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Abstract
Autonomous agents must know how to explore
user interfaces (UIs) for reliable task solving, yet
systematic evaluation of this crucial phase is lack-
ing. We introduce UIEXPLORE-BENCH, the first
benchmark explicitly dedicated to UI exploration.
The benchmark evaluates agents with either Struc-
tured mode (granting access to layout information
like DOM trees) or Screen mode (relying on GUI-
only observations such as screenshots and human-
like mouse/keyboard interactions) across three
levels in a standardized GitLab sandbox environ-
ment. We formalize exploration as the process
of maximizing the set of actionable UI compo-
nents discovered and propose a metric, human-
normalized UI-FUNCTIONALITIES OBSERVED
(HUFO), to quantify the effectiveness of explo-
ration. Our results show that UIEXPLORE-ALGO
achieves the leading mean HUFO scores, reaching
up to 77.2% of human performance in Structured
mode and 59.0% in Screen mode at 2,000 steps,
particularly excelling at the Sparse level. The re-
sults highlight the relevance of our benchmark, as
current agents show a substantial performance gap
compared to 1 hour of human expert exploration,
indicating ample room for future advancements.
We publicly release the benchmark environment,
an exploration dataset, and an evaluation suite
to catalyze research into efficient UI exploration
strategies and their downstream applications, such
as experience-driven task completion and auto-
mated training data generation.

1. Introduction
The pursuit of truly autonomous agents capable of inter-
acting with the digital world hinges on their ability to un-
derstand and navigate user interfaces. Imagine a robotic
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process automation bot landing on a freshly upgraded pay-
roll dashboard, with new features and user interface (UI)
improvements. In such a scenario, and countless others, the
agent cannot rely solely on pre-programmed instructions or
static UI knowledge. Frequent UI changes and the sheer
diversity of applications require modern agents to actively
explore and discover available functionalities. This explo-
ration is not merely a preliminary step; it is a fundamental
learning process (Schmidhuber, 2008; 1991; Thrun, 1992).

We posit that efficient exploration is paramount to achieving
reliable task execution and genuine autonomy in dynamic
digital environments. At a high level, the performance of an
UI agent is determined by two factors. First, its awareness
of the UI space, such as its understanding of what func-
tionalities exist and where interactions lead. Second, the
agent’s ability to solve tasks successfully, conditioned on
its knowledge of the UI space. This distinction is important:
for example, an agent might have access to the knowledge
required to complete a task but might fail to precisely locate
the right UI element. Measuring what situations an agent
has been exposed to or not, independently of its ability to
solve tasks, is valuable, as it helps to disentangle these two
performance factors. Robust UI exploration can provide a
mechanism to explicitly address and improve both factors.
It can address the first by maximizing knowledge of the UI
space instead of success in specific tasks. It can address the
second by encouraging agents to minimize the discrepancy
between the predicted consquences of an action and the
actual observed outcome.

At a more granular level, the design of effective exploration
policies provides the following benefits. (i) Enhancing unat-
tended data generation by efficiently discovering the func-
tional space of the UI. This practice is already used to gather
training experiences (Su et al., 2025; Fan et al., 2025; Qi
et al., 2024; Bai et al., 2024), and more efficient methods
are highly valuable. (ii) Uncovering the “unknowns” of the
agent’s underlying predictive model and its misalignments
(Fan et al., 2025). This could be especially beneficial for
visual computer-use agents, which often fall short in ground-
ing UI functionality (Agashe et al., 2025) and often misinter-
pret the purpose or effects of the interface elements (Zhang
et al., 2025b). A dedicated benchmark can encourage re-
search into rewarding agents for such information-seeking
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behavior. (iii) Enabling, through structured exploration,
the creation of persistent databases of application-specific
memory. This could offer a scalable solution to improve
generalist agents with deep contextual understanding and
opens an interesting research direction. Driven by these
three benefits, our work addresses the need for principled
methods to measure efficient UI coverage and guide the
design of effective policies.

Despite the recognized importance of exploration, there is
a significant gap in systematic evaluation. Current bench-
marks for UI agents predominantly entangle exploration
with task-specific rewards (Zhou et al., 2023b; Chezelles
et al., 2024; Drouin et al., 2024; Boisvert et al., 2025). Con-
sequently, empirical comparisons make it difficult to disen-
tangle the contributions of an agent’s exploratory prowess
from its ability to exploit learned knowledge for a specific
goal. Most existing research either conflates these two as-
pects or focuses on exploration merely as a mechanism to
gather experiences to improve exploitation, often acknowl-
edging that more sophisticated exploration strategies would
be beneficial (Su et al., 2025).

To bridge this gap, we introduce UIEXPLORE-BENCH, the
first benchmark designed for systematic assessment of UI
functionality exploration. UIEXPLORE-BENCH offers a
standardized GitLab sandbox environment (adapted from
WebArena (Zhou et al., 2023b)) with three difficulty lev-
els, for agents operating in Structured or Screen mode. We
formalize exploration as the process of maximizing the dis-
covery of unique functionalities offered by a system, cap-
tured by our proposed metric: UI-FUNCTIONALITIES OB-
SERVED. Designed to surface key exploration challenges,
UIEXPLORE-BENCH — together with its publicly released
exploration dataset - aims to promote and standardize re-
search on agents that explore more efficiently. In addition,
the fixed dataset enables fairer comparison of exploitation
strategies and clearer attribution of performance gains to ei-
ther improved exploration or better use of prior knowledge.

Our contributions are fourfold:

• We publicly release UIEXPLORE-BENCH, a benchmark
environment with three difficulty levels based on a GitLab
sandbox, supporting both Structured and Screen modes.

• We introduce two novel UI-centric metrics that capture
functionality discovery (UI-FUNCTIONALITIES
OBSERVED) and exploration efficiency
(UI-FUNCTIONALITIES TESTED), as well as a
lightweight evaluation suite.

• We develop UIEXPLORE-ALGO, a Go-Explore-inspired
(Ecoffet et al., 2019) novelty-driven agent designed for
structured UI exploration and memory construction, and
compare its performance to baseline agents: random, BF-
S/DFS and GUI-Bee‡ .

• We publicly release an open exploration dataset gath-

ered with UIEXPLORE-BENCH, enabling downstream
research on experience-driven task completion, metric
learning, and more.

2. Related Work
Exploration in Reinforcement Learning. Effective explo-
ration in reinforcement learning (RL), especially with sparse
rewards, remains a significant research challenge. Common
paradigms include count-based methods (Bellemare et al.,
2016), curiosity-driven intrinsic rewards utilizing predic-
tion errors (Pathak et al., 2017; Burda et al., 2018), and
information-theoretic strategies such as VIME (Houthooft
et al., 2016). Episodic memory-based approaches (Badia
et al., 2020) and hierarchical structures (Steccanella et al.,
2020; Nica et al., 2022) have further enabled structured
exploration in complex environments. Our proposed algo-
rithm, UIEXPLORE-ALGO, builds upon this literature by
integrating a structured and hierarchical search strategy in-
spired by Go-Explore (Ecoffet et al., 2019; 2021; Lu et al.,
2024) that uses novelty and preference-based prioritization
to efficiently explore user interfaces.

Computer-Use Agent Benchmarks. A growing set of
benchmarks has been proposed to evaluate agents operating
digital interfaces, including web-based environments like
WebArena (Zhou et al., 2023b), BrowserGym (Chezelles
et al., 2024), MiniWoB (Shi et al., 2017) and OpenWebVoy-
ager (He et al., 2024), as well as productivity-focused setups
such as WorkArena (Drouin et al., 2024) and WorkArena++
(Boisvert et al., 2025). These benchmarks primarily target
the completion of goal-conditioned tasks and often con-
flate exploration with exploitation, making it difficult to
isolate and study exploration behaviors in depth. Vision-
centric environments such as OSWorld (Xie et al., 2024) fur-
ther emphasize the challenges of agents interacting through
human-like modalities, e.g., mouse, keyboard, and screen
input, without access to privileged structural information.
However, they still lack dedicated tools and metrics to sys-
tematically evaluate exploration as a standalone capability.
In contrast, UIEXPLORE-BENCH introduces a standardized
benchmark explicitly designed to assess UI functionality
exploration, providing both Structured (DOM-based) and
Screen (GUI-based) modes, and metrics focused on func-
tional discovery and exploration efficiency. This allows for
a clearer analysis of exploratory competence - an essen-
tial precursor to robust and general-purpose computer-use
agents.

Computer-Use Agents. Recent state-of-the-art computer-
use agents leverage diverse modalities and architectures.
General purpose frameworks such as OpenAI’s Computer-
Using Agent (CUA (OpenAI, 2025), Simular Agent S2
(Agashe et al., 2025), and Claude 3.5 Sonnet Compute-
use (Anthropic, 2024) demonstrate strong visual grounding
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and reasoning capabilities across web, desktop, and mobile
tasks. Enterprise-focused agent frameworks like Microsoft
AutoGen (Wu et al., 2023) and IBM CUGA (Marreed et al.,
2025) leverage machine learning agents to automate the
resolution of tasks and workflows.

LLM-Powered Agents and UI Exploration. Several re-
cent works explicitly or implicitly leverage exploration
within their approaches. MobileGPT (Lee et al., 2024)
and AppAgent (Li et al., 2024) explore app interfaces to
build structured knowledge bases and reusable task mod-
ules. Symbiotic Cooperation for Web Agents (Zhang et al.,
2025a) integrates exploration with small-model distillation
loops, and Explorer (Pahuja et al., 2025) employs large-
scale LLM-driven trajectory synthesis. WebWalker (Wu
et al., 2025) introduces a multi-agent system where an ex-
plorer navigates multi-hop web interfaces while a critic
evaluates information sufficiency, aiming to improve deep
web exploration. LATS (Zhou et al., 2023a), Tree Search
for Language Model Agents (Koh et al., 2024), and ExACT
(Yu et al., 2024) utilize advanced tree-search methods to
enhance targeted traversal and exploration efficiency. Learn-
by-interact (Su et al., 2025) further generates exploration
data through self-instructed tasks. Another example is GUI-
Bee (Fan et al., 2025), which explicitly uses exploration to
uncover actionable UI elements and learn from interaction
data; it combines a Q-learning framework with a structured
graph over the action space to guide exploration in a sample-
efficient manner. Unlike these methods that mainly use
exploration instrumentally, UIEXPLORE-BENCH prioritizes
systematic measurement and improvement of exploration
itself, establishing its distinct value for progress in computer
use agent research.

By explicitly isolating exploration and introducing rig-
orous metrics, UIEXPLORE-BENCH not only advances
exploration evaluation but provides foundational insights
useful for improving downstream tasks such as retrieval-
augmented generation (RAG)-conditioned planning and
model introspection (Yu et al., 2024; Koh et al., 2024; Zhou
et al., 2023a).

3. UIEXPLORE-BENCH Benchmark Suite
UIEXPLORE-BENCH is designed to systematically evaluate
the UI exploration capabilities of autonomous agents within
a standardized and complex sandbox environment derived
from the WebArena GitLab setup. GitLab was chosen due
to its rich interactivity, multi-layered navigation structure,
and clear metric computation facilitated by privileged DOM
data. It also offers extensive opportunities for agents to
create and manipulate content (such as projects, issues, and
files), making it ideal for evaluating goal-directed explo-
ration and interactive discovery. This environment serves
as a controlled yet challenging testbed to measure agents’

abilities to explore and discover interactive functionalities.
Although initially designed as a web-based benchmark, we
propose extending it to the vision-only, general-purpose
computer interaction setting, facilitating evaluation beyond
web applications and towards broader GUI-based interaction
scenarios.

3.1. Environment Design

We structure the benchmark into three distinct levels, cor-
responding to three different initial states. Each level intro-
duces unique challenges and constraints to the exploration
problem.

Abundant Level. The agent starts in a logged-in state
with extensive repositories and visible interactive elements
(as per the original WebArena setup). This environment
tests agents’ abilities to effectively navigate and distinguish
actionable components amidst abundant but potentially dis-
tracting UI elements.

Moderate Level. The agent remains logged in, but faces a
reduced, repository-free UI skeleton, minimizing duplica-
tive interactions. Exploration at this level emphasizes ef-
ficient coverage of essential UI functionality without the
complexity of content-heavy pages.

Sparse Level. Simulates a fresh GitLab instance, without
users and repositories, requiring the agent to initiate explo-
ration from a logged-out state. Although minimal, there are
still a few functionalities to explore even without registering
a user. This scenario assesses the agent’s capacity to boot-
strap exploration from minimal initial state information. It
also assesses the agent’s ability for open-world exploration.

To better align with established efforts in the computer-use
community, we formalize two distinct interaction modes.

Structured Mode: The agent interacts with environments
through the Document Object Model (DOM), perceiving
the hierarchical structure of elements, and performing high-
level actions (clicking, form filling, hovering) identified via
DOM attributes. This mode leverages the semantic web
structure, exemplified by benchmarks such as WebArena
(Zhou et al., 2023b).

Screen Mode: The agent relies solely on visual inputs,
perceiving the UI as rendered images without having ac-
cess to the underlying DOM structures. Actions are low-
level, including mouse movements, pixel-coordinate clicks,
and keyboard presses, emphasizing visual understanding
and mimicking human interactions. This mode aligns with
benchmarks such as OSWorld (Xie et al., 2024).

Additional details on observation and action spaces for these
interaction modes are provided in section 3.4. Each level
includes guardrails to ensure a self-contained exploration
experience, preventing agents from accessing external sites
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or performing disruptive actions like accidental logouts.
External links or pop-ups are sandboxed via a boundary
HTML page (detailed in Appendix D).

3.2. Exploration Protocol

Exploration episodes begin with an exploration agent start-
ing at the GitLab landing page, with session storage cleared
to ensure a consistent starting state. The agent is evaluated
over a single trajectory that spans 2,000 environment actions
(atomic actions), reflecting a realistic and extended interac-
tion scenario where environment changes persist throughout
the exploration. This single-trajectory protocol ensures that
agents are evaluated on sustained exploratory behaviors
rather than repeated short-term interactions.

Structured and Screen modes support navigation actions
such as goto, go back, and go forward. Explicit sup-
port for these actions aligns the benchmark with real-world
applications that typically provide deep linking, history nav-
igation, or saved states, thus enhancing practicality. Fu-
ture extensions of Screen mode may include environments
restricting such navigational aids, offering alternative ex-
ploration challenges. Details of the exploration protocol,
including reset semantics, are provided in Appendix D.

3.3. Metrics

An exploration agent’s primary goal is to identify the func-
tionalities exposed by an application in order to exploit it
later. Our primary metric is the number of UI-functionalities
observed at time T , denoted as UFO@T

.
= |∪Tt=1Ft|, where

Ft is the set of distinct functionalities revealed at step t.
These elements are grouped not only by semantic intent
but also by their implementation in the UI structure; for
instance, visually distinct “Home” buttons may count as
separate functionalities, while all repository links map to a
shared class such as view repo. Examples of functionalities
can be found in Fig. 1. The complete formalism and defini-
tion of functionality is in Appendix C. In Structured mode,
all functionalities accessible in the DOM are considered in
the computation of UFO. However, in Screen mode, only
the functionalities accessible from the screen (viewport) are
considered.

We also normalize UFO with respect to the average num-
ber of UFO discovered by human exploration agents in 1
hour. We denote this human-normalized version as HUFO.
In order to normalize the score, we collected exploration
trajectories from human participants (Appendix B) in the
Abundant level. The normalization constants for the Struc-
tured mode and the Screen mode can be found in Table 2.
Our secondary metric, UI-functionalities tested (UFT@T),
counts the distinct functionalities that an exploration agent
acted upon, as a percent of the total number of steps. UFT
acts as a measure of exploration efficiency and is in the

Figure 1. Functionality groupings in homepage. Boxes of the same
color are grouped under the same functionality

range [0, 1].

We chose not to adopt per-observation count metrics, such
as the Depth-fixed DOM Diversity Counts (D3C) introduced
in GUI-Bee (Fan et al., 2025), as they treat all observations
equally. Our decision was based on the following consider-
ations. (i) Different observations could differ significantly
in the number of functionalities they contain. Treating all
observations as equally informative fails to capture this vari-
ability and undervalues richer states that offer access to
multiple functionalities. (ii) D3C includes structured el-
ements regardless of its visibility on the screen. Due to
this, D3C is only applicable for Structured mode and is
not applicable in Screen mode. (iii) Minor changes in the
DOM structure can significantly affect the score (e.g. user’s
“theme”, see Appendix E).

3.4. Observation & Action Spaces

We distinguish between two agent modalities with distinct
observation and action spaces: Structured and Screen mode.

Structured Mode. Agents have access to a structured rep-
resentation of the interface, such as the DOM or AXTree.
Each element is identified via a unique identifier (e.g., bid),
along with semantic metadata like tag, role, label, and visi-
bility. This enables direct access to high-level functionality.
The action space consists of 11 semantic actions includ-
ing click(bid), fill(bid, value), goto(url),
and keyboard press(key). These are discrete, param-
eterized actions grounded in the DOM structure.

Screen Mode. Agents receive only raw pixel observations
from the UI, rendered as 1280×720 RGB images. Structural
information is not available. The action space includes
18 low-level operations, such as mouse move(x, y),
mouse click(x, y), keyboard type(text), and
scroll(dx, dy). These actions operate in pixel coor-
dinates and approximate human-like GUI interactions.

In both modes, the environment also provides a natural lan-
guage instruction that defines the available actions and their
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parameters, facilitating integration with language models.

4. Agents
To provide comprehensive reference points for various
methodological approaches, we evaluated a range of agents.
These include random baselines, heuristic search meth-
ods, established techniques from existing literature, and
approaches that take advantage of oracle information. The
latter, particularly for Screen mode, helps establish an un-
derstanding of potential performance ceilings when, for
instance, perfect bounding-box information for interactive
elements is assumed. This variety allows for a clearer de-
lineation of challenges and capabilities specific to UI explo-
ration.

A key consideration in our evaluation is the distinction be-
tween agents operating in the Structured mode versus Screen
mode, each with its own observation and action space con-
straints (see Section 3.4).

4.1. Baselines

We include several baseline agents to contextualize the per-
formance of our proposed method and highlight specific
exploration challenges. In the case of Screen mode, many
agents such as GUI-Bee rely on the UI context grounding
phase as part of agent execution. This phase is responsible
for the extraction of potential actions from screenshots. In
order to isolate it’s effects on exploration and help ensure a
fair comparison of their search strategies rather than their
visual grounding capabilities, we provide certain agents ac-
cess to perfect information (such as bounding boxes) of
interactive elements on the webpage. Such agents are said
to possess “oracle” information.

Random Agent: This agent serves as a fundamental base-
line. In Structured mode, the agent performs one of
the following actions uniformly at random: scroll up,
scroll down, go back, and click (for each of the
DOM elements). In Screen mode, the agent chooses one
of the following actions: scroll up, scroll down,
go back, and click on a random pixel with weights
0.09, 0.09, 0.02, and 0.80, respectively.

Heuristic Random Agent: This agent assumes access to
the perfect bounding-box information of interactive DOM
elements on the webpage. The agent selects an action uni-
formly at random from the list of click actions for each
of the interactive DOM elements, along with scroll up,
scroll up and go back. In the Screen mode, the agent
limits the click actions to only the elements visible on the
screen.

URL-Space Search (BFS & DFS): These baselines oper-
ate in the Structured mode by extracting hyperlinks from

the DOM tree. We apply both Breadth-First Search (BFS)
and Depth-First Search (DFS) strategies to systematically
explore the discovered URL space.

GUI-Bee‡: As a baseline from the literature, our implemen-
tation adapts the GUI-Bee algorithm (Fan et al., 2025). It
extracts click, scroll, and go-back actions based on Q-value
estimates derived from a Q-table. To maintain simplicity and
focus on the core exploration dynamics, our version omits
the model-based Q-value reestimation step. This agent is
primarily designed for and evaluated in the Screen mode.

Human Evaluation: To provide a critical reference point,
we include performance data from human evaluators. Three
participants with varying levels of familiarity with the Git-
Lab instance were involved: a proficient user very familiar
with the specific GitLab instance, a developer familiar with
the underlying technology, and an amateur non-technical
user. Participants were asked to identify all the functions
that Gitlab provides, and their interactions were captured
for 1 hour. More details can be found in Appendix B.

Algorithm 1 UIEXPLORE-ALGO: Exploration Loop
Require: start state s0, NM number of macro-actions, NA

number of atomic-actions
1: G← {} {knowledge graph with visited states}
2: s← s0
3: while True do
4: for i = 1 to NM do
5: (sd, A)← describe state and macro actions(s)
6: aM ← choose novel macro action(s, A, G)
7: while not finished(aM ) and step < NA do
8: aA ← act agent.execute(aM )
9: end while

10: G← G ∪ {s, sd, A, aAi..}
11: end for
12: s← goto(choose frontier macro action(G))
13: end while

4.2. UIExplore-AlGo

Our algorithm is a Go-Explore–style framework that treats
UI exploration as goal-directed map-building. At every step
we prompt GPT-4o to produce a compact natural-language
description of the state and possible next actions. These tex-
tual outlines, rather than raw screenshots, become the keys
in our novelty table; this makes the scorer resilient to vi-
sual drift (e.g., GitLab’s theme switch) while still rewarding
unseen functionality.

Exploration proceeds hierarchically. GPT-4o first suggests
macro-actions (e.g., “create project”) that can unlock whole
new regions of the state space but would be prohibitively
slow to discover with atomic actions alone. Within a macro-
action, a smaller model (Claude) executes up to NA atomic
steps, giving us the best of both worlds: deliberate high-level
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search as well as fast, low-level control.

A candidate macro-action is ranked by a tri-objective score,
(i) predicted novelty of its endpoint, (ii) dissimilarity from
past trajectories (to avoid rabbit holes), and (iii) an im-
portance prior from GPT-4o that favours actions likely to
unlock potentially new areas of functionality. This mixture
biases the agent toward cumulative, long-horizon payoff
instead of one-step curiosity.

Although we can issue a goto to return to a previously
visited state, the restored environment may not perfectly
reproduce the original (e.g., form inputs may be lost). To
mitigate this, the agent executes several macro-actions be-
fore “teleporting” again, amortizing the cost of resets and
enabling batch exploration of multiple potential frontiers.

Algorithm 1 summarises the loop; full prompts and an an-
notated trajectory appear in Appendix F.

5. Experimental Setup
Our experimental setup evaluates six agents across three Git-
Lab environment levels (Abundant, Moderate, and Sparse)
and two interaction modalities: Structured (with DOM ac-
cess) and vision-based Screen mode. We use HUFO as
the primary metric, normalized against human reference
scores specific to each mode and environment level. Each
agent performs a single exploration trajectory of up to 2,000
atomic actions. We also report a multi-seed analysis for the
Screen-Moderate setup detailed in Section 6.2.

We leveraged the BrowserGym framework with Playwright
for environment control and Docker for containerization.
Performance is normalized by atomic action count to en-
sure agent-centric fairness, isolating policy efficiency from
hardware or network latencies.

For our proposed agent, UIEXPLORE-ALGO, the state and
macro-action descriptions are generated by gpt-4o-2024-11-
20, while the action execution relies on claude-3-5-sonnet-
v2@20241022, chosen for its Screen coordinate prediction
capabilities. UIEXPLORE-ALGO uses a maximum of 6 and
12 atomic actions per macro-action in the Structured and
Screen modes, respectively, reflecting the differing action
complexities.

6. Results
This section presents key findings from our benchmark, in-
cluding agent performance, ablation studies, and qualitative
insights into exploration patterns and challenges.

6.1. Exploration Performance

Our primary results, summarized in Table 1 and visualized
in Figure 2, report human-normalized UI Functional Discov-

ery (HUFO). The scores are normalized using the average
human exploration performance (Table 2), highlighting the
significant variability between novice and expert human
runs, establishing an expert-level performance benchmark
of 114% (Structured) and 117% (Screen) for HUFO. The
absolute values for UFO are reported in Table 4., We also
report UFT at 2, 000 steps in Table 3 for the agents. The
current implementation UFT is based on the Structured
mode action space, and would require further development
to support the Screen mode.

Table 1. Human-normalized scores (%) for UI Functional Discov-
ery (HUFO) at 2,000 steps for each level (Abundant(A), Moder-
ate(M), Sparse(S)), and mean normalized scores across all levels
at 500, 1,000, and 2,000 steps. Results for a single seed.

Levels Average
Agent A@2k M@2k S@2k @500 @1k @2k

Structured Mode
DFS 15.7 21.3 2.4 7.5 10.1 13.2
random 44.1 17.4 3.7 14.1 18.1 21.7
h-random* 70.9 25.3 5.0 22.0 27.3 33.7
BFS 89.5 30.5 5.8 27.2 38.6 41.9
UIEx-AlGo 80.4 74.9 76.4 49.5 60.8 77.2

Screen Mode
random 37.6 9.0 3.1 10.4 13.5 16.6
h-random* 67.6 23.3 5.2 21.5 26.8 32.1
GUI-Bee‡* 69.9 25.8 5.3 22.9 28.1 33.7
UIEx-AlGo 59.3 60.1 57.6 21.0 37.3 59.0

* agent has access to oracle information

Table 2. UI Functional Discovery counts after 1 hour of exploration
in Abundant level for human participants. We report results for
three levels of expertise: novice, intermediate, and expert, along-
side the average used as base to normalize HUFO scores.

Mode Novice Intermediate Expert Base (Avg)

Structured 2196 2228 2722 2382
Screen 1458 1481 1880 1606

UIEXPLORE-ALGO achieves the highest mean normalized
scores across difficulty levels at 1,000 and 2,000 steps in
both Structured and Screen modes, surpassing all baseline
agents, even those leveraging oracle information. However,
no single agent consistently outperforms the rest in all sce-
narios. UIEXPLORE-ALGO, however does outperform the
rest on UFT, highlighting the fact that the algorithm inter-
acts with different types of elements without repetition in
the Structured mode.

In Abundant level, simple heuristic agents such as heuristic-
random and BFS, outperform UIEXPLORE-ALGO, partic-
ularly in the early stages of exploration (first 500 steps).
This result suggests that abundant interactive elements al-
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Figure 2. Progress of human-normalized UI Functional Discovery (UI-FUNCTIONALITIES OBSERVED) over exploration steps (atomic-
actions). Top row: Screen mode; bottom row: Structured mode. Columns: Abundant, Moderate, and Sparse difficulty levels.

Table 3. Scores for UI-FUNCTIONALITIES TESTED (UFT) at
2,000 steps for each level (Abundant(A), Moderate(M), Sparse(S)),
and mean scores across all levels at 500, 1,000, and 2,000 steps.
Results are reported for a single seed for agents in Structured mode
and Screen mode for agents having access to perfect bounding box
information.

Levels Average
Agent A@2k M@2k S@2k @500 @1k @2k

Structured Mode
DFS 1.4 4.5 0.2 1.3 1.7 2.0
random 8.8 5.6 2.7 2.4 3.6 5.7
h-random* 17.2 9.2 3.0 4.5 6.9 9.8
BFS 16.8 7.7 1.7 5.4 8.0 8.7
UIEx-AlGo 34.2 26.4 29.6 13.8 19.4 30.1

* agent has access to oracle information

low heuristic strategies to rapidly discover functionalities.
Specifically, BFS excels initially due to quick access to di-
verse functionalities directly reachable within a few levels
of URL depth, plateauing only when delving into deeper
content exploration (e.g., repository internals). Conversely,
DFS performs poorly, becoming quickly trapped in repet-
itive depth interactions due to an early redirect to the vast
help section of Gitlab.

UIEXPLORE-ALGO demonstrates significant advantages
in the Sparse level, where deliberate, multistep actions
(e.g., creating users or projects) are essential to discover
deeper functionalities. This indicates its ability to prioritize
meaningful interactions effectively. UIEXPLORE-ALGO
achieves notably lower performance in the Screen mode
compared to the Structured mode, underscoring the greater
challenges posed by purely visual interaction and the need
for improved visual grounding in agents.

Interestingly, the random selection baseline achieves rela-
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Figure 3. Ablation results on the Screen–Moderate setting: human-
normalized UI Functional Discovery (UI-FUNCTIONALITIES OB-
SERVED) over 2,000 atomic actions. We compare the default
UIEx-AlGo (solid green) against three ablations (i) single-macro
horizon (NM=1), (ii) tight atomic-action budget (NA=2), and
(iii) no priority/novelty, as well as two additional random seeds.

tively high scores in Abundant level (up to 44% HUFO), em-
phasizing that even naive strategies can produce substantial
exploration in highly interactive environments. GUI-Bee‡
remains slightly more effective than the heuristic-random
approach, likely due to the complexity and the large action
space of GitLab’s interface.

Overall, while UIEXPLORE-ALGO consistently delivers
strong exploration performance across modes and levels, the
results reveal significant room for improvement (up to 22%
behind expert human exploration in Structured and 40% in
Screen modes). These results set a clear benchmark and
motivate future advancements in UI exploration algorithms.

6.2. Ablation & analysis

To assess the robustness and design choices of UIEXPLORE-
ALGO, we performed three targeted ablations in the
Screen–Moderate setting (Figure 3). We also report results
over three random seeds to characterize variance.
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Seed Variability. Across three runs of UIEx-AlGo, two
seeds achieved comparable performance (within ±5% of
the default), while Seed 1 underperformed, matching GUI-
Bee‡ and heuristic-random. Inspection revealed that Seed
1 failed to execute the create project macro in all
three high-priority attempts (blank project, template import,
continuation), due to novelty-based avoidance of retrying
incomplete macros. This suggests that our current macro-
completion feedback is insufficiently corrective, introducing
high variance that lowers confidence in single-seed ablation
interpretations. However, apart from Seed 1, all runs, includ-
ing all ablations, successfully created a repository within
the first 250 actions, indicating that early bootstrap success
is a key driver of performance gap.

Macro-Action Horizon (NM = 1). Setting NM=1 (one
macro before selecting a new frontier) yields performance
nearly on par with baseline heuristