhao et al., 2024), resulting in overconfident or underconfident reward estimation and potentially
leading to suboptimal actions (Sun et al., 2024). To mitigate the limits of exploration in CMBRL
and hence the probability of selecting suboptimal actions, recent research emphasizes accounting
for reward uncertainties rather than relying solely on average values (Lötjens et al., 2019; Luis
et al., 2023; Ez-zizi et al., 2023). This approach enables the use of various acquisition functions
to model aleatoric and epistemic uncertainty, allowing policies to better adapt to dynamic or noisy
environments, such as biological sequence wet-lab testing, where even minor changes or errors can
significantly alter the final results (Caraus et al., 2015).

To address these challenges, we propose a cost-constrained nonmyopic BO algorithm named Looka-
HES, which reduces the exponential complexity of optimizing multiple decision variables while

2



Published as a conference paper at ICLR 2025

maintaining strong exploration capabilities through a computationally efficient Bayesian reward
model. Additionally, this method can be applied across diverse domains, from sequence design
to natural language processing, where multiple interactions are required before a final decision is
made. Our contributions are summarized as follows.

• We formulate the problem of nonmyopic BO in dynamic cost settings with various cost models
inspired by real-world scenarios, such as ones in biological sequence design.

• We utilize a neural policy to variationally optimize decision variables for nonmyopic Bayesian
optimization in dynamic cost settings. LookaHES demonstrates scalability to a lookahead hori-
zon of at least 20 steps, significantly surpassing the state-of-the-art, which typically only ex-
tends to four steps within a similar computational budget.

• We benchmark LookaHES against baselines across nine synthetic functions ranging from 2D
to 8D with varying noise levels and on a real-world problem involving NASA satellite images.
Utilizing a recurrent neural network policy, LookaHES consistently outperforms traditional
acquisition functions.

• We demonstrate the effectiveness of LookaHES by applying it to constrained protein sequence
design. We also developed an open-source, scalable framework that enhances the efficiency of
policy optimization for LLM-based policies within a complex dynamic cost environment.

2 BACKGROUND

2.1 NEURAL NONMYOPIC BAYESIAN OPTIMIZATION

The decision maker (DM) aims to find the maximum of a black-box function f∗ : X → Y through a
sequence of T queries. Here, Y is a subset of R. To do so, DM makes T queries x1:T = [x1, . . . , xT ]
and observes the corresponding outputs y1:T = [y1, . . . , yT ]. The output yt is obtained by evaluating
the query xt ∈ X , with noise modeled as yt = f∗(xt) + ϵt, where ϵt represents the noise. Given a
prior distribution over the parameters p(θ), a probabilistic surrogate model fθ of the black-box func-
tion f∗ is sampled by θ ∼ p(θ). The posterior distribution of the function, conditioned on the history
of queries and observations up to time step t, is given by pt(θ) = p(θ|Dt) = p(θ|x1, y1, . . . , xt, yt).
In this work, we utilize Gaussian Process and Gaussian linear regression as our surrogate models.
Details of these design choices are presented in Section 4. After T queries, DM selects an action
a ∈ A. In general Bayesian decision-making literature, A can be distinct from X . For example, the
DM might query the black box function to find the top-k or level set. This paper focuses on global
optimization; hence, the action set is the same as the query set, A = X 1.

At each time step t, the DM selects xt either directly or indirectly via a policy model, with the objec-
tive to maximize expected information gain (Neiswanger et al., 2022). The optimization objective
typically comprises a loss function and, where applicable, a cost function. In this work, we primarily
consider the loss function ℓ(f∗, a) = −f∗(a). Details of the optimization objective are presented in
Section 3.

Following Russo & Van Roy (2016); Kandasamy et al. (2018), the Bayesian cumulative regret at
timestep T is defined as E

[∑T
t=1

(
f∗(a∗)− f∗(at)

)]
, where the expectation is taken over the ran-

domness from the environment, the sequence of queries, and the final actions. Figure 3 illustrates
the conceptual view of our optimization process. We summarize our notations in Appendix A.

2.2 COST STRUCTURES IN BAYESIAN OPTIMIZATION

We briefly review the related work on cost-sensitive BO by providing a taxonomy of the fields.
We provide further details on other related aspects of the literature in Appendix B. We classify cost
structures into four categories based on uncertainty (known or unknown) and variability (dynamic or
static) (Table 1). When the cost is static, BO literature divides it into two variations: homogeneous
cost, where all queries have the same cost, and heterogeneous cost, where the cost depends on the

1We still use the notion of a final action to be consistent with the literature. We note that our method can
apply to a general action set, and studying that is beyond the scope of our paper.
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Table 1: Classification of cost types based on uncertainty and variability.

Known Cost Unknown Cost
St

at
ic

C
os

t Costs that remain constant regardless
of the queries made during optimiza-
tion. These costs are predictable and
can be pre-determined, making them
straightforward to budget and plan.

Costs that remain unaffected by the sequence of
queries but whose exact amount is uncertain due
to external factors (e.g., system fluctuations or re-
source availability). While they are static, their
unpredictability complicates cost estimation.

Related papers: Wu & Frazier (2019);
Nyikosa et al. (2018); Lam et al. (2016)

Related papers: Astudillo et al. (2021); Lee et al.
(2021); Snoek et al. (2012); Luong et al. (2021)

D
yn

am
ic

C
os

t Costs change based on the sequence of
previous queries. These costs are in-
fluenced by past optimization steps but
remain predictable, allowing for some
level of planning.

Costs depend on previous queries and are unpre-
dictable, making them difficult to estimate in ad-
vance. These costs often arise in environments
with high variability, such as dynamic resource al-
location or uncertain execution times.

Related papers: Liu et al. (2023), this
paper

Related papers: To our knowledge, no prior work
exists.

To illustrate the distinction between cost structures, we visualize the uncertainty and variability of
these structures as probabilistic graphical diagrams (Figure 2). In this figure, f represents the target
black-box function, x denotes the input query, y is the output value, and c is the cost of querying x.
On the left — the dynamic-cost structure — the cost of querying x3 can depend on x1 and x2. On
the right — the static-known cost structure — the cost of querying x3 is independent

Figure 2: Graphical models of two popular cost structures.

Our study addresses Bayesian optimization within a known and dynamic cost setting, a structure
distinct from the cost scenarios explored in prior works. For instance, while (Liu et al., 2023) pro-
poses an Euclidean cost-constrained lookahead acquisition function similar to ours, it lacks pathwise
sampling and a variational network, leading to exponential growth in computational requirements.
By integrating these components, our LookaHES method significantly reduces complexity, enabling
longer lookahead horizons and improved global optimization. Other works (Astudillo et al., 2021;
Lee et al., 2021; Luong et al., 2021; Snoek et al., 2012) consider unknown, heterogeneous costs in
settings like hyperparameter optimization, where costs are static for specific configurations. Mean-
while, other approaches in (Wu & Frazier, 2019; Nyikosa et al., 2018; Lam et al., 2016) do not
account for cost structures, assuming constant, known costs across the search space. Nonmyopic
methods from (Astudillo et al., 2021; Lee et al., 2021; Snoek et al., 2012; Wu & Frazier, 2019)
address multi-step optimization using free variables, incurring exponential complexity as the looka-
head horizon expands. In contrast, LookaHES incorporates a language model policy, further distin-
guishing it by offering a scalable approach to dynamic cost optimization.

