
Published in Transactions on Machine Learning Research (08/2025)

Personalized Federated Learning
via Low-Rank Matrix Optimization

Ali Dadras ali.dadras@umu.se
Umeå University, Sweden

Sebastian U. Stich stich@cispa.de
CISPA Helmholtz Center, Germany

Alp Yurtsever alp.yurtsever@umu.se
Umeå University, Sweden

Reviewed on OpenReview: https: // openreview. net/ forum? id= DFJu1QB2Nr

Abstract

Personalized Federated Learning (pFL) has gained significant attention for building a suite of
models tailored to different clients. In pFL, the challenge lies in balancing the reliance on local
datasets, which may lack representativeness, against the diversity of other clients’ models,
whose quality and relevance are uncertain. Focusing on the clustered FL scenario, where
devices are grouped based on similarities in their data distributions without prior knowledge
of cluster memberships, we develop a mathematical model for pFL using low-rank matrix
optimization. Building on this formulation, we propose a pFL approach leveraging the Burer-
Monteiro factorization technique. We examine the convergence guarantees of the proposed
method and present numerical experiments on training deep neural networks, demonstrating
the empirical performance of the proposed method in scenarios where personalization is
crucial.

1 Introduction

Federated Learning (FL) is an important paradigm in machine learning, holding a great promise for training
machine learning models over a large network with restricted data sharing. It is most suitable when clients
require collaboration—often due to the absence of a large, representative dataset available at hand that
can capture the diversity and variability of the underlying behavior—but in an environment where sharing
datasets with collaborators is prohibited—often driven by concerns and regulations surrounding data sharing
and storage. Consequently, FL research has been focused on designing algorithms that can solve optimization
and learning problems on a network without sharing essential data; but instead communicating decision
variables (referred to as local models in machine learning) or other auxiliary variables like gradients or
step-directions, alongside privacy improvement strategies such as encryption or noise injection. However, the
restriction of data sharing presents challenges beyond the training process. Primarily, limitations on data
sharing hinder effective control over the quality and relevance of the data provided by participating clients—a
major concern that led to the rise of personalized federated learning models (pFL).

The primary goal of pFL is finding the right balance between the two conflicting forces: the reliability of local
datasets which may lack representativeness, and the diversity of collaborators’ models whose quality and
relevance are uncertain. As a result, pFL lacks a clear definition and direction without explicit specifications
regarding data distribution of the clients. Regrettably, it appears there is no universally accepted measurable
quantitative goal to evaluate the success in personalization. Adding to this concern, many existing pFL
methods are tested in settings that are inherently unsuited for pFL, where either Federated Averaging
(FedAvg) or local training produces the best accuracies. It is evident that when FedAvg yields optimal results,

1

https://openreview.net/forum?id=DFJu1QB2Nr

Published in Transactions on Machine Learning Research (08/2025)

indicating uniform data distributions across clients, there is no room for personalization. On the other hand,
if local training performs well, suggesting that local datasets represent the problem sufficiently well, the
necessity of FL is called into question.

Motivated by these observations, our first step is to formulate a mathematical problem that highlights the
role and necessity of a pFL approach. Suppose there are n clients collaborating on an FL system, indexed by
i = 1, . . . , n, and assume that the data for each client comes from a specific data distribution, denoted by Di.
The true objective function for each client is defined as:

f \
i (θi) := Eξi∼Di

`i(θi, ξi), (1)

where `i : Rd × Rp → R is a loss function. Here, ξi = (xi,yi) denotes a random data sample drawn from the
probability distribution Di, where xi represents the input features and yi denotes the corresponding response.
When data distributions are known, a solution to this problem can be found by minimizing f \

i (θi) locally:

min
θi

f \
i (θi). (2)

However, the true distribution Di is unknown in practice. Instead, client i approximates its objective using
an empirical dataset Mi = { ξi,1, . . . , ξi,mi} consisting of mi independent and identically distributed data
samples drawn from Di. This yields the empirical objective

fi(θi) := 1
mi

∑
ξi∈Mi

`i(θi, ξi) .

Throughout, we operate under the assumption that the dataset Mi is not large enough for clients to accurately
approximate a solution to problem (2) locally on their own. Otherwise, FL would not be required.

An effective solution to this problem is possible only if the distributions Di exhibit some correlation that we
can exploit. At one extreme, when all distributions are the same, the standard FL template can be used,
which can be formulated as

min
θ1,...,θn

1
n

n∑
i=1

fi(θi) s.t. θ1 = · · · = θn , (3)

or equivalently as

min
θ

1
n

n∑
i=1

fi(θ) . (4)

A significant portion of existing pFL methods are designed by relaxing the equality constraint (also called
consensus constraint); examples include Moreau envelope smoothing and quadratic penalty regularization
(Dinh et al., 2020; Li et al., 2020). However, these approaches that penalize model dissimilarity using a
specific norm have limitations, as they rely on the (implicit) assumption that similarity in distributions Di

translates to the proximity of client models in a given norm. The following simple examples demonstrate
these limitations:
Example 1 (Label noise in classification). Consider a linear binary classification problem with two groups
of clients that differ in their sign conventions. Specifically, these groups label the positive and negative
classes in opposite ways due to a misalignment in how they interpret the binary outcomes. Clearly, the data
distributions of these two groups are nearly identical, differing only by one bit. However, for this linear
classifier, this difference results in the optimal models for the two groups having opposite signs, leading to
solutions θ?

group1 = −θ?
group2, which are distant in all norms.

Although presented as a toy example here, mislabeling is a common problem in classification tasks, especially
in domains like healthcare where human experts are involved in data collection. In real-world FL systems,
where data remains private, detecting or preventing such issues is challenging. Therefore, algorithms must be
designed robust against these inconsistencies.
Example 2 (Clustered FL). Suppose each client draws data from one of r distinct distributions, forming
r clusters of clients. We assume that cluster memberships are unknown, and the challenge is to establish
effective collaboration without knowing in advance which clients share similar data distributions.

2

Published in Transactions on Machine Learning Research (08/2025)

x

y

θ?
1 = a1 θ?

2 = a2

θ?
3 = a3

θ?
4 = a4

(a) Local

x

y

θ?

(b) FedAvg

x

y

θ?
1 (δ)

θ?
2 (δ)

θ?
3 (δ)

θ?
4 (δ)

(c) Distance based

x

y

θfac
1

θfac
2

θfac
3

θfac
4

Low dimensional
subspace

(d) Low-rank (ours)

Figure 1: Solutions to the minimization problem 1
n

∑n
i=1 ‖θi − ai‖2, where θi,ai ∈ R2. The red points

represent individual minimizers of the problem which are equivalent to θ?
i = ai. FedAvg solution is

θ? = 1
n

∑n
i=1 ai which is shown in yellow. Considering ‖θi − θj‖ ≤ δ constraint one can find θ?

i (δ) as shown
in green. Solving this problem with the low-rank assumption (r = 1) gives us solutions θfac

i , blue points, lying
in a low-dimensional subspace.

A specific class of pFL methods for clustered FL problems focuses on identifying clusters using various
similarity measures and then performing cluster-aware aggregation. However, in a real-world FL system
where data remains private, estimating these clusters is challenging without exposing additional information.
This difficulty persists unless we rely on the stringent assumption that similar distributions produce models
that are close in a certain norm, which could then be used to estimate clusters during training.

Example 3 (Collaborative filtering). Consider the classical problem of recommendation systems. Suppose
there are n clients and p items. Let θi ∈ Rp represent the relevance scores of client i for the items. The data
consists of the actual scores rated by the clients, where each client rates only a subset of the items, denoted by
Si ⊆ {1, . . . , p}. We denote these scores by θ?

ij for j ∈ Si. The goal is predicting unknown scores that are not
in Si, based on hidden patterns among clients.1

Models based on Euclidean distance regularizations are known to fail in accurately predicting movie preferences.
Instead, low-rank matrix factorization is among the most popular and successful approaches to collaborative
filtering, as demonstrated by the Netflix competition 2008 progress prize winning team (Koren et al., 2009).
The typical explanation for the empirical success of low-rank models in this problem is that movie preferences
are well-parameterized by a few meaningful factors, such as genre, cast, language, and year. A more nuanced
argument generalizes this by noting that low-rank matrices naturally arise in latent variable models (LVMs).
While this is standard for LVMs with linear parameterizations, (Udell & Townsend, 2019) demonstrate that
low-rank models are effective for a broad class of (possibly high-dimensional) LVMs parameterized by a
piecewise analytic function.

Inspired by these examples, we explore how to formulate pFL without relying on a specific distance metric.
This leads us to investigate low-dimensional subspace formulations, where personalized models are related
by their membership to a low-dimensional subspace rather than their proximity in a distance metric. This
approach allows us to conceptualize pFL by focusing on the inherent structure of the model relationships
rather than their spatial closeness, as illustrated in Figure 1. Drawing parallels to collaborative filtering, we
specifically focus on low-rank formulations.

We can now summarize our main contributions:

� We introduce a new formulation for pFL based on low-rank matrix optimization in Section 3. Utilizing a
nonconvex matrix factorization method applied to this formulation, we propose a new method called
Personalized Federated Learning via Matrix Factorization (pFLMF).

� We investigate the convergence guarantees of the proposed method in Section 4. For the smooth
nonconvex minimization problem, we show that the proposed method converges to a first-order stationary
point at a rate of O(1/T); with the stochastic gradients, the rate becomes O(1/

√
T).

1The decision variable in matrix completion reveals the data, limiting the privacy benefits of FL. Nevertheless, the problem
highlights the challenge of distributed learning with personalized models.

3

Published in Transactions on Machine Learning Research (08/2025)

� We present numerical experiments on training various types of neural networks in Section 5. We compare
the performance of the proposed method against the baseline in scenarios where personalization is crucial,
such as classification in clustered FL with label misalignment or non-homogeneous data distributions.

2 Related Work

Many pFL algorithms regularize client models to remain close; the main assumption is that personal models
are close under a chosen metric (Dinh et al., 2020). Learning a mixture of the global model and the local
models is proposed in (Hanzely & Richtárik, 2020), where these personalized models are encouraged to
stay close to their average by incorporating a quadratic penalty. Empirical evidence suggests that model
similarities among different neural networks, particularly in their classifier layers, correlates with the similarity
of the training data distributions (Tan et al., 2023). Thus, enforcing model closeness (e.g., in Euclidean
distance) tends to favor clients with similar data distributions.

More recently, model decoupling methods have been proposed (Arivazhagan et al., 2019; Oh et al., 2021;
Pillutla et al., 2022; Mishchenko et al., 2023), showing a better performance than distance-regularization-based
pFL methods. The main idea is to decouple each local model into two blocks, a feature extractor block
followed by a classifier block. The feature extractor block is communicated and aggregated over clients and
the classifier block is trained locally by each client. (Arivazhagan et al., 2019) considered a personalization
of only selected layers of the neural network: all devices share a common set of base layers with identical
weights, while each device maintains its own personalization layers that adapt to its local data. The base
layers are synchronized with the server while the personalization layers are kept private by each device. In
(Oh et al., 2021), the entire network is decomposed into the body (extractor), which is related to universality,
and the head (classifier), which is related to personalization. This reduces the update and aggregation parts
from the entire model to the body of the model during federated training.

Perhaps the most relevant works to ours are (Collins et al., 2021) and (Thekumparampil et al., 2021). The
goal in (Thekumparampil et al., 2021) is to find a shared low-dimensional representation of the data features.
While the primary focus of (Thekumparampil et al., 2021) is on multi-task learning, it can be applied for
personalized FL by treating each client’s learning problem as a separate task, as considered in (Collins et al.,
2021). In (Collins et al., 2021), the server learns the common low-dimensional features of the data, and
each client learns local features suited to its requirements. This method, Federated Representation Learning
(FedRep), uses gradient-based updates to train a global low-dimensional representation and allows each client
to compute a personalized low-dimensional classifier. The key difference between FedRep and our approach
is in the low-rank assumption. FedRep assumes that each clients parameters are low rank. In contrast, we
assume that the concatenation of all clients parameters lies in a low-dimensional space. In other words,
their feature extractor extracts the features from a single shared global model while our method trains a
set of models and each client uses a combination of these models as its personalized model. Put differently,
FedRep assumes that θi are low rank, whereas we assume that Θ := [vec(θ1), vec(θ2), . . . , vec(θn)] is low
rank. Furthermore, FedRep focuses on the linear representation setting with a quadratic loss.

Beyond distance-based and decoupling approaches, a variety of other strategies have been explored for pFL.
(Zhang et al., 2024) introduces LR-BPFL, a Bayesian personalized federated learning method that learns a
global deterministic model along with personalized low-rank Bayesian corrections. (Bao et al., 2023) proposes
FedCollab, a clustered federated learning framework that mitigates negative transfer by partitioning
clients into non-overlapping coalitions informed by both pairwise distribution distances and relative data
quantities. (Prakash et al., 2023) processes hierarchical, tree-like data in federated learning by developing
an algorithm tailored to hyperbolic spaces. (Anelli et al., 2022) investigates federated pair-wise learning
for factorization models in a recommendation scenario. (Huang et al., 2022) proposes an FL framework for
solving the Point-of-Interest (POI) recommendation problem. (Ammad-Ud-Din et al., 2019) introduces a
federated implementation of collaborative filtering for recommendation systems. Liang et al. (2020) introduces
LG-FEDAVG, which combines local representation learning with global model learning in an end-to-end
manner. Each local device learns to extract higher-level representations from raw data before a global
model operates on the representations (rather than raw data) from all devices. (Tan et al., 2023) proposes a
decoupling algorithm that also personalizes feature extractors by adjusting aggregation weights based on

4

Published in Transactions on Machine Learning Research (08/2025)

classifier similarity. (Deng et al., 2020) introduces APFL algorithm, which learns a personalized model for
each user as a convex combination of local and global models, with the combination coefficients adaptively
updated during training. (Hao et al., 2022) assumes factorized weights for neural network weights and, rather
than learning a single global model, learns a dictionary of rank-1 weight factor matrices. Each client then
assembles a personalized model from this dictionary to match its own data distribution. (Jeong & Hwang,
2022) considers factorization of the model parameters and allows clients to perform a selective aggregation
scheme to utilize only the knowledge from the relevant participants for each client. (Pal et al., 2024) introduces
LRS, modeling user parameters as low-rank + sparse to capture shared structure and individual-specific
characteristics. They further develop AMHT-LRS, providing theoretical guarantees in the linear Gaussian
setting, and extend it to a user-level differentially private version.

Finally, several works use low-rank matrix optimization in FL, but with different motivations and goals
from ours. One line uses low-rank structure in the model parameters: (Pinto et al., 2023) projects private
datasets onto a low-dimensional subspace spanned by principal components estimated from public unlabeled
data, then apply gradient-based private algorithms (e.g., Noisy-SGD) to learn a linear classifier; (Zhao
et al., 2016; Cai et al., 2014) assumes one of the neural network layers is low rank; (Liu et al., 2024a) uses
homogeneous pre-factorized low-rank layers across clients; (Tran et al., 2025) factorizes local prompts into
two lower-rank components plus a residual; and (Niu et al., 2023) introduces PriSM training, which assigns
resource-constrained clients low-rank sub-models via importance-aware probabilistic sampling. A second line
uses low-rank structure in the gradients, such as (Kasiviswanathan, 2021; Yu et al., 2021; Gooneratne et al.,
2020). (Yao et al., 2021) proposes FedHM, which trains low-rank factorized neural networks of a specified
size and reconstructs a full-rank global model on the server via a model shape alignment method.

3 Algorithm

We propose a novel formulation for pFL based on low-rank matrix optimization:

min
Θ∈Rd×n

F (Θ) := 1
n

n∑
i=1

fi(θi) s.t. rank(Θ) ≤ r. (5)

Here, Θ ∈ Rd×n denotes the system-level decision variable obtained by concatenating clients’ decision
variables as Θ := [θ1,θ2, . . . ,θn], and r is problem specific tuning parameter. Note that this formulation
suits well for the examples we discussed in the introduction.

There exists a rich literature on rank-constrained matrix optimization problems, approaches including hard
thresholding algorithms (Jain et al., 2010; Goldfarb & Ma, 2011; Kyrillidis & Cevher, 2014), convex relaxation
methods (Candès & Recht, 2012; Recht et al., 2010), and nonconvex matrix factorization techniques (Burer &
Monteiro, 2003; Sun & Luo, 2016; Bhojanapalli et al., 2016; Park et al., 2017). The first two class of algorithms
require expensive spectral decomposition steps, hence they are not suitable for federated implementation
unless the server possesses sufficient computational power to perform such decompositions. Consequently, we
adopt the nonconvex matrix factorization technique, also known as the Burer-Monteiro (BM) factorization.

BM factorization strategy replaces the system-level decision variable Θ ∈ Rd×n with a factorized form of
Θ = UV>. This transformation leads to the following optimization problem:

min
U∈Rd×r, V∈Rn×r

ψ(U,V), where ψ(U,V) := F (UV>) = 1
n

n∑
i=1

fi(Uvi). (6)

We denote by V> := [v1, · · · ,vn] ∈ Rr×n. In this notation, personalized model parameters can be computed
as θi = Uvi ∈ Rd. One can interpret U ∈ Rd×r as a shared feature representation in the FL problem,
computed by the server, and vi ∈ Rr as the feature extractor specific to client i.

While various optimization techniques can address problem (6), we design our algorithm based on the simple
block-coordinate gradient updates. We can compute the gradient of ψ with respect to U and vi as follows:

∇Uψ(U,V) = 1
n

n∑
i=1

∇fi(Uvi) v>
i and ∇vi

ψ(U,V) = 1
n

U>∇fi(Uvi). (7)

5

Published in Transactions on Machine Learning Research (08/2025)

Algorithm 1 Personalized Federated Learning via Matrix Factorization (pFLMF)
set U0 ∈ Rm×r,v0

i ∈ Rr ∀i ∈ [n].
for round t = 0, 1, . . . , T − 1 do

— Client-level local training ————————-
for client i ∈ St do

set vt,1
i = vt

i.
for k = 0, . . . ,K − 1 do

vt,k+1
i = vt,k

i − ηi
1
n Ut> ∇fi(Utvt,k

i)
end for
vt+1

i = vt,K
i

Gt
i =

(
∇fi(Utvt

i)
)

vt
i
>

Client communicates Gt
i to the server.

end for
— Server-level aggregation —————————
Ut+1 = Ut − ηi

1
|St|

∑
i∈St

Gt
i

Server communicates Ut+1 to the clients.
end for

It is crucial that ψ is separable with respect to vi, enabling clients to compute ∇viψ(U,V) in parallel
without requiring access to data or model parameters from other clients, given the features U. Consequently,
for a given step-size ηi > 0, local training steps can be independently formulated and performed by each
participating client as:

vt+1
i = vt

i − ηi
1
n

Ut> ∇fi(Utvt
i). (8)

On the other hand, ψ is not separable with respect to the rows or columns of U, necessitating collaboration
among clients for computing ∇Uψ(U,V). Consequently, the gradient step in U requires communication and
will be performed at the server, forming our aggregation step:

Ut+1 = Ut − 1
n

n∑
i=1

ηi

(
∇fi(Utvt

i)
)

vt
i
>
. (9)

Algorithm 1 depicts the pseudo-code of our algorithm. Here, K is the number of local passes each client
performs, and the output of the algorithm is a set of personalized parameters θi = Uvi that each client can
compute locally using its feature extractors vi and the shared feature representation U.

4 Convergence Guarantees

Several works have studied the convergence for the problem (6) under different assumptions; we refer to (Chi
et al., 2019) and references therein. (Bhojanapalli et al., 2016; Park et al., 2018) proved linear/sub-linear rates
for smooth functions and smooth and strongly convex functions, respectively. Due to the nonconvex nature of
BM factorization, even in cases where f(.) is convex in Θ, it is not possible to prove a convergence theorem
to the global minimum. For more specialized cases (e.g., matrix sensing problems under some technical
assumptions called restricted isometry property), convergence to a global solution can be characterized with
careful initialization procedures (Park et al., 2018; Jain et al., 2013; Zheng & Lafferty, 2016; Park et al.,
2016). Since our focus is primarily on neural network applications, where objectives are already nonconvex in
Θ, we derive convergence guarantees to a stationary point.

We begin our presentation of the main convergence guarantee by first listing our assumptions. We assume
fi(Uvi) are directionally smooth, and that we have access to unbiased stochastic gradients ∇̃VF (UV>) and
∇̃UF (UV>) with bounded variance.

6

Published in Transactions on Machine Learning Research (08/2025)

Assumption 1 (Directional smoothness). We assume that F (UV>) is smooth with respect to U and V, i.e.,
there exist constants LU , LV ≥ 0 such that for all U1,U2 ∈ Rd×r and V1,V2 ∈ Rn×r:∥∥∇UF (U1V>

1) − ∇UF (U2V>
2)
∥∥

F
≤ LU

(
‖U1 − U2‖F + ‖V1 − V2‖F

)
∥∥∇VF (U1V>

1) − ∇VF (U2V>
2)
∥∥

F
≤ LV

(
‖U1 − U2‖F + ‖V1 − V2‖F

)
Assumption 2 (Stochastic gradients). We assume access to an unbiased stochastic gradient estimator with
bounded variance, i.e.„ there exists σ < +∞ such that for all U ∈ Rd×r and V ∈ Rn×r:

E
[
∇̃F (UV>)

]
= ∇F (UV>) and

E
[∥∥∇̃UF (UV>) − ∇UF (UV>)

∥∥2] ≤ σ2

E
[∥∥∇̃VF (UV>) − ∇VF (UV>)

∥∥2] ≤ σ2.

Theorem 1. Consider problem (6) with smooth loss functions fi(.) in the sense that Assumption 1 holds.
Assume access to a stochastic gradient estimator such that Assumption 2 holds. Furthermore, assume that
every client participates in each round with probability p and performs K local steps per iteration. Then, the
sequence Ut,Vt generated by pFLMF with step-sizes ηv = pηu

K and ηu <
1

2L , where L := max{LU , LV }, satisfies
the following bound:

1
T

T −1∑
t=0

(
E
[∥∥∥∇UF (UtVt>)

∥∥∥2
]

+ E

[
1
K

K−1∑
k=0

∥∥∥∇VF (UtVt
k

>)
∥∥∥2
])

≤
2
(
F (U0V0>) − F ?

)
ηT
(

1 − 2ηL
) + 2ηLσ2

1 − 2ηL .

Corollary 2. Choosing η = 1
2L

√
T

in Theorem 1 yields a rate of O(1/
√
T) in the stochastic setting. If full

gradients are available (σ = 0), then η = 1
4L results in a convergence rate of O(1/T).

5 Numerical Experiments

In this section, we evaluate the performance of pFLMF. We compare the performance of pFLMF against several
baselines, including Local training, FedAvg (McMahan et al., 2017), FedPer (Arivazhagan et al., 2019),
FedRep (Collins et al., 2021), APFL (Deng et al., 2020), CFL (Sattler et al., 2021), FLUTE (Liu et al.,
2024b), FedAS (Yang et al., 2024), FedAlt (Pillutla et al., 2022), and pFedFDA (McLaughlin & Su, 2024)
by implementing pFLMF in the FL-Bench benchmark (Tan & Wang, 2024; Tan et al., 2023). The source code
is available at https://github.com/DadrasAli/pFLMF. We conducted experiments in five different setups:

Setup (1) For the MNIST, CIFAR10, and CIFAR100 datasets, we split the data according to the Dirichlet
distribution Dir(0.5) and Dir(1) across 100 clients. The labels’ distribution is shown in Figures 2c
and 2d. Performance of the algorithms is shown in Table 1.

Setup (2) For the CIFAR-100 dataset, we partitioned the 100 classes into 20 groups, each containing 5
distinct labels. Data was then distributed among 500 clients, with each client exclusively assigned
data from a single group, resulting in highly heterogeneous data. Results are shown in Table 2.

Setup (3) For the MNIST, we follow the experimental setup in (Sattler et al., 2019) and consider 1000
clients divided into 10 groups, and labels in each group are re-mapped (permuted) according to a
random permutation map. In other words, clients in group one would have the same numbers
{0, · · · , 9} but labeled differently; group one may consider 0 with label 0, and group two may
consider 0 with label 8. Figures 2a and 2b show the distribution of the labels before and after
re-labeling, respectively. Results are shown in Table 2.

Setup (4) We sampled a subset of clients, 30% of the total clients, from FEMNIST dataset without changing
the underlying data distribution, then we removed clients with less than 10 data points. The
remaining set has 1091 clients. We ran the experiments for 1 and 5 numbers of local epochs.
Results are shown in Table 2.

7

https://github.com/DadrasAli/pFLMF

Published in Transactions on Machine Learning Research (08/2025)

0 100 200 300 400 500 600 700

0
1
2
3
4
5
6
7
8
9

(a) Uniform

0 100 200 300 400 500 600 700

0
1
2
3
4
5
6
7
8
9

(b) Permuted

0 200 400 600 800 1000 1200 1400

0
1
2
3
4
5
6
7
8
9

(c) Dir(0.5)

0 200 400 600 800 1000

0
1
2
3
4
5
6
7
8
9

(d) Dir(1)

Figure 2: Distribution of the labels for MNIST dataset and 100 clients. The vertical and horizontal axes
show clients and the size of each client’s data, respectively.

MNIST CIFAR10 CIFAR100
Dir(0.5) Dir(1) Dir(0.5) Dir(1) Dir(0.5) Dir(1)

Local 92.12% (±0.59) 89.15% (±1.12) 59.14% (±3.74) 48.53% (±2.53) 16.09% (±1.52) 10.66% (±0.98)
FedAvg 96.92% (±0.65) 97.01% (±0.54) 65.21% (±2.11) 65.44% (±1.68) 28.30% (±1.82) 28.36% (±1.32)
FedPer 96.30% (±0.26) 95.16% (±0.58) 66.86% (±3.19) 58.25% (±2.22) 19.98% (±1.6) 14.22% (±1.01)
FedRep 95.04% (±0.40) 93.33% (±0.94) 65.16% (±3.44) 55.4% (±2.06) 17.49% (±1.12) 12.14% (±1.05)
APFL 97.93% (±0.51) 97.64% (±0.39) 65.99% (±2.06) 65.14% (±1.54) 27.07% (±1.57) 27.07% (±1.36)
CFL 96.92% (±0.72) 97.04% (±0.5) 64.97% (±2.68) 65.98% (±1.70) 27.02% (±1.48) 24.84% (±0.91)

FLUTE 76.72% (±0.88) 73.25% (±1.01) 48.20% (±0.74) 40.59% (±0.69) 12.58% (±0.28) 7.28% (±0.13)
FedAlt 98.09% (±0.05) 97.91% (±0.05) 62.89% (±0.57) 58.09% (±0.43) 20.57% (±0.46) 16.20% (±0.19)
FedAS 97.17% (±0.12) 97.11% (±0.39) 66.33% (±1.14) 63.80% (±0.54) 8.48% (±1.79) 5.12% (±1.56)

pFedFDA 97.23% (±0.04) 97.05% (±0.08) 70.65% (±1, 59) 66.67% (±1.41) 26.15% (±0.19) 19.10% (±0.17)
pFLMF

r = 1 96.75% (±0.61) 96.53% (±0.59) 43.89% (±3.49) 64.03% (±1.66) 34.32% (±1.96) 35.24% (±1.77)
r = 5 96.78% (±0.51) 96.55% (±0.60) 60.73% (±2.86) 65.89% (±1.88) 35.64% (±2.09) 35.75% (±1.24)
r = 10 96.98% (±0.70) 96.84% (±0.56) 65.10% (±2.30) 67.68% (±1.56) 35.28% (±1.73) 36.84% (±1.50)
r = 15 98.24% (±0.26) 97.93% (±0.22) 68.13% (±2.43) 65.88% (±1.62) 35.70% (±1.77) 36.12% (±1.46)

Table 1: Performance of the algorithms for Setup (1). The best accuracy is shown in boldface, and the
second best is underlined.

Setup (5) We examine the sensitivity of pFLMF to the choice of rank, ranging from 1 to 20, on a highly
heterogeneous data split, Dir(0.1) and 100 clients. Figure 3 shows the average test accuracy and
runtime versus rank for the MNIST and CIFAR-10 datasets.

Setup (6) We evaluated pFLMF with a range of local update counts, KU ∈ {1, 10, 20} and r = {1, 10, 20}, on
a highly heterogeneous MNIST split generated by Dir(0.1). The experiment involved 200 clients,
each communication round sampling a 10% subset. Figure 4 reports the resulting average test
accuracy.

Model. We used a three-layer neural network, consisting of three linear layers, on the MNIST and FEMNIST
datasets and a four-layer convolutional neural network, consisting of two convolutional layers followed by two
linear layers, on the CIFAR10 and CIFAR100 datasets. For FedPer and FedRep, we treated the last layer
as the classifier, while in pFLMF, we factorized the entire model.

Hyper-parameters. We consider partial participation with probability equal to 0.1. We set the batch size
equal to 256 for all algorithms. We tried parameter r values of (6) is set to r ∈ {1, 5, 10, 15}. All experiments
have 75% train and 25% test data splits on each client’s data. We chose the best step size for each algorithm
from the set {10−4, 10−3, 10−2, 10−1}.

Observations. In the heterogeneous experiments, Setup (1), pFLMF outperforms other pFL methods in
most cases, though the performance across algorithms is comparable on the MNIST dataset. Remarkably,
pFLMF achieves substantial improvements in average test accuracy when different client groups have similar
intra-group distributions but differ significantly across groups (see Table 2). It is important to note that the
low test accuracy observed in the CIFAR-100 experiment, Setup (2), is attributed to the simplicity of the
neural network model rather than the algorithms themselves. Additionally, the results indicate that multiple

8

Published in Transactions on Machine Learning Research (08/2025)

MNIST (permuted labels) CIFAR100 (super groups) FEMNIST
1000 clients 500 clients 1091 clients

1 local epoch 1 local epoch 1 local epoch 5 local epochs
Local 25.36% (±0.013) 10.49% (±0.95) 50.77% (±0.053) 65.69%(0.012)

FedAvg 12.02% (±0.022) 36.40% (±1.31) 65.40% (±0.017) 77.19%(0.013)
FedPer 19.86% (±0.141) 14.80% (±0.81) 66.05% (±0.010) 67.72%(0.009)
FedRep 21.30% (±0.148) 12.18% (±0.80) 66.10% (±0.013) 66.29%(±0.010)
pFLMF

r = 1 14.70% (±0.083) 42.94% (±1.22) 67.82% (±0.134) 71.42%(0.044)
r = 5 23.75% (±0.027) 44.70% (±1.91) 69.99% (±0.123) 72.09%(±0.208)
r = 10 34.23% (±0.090) 45.57% (±1.97) 72.56% (±0.023) 72.47%(±0.010)
r = 15 39.31% (±0.042) 45.43% (±1.23) 73.59% (0.092) 76.41%(±0.006)

Table 2: Performance of the algorithms for Setup (2), Setup (3), and Setup (4). The best accuracy is
shown in boldface, and the second best is underlined.

1 3 5 7 9 11 13 15 17 19
0

0.2

0.4

0.6

0.8

1

rank

ac
cu

ra
cy

MNIST
CIFAR10

1 3 5 7 9 11 13 15 17 19
0.5

0.6

0.7

0.8

0.9

1

1.1 ·104

rank

ru
nt

im
e

(s
)

MNIST
CIFAR10

Figure 3: Sensitivity analysis of pFLMF with respect to the factorization rank r. The left plot shows prediction
accuracy versus rank, while the right plot shows runtime versus rank. Results are averaged over 5 random
trials. See Setup (5) for details.

local updates in pFLMF contribute positively to performance. Overall, the findings highlight the practical
significance of the proposed method.

6 Conclusions

We introduced a new pFL formulation based on low-rank matrix optimization and developed a novel pFL
algorithm utilizing Burer-Monteiro factorization. We further established convergence guarantees for the
proposed method: for minimizing a smooth non-convex objective, the algorithm converges to a stationary
point at a rate of O(1/T) with full gradients; and O(1/

√
T) for the stochastic setting. Evaluations across

four experimental setups highlight the practical significance of the proposed method, especially in scenarios
where personalization is essential, and standard approaches are unable to adequately capture the complexity
of the underlying data distributions.

We conclude by listing some limitations and future directions. Our numerical experiments demonstrate
improved performance of pFLMF with multiple local steps; however, this enhancement is not reflected in
our theoretical convergence guarantees. Establishing stronger guarantees that reflect this behavior is a
valuable direction for future research. Another notable limitation is that our formulation currently factorizes
the entire model (decision variable), which can be computationally intensive in some cases, particularly in
large-scale neural network applications. A more efficient approach might be to apply the BM factorization
selectively, targeting only a subset of the parameters, which could reduce overhead while maintaining its
benefits. Exploring such partial factorizations is a promising direction for future research

9

Published in Transactions on Machine Learning Research (08/2025)

20
0

40
0

60
0

80
0

1,0
00

0
0.2
0.4
0.6
0.8

1

communication round

ac
cu

ra
cy

(a) r = 1

20
0

40
0

60
0

80
0

1,0
00

0
0.2
0.4
0.6
0.8

1

communication round

ac
cu

ra
cy

KU = 1 KU = 10 KU = 100

(b) r = 10

20
0

40
0

60
0

80
0

1,0
00

0
0.2
0.4
0.6
0.8

1

communication round

ac
cu

ra
cy

(c) r = 20

Figure 4: Performance of pFLMF for different numbers of U steps and ranks. See Setup (6) for details.

Acknowledgments

This work was partially conducted while Ali Dadras was at a research visit at CISPA; we sincerely appreciate
their support and the stimulating research environment they provided. Alp Yurtsever and Ali Dadras were
supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut
and Alice Wallenberg Foundation. The computations were enabled by the supercomputing resource Berzelius
provided by National Supercomputer Centre at Linköping University and the Knut and Alice Wallenberg
foundation. Alp Yurtsever and Ali Dadras further acknowledge support from the Swedish Research Council,
under registration number 2023-05476.

References
Muhammad Ammad-Ud-Din, Elena Ivannikova, Suleiman A. Khan, Were Oyomno, Qiang Fu, Kuan Eeik Tan,

and Adrian Flanagan. Federated collaborative filtering for privacy-preserving personalized recommendation
system. arXiv preprint arXiv:1901.09888, 2019.

Vito Walter Anelli, Yashar Deldjoo, Tommaso Di Noia, Antonio Ferrara, and Fedelucio Narducci. User-
controlled federated matrix factorization for recommender systems. Journal of Intelligent Information
Systems, 58(2):287–309, 2022.

Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary. Federated
learning with personalization layers. arXiv preprint arXiv:1912.00818, 2019.

Wenxuan Bao, Haohan Wang, Jun Wu, and Jingrui He. Optimizing the collaboration structure in cross-silo
federated learning. In International Conference on Machine Learning, pp. 1718–1736. PMLR, 2023.

Srinadh Bhojanapalli, Anastasios Kyrillidis, and Sujay Sanghavi. Dropping convexity for faster semi-definite
optimization. In Conference on Learning Theory, pp. 530–582. PMLR, 2016.

Samuel Burer and Renato D. C. Monteiro. A nonlinear programming algorithm for solving semidefinite
programs via low-rank factorization. Mathematical Programming, 95(2):329–357, 2003.

Chenghao Cai, Dengfeng Ke, Yanyan Xu, and Kaile Su. Fast learning of deep neural networks via singular
value decomposition. In PRICAI 2014: Trends in Artificial Intelligence, pp. 820–826. Springer, 2014.

Emmanuel Candès and Benjamin Recht. Exact matrix completion via convex optimization. Communications
of the ACM, 55(6):111–119, 2012.

Yuejie Chi, Y. M. Lu, and Yuxin Chen. Nonconvex optimization meets low-rank matrix factorization: an
overview. IEEE Transactions on Signal Processing, 67(20):5239–5269, 2019.

10

Published in Transactions on Machine Learning Research (08/2025)

Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. Exploiting shared representations for
personalized federated learning. In International Conference on Machine Learning, pp. 2089–2099. PMLR,
2021.

Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Adaptive personalized federated learning.
arXiv preprint arXiv:2003.13461, 2020.

Canh T. Dinh, Nguyen H. Tran, and Josh Nguyen. Personalized federated learning with Moreau envelopes.
In Advances in Neural Information Processing Systems, volume 33, pp. 21394–21405, 2020.

Donald Goldfarb and Shiqian Ma. Convergence of fixed-point continuation algorithms for matrix rank
minimization. Foundations of Computational Mathematics, 11(2):183–210, 2011.

Mary Gooneratne, Khe Chai Sim, Petr Zadrazil, Andreas Kabel, Françoise Beaufays, and Giovanni Motta.
Low-rank gradient approximation for memory-efficient on-device training of deep neural networks. In
ICASSP 2020 – 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 3017–3021. IEEE, 2020.

Filip Hanzely and Peter Richtárik. Federated learning of a mixture of global and local models. arXiv preprint
arXiv:2002.05516, 2020.

Weituo Hao, Nikhil Mehta, Kevin J. Liang, Pengyu Cheng, Mostafa El-Khamy, and Lawrence Carin. WAFFLE:
weight anonymized factorization for federated learning. IEEE Access, 10:49207–49218, 2022.

Jiwei Huang, Zeyu Tong, and Zihan Feng. Geographical POI recommendation for internet of things: a
federated learning approach using matrix factorization. International Journal of Communication Systems,
pp. e5161, 2022.

Prateek Jain, Raghu Meka, and Inderjit Dhillon. Guaranteed rank minimization via singular value projection.
In Advances in Neural Information Processing Systems, volume 23, 2010.

Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi. Low-rank matrix completion using alternating
minimization. In ACM Symposium on Theory of Computing, pp. 665–674. ACM, 2013.

Wonyong Jeong and Sung Ju Hwang. Factorized-FL: personalized federated learning with parameter
factorization and similarity matching. In Advances in Neural Information Processing Systems, volume 35,
pp. 35684–35695, 2022.

Shiva Prasad Kasiviswanathan. SGD with low-dimensional gradients with applications to private and
distributed learning. In Uncertainty in Artificial Intelligence, pp. 1905–1915. PMLR, 2021.

Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recommender systems.
IEEE Computer, 42(8):30–37, 2009.

Anastasios Kyrillidis and Volkan Cevher. Matrix recipes for hard thresholding methods. Journal of
Mathematical Imaging and Vision, 48:235–265, 2014.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. Federated
optimization in heterogeneous networks. Proceedings of Machine Learning and Systems, 2:429–450, 2020.

Paul Pu Liang, Terrance Liu, Ziyin Liu, Nicholas B. Allen, Randy P. Auerbach, David Brent, Ruslan
Salakhutdinov, and Louis-Philippe Morency. Think locally, act globally: federated learning with local and
global representations. arXiv preprint arXiv:2001.01523, 2020.

Jiahao Liu, Yipeng Zhou, Di Wu, Miao Hu, Mohsen Guizani, and Quan Z. Sheng. FedLMT: tackling system
heterogeneity of federated learning via low-rank model training with theoretical guarantees. In International
Conference on Machine Learning. PMLR, 2024a.

Renpu Liu, Cong Shen, and Jing Yang. Federated representation learning in the under-parameterized regime.
arXiv preprint arXiv:2406.04596, 2024b.

11

Published in Transactions on Machine Learning Research (08/2025)

Connor McLaughlin and Lili Su. Personalized federated learning via feature distribution adaptation. In
Advances in Neural Information Processing Systems, volume 37, pp. 77038–77059, 2024.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-
efficient learning of deep networks from decentralized data. In International Conference on Artificial
Intelligence and Statistics, pp. 1273–1282. PMLR, 2017.

Konstantin Mishchenko, Rustem Islamov, Eduard Gorbunov, and Samuel Horváth. Partially personalized
federated learning: breaking the curse of data heterogeneity. arXiv preprint arXiv:2305.18285, 2023.

Yue Niu, Saurav Prakash, Souvik Kundu, Sunwoo Lee, and Salman Avestimehr. Overcoming resource
constraints in federated learning: large models can be trained with only weak clients. Transactions on
Machine Learning Research, 2023.

Jaehoon Oh, Sangmook Kim, and Se-Young Yun. FedBABU: towards enhanced representation for federated
image classification. arXiv preprint arXiv:2106.06042, 2021.

Soumyabrata Pal, Prateek Varshney, Gagan Madan, Prateek Jain, Abhradeep Thakurta, Gaurav Aggarwal,
Pradeep Shenoy, and Gaurav Srivastava. Sample-efficient personalization: modeling user parameters as
low rank plus sparse components. In International Conference on Artificial Intelligence and Statistics, pp.
1702–1710. PMLR, 2024.

Dohyung Park, Anastasios Kyrillidis, Srinadh Bhojanapalli, Constantine Caramanis, and Sujay Sanghavi.
Provable Burer–Monteiro factorization for a class of norm-constrained matrix problems. arXiv preprint
arXiv:1606.01316, 2016.

Dohyung Park, Anastasios Kyrillidis, Constantine Caramanis, and Sujay Sanghavi. Non-square matrix sensing
without spurious local minima via the Burer–Monteiro approach. In Artificial Intelligence and Statistics,
pp. 65–74. PMLR, 2017.

Dohyung Park, Anastasios Kyrillidis, Constantine Caramanis, and Sujay Sanghavi. Finding low-rank solutions
via nonconvex matrix factorization, efficiently and provably. SIAM Journal on Imaging Sciences, 11(4):
2165–2204, 2018.

Krishna Pillutla, Kshitiz Malik, Abdel-Rahman Mohamed, Mike Rabbat, Maziar Sanjabi, and Lin Xiao.
Federated learning with partial model personalization. In International Conference on Machine Learning,
pp. 17716–17758. PMLR, 2022.

Francesco Pinto, Yaxi Hu, Fanny Yang, and Amartya Sanyal. PILLAR: how to make semi-private learning
more effective. arXiv preprint arXiv:2306.03962, 2023.

Saurav Prakash, Jin Sima, Chao Pan, Eli Chien, and Olgica Milenkovic. Federated classification in hyperbolic
spaces via secure aggregation of convex hulls. arXiv preprint arXiv:2308.06895, 2023.

Benjamin Recht, Maryam Fazel, and Pablo A. Parrilo. Guaranteed minimum-rank solutions of linear matrix
equations via nuclear norm minimization. SIAM Review, 52(3):471–501, 2010.

Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. Clustered federated learning. In NeurIPS19
Workshop on Federated Learning for Data Privacy and Confidentiality, pp. 1–5, 2019.

Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. Clustered federated learning: model-agnostic
distributed multitask optimization under privacy constraints. IEEE Transactions on Neural Networks and
Learning Systems, 32(8):3710–3722, 2021.

Ruoyu Sun and Zhi-Quan Luo. Guaranteed matrix completion via non-convex factorization. IEEE Transactions
on Information Theory, 62(11):6535–6579, 2016.

Jiahao Tan and Xinpeng Wang. FL-bench: a federated learning benchmark for solving image classification
tasks. https://github.com/KarhouTam/FL-bench, 2024.

12

https://github.com/KarhouTam/FL-bench

Published in Transactions on Machine Learning Research (08/2025)

Jiahao Tan, Yipeng Zhou, Gang Liu, Jessie Hui Wang, and Shui Yu. pFedSim: similarity-aware model
aggregation towards personalized federated learning. arXiv preprint arXiv:2305.15706, 2023.

Kiran K. Thekumparampil, Prateek Jain, Praneeth Netrapalli, and Sewoong Oh. Statistically and compu-
tationally efficient linear meta-representation learning. In Advances in Neural Information Processing
Systems, volume 34, pp. 18487–18500, 2021.

Linh Tran, Wei Sun, Stacy Patterson, and Ana Milanova. Privacy-preserving personalized federated prompt
learning for multimodal large language models. arXiv preprint arXiv:2501.13904, 2025.

Madeleine Udell and Alex Townsend. Why are big data matrices approximately low rank? SIAM Journal on
Mathematics of Data Science, 1(1):144–160, 2019.

Xiyuan Yang, Wenke Huang, and Mang Ye. FedAS: bridging inconsistency in personalized federated learning.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11986–11995, 2024.

Dezhong Yao, Wanning Pan, Michael J. O’Neill, Yutong Dai, Yao Wan, Hai Jin, and Lichao Sun.
FedHM: efficient federated learning for heterogeneous models via low-rank factorization. arXiv preprint
arXiv:2111.14655, 2021.

Da Yu, Huishuai Zhang, Wei Chen, and Tie-Yan Liu. Do not let privacy overbill utility: gradient embedding
perturbation for private learning. arXiv preprint arXiv:2102.12677, 2021.

Boning Zhang, Dongzhu Liu, Osvaldo Simeone, Guanchu Wang, Dimitrios Pezaros, and Guangxu Zhu.
Personalizing low-rank Bayesian neural networks via federated learning. arXiv preprint arXiv:2410.14390,
2024.

Yong Zhao, Jinyu Li, and Yifan Gong. Low-rank plus diagonal adaptation for deep neural networks. In
2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5005–5009.
IEEE, 2016.

Qinqing Zheng and John Lafferty. Convergence analysis for rectangular matrix completion using Burer–
Monteiro factorization and gradient descent. arXiv preprint arXiv:1605.07051, 2016.

13

Published in Transactions on Machine Learning Research (08/2025)

A Theoretical Results

A.1 Compact Notation

We assume that each client participates in the learning process independently with probability p. To model
this, we define a partial participation matrix Dt for each time step t as a diagonal matrix, where each diagonal
entry [Dt]i,i represents the participation status of client i at time t. Specifically,

[Dt]i,i :=
{

1, with probability p,
0, with probability 1 − p,

where each [Dt]i,i is an independent Bernoulli random variable with parameter p. This implies that for each
client i, [Dt]i,i = 1 if the client participates in the training process at time t, and [Dt]i,i = 0 otherwise. We
can write our algorithm in the compact form as follows:

Vt,0 = Vt

for k = 0, . . . ,K − 1, do

Vt
k+1 = Vt

k − ηvDt∇̃VF (UtVt
k

>)
end for

Ut+1 = Ut − ηu∇̃UF (UtVt>)
Vt+1 = Vt

K .

We define expectations with respect to gradient noise as EV
noise[·] and EU

noise[·], and expectation with respect
to participation randomness as ESt [·]. For participation randomness, we assume that ESt [Dt] = pI, where I
is the identity matrix and p is the probability of client participation under independent sampling. We define
the conditional expectation given all randomness before iteration t and local step k as

Et,k[·] := EV
noise

[
· | randomness before (t, k),Dt

]
,

where the randomness includes all prior gradient noise and participation randomness up to local step k of
iteration t. Additionally, we define the conditional expectation given all randomness in the algorithm before
iteration t and the final local step K as

Et[·] := EU
noise

[
· | randomness before (t,K),Dt

]
.

Finally, we use E[·] to denote the total expectation over all sources of randomness in the algorithm, including
gradient noise and client participation.

A.2 Convergence Analysis

We start with proving some useful bounds. For any t,

Et

[∥∥∥∇̃UF (UtVt>)
∥∥∥2

F

]
= Et

[∥∥∥∇UF (UtVt>)
∥∥∥2

F
+
∥∥∥∇̃UF (UtVt>) − ∇UF (UtVt>)

∥∥∥2

F

+ 2
〈

∇UF (UtVt>), ∇̃UF (UtVt>) − ∇UF (UtVt>)
〉]

≤
∥∥∥∇UF (UtVt>)

∥∥∥2

F
+ σ2. (10)

14

Published in Transactions on Machine Learning Research (08/2025)

Similar to above, we can write, for any t and k,

Et,k

[∥∥∥Dt∇̃VF (UtVt
k

>)
∥∥∥2

F

]
= Et,k

[∥∥∥Dt∇VF (UtVt
k

>)
∥∥∥2

F
+
∥∥∥Dt∇̃VF (UtVt

k
>) − Dt∇VF (UtVt

k
>)
∥∥∥2

F

+ 2
〈

Dt∇VF (UtVt
k

>),Dt∇̃VF (UtVt
k

>) − Dt∇VF (UtVt
k

>)︸ ︷︷ ︸
Et,k[. |Dt]=0

〉]

=
∥∥∥Dt∇VF (UtVt

k
>)
∥∥∥2

F
+ ‖Dt‖2

2 · Et,k

[∥∥∥∇̃VF (UtVt
k

>) − ∇VF (UtVt
k

>)
∥∥∥2

F

]
=
∥∥∥Dt∇VF (UtVt

k
>)
∥∥∥2

F
+ ‖Dt‖2

2 · σ2

where in the third line, we used the submultiplicative property of the Frobenius norm. Now we take the
expectation with respect to the participation probability

ESt

[
Et,k

[∥∥∥Dt∇̃VF (UtVt
k

>)
∥∥∥2

F

]]
= ESt

[∥∥∥Dt∇VF (UtVt
k

>)
∥∥∥2

F
+ ‖Dt‖2

2 · σ2
]

≤ p
∥∥∥∇VF (UtVt>)

∥∥∥2

F
+ σ2 , (11)

where we used Lemma 6, and Lemma 3.

(A) First, we use the smoothness of F (UVt>) with respect to V and write

F (UtVt
k+1

>) ≤ F (UtVt
k

>) +
〈

∇VF (UtVt
k

>),Vt
k+1 − Vt

k

〉
+ LV

2
∥∥Vt

k+1 − Vt
k

∥∥2
F

= F (UtVt
k

>) − ηv

〈
∇VF (UtVt

k
>),Dt∇̃VF (UtVt

k
>)
〉

+ η2
v

LV

2

∥∥∥Dt∇̃VF (UtVt
k

>)
∥∥∥2

F
.

Taking conditional expectation, we get

ESt

[
Et,k

[
F (UtVt

k+1
>)
]]

≤ F (UtVt
k

>) − ηvp
∥∥∥∇VF (UtVt

k
>)
∥∥∥2

F
+ η2

v

pLV

2

∥∥∥∇VF (UtVt
k

>)
∥∥∥2

F
+ η2

v

LV

2 σ2

= F (UtVt
k

>) − ηvp

(
1 − ηv

LV

2

)∥∥∥∇VF (UtVt
k

>)
∥∥∥2

F
+ η2

v

LV σ
2

2

where we used (11) in the second line. We rearrange the inequality above and average over k to obtain

ηvp

(
1 − ηv

LV

2

)
1
K

K−1∑
k=0

∥∥∥∇VF (UtVt
k

>)
∥∥∥2

F

≤ 1
K

(
F (UtVt,0>) − ESt

[
Et,K

[
F (UtVt,K >)

]])
+ η2

v

LV σ
2

2

= 1
K

(
F (UtVt>) − ESt

[
Et,K

[
F (UtVt+1>)

]])
+ η2

v

LV σ
2

2 (12)

where, in the second line, we used Vt,0 = Vt and Vt,K = Vt+1.

(B) Now, we will use the smoothness again, but this time with respect to U:

F (Ut+1Vt
k

>) ≤ F (UtVt
k

>) +
〈

∇UF (UtVt
k

>),Ut+1 − Ut
〉

+ LU

2
∥∥Ut+1 − Ut

∥∥2
F

≤ F (UtVt
k

>) − ηu

〈
∇UF (UtVt

k
>), ∇̃UF (UtVt>)

〉
+ η2

u

LU

2

∥∥∥∇̃UF (UtVt>)
∥∥∥2

F

Similar to the previous case, if we take expectation with respect to the randomness in U update at iteration
t, we obtain the following bound by using (10):

Et

[
F (Ut+1Vt

k
>)
]

≤ F (UtVt
k

>) − ηu

〈
∇UF (UtVt

k
>),∇UF (UtVt>)

〉
+ η2

u

LU

2

∥∥∥∇UF (UtVt>)
∥∥∥2

F
+ η2

u

LUσ
2

2 .

15

Published in Transactions on Machine Learning Research (08/2025)

If we split the inner product term as〈
∇UF (UtVt

k
>),∇UF (UtVt>)

〉
=
〈

∇UF (UtVt
k

>),∇UF (UtVt>) − ∇UF (UtVt
k

>) + ∇UF (UtVt
k

>)
〉

=
〈

∇UF (UtVt
k

>),∇UF (UtVt>) − ∇UF (UtVt
k

>)
〉

+
∥∥∥∇UF (UtVt

k
>)
∥∥∥2

F

≥ −ηuLU

2

∥∥∥∇UF (UtVt
k

>)
∥∥∥2

F
− 1

2ηuLU

∥∥∥∇UF (UtVt>) − ∇UF (UtVt
k

>)
∥∥∥2

F
+
∥∥∥∇UF (UtVt

k
>)
∥∥∥2

F
,

where the last line follows from Young’s inequality (17) with α = ηuLU . Moreover, by the smoothness
assumption, we have

1
2LUηu

∥∥∥∇UF (UtVt>) − ∇UF (UtVt
k

>)
∥∥∥2

≤ LU

2ηu

∥∥Vt − Vt
k

∥∥2 ≤ η2
v

ηu

LU

2

∥∥∥∥∥
k−1∑
i=0

∇VF (UtVt
i
>)

∥∥∥∥∥
2

F

.

Combining all these bounds, we get

Et

[
F (Ut+1Vt

k
>)
]

≤ F (UtVt
k

>) − ηu

(
1 − ηu

LU

2

)∥∥∥∇UF (UtVt
k

>)
∥∥∥2

F
+ η2

u

LU

2

∥∥∥∇UF (UtVt>)
∥∥∥2

F

+ η2
v

LU

2

∥∥∥∥∥
k−1∑
i=0

∇VF (UtVt
i
>)

∥∥∥∥∥
2

F

+ η2
u

LUσ
2

2 . (13)

Now we consider two cases k = 0 and k = K in (13).

1. For k = 0, we have

Et

[
F (Ut+1Vt>)

]
≤ F (UtVt>) − ηu (1 − ηuLU)

∥∥∥∇UF (UtVt>)
∥∥∥2

F
+ η2

u

LUσ
2

2 . (14)

where we used Vt,0 = Vt.

2. For k = K, we have

Et

[
F (Ut+1Vt+1)

]
≤ F (UtVt+1>) − ηu

(
1 − ηu

LU

2

)∥∥∥∇UF (UtVt+1>)
∥∥∥2

F
+ η2

u

LU

2

∥∥∥∇UF (UtVt>)
∥∥∥2

F

+ η2
v

LU

2

∥∥∥∥∥
K−1∑
k=0

∇VF (UtVt
k

>)

∥∥∥∥∥
2

F

+ η2
u

LUσ
2

2

≤ F (UtVt+1>) + η2
u

LU

2

∥∥∥∇UF (UtVt>)
∥∥∥2

F
+ η2

v

LU

2

∥∥∥∥∥
K−1∑
k=0

∇VF (UtVt
k

>)

∥∥∥∥∥
2

F

+ η2
u

LUσ
2

2 .

Rearranging the terms we can write

− LU

2

η2
u

∥∥∥∇UF (UtVt>)
∥∥∥2

F
+ η2

v

∥∥∥∥∥
K−1∑
k=0

∇VF (UtVt
k

>)

∥∥∥∥∥
2

F


≤ F (UtVt+1>) − Et

[
F (Ut+1Vt+1>)

]
+ η2

u

LUσ
2

2 .

(C) We once again use smoothness with respect to V:

F (Ut+1Vt
k+1

>) ≤ F (Ut+1Vt
k

>) +
〈

∇VF (Ut+1Vt
k

>),Vt
k+1 − Vt

k

〉
+ LV

2
∥∥Vt

k+1 − Vt
k

∥∥2
F

= F (Ut+1Vt
k

>) − ηv

〈
∇VF (Ut+1Vt

k
>),Dt∇̃VF (UtVt

k
>)
〉

+ η2
v

LV

2

∥∥∥Dt∇̃VF (UtVt
k

>)
∥∥∥2

F
.

16

Published in Transactions on Machine Learning Research (08/2025)

We take the conditional expectation

ESt

[
Et,k

[
F (Ut+1Vt

k+1
>)
]]

≤ F (Ut+1Vt
k

>) − ηvESt

[
Et,k

[〈
∇VF (Ut+1Vt

k
>),Dt∇̃VF (UtVt

k
>)
〉]]

+ η2
v

pLV

2

∥∥∥∇VF (UtVt
k

>)
∥∥∥2

F
+ η2

v

LV σ
2

2 ,

where we used (11). Focusing again on the inner product term, we obtain

ESt

[
Et,k

[〈
∇VF (Ut+1Vt

k
>),Dt∇̃VF (UtVt

k
>)
〉]]

= ESt

[
Et,k

[〈
∇VF (Ut+1Vt

k
>) ± ∇VF (UtVt

k
>),Dt∇̃VF (UtVt

k
>)
〉]]

= ESt

[〈
∇VF (Ut+1Vt

k
>) − ∇VF (UtVt

k
>),Dt∇VF (UtVt

k
>)
〉

+
〈

∇VF (UtVt
k

>),Dt∇VF (UtVt
k

>)
〉]

= p
〈

∇VF (Ut+1Vt
k

>) − ∇VF (UtVt
k

>),∇VF (UtVt
k

>)
〉

+ p
∥∥∥∇VF (UtVt

k
>)
∥∥∥2

F

≥ − p

2ηvKLV

∥∥∥∇VF (Ut+1Vt
k

>) − ∇VF (UtVt
k

>)
∥∥∥2

F
− ηvpKLV

2

∥∥∥∇VF (UtVt
k

>)
∥∥∥2

F
+ p

∥∥∥∇VF (UtVt
k

>)
∥∥∥2

F

≥ − pLV

2ηvK

∥∥Ut+1 − Ut
∥∥2

F
− ηvpKLV

2

∥∥∥∇VF (UtVt
k

>)
∥∥∥2

F
+ p

∥∥∥∇VF (UtVt
k

>)
∥∥∥2

F

= − pLV

2ηvK
η2

u

∥∥∥∇UF (UtVt>)
∥∥∥2

F
− ηvpKLV

2

∥∥∥∇VF (UtVt
k

>)
∥∥∥2

F
+ p

∥∥∥∇VF (UtVt
k

>)
∥∥∥2

F
,

where we used Young’s inequality (17) in the fourth line with α = ηvKLV . Substituting back, we get

ESt

[
Et,k

[
F (Ut+1Vt

k+1
>)
]]

≤ F (Ut+1Vt
k

>) − ηvp

(
1 − ηv

(K + 1)LV

2

)∥∥∥∇VF (UtVt
k

>)
∥∥∥2

F

+ η2
u

pLV

2K

∥∥∥∇UF (UtVt>)
∥∥∥2

F
+ η2

v

LV σ
2

2
By summing over k and appropriately rearranging the terms in the inequality, we obtain the following:

ηvp

(
1 − ηv

(K + 1)LV

2

)K−1∑
k=0

∥∥∥∇VF (UtVt
k

>)
∥∥∥2

F
− η2

u

pLV

2

∥∥∥∇UF (UtVt>)
∥∥∥2

≤ F (Ut+1Vt>) − ESt

[
Et,K

[
F (Ut+1Vt+1>)

]]
+ η2

v

KLV σ
2

2 .

where we used Vt,K = Vt+1 and Vt,0 = Vt. We define

∆U := Et

[∥∥∥∇UF (UtVt>)
∥∥∥2

F

]
∆V := ESt

[
1
K

K−1∑
k=0

Et,k

[∥∥∥∇VF (UtVt
k

>)
∥∥∥2

F

]]
. (15)

We summarize the resulting inequalities in part (A) to (C) as

ηvp

(
1 − ηv

LV

2

)
∆V ≤ 1

K

(
F (UtVt>) − ESt

[
Et,K

[
F (UtVt+1>)

]])
+ η2

v

LV σ
2

2

ηu

(
1 − ηuLU

)
∆U ≤ F (UtVt>) − Et

[
F (Ut+1Vt>)

]
+ η2

u

LUσ
2

2

− LU

2

η2
u∆U + η2

v

∥∥∥∥∥
K−1∑
k=0

∇VF (UtVt
k

>)

∥∥∥∥∥
2 ≤ F (UtVt+1>) − Et

[
F (Ut+1Vt+1>)

]
+ η2

u

LUσ
2

2

ηvp

(
1 − ηv

(K + 1)LV

2

)
K∆V − η2

u

pLV

2 ∆U ≤ F (Ut+1Vt>) − ESt

[
Et,K

[
F (Ut+1Vt+1>)

]]
+ η2

v

KLV σ
2

2 .

17

Published in Transactions on Machine Learning Research (08/2025)

where we used the definitions (15). We rewrite four inequalities above using ηv = pηu

K := pη
K and defining

L := max{LU , LV } as

ηp2(1 − η
pL

2K
)
∆V ≤ F (UtVt>) − ESt

[
Et,K

[
F (UtVt+1>)

]]
+ η2Lσ

2

2K

η
(
1 − ηL

)
∆U ≤ F (UtVt>) − Et

[
F (Ut+1Vt>)

]
+ η2Lσ

2

2

− L

2

η2Et[∆U] + η2p2

K2

∥∥∥∥∥
K−1∑
k=0

∇VF (UtVt
k

>)

∥∥∥∥∥
2 ≤ F (UtVt+1>) − Et

[
F (Ut+1Vt+1>)

]
+ η2Lσ

2

2

ηp2

K

(
1 − ηp

(K + 1)L
2K

)
K∆V − η2 pL

2 ∆U ≤ F (Ut+1Vt>) − ESt

[
Et,K

[
F (Ut+1Vt+1>)

]]
+ η2Lσ

2

2K .

Summing up the inequalities above, we get

η
(

1 − 2ηL
)

(∆U + ∆V) ≤ η
(

1 − 2ηL
)

∆U + ηp
(
1 − η

pL

2K
)
∆V

≤ 2
(
F (UtVt>) − ESt

[
Et,K

[
F (Ut+1Vt+1>)

]])
+ η2(1 + 1

K

)
Lσ2

≤ 2
(
F (UtVt>) − ESt

[
Et,K

[
F (Ut+1Vt+1>)

]])
+ 2η2Lσ2 , (16)

where we used the following inequality

η2 p
2L

2K2

∥∥∥∥∥
K−1∑
k=0

∇VF (UtVt
k

>)

∥∥∥∥∥
2

− ηp2

K

(
1 − ηp

(K + 1)L
2K

)K−1∑
k=0

∥∥∥∇VF (UtVt
k

>)
∥∥∥2

≤ η2 p
2L

2K2K
K−1∑
k=0

∥∥∥∇VF (UtVt
k

>)
∥∥∥2

− ηp2

K

(
1 − ηp

(K + 1)L
2K

)K−1∑
k=0

∥∥∥∇VF (UtVt
k

>)
∥∥∥2

≤ ηp2

K

(
η
L

2 ((1 + p)K + 1
K

) − 1
)K−1∑

k=0

∥∥∥∇VF (UtVt
k

>)
∥∥∥2

≤ 0 (η ≤ 1
2L) ,

where in the second line, we used Jensen’s inequality, see (18). Next, we take the expectation over all sources
of randomness in the algorithm. Then, we average both sides of (16) over the iterations t, followed by dividing
both sides by η (1 − 2ηL), yielding the following expression:

1
T

T −1∑
t=0

(
E
[∥∥∥∇UF (UtVt>)

∥∥∥2
]

+ E

[
1
K

K−1∑
k=0

∥∥∥∇VF (UtVt
k

>)
∥∥∥2
])

≤
2
(
F (U0V0>) − F (UT VT >)

)
ηT
(

1 − 2ηL
) + 2ηLσ2

1 − 2ηL

≤
2
(
F (U0V0>) − F ?

)
ηT
(

1 − 2ηL
) + 2ηLσ2

1 − 2ηL ,

provided that L = max{LU , LV }, ηv = pηu

K = pη
K , and η ≤ 1

2L . This completes the proof.

�

18

Published in Transactions on Machine Learning Research (08/2025)

A.3 Useful Inequalities

We list below a few elementary facts that we used in our analysis, included here only for completeness.
Lemma 3. For any matrices A ∈ Rd1×d2 and B ∈ Rd2×d3 , the Frobenius norm of the product AB satisfies

‖AB‖F ≤ ‖A‖2‖B‖F .

where ‖.‖2 is the spectral norm.
Lemma 4 (Young’s inequality). Let Θ,Y ∈ Rd1×d2 and α > 0. Then, the following inequality holds:

〈Θ,Y〉 ≤ α

2 ‖Θ‖2
F + 1

2α ‖Y‖2
F . (17)

Lemma 5. Let Θi ∈ Rd1×d2 for i ∈ 0, . . . ,K − 1. Then, the following bound holds:∥∥∥∥∥
K−1∑
i=0

Θi

∥∥∥∥∥
2

F

≤ K

K−1∑
i=0

‖Θi‖2
F . (18)

Proof. This inequality follows directly from Jensen’s inequality applied to the Frobenius norm. �

Lemma 6. Let D be a diagonal matrix with diagonal entries that are 1 with probability p and 0 with probability
1 − p, and let A be an arbitrary matrix. Then the expectation of the squared Frobenius norm of the product
DA is given by

ED
[
‖DA‖2

F

]
= p‖A‖2

F .

Proof. The Frobenius norm squared of DA is defined as:

‖DA‖2
F =

∑
i,j

(DA)2
ij .

Since D is diagonal, the product DA will zero out all rows of A where the corresponding diagonal entry in
D is 0. Let di represent the i-th diagonal entry of D, where each di is a Bernoulli random variable with
ED[di] = p.

Thus, we can express ‖DA‖2
F as:

‖DA‖2
F =

n∑
i=1

d2
i

m∑
j=1

A2
ij =

n∑
i=1

di‖Ai,·‖2
2,

where ‖Ai,·‖2
2 =

∑m
j=1 A

2
ij is the squared norm of the i-th row of A.

Now, taking the expectation, we have:

ED
[
‖DA‖2

F

]
=

n∑
i=1

ED[di]‖Ai,·‖2
2 =

n∑
i=1

p‖Ai,·‖2
2.

Simplifying, we get:

ED
[
‖DA‖2

F

]
= p

n∑
i=1

‖Ai,·‖2
2 = p‖A‖2

F .

Therefore, the expectation of ‖DA‖2
F is:

ED
[
‖DA‖2

F

]
= p‖A‖2

F .

This completes the proof. �

19

Published in Transactions on Machine Learning Research (08/2025)

Lemma 7. Let D be a diagonal n× n matrix where each diagonal entry is independently 1 with probability p
and 0 with probability 1 − p. Then the expected value of the spectral norm ‖D‖2 is given by

E(‖D‖2) = 1 − (1 − p)n ≤ 1.

Proof. Since D is diagonal, its spectral norm ‖D‖2 is the largest absolute value among its diagonal entries.
Therefore, ‖D‖2 = 1 if at least one diagonal entry is 1, and ‖D‖2 = 0 only if all diagonal entries are 0.

Define X as the event that all diagonal entries are 0. The probability of this event, Pr(X), is:

Pr(X) = (1 − p)n,

since each diagonal entry is 0 independently with probability 1 − p.

Thus, the probability that ‖D‖2 = 1 (i.e., the event X does not occur) is:

1 − Pr(X) = 1 − (1 − p)n.

Therefore, the expected value of ‖D‖2 is:

E(‖D‖2) = 1 · (1 − (1 − p)n) + 0 · (1 − p)n = 1 − (1 − p)n ≤ 1.

This completes the proof. �

20

	Introduction
	Related Work
	Algorithm
	Convergence Guarantees
	Numerical Experiments
	Conclusions
	Theoretical Results
	Compact Notation
	Convergence Analysis
	Useful Inequalities