2.3 DYNAMIC-KNOWN COST STRUCTURE

For scenarios where the costs of queries change dynamically, we define the cost of querying xt as
c(x<t, xt), where c is an application-specific cost function provided to the decision-maker. The total
cost to execute T queries, x1:T , is given by

∑T
t=1 c(x<t, xt). We define two primary cost structures:
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(i) Markovian cost, depending only on the previous query, and (ii) non-Markovian cost, depending
on the entire query history. The Markovian cost is incurred based on the location of departure
xt−1 and the destination xt. It also depends on the p-norm between xt and xt−1. The relationship
between distance and cost in practice can be nonlinear: for example, traveling within a ball of radius
of r might be free, but beyond that, the traveling cost grows at a rate of k. The observed cost
might be perturbed by a random noise ϵ. These ideas are summarized in the following cost model:
cMarkov(xt−1, xt) = max(k(||xt − xt−1||p − r), 0) + ϵ. Euclidean cost (p = 2, r = 0), Manhattan
cost (p = 1, r = 0), and r-spotlight cost (k = ∞) are some commonly used instances. Euclidean
cost is found in applications such as ground surveys since the traveling cost depends on the distance
between departure and arrival locations (Bordas et al., 2020). Spotlight cost is found in biological
sequence design, where editing more than one token is impossible in one experiment (Belanger et al.,
2019). Regarding non-Markovian costs, the query cost could depend on the entire query history. For
example, the traveler in the ground survey application might participate in a mileage point program,
where they get a discount d if their total traveling distance is beyond a constant m. This cost
model is represented as cnon-Markov(x<t, xt) = cMarkov(xt−1, xt) − dI[

∑t−1
i=1 cMarkov(xi, xi+1) >

m]. Generally, under a budget constraint, dynamic costs require efficient nonmyopic planning;
otherwise, the next decision may incur a high cost or fail to move beyond local optima.

3 METHOD

Blackbox Functions

Neural 
Network Policy

Cost Function

Surrogate Model

Agent

Query

Observation

Vector Space Protein Space

Figure 3: Illustration of the Optimization Process. The agent employs a surrogate model fθ to
approximate the complex black-box function f in vector or protein spaces. A neural network policy
ξ : (x1:t, y1:t) 7→ xt+1 generates the next queries to explore and exploit the optimization space. The
next queries are generated by optimizing EHIG(x1:L) objective which includes loss function ℓ(·)
computed from the action a and surrogate model fθ, as well as cost function c(·).

3.1 BAYESIAN OPTIMIZATION IN DYNAMIC COST SETTINGS

DM employs an acquisition function to choose the next query. We study a general class of acqui-
sition function based on decision-theoretic entropy, known as H-Entropy Search (HES) (DeGroot,
1962; Neiswanger et al., 2022) since many common acquisition functions, such as Knowledge Gra-
dient (Frazier et al., 2009) and Expected Improvement (Šaltenis, 1971), can be considered a specific
case of HES. This section briefly describes the multi-step lookahead variant of HES, showing how
it can accommodate various dynamic cost structures c. We then describe the dynamic cost structure
in detail. Lastly, we describe our procedure to optimize the variational version of the acquisition
function by training a neural network policy.

For a prior p(f) and a dataset Dt = D0 ∪ {(xi, yi)}ti=1, the posterior Hℓ,c,A-entropy and the
expected Hℓ,c,A-information gain (EHIG) at step t with loss function ℓ, cost function c, action set
A, and Lagrange multiplier λ, and lookahead horizon L is

Hℓ,c,A[f |Dt] = inf
a∈A
{Ept(f)[ℓ(f, a)] + λc(x1:t, a)}

EHIGt(x1:L) = Hℓ,c,A[f |Dt]− Ept(y1:L|x1:L) [Hℓ,c,A[f |Dt+L]] .

Following the H-information gain heuristics, the decision-maker selects the query xt+1 ∈ X at each
step t to maximize the expected H-information gain:

x∗
1:L = arg sup

x1:L∈XL

EHIGt(x1:L) = arg sup
x1:L∈XL

[
−Ept(y1:L|x1:L)[Hℓ,c,A[f |Dt+L]]

]
(1)
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Under dynamic cost settings, candidates in the query space X are not equally considered by the
DM. For instance, in the spotlight cost, the DM ignores candidates outside the spotlight radius to
respect the cost structure. Lookahead allows the DM to consider candidates accessible in future
steps based on their next query. We define the decision receptive field as the subset of the input
space the DM considers. Lookahead expands this receptive field (see Figure 1) and enables the DM
to “invest”: choosing a suboptimal query now to access better outcomes (e.g., global optima) later.
A longer lookahead horizon improves planning but exponentially increases decision variables and
uncertainty, complicating the process. In the next section, we address this scalability challenge using
a neural network policy.

3.2 NEURAL NETWORK POLICY OPTIMIZATION

As the lookahead horizon L increases, optimization and integration dimensions grow, complicat-
ing the problem. We address this using variational optimization and pathwise sampling (see Ap-
pendix C.2). In nonmyopic decision-making, the number of decision variables scales with Monte
Carlo samples, which depend on the number of paths p and horizon length T . In the best case,
where samples grow linearly with T , policy complexity is O(T ). In the worst case, samples grow
exponentially, increasing complexity to O(kT ), where k is samples per step. To mitigate this, we
employ a variational network, reducing the growth rate of decision parameters from exponential to
constant with respect to the lookahead horizon. Variational optimization has been well studied and
applied in various contexts, such as policy gradient methods (Schulman et al., 2017), VAEs (Kingma
& Welling, 2014), and variational design of experiments (Foster et al., 2019). However, to the best
of our knowledge, this approach has not yet been applied in the nonmyopic BO setting to reduce
optimization complexity with respect to the lookahead horizon. From equation 1, we observe that
for each lookahead step l ∈ [L], the decision variable, x∗

t+l+1, is determined by the previous de-
cision variables and corresponding observations, (x1:t+l, y1:t+l). This dependency can be modeled
using a recurrent neural network (RNN) parameterized by ξ ∈ Ξ, which takes the history as input to
predict the optimal next query: ξ : (x1:t, y1:t) 7→ xt+1. The corresponding posterior predictive yt+1

can then be computed by yt+1 ∼ pt(xt+1). Using pathwise sampling, this computation becomes
yt+1 = f(x∗

t+1), where f ∼ pt(f). Thus, we can maintain gradients ∂EHIGt(x1:L)
∂ξ for optimizing

xt+1 = ξ∗(x1:t, y1:t) across the lookahead steps by applying the chain rule:
∂EHIGt(x1:L)

∂xt+L

∂xt+L

∂ξ
+

∂EHIGt(x1:L)

∂yt+L

∂yt+L

∂xt+L

∂xt+L

∂ξ
.

We can rewrite equation equation 1 as:

ξ∗ = arg inf
ξ∈Ξ

[
Ept(y1:L|x1:L,ξ)

[
inf
a∈A

{
Ept+L(f)[ℓ(f, a)] + λc(x1:t, x1:L, a)

}]]
.

In our experiments, the variational network is trained using fantasized data points. Specifically,
when optimizing step t + 1, we use the previously observed data points (x1:t, y1:t) to generate
imagined lookahead data points (xt+1:t+L, yt+1:t+L) through an autoregressive process: xt+l+1 =
ξt(x1:t+l, y1:t+l) and yt+l+1 ∼ pt+l(x1:t+l). These fantasized data points are then used to compute
the optimization objective and find the optimal ξt+1. Predicting the next query is an autoregres-
sive process, making language models well-suited to be a variational network. Language models
encompass various architectures, from classical LSTMs Hochreiter & Schmidhuber (1997) to mod-
ern transformer-based models like BERT Devlin et al. (2019) and decoder-only LLMs (e.g., GPT-4,
LLaMA 3). As autoregressive models, they can also handle continuous time-series data Luo & Wang
(2024). Here, previous queries serve as input, either directly or following a linear transformation.
With X and A as continuous sets, language models can naturally function as policies.

In practical applications, query and action can be discrete, such as in drug design, where molecules
are represented as strings (discrete characters). The final action may involve accepting or rejecting
a generated sequence for wet lab testing. LookaHES extends to discrete cases by using a neural
encoder to map tokens into continuous embeddings, similar to language modeling. Since the model
outputs discrete tokens, differentiation in computing EHIG is challenging. This can be addressed
using the reparameterization trick (Kingma & Welling, 2014) for small token sets or the REIN-
FORCE algorithm (Williams, 1992), which leverages the log-derivative trick (Mohamed et al., 2020)
to estimate gradients ∂EHIGt(x1:L)

∂ξ efficiently. We provide the pseudo algorithm for our method in
Algorithm 1.
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Figure 4: Queries across BO iterations with σ = 0.0 and r-spotlight cost. Yellow and green points
indicate the initial position and final action, respectively. LookaHES reaches the global optimum,
whereas the others tend to be trapped in local optima.

4 EXPERIMENTS

This section evaluates the performance and robustness of LookaHES. Our experiments aim to: (i)
assess its efficiency in environments with dynamic query costs, (ii) benchmark it against established
baselines on synthetic and real-world datasets, and (iii) demonstrate its advantages in performance
and computational efficiency. Through these experiments, we address key research questions.

• RQ1: How does the proposed method compare to state-of-the-art myopic and nonmyopic
acquisition functions in the continuous input domain under dynamic cost constraints?

• RQ2: Is it possible to apply the proposed method to problems with discrete input spaces?
• RQ3: How do aleatoric and epistemic noises, the quality of the surrogate model, and the

lookahead horizon impact the performance of the proposed method?
• RQ4: Does ‘optimism’ in myopic methods lead to better performance than nonmyopic

methods without optimism? Can this optimism be broadly applied to real-world problems?

We compare LookaHES with the six baselines implemented in BoTorch (Balandat et al., 2020)
including Simple Regret (SR) (Zhao et al., 2023), Expected Improvement (EI) (Mockus, 1989),
Probability of Improvement (PI) (Kushner, 1964), Upper Confidence Bound (UCB) (Srinivas et al.,
2010), Knowledge Gradient (KG) (Frazier et al., 2009), and Multistep Tree (MSL) (Jiang et al.,
2020b). Details of these baselines are presented in Appendix D. All acquisition function values
are estimated via the quasi-Monte Carlo method with the Sobol sequence Balandat et al. (2020).
We experiment with 4 cost functions: Euclidean, Manhattan, r-spotlight, and non-Markovian cost
based on Euclidean distance. We use Sample Average Approximation with a base sample as a
variance reduction technique that significantly improves the stability of optimization. To enhance the
likelihood of convergence, we perform all optimizations using 64 restarts. The lookahead horizon is
set to 20 for LookaHES and Multistep Tree. Each experiment is repeated with three random seeds.
All experiments are conducted on an A100 GPU and 80GB memory.

4.1 CONTINUOUS OPTIMIZATION OF SYNTHETIC FUNCTIONS

To answer RQ1, we evaluate LookaHES on nine synthetic functions for global optimization in
continuous vector spaces. The 2-dimensional functions, with their initial data points and maximum
BO steps, include Ackley (50 samples, 100 steps), Alpine (100 samples, 50 steps), HolderTable
(100 samples, 50 steps), Levy (100 samples, 50 steps), Styblinski-Tang (50 samples, 50 steps), and
SynGP (25 samples, 50 steps). The SynGP function is generated from a 2D GP with a Radial
Basis Function kernel, characterized by a length scale of

√
0.25 and a signal variance of 1. High-

dimensional functions include Ackley4D (4D, 100 samples, 100 steps), Hartmann (6D, 500 samples,
100 steps), and Cosine8 (8D, 200 samples, 100 steps). Detailed descriptions of these functions
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are available in (Bingham, Accessed 2024). We also apply LookaHES to a real-world problem in
continuous space on identifying areas with the most light in NASA satellite images. The results of
this experiment are presented in Appendix F. To further investigate the robustness of our approach,
we conduct ablation studies on noise levels, initial data points, surrogate model kernels, lookahead
horizon, and hyperparameter choices in the myopic acquisition function, as detailed in Appendix E.

The input of all functions is normalized in a hypercube [0, 1]d, and the output is normalized to
the range −3 to 3. The global maximization of each function is at 3, and the instantaneous regret
of action a is 3 − f∗(a). The outputs of all functions are observed with three levels of noise:
0%, 1%, and 5%. Gaussian Process is used as the surrogate model for these experiements. The
variational neural network consists of a two-layer encoder, a Gated Recurrent Unit, and a three-layer
decoder with exponential linear unit activations (64 hidden dimensions), optimized using Adam with
a 10−3 learning rate. During inference, small noise from the von Mises-Fisher distribution (Fisher,
1953) is added to predicted queries to enhance exploration and acquisition function optimization.
Figure 4 shows that myopic algorithms often converge to local maxima due to their short-term
focus, while LookaHES considers future outcomes, guiding it toward the global maximum. With our
improvements, the MSL method achieves a 20-step lookahead, matching LookaHES in outcomes.
However, without the variational network, MSL optimizes directly on decision variables, limiting
its real-world applicability. Figure 5 compares baseline methods and our approach in terms of final
observed values under the highest noise level (σ = 0.05) across four cost functions.

Summary: LookaHES consistently outperforms the myopic and is comparable to nonmy-
opic baselines on synthetic functions, highlighting the advantage of lookahead capabilities.

4.2 DISCRETE OPTIMIZATION OF PROTEIN FLUORESCENCE

We demonstrate the application of LookaHES to optimizing protein sequences (Elnaggar et al.,
2023). The decision-making process involves determining whether to edit a given protein sequence.
This experiment addresses RQ2 with real-world problems. Figure 6 (left) provides a visualization
of the protein space. If editing is chosen, the next step is to determine the position to be edited and
select the new amino acid. We conduct a sequence of T = 12 edits to maximize the fluorescence
level obtained from a wet lab experiment, given by the black-box oracle f∗ : X → R, which is
expensive to query. We assume that f∗ has a parametric functional form on the feature space ϕ(x):
y = fθ∗(x) = g(x) + α(ϕ(x)⊤θ∗ + ϵ), where θ∗ ∼ p(θ) = N (µ,Σ), ϵ ∼ N (0, σ), g(·) is a
synthetic function, and α is a scaling hyperparameter. In other words, we select a Gaussian prior for
the model parameters.

We use the ProteinEA Fluorescence dataset (ProteinEA, 2024), which contains 21,445 training sam-
ples, to build the black-box oracle. We experiment with various featurization functions ϕ(·), includ-
ing Llama2 7B (Touvron et al., 2023), Llama3 8B (Meta, 2024), Mistral 7B (Jiang et al., 2023),
Gemma 7B (GemmaTeam, 2024), ESM-2 650M, ESM-2 3B (Lin et al., 2022), and Llama-Molist-
Protein 7B (Fang et al., 2024). Figure 17 shows validation results of the parametric black-box oracle
with varying training sample sizes. Gemma 7B achieves the highest validation R2 for predicting
fluorescence, so we use it as the feature function.

Figure 5: Final observed value at σ = 0.05. From noon (i.e., the north of each circle), counter-
clockwise: Ackley, Ackley4D, Alpine, Cosine8, Hartmann, HolderTable, Levy, StyblinskiTang,
SynGP. LookaHES consistently found global optimum across various cost structures.
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Next, we construct our semi-synthetic protein space using a sequence from the ProteinEA Flu-
orescence. Specifically, we select a single sequence from the validation set consisting of 237
amino acids across 20 types. In this experiment, the protein designer can edit only one amino
acid at a time across a maximum of 12 fixed positions and is limited to 2 possible amino acid
types for each position. Under this setting, the protein space X contains |X | = 4096 possible
proteins. We then compute the fluorescence values for these proteins using the previously con-
structed oracle. The goal is to edit a starting protein to achieve the highest fluorescence, defined as
xmax = argmaxxi∈X Eθ∗∼p(θ)fθ∗(xi). The starting protein, x0, is chosen as the one with an edit
distance of 12 from the protein with maximal fluorescence. Because each edit position can only ac-
commodate two different tokens in this setup, there is only one possible starting protein. We choose
α = 0.2 and g(x) = −0.005(d− 0.5)(d− 5)(d− 8)(d− 13.4), where d = dedit(x, x0) represents
the edit distance between the starting protein and a given protein x. We conduct an ablation study
using a different starting protein and synthetic function g(x), with results detailed in Appendix H.
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Figure 6: Fluorescence distribution by edit distance (left), observed fluorescence across BO steps
(middle), and regret across BO steps (right). Myopic methods are trapped in local minima ( 1.5
fluorescence), while our 12-step nonmyopic approach anticipates the global maximum, achieving
2.7 fluorescence.

We use Bayesian linear regression as a surrogate to guide optimization. At each step t ∈ [T ], hyper-
parameters are estimated via maximum marginal log-likelihood, and the next mutation is selected
by optimizing the variational network (Section 3). The mutation and fluorescence value are given by
xt+1 ∼ pξt(xt) and fθ∗(xt+1), respectively. The optimization is batched, using Llama-3.2 3B as the
variational network, with online and lookahead steps set to 16 and 12, respectively. Experiments are
repeated with three seeds. The model is first supervised finetuned on random mutation data. During
online iteration, we optimize the network with up to 768 gradient steps and 64 restarts for mutation
selection. To improve efficiency, we modify Proximal Policy Optimization (PPO) by decoupling
training and inference, using vLLM (Kwon et al., 2023) for lookahead rollouts. Network weights
are transferred to vLLM after each gradient update. For constrained cost handling during looka-
head sequence generation, we attempt regeneration up to 32 times. If regeneration is unsuccessful,
we randomly mutate the most recent sequence with a 50% chance of retaining it. Figure 6 (mid-
dle) shows observed fluorescence levels, and (right) displays regret (3 − fθ∗(a)) across iterations.
Additional details are in Appendix G.

Summary: LookaHES works well on discrete domains in protein editing, with superior per-
formance to other myopic approaches, proving its effectiveness across diverse applications.

5 DISCUSSION, LIMITATIONS, AND FUTURE WORK

We propose LookaHES for the nonmyopic BO in dynamic cost settings. LookaHES incorporates
dynamic costs and downstream utility, leading to more informed decision-making under uncertainty.
By utilizing a neural network policy, it achieves scalability in planning multiple steps ahead. Exper-
imental results demonstrate the superior performance of LookaHES compared to baseline methods
on various benchmarks. However, the method has limitations. It requires a well-defined cost model
upfront, which may not always be practical, and its performance relies heavily on a well-specified
surrogate model. Future work should explore the impact of model misspecification on plan qual-
ity. Further advancements in adaptive modeling and cost estimation could enhance its robustness,
expanding its applicability to even more complex decision-making scenarios.
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A NOTATION

Table 2 is a glossary of the mathematical notation used in the paper.

Table 2: Glossary of mathematical notation

Symbol Description
f∗ Black-box function
p(f) Prior distribution over the black-box function
θ Random variable representing the parameters of the black-box function

in the parametric form
θ∗ Optimal parameters of the black-box function in the parametric form
X Input domain
Y Output domain
ξ Parameters of the variational network
Dt Dt = {(xi, yi)}ti=1 Dataset acquired
pt(·) The posterior distribution conditioned on the data up to and including

timestep t
c(·, ..., ·) c : X k → R, cost function depending on k-step history of query
[T ] {1, ..., T}
Hℓ,A The decision-theoretic entropy (DeGroot, 1962) corresponding to a

loss function ℓ and an action set A
L Lookahead horizon
T Number of interactions with the environment

B RELATED WORKS

Nonmyopic Bayesian Optimization in the Dynamic Cost Setting Nonmyopic BO has been ex-
tensively explored in prior works (Osborne, 2010; González et al., 2016; Wu & Frazier, 2019; Jiang
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et al., 2020a; Lee et al., 2020; 2021; Astudillo et al., 2021; Folch et al., 2022; Belakaria et al., 2023;
Jiang et al., 2020b). These studies focus on converting a nested, multi-step planning problem into
a single, high-dimensional optimization problem that can be solved efficiently with quasi-Monte
Carlo sampling and gradient-based optimization. The advantage of having a lookahead mechanism
is enlarging the receptive field—the area the decision maker can see prior to making a decision (Fig-
ure 1). This approach has gained traction in cost-aware and budget-constrained BO (Astudillo et al.,
2021; Lee et al., 2021), where nonmyopic planning is crucial. However, a notable challenge with
this methodology is its limited scalability when extending the lookahead horizon, primarily due to
the exponential increase in the number of decision variables. Our approach introduces a novel com-
bination of Thompson sampling (Thompson, 1933) with the extensive generalization capabilities
of a variational network, significantly enhancing the computational efficiency of nonmyopic BO.
Utilizing neural networks for variational inference and optimization is not a new concept (Kingma
& Welling, 2014; Amos, 2023). For instance, Deep Adaptive Design (Foster et al., 2021; Ivanova
et al., 2021) is a parallel line of research from the Bayesian optimal experimental design literature,
which has a related but distinct objective to reduce the uncertainty of model parameters as opposed
to the global optimization objective in BO. The authors concentrate on reducing the computational
demands during deployment and determining the most informative experimental designs by up-
front offline optimization of a neural network to amortize the design cost. Our approach diverges
by aligning more closely with the principles of online Bayesian optimization. Here, the primary
objective extends beyond mere information acquisition to encompass the pursuit of global optimiza-
tion. Our approach, which employs adaptive decision-making through online policy optimization,
could be more robust than offline methods, particularly when the approximation of the reward func-
tion changes significantly between queries. This robustness arises because the online policy is up-
dated at each BO step while the offline methods rely on transferring knowledge from learned offline
data (Nguyen-Tang & Arora, 2024). The distinctive feature of our study is implementing a pathwise,
Thompson sampling-based nonmyopic acquisition function, which significantly reduces the compu-
tational cost of the iterative posterior sampling approach in (Jiang et al., 2020b). Additionally, we
present detailed comparisons of related works on different cost structures in Appendix 2.2.

Variational Policy Optimization in Complex Action Spaces In many real-world applications,
decision-makers must take actions that are complex and subject to semantic constraints. Semantic
constraints refer to rules or relationships that restrict the set of valid actions based on their meanings,
dependencies, or contextual appropriateness. For example, in biological sequence design, seman-
tic constraints may ensure that the mutated sequence is valid and does not unfold the protein (i.e.,
protein denaturalization). Recent RL research has addressed environments with such actions, which
are challenging due to two main reasons: (i) the large number of potential actions (Hubert et al.,
2021; Zhang et al., 2024), and (ii) the complex semantics (Carta et al., 2023) underlying each ac-
tion, making them difficult to capture. Recent studies have shown that modern LLMs can effectively
model semantic actions and be fine-tuned with feedback from the environment (Zhu et al., 2024;
Zhang et al., 2024; Zhuang et al., 2024; Hazra et al., 2024). Several papers demonstrate that us-
ing LLMs as policy models in reinforcement learning leads to better outcomes (Palo et al., 2023;
Zhuang et al., 2024; Hazra et al., 2024). In the field of NLP, a chatbot such as ChatGPT can be
viewed as a decision-making process where the underlying LLM must understand user questions or
requests to provide appropriate responses. These actions are complex and semantically rich, as even
a single word can alter the meaning of a sentence. Consequently, RL methods like proximal policy
optimization (Schulman et al., 2017) have been applied to refine the abilities of language models.

Multi-turn Training Framework for LLMs Multi-turn conversations have been shown to be
more effective for managing entire dialogues (Zhou et al., 2024). This approach can be viewed as a
nonmyopic RL method that trains LLMs to achieve better conversational outcomes. Unfortunately,
current RL training frameworks for LLMs, such as TRL (von Werra et al., 2020), OpenRLHF (Hu
et al., 2024), LlamaFactory (Zheng et al., 2024), and Nemo (Harper et al., 2019), primarily focus on
single-turn conversations. As a result, they are not suited for multi-turn conversation training. When
using these frameworks, multi-turn conversations must be divided into individual single turns, which
limits the LLM’s ability to manage the overall outcome of a conversation effectively.
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C METHOD DETAIL

C.1 PSEUDO-ALGORITHM

Algorithm 1: LookaHES Algorithm
Input : Black-box function f∗

Initial dataset D0

Loss function ℓ(f, a)
Cost function c(xt−1, xt)
Lagrange multiplier λ
Maximum number of query T
Number of lookahead step L

Output: Final dataset DT

for t = 1→ T do
fθ ∼ p(θ|Dt−1)

ξ∗ = arg infξ∈Ξ

[
Ept(y1:L|x1:L,ξ)

[
infa∈A

{
Ept+L(f)[ℓ(fθ, a)] + λc(x1:t, x1:L, a)

}]]
xt ← ξ∗(x1:t−1, y1:t−1)
yt ← f∗(xt)
Dt = Dt−1 ∪ {(xt, yt)}

end

C.2 PATHWISE SAMPLING

When the surrogate model is a Gaussian Process (GP), the Monte Carlo method is employed to eval-
uate the posterior predictive distribution. In prior works, this is done via iterative sampling of the fol-
lowing factorized distribution: p(y1:T |x1:T , D0) =

∏T
t=1 p(yt|xt, x<t, y<t, D0). The posterior pre-

dictive distribution at the t-th step, denoted as p(yt|xt, x<t, y<t, D0), can be approximated by gener-
ating k samples of yt from the GP model. In general, the value of k varies depending on the specific
problem. At iteration t, suppose that we always sample k samples from the posterior predictive
distribution. The number of yt is kt. This number quickly explodes exponentially with the length of
the lookahead horizon (Figure 7). The GP posterior predictive sampling process involves comput-
ing the square root of the covariance matrix, which is typically done via Cholesky decomposition.
The complexity of this process is proved as O(n3) for exact GP or O(m3) for approximate GP
where n is the total number of samples in the training dataset and m < n is the number of inducing
samples (Quiñonero-Candela & Rasmussen, 2005; Wilson et al., 2020). This evidence shows that
the complexity for sampling posterior predictive distribution at step t-th is at least O(ktm3). One
variant of this procedure that can reduce the complexity is limiting the number of sampling samples
for posterior predictive approximation at further lookahead steps. For instance, at each step t > 1,
we can set kt>1 = max(k1/2

t, 1), where k1 is the predefined number of samples at the first looka-
head step. In these cases, we can observe that ∃τ : ∀t > τ,

∏T
t=1 kt = K, where K is a constant.

Subsequently, the complexity at step t-th can be reduced to O(
∏T

t=1 ktm
3) = O(Km3) = O(m3).
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Figure 7: Posterior predictive sampling (left) and Pathwise sampling (right)

To mitigate the high complexity of above sampling process, we employ the following factorization:
p(y1:T |x1:T , D0) =

∫
p(y1:T |x1:T , f)p(f |D0) df =

∫
p(f |D0)

∏T
t=1 p(yt|xt, f) df . The function

f is drawn from the prior distribution and path-wise updated via Matheron’s rule. For the h path,
consisting of T steps each, the sampling can be done with complexityO(h×T ). We can approximate
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the integral arbitrarily well with higher h. The gain comes from the fact that we do not need to
iteratively compute K−1

m,m as in fantasization. If we did, the complexity, with the same number of
samples, would be O(h × (T − 1)3). This can be done in linear complexity w.r.t. to the number
of samples. The complexity of sampling a posterior f̂ from p(f |D0) can be considered as O(C),
where C is a constant because the number of samples in D0 is unchanged. Then, computing yt
for approximate posterior predictive p(yt|xt, f̂) can be done by yt = f̂(xt), which has complexity
of O(1). Using the same technique as limiting the number of sampling samples, the complexity
approximating posterior predictive at any lookahead step is O(K). Thus, the total complexity at
each step t-th is O(C +K). Figure 7 (right) visualizes the concept of this method.

D DETAILS OF BASELINES

• Simple Regret (SR) (Zhao et al., 2023) measures the regret or loss in performance between the
updated model and the model that would have resulted if the optimal sample had been selected
for annotation during the active learning process instead.

• Expected Improvement (EI) (Mockus, 1989) is used to evaluate the usefulness of candidate
samples by estimating the expected gain in the performance of a model.

• Probability of Improvement (PI) (Kushner, 1964) calculates the probability of a candidate
sample improving the performance of a model compared to the current best sample.

• Upper Confidence Bound (UCB) (Srinivas et al., 2010) balances exploration and exploitation
by selecting candidate samples with high uncertainty and high potential for improvement based
on the upper confidence bound of their predicted performance.

• Knowledge Gradient (KG) (Frazier et al., 2009) quantifies the expected improvement in the
objective function value resulting from evaluating a specific point. It considers the uncertainty
of the model predictions and the potential benefit of obtaining additional information about the
objective function.

• Multistep Tree (MSL) (Jiang et al., 2020b), which can look up to four steps ahead, is con-
strained by computational costs. We reimplement this acquisition function using Pathwise
sampling, enabling a lookahead horizon of up to 20 steps.

E ABLATION STUDIES ON SYNTHETIC FUNCTIONS

E.1 VARYING THE OBSERVATION NOISE LEVEL

To answer the RQ3 in terms of the impact of aleatoric noise on BO methods, we performed an abla-
tion study by varying the observation noise levels at 0%, 1%, and 5%. A comprehensive comparison
of LookaHES against baseline approaches was conducted across nine synthetic functions, incorpo-
rating all cost structures and noise levels. As shown in Figure 8, LookaHES consistently achieves
superior performance across all cost structures and noise settings.

E.2 VARYING THE NUMBER OF INITIAL SAMPLES

In many scenarios, limited data availability at the start of an optimization process leads to a poorly
constructed surrogate model, resulting in high epistemic uncertainty. Understanding the behavior
of BO methods under such conditions is crucial for planning appropriate actions. Specifically, we
investigated how varying the number of initial samples affects the optimization process to answer
the RQ3. The analysis was conducted across three environments: Ackley, Alpine, and SynGP, with
evaluations performed at three different levels of initial samples (Figure 9). Our results indicate that
with fewer initial points, the GP surrogate model struggles to accurately approximate the ground-
truth function, thereby increasing the likelihood of suboptimal outcomes across both myopic and
nonmyopic methods.

To address this issue, we enhance the diversity of the generated outputs and introduce a warm-up
phase for the amortized network parameters during each BO iteration. Specifically, we set the κ
concentration hyperparameter of the von Misher-Fisher distribution (distribution of noises added to
output) to 0, which promotes a more diverse range of outputs. For the warm-up phase, the amortized
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Figure 8: Final observed value. Starting from noon, counter-clockwise: Ackley, Ackley4D, Alpine,
Cosine8, Hartmann, HolderTable, Levy, StyblinskiTang, SynGP. We observe that LookaHES con-
sistently achieves the global optimum across various types of cost structures and noise levels

network is initialized with randomly generated data points, preventing the generated outputs from
being confined to a local region. This approach ensures broader coverage of the receptive field,
facilitating better exploration. The refined results are presented in Figure 10, demonstrating the
effectiveness of this strategy within the SynGP environment.

Figure 9: Comparison of performance between LookaHES and baselines with different numbers of
initial samples. The yellow points indicate the starting positions, while the green points represent
the final actions. From top to bottom, the Ackley function is evaluated with 15, 25, 35, and 50 initial
samples; the Alpine function with 25, 50, 75, and 100 initial samples; and the SynGP function with
5, 10, and 15 initial samples. With a small number of initial samples, all methods tend to fail to find
the global optimum due to poor surrogate models.
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Figure 10: SynGP environment with 5 initial points and our diversity-enhanced BO method. The
black points are data. The yellow points indicate the starting positions, while the green points
represent the final actions.

E.3 VARYING THE CHOICE OF GAUSSIAN PROCESS KERNEL

Since our surrogate models are GPs, their quality is influenced not only by the number of data points
but also by the choice of kernel. In this section, we address the RQ3, focusing on the impact of kernel
selection on GP performance. To evaluate this, we tested different kernel functions, including the
Radial Basis Function (RBF) kernel and the Matérn kernel with ν = 1.5, across three functions:
Ackley, Alpine, and SynGP. Figure 11 visualizes the ablation results. This ablation demonstrates
that with any well-fitted kernel, the nonmyopic approach can achieve the global optimum.

Figure 11: Comparison of performance between LookaHES and baselines with different kernels
for the surrogate model (RBF on the left, and Matern on the right). The yellow points indicate the
starting positions, while the green points represent the final actions. The performance of LookaHES
is not affected by the choice of kernel for the surrogate model as long as the surrogate model can
approximate the target function effectively.

In our synthetic experiments, we do not include an ablation study on the Bayesian linear regression
model as it is unsuitable for accurately approximating the non-linear target functions. To demon-
strate this limitation, we compared the posterior surface generated by Bayesian linear regression with
those of other kernel-based methods, as shown in Figure 12. These results confirmed its inadequacy,
leading us to exclude it from our ablation study.

E.4 VARYING THE LENGTH OF THE LOOKAHEAD HORIZON

To answer RQ3 on the benefit of a large lookahead horizon, we included experimental results on
the ablation of the number of lookahead steps in Figure 13. These results illustrate the relationship
between the number of lookahead steps and the robustness of the optimization, providing insights
into how the performance of our approach varies with different horizon lengths. Specifically, with
a smaller lookahead horizon, the probability of being trapped by local optima increases, leading to
suboptimal optimization in all nonmyopic methods.
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Figure 12: Comparison of posterior surfaces of different kernels on Ackley, Alpine, and SynGP
function. Using Bayesian linear regression (the third column) resulted in a wrong approximation of
the ground truth functions.

Figure 13: Comparison of LookaHES and nonmyopic baseline at 5, 10, 15, and 20 lookahead steps.
The yellow points indicate the starting positions, while the green points represent the final actions.
With fewer lookahead steps, nonmyopic methods tend to fail to find the global optimum, demon-
strating the benefit of having a longer lookahead horizon.

The experiments conducted across various scenarios highlight the robustness and effectiveness of
our proposed method in handling different challenges in Bayesian optimization. We observed that
varying observation noise levels (0%, 1%, and 5%) had minimal impact on the performance of
LookaHES compared to baseline approaches, with LookaHES consistently achieving the global op-
timum across all cost structures and noise settings. Additionally, we found that limited initial sam-
ples led to suboptimal performance due to high epistemic uncertainty, but introducing a diversity-
enhancing strategy and a warm-up phase improved the results. Kernel selection also played a crucial
role, and LookaHES demonstrated strong performance regardless of the kernel choice as long as the
surrogate model could approximate the target function effectively. Finally, our results show that
incorporating a larger lookahead horizon significantly improves the optimization process, reducing
the likelihood of being trapped in local optima.

Summary: Our proposed method demonstrated robustness to aleatoric noise, maintaining
strong performance even with a 5% noise level. High epistemic uncertainty from limited
initial samples hindered performance, but strategies like diversity enhancement and warm-
up phases mitigated this issue. Additionally, effective surrogate model design and a larger
lookahead horizon were crucial, enhancing optimization by avoiding local optima and im-
proving convergence.
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E.5 VARYING THE ACQUISITION FUNCTION HYPERPARAMETERS

Myopic acquisition functions, such as UCB, rely on ”optimism” during optimization. This means
they prioritize exploration with the expectation that querying enough points may eventually uncover
the optimum. In this section, we investigate whether this ”optimism” can outperform lookahead
methods, addressing RQ4. In the case of the UCB acquisition function, the degree of optimism is
controlled by the β hyperparameter: smaller values of β emphasize exploitation, while larger values
encourage exploration. With sufficiently large β, the standard deviation term dominates the mean
term, leading to decisions driven by the most uncertain areas. To further illustrate the impact of large
β, we conducted additional experiments with β values ranging from 0.1 to 1000 on nine synthetic
functions. In Figure 14 we highlight the behavior of UCB when increasing β.

We also provide the value of the final action, normalized to range from -1 to 1, where -1 represents
the worst outcome and 1 is the best in Table 3. These empirical results further illustrate that the
large β value can encourage the decision-maker to make queries that highly prioritize exploration.
As illustrated in the above figure and table, such exploration are typically myopic and unplanned, and
consequently, the decision maker typically misses the global optima or overexplore the un-promising
region. We also want to note that in our experiment, no single β outperformed others in all settings:
for example, β = 10 works well for Ackley, but does not work for other functions. Indeed, choosing
the value of β for UCB before running the online experiment is nontrivial in practice.

Table 3: Comparison of final action value of LookaHES with 20-step lookahead and UCB with
various β value

Method Ackley Ackley4D Alpine Cosine8 Hartmann HolderTable Levy StyblinskiTang SynGP
LookaHES 0.97± 0.03 0.97± 0.02 0.99± 0.0 0.93± 0.01 0.96± 0.03 0.05± 0.08 0.95± 0.0 1.0± 0.0 0.63± 0.25
UCB (β = 0.1) 0.7± 0.4 0.68± 0.44 −0.01± 0.01 0.96± 0.01 0.95± 0.02 −0.49± 0.01 0.87± 0.0 0.91± 0.0 0.45± 0.01
UCB (β = 0.5) 0.4± 0.41 0.68± 0.44 −0.01± 0.01 0.97± 0.01 0.94± 0.04 −0.5± 0.01 0.87± 0.0 0.91± 0.0 0.45± 0.01
UCB (β = 1) 0.4± 0.41 0.67± 0.43 −0.01± 0.01 0.96± 0.02 0.95± 0.03 −0.49± 0.01 0.87± 0.0 0.91± 0.0 0.45± 0.01
UCB (β = 2) 0.4± 0.41 0.68± 0.44 −0.01± 0.01 0.97± 0.02 0.95± 0.03 −0.49± 0.01 0.87± 0.0 0.91± 0.0 0.45± 0.01
UCB (β = 5) 0.7± 0.43 0.98± 0.01 −0.01± 0.01 0.96± 0.03 0.97± 0.02 −0.49± 0.01 0.87± 0.0 0.91± 0.0 0.45± 0.01
UCB (β = 10) 1.0± 0.01 0.98± 0.01 −0.01± 0.01 0.97± 0.02 0.96± 0.03 −0.28± 0.32 0.87± 0.0 0.91± 0.0 0.45± 0.01
UCB (β = 20) 0.71± 0.35 0.87± 0.17 0.15± 0.24 0.97± 0.04 0.97± 0.03 −0.03± 0.34 0.87± 0.0 0.91± 0.0 0.45± 0.01
UCB (β = 50) 0.55± 0.65 0.99± 0.01 0.73± 0.36 0.88± 0.04 0.94± 0.03 0.81± 0.6 0.87± 0.0 0.91± 0.0 0.45± 0.01
UCB (β = 100) 0.45± 0.41 0.47± 0.33 0.92± 0.09 0.71± 0.06 0.95± 0.03 0.9± 0.81 0.86± 0.01 0.94± 0.04 0.45± 0.01
UCB (β = 200) −0.34± 0.38 −0.72± 0.06 0.15± 0.46 0.62± 0.07 0.81± 0.12 0.76± 0.23 0.93± 0.05 0.93± 0.1 0.22± 0.32
UCB (β = 500) −0.12± 0.13 −0.33± 0.3 −0.43± 0.48 0.13± 0.18 −0.02± 0.61 0.27± 1.1 0.82± 0.12 0.96± 0.06 0.61± 0.53
UCB (β = 1000) 0.06± 0.5 −0.6± 0.24 −0.2± 0.66 −0.18± 0.1 −0.52± 0.43 −0.41± 0.32 0.84± 0.06 0.92± 0.07 0.5± 0.53

Our experiments demonstrate that while large values of the β hyperparameter in the UCB acquisi-
tion function prioritize exploration, they often lead to myopic and unplanned exploration, causing
the decision-maker to miss the global optimum or over-explore unpromising regions. The perfor-
mance of UCB varies across different functions, with no single β value outperforming others uni-
versally, highlighting the challenge of selecting an optimal β before running the experiment. This
underscores the complexity of using optimism in myopic methods compared to more structured
lookahead approaches.

Summary: Optimism in myopic methods, such as using a large β in the UCB acquisition
function, can lead to unplanned exploration and suboptimal performance, as it risks missing
the global optimum or over-exploring unpromising areas. While this optimism may occa-
sionally benefit specific scenarios, its lack of consistency across functions limits its broad
applicability to real-world problems compared to more structured, nonmyopic approaches.

E.6 SYNTHETIC FUNCTIONS WITH DISCRETE INPUT

In many practical scenarios, data domains exhibit discrete attributes, such as those encountered in
natural language processing or chemical molecular structures. To answer the RQ2 and demonstrate
the efficiency of LookaHES within discrete spaces, we conducted an additional experiment. In this
experiment, we utilized the SynGP environment. However, in this case, we discretized the domain
of each dimension into C categories, such that the design variable belongs to the set Cd, where d
represents the number of design dimensions. The categorical variables are represented in a one-hot
encoding format. At time step t, the design variable xt is a matrix of size C × d, with xt = [xi

t]
d
i=1,

where xi
t ∈ C denotes the one-hot encoded vector for the i-th dimension.
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Figure 15: Results of discrete setting on SynGP. From left to right: EI, MSL, Our

To adapt our variational network to this discrete domain, we modify its architecture as follows. To
compute the representation x′

t of the design variable for the variational network, each dimension xi
t

is passed through a linear transformation, followed by a sum-pooling operation across dimensions:
x′
t =

∑d
i=1 Wxi

t. The output of the variational network is a probability vector corresponding to a
categorical distribution. To ensure gradient propagation during optimization, we sample the most
likely category using the Straight-through reparameterization technique (Bengio et al., 2013).

The MSL acquisition function in discrete domains does not benefit from gradient-based optimization
methods to minimize the loss function. As a result, MSL is implemented using a multistep combi-
natorial search in this experiment. This approach significantly increases computational complexity,
especially when dealing with a large number of categories. For instance, in the SynGP environ-
ment, where an input variable has 20 categories and the MSL algorithm is configured with L = 4
lookahead steps, the number of combinations to explore is given by (Cd)L = (202)4 = 25.6× 109,
leading to an exponentially large search space. Given the constraints of limited computational re-
sources, we resort to a random search with a budget of 2000 possible design variable configurations.

Figure 15 presents a comparative analysis of the performance of the myopic acquisition function EI,
MSL, and our proposed acquisition function within the discrete SynGP after 18 BO iterations. As
shown, LookaHES outperforms the other acquisition functions. This experiment thus highlights the
robustness of our approach in addressing optimization problems in discrete domains.

F DETAILS OF NIGHT LIGHT EXPERIMENTS

To demonstrate the applicability of LookaHES in real-world continuous environments, we con-
ducted experiments on human travel optimization within a 2D continuous domain. This ex-
periment addresses RQ1 in the context of continuous domains. Specifically, we used a 2016
grayscale image of night lights in Georgia and South Carolina, sourced from NASA’s Earth Ob-
servatory, with a resolution of 1000 × 1000 pixels. The data is online accessible at https:
//earthobservatory.nasa.gov/features/NightLights. To facilitate the optimiza-
tion of the GP surrogate model and avoid numerical issues due to image noise, we applied a stack
blur with a radius of 40 to the image. The pixel values, ranging from 0 to 255, were normalized
to a range of −3 to 3. The image width and height were normalized to a range of 0 to 1. We ap-
ply LookaHES and baselines with spotlight cost (r = 0.1) and Euclidean cost. Figures 16 show
the results of LookaHES and baselines on the spotlight and Euclidean cost, respectively. In this
environment, nonmyopic methods demonstrated their advantage in lookahead capability. Notably,
LookaHES showed its effectiveness in directly reaching the global optimum, rather than querying
around sub-optimal locations before approaching the global optimum as MSL.
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Figure 16: Visualization of different methods on NASA night light images in the case of spotlight
cost (top row) and Euclidean cost (bottom row)

G DETAILS OF PROTEIN SEQUENCE DESIGN EXPERIMENTS

G.1 ORACLE GOODNESS OF FIT

We assess the Oracle model’s performance with increasing training data to gauge how well our
semi-synthetic setting approximates real data. The Oracle is a Bayesian linear regression model
that takes protein embeddings from various large language models, ranging from Llama-2 7B (a
general-purpose model) to ESM-2 3B (a protein-specific model). Our results show that the Gemma
7B embeddings yield the best regression performance, leading us to use Gemma 7B in subsequent
experiments.

Figure 17: Coefficient of determination on the test set as a function of the number of training data.
The R2 metric is used to evaluate the performance of embedding protein sequences.

G.2 MODELING PROTEIN SEQUENCE DESIGN WITH NATURAL LANGUAGE

We employ the instruction-finetuned Llama-3.2 3B model as our variational network.
The model is available online at https://huggingface.co/meta-llama/Llama-3.
2-3B-Instruct. We frame the protein design process as a dialogue to leverage the model’s con-
versational capabilities. Specifically, we prompt the model to generate the next protein sequences
based on previously observed protein and their fluorescent level. The prompts we used are outlined
below.

System prompt:
You are a helpful assistant who works in a protein engineering lab. We are trying to edit

↪→ a given protein by a sequence of 1-step protein editing, known as mutation. You
↪→ need to use your knowledge to help me propose suitable protein editing. Going from
↪→ an initial protein to an optimal one can take many steps.

First prompt:
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Edit 1 amino acid in the below protein sequence to create a new protein with higher
↪→ fluorescence. The amino acid must be in set {D, E}. Protein sequence: {
↪→ starting_protein}

Feedback prompt:
Fluorescence level of the above protein: {fluorescence_level} Based on the above protein

↪→ sequence and its fluorescence value, edit 1 amino acid to achieve higher
↪→ fluorescence. You must only return the modified protein sequence and nothing else.
↪→ Modified protein sequence:

G.3 SUPERVISED FINE-TUNING PROCESS

Before starting the BO process, we conduct supervised fine-tuning (SFT) on the variational network
to adapt it to the protein design task. We generate a dataset for SFT training consisting of 100
dialogues, each containing L rounds corresponding to the number of lookahead steps. The proteins
in each dialogue are created by either randomly mutating or retaining the previous protein. The
fine-tuning hyperparameters are provided below.

Table 4: SFT hyperparameters.

Hyperparameter Value

Learning rate 10−4

Epochs 3.3
Batch size 4
Learning rate warmup ratio 0.1
Learning rate schedule Cosine
LoRA α 32
LoRA r 16
LoRA dropout 0.1
LoRA target modules q proj, v proj

G.4 NONMYOPIC BAYESIAN OPTIMIZATION AS MULTI-TURN PROXIMAL POLICY
OPTIMIZATION

Proximal Policy Optimization (PPO) (Schulman et al., 2017) is typically used to fine-tune language
models for single-turn conversations, where the model responds once to a prompt without consid-
ering future turns. However, our approach requires the model to think ahead and generate multiple
future queries (in this case, protein sequences) over several turns. To address this, we modify exist-
ing PPO frameworks to handle multiturn conversations, allowing the model to generate and optimize
future sequences during training. We also use vLLM (Kwon et al., 2023), a system designed to im-
prove the speed and efficiency of inference (i.e., generating outputs from the model). However,
vLLM is an inference engine and cannot be used directly for training (Kwon et al., 2023). To over-
come this, after each step of updating the model during training (called a gradient step), we transfer
the updated model’s weights (parameters) to the vLLM system. This allows us to use vLLM for
faster generation of outputs, leading to more efficient training. Additionally, running vLLM with
PPO simultaneously on multiple GPUs is challenging for large language models due to differences
in how vLLM and PPO handle GPU VRAM. To address this, we employ Ray Moritz et al. (2018) to
isolate the GPU environments for vLLM and PPO, creating a pipeline that enables efficient weight
synchronization between them. Figure 18 illustrates the process of weight syncing between PPO
and vLLM.

In the PPO training process, we calculate a final reward for each dialogue using a function ℓ. This
function varies depending on the acquisition method being used (e.g., expected improvement or
simple regret). Once the reward is computed, it is adjusted, or “discounted,” for each individual turn
in the dialogue. This means that actions taken earlier in the conversation get less reward compared
to later actions. We then use this discounted reward as feedback to update the model during PPO
training. By doing this, we extend the single-turn PPO framework, which normally handles one
response at a time, to work for our multiturn conversation data. The hyperparameters used for fine-
tuning PPO are provided below.
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Figure 18: The designed PPO pipeline with vLLM using Ray involves the vLLM actor generat-
ing multi-turn protein refinements and calling a surrogate model to compute reward scores. These
scores, along with the generated data, are passed to the PPO actor to compute loss, backpropagate,
and update the LLM weights. The updated weights from the PPO actor are then synced to the vLLM
actor for the next generation.

Table 5: PPO and rollout hyperparameters.

Hyperparameter Value

Learning rate 10−4

Epochs 64
Batch size 1
Learning rate warmup ratio 0.1
Learning rate schedule Cosine
LoRA α 256
LoRA r 128
LoRA dropout 0.1
LoRA target modules q proj, v proj
Maximal rollout retry 32
Discount reward factor 0.95

H ABLATION STUDY ON PROTEIN DESIGN EXPERIMENTS

We conduct an ablation study using two different starting proteins and two distinct synthetic func-
tions g(x) to construct diverse protein spaces, enabling a systematic analysis of their characteristics.
The two synthetic functions are defined as follows:

g1(x) = −0.005(d− 0.5)(d− 5)(d− 8)(d− 13.4),

g2(x) = −e−0.7·
√
0.5·d2 − e0.5·cos(0.4πd) + e+ 0.3.

(2)

Here, g1(x) represents a polynomial function that introduces one local maxima across the input
space, while g2(x) is a more complex one with two local maxima. Visualizations of the resulting
protein spaces, derived from the combination of starting proteins and synthetic functions, are shown
in Figure 19.

We present the results of additional experiments on protein design with the same starting protein
with g2 (Figure 20 top), and with a different starting protein with g1 (Figure 20 bottom). These
figures demonstrate that our proposed nonmyopic method outperforms other myopic baselines in
various settings regardless of different starting proteins or synthetic value functions.

We visualize the designed proteins in the experiments of starting protein #1 and g1. We use ESM-
Fold (Lin et al., 2022) to fold the designed proteins and PyMol (Schrödinger, LLC, 2015) to visualize
them. The visualizations are presented in Table 7.
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Table 6: Protein space constraints

No. Starting protein Allowed positions Allowed
AAs

#1

SKGEELFTGVVPILVELGGDVNGHKFSVSGEGEGDAT
YGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRFP
DHMKQHDFFKSAMPEGYVQERTIFSKDDGNYKTRAEV
KFEGDELVNRIELKGIDFKEEENILGHKLEENYNSHN
VYIMADDQKNGIKVNFKIRHNIEDDSVQLADHYQQNT
PIGDEPVLLPDDHYLSTQSALSKDDNEDRDEMVLLEF
VTAAGITHGMDELYK

116, 131, 132, 141,
154, 171, 172, 189,
196, 209, 212, 215

E, D

#2

SKPEELFTPVVGILVELDPDVNGHKFSVSGEGEPDAT
YGKLTLKFICTTGKLGVGWGTLVTTLSYGVQCFSRYP
DHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEV
KFEPDTLVNRIELKGIVFKEDGNTLGHKLEYNYNSHN
VYIMADEQKNGIKVNFKIRHNIEDGSVQLADHYQQNT
PIPDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEF
VTAAGITHGMDELYK

2, 8, 11, 18, 33,
52, 54, 56, 114, 158,
187, 190

G, P
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Figure 19: Ablation of protein spaces with varying starting proteins and synthetic functions

Figure 20: Fluorescence levels (left) and regret (right) observed over Bayesian Optimization (BO)
steps. The top row shows results for experiments starting with protein #1 and function g2, while the
bottom row corresponds to experiments starting with protein #2 and function g1.
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Table 7: Visualization of designed proteins. Edited amino acids are highlighted in red.

Sequence 3D Structure

Starting protein: SKGEELFTGVVPILVELGGDVNGHKFSVSG
EGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSR
FPDHMKQHDFFKSAMPEGYVQERTIFSKDDGNYKTRAEVKFE
GDELVNRIELKGIDFKEEENILGHKLEENYNSHNVYIMADDQ
KNGIKVNFKIRHNIEDDSVQLADHYQQNTPIGDEPVLLPDDH
YLSTQSALSKDDNEDRDEMVLLEFVTAAGITHGMDELYK

LookaHES - Optimal: SKGEELFTGVVPILVELGGDVNGHKF
SVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQ
CFSRFPDHMKQHDFFKSAMPEGYVQERTIFSKDDGNYKTRAE
VKFEGDDLVNRIELKGIDFKEDDNILGHKLEDNYNSHNVYIM
ADEQKNGIKVNFKIRHNIEEESVQLADHYQQNTPIGDDPVLL
PDEHYLSTQSALSKDENEERDDMVLLEFVTAAGITHGMDELY
K

SR: SKGEELFTGVVPILVELGGDVNGHKFSVSGEGEGDATYG
KLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRFPDHMKQHD
FFKSAMPEGYVQERTIFSKDDGNYKTRAEVKFEGDELVNRIE
LKGIDFKEEDNILGHKLEENYNSHNVYIMADDQKNGIKVNFK
IRHNIEDDSVQLADHYQQNTPIGDDPVLLPDDHYLSTQSALS
KDDNEDRDEMVLLEFVTAAGITHGMDELYK

EI, PI, UCB: SKGEELFTGVVPILVELGGDVNGHKFSVSGEGE
GDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRFPD
HMKQHDFFKSAMPEGYVQERTIFSKDDGNYKTRAEVKFEGDE
LVNRIELKGIDFKEDENILGHKLEENYNSHNVYIMADDQKNG
IKVNFKIRHNIEDDSVQLADHYQQNTPIGDEPVLLPDDHYLS
TQSALSKDENEDRDEMVLLEFVTAAGITHGMDELYK

KG: SKGEELFTGVVPILVELGGDVNGHKFSVSGEGEGDATYG
KLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRFPDHMKQHD
FFKSAMPEGYVQERTIFSKDDGNYKTRAEVKFEGDELVNRIE
LKGIDFKEEENILGHKLEENYNSHNVYIMADDQKNGIKVNFK
IRHNIEDDSVQLADHYQQNTPIGDEPVLLPDDHYLSTQSALS
KDDNEERDEMVLLEFVTAAGITHGMDELYK
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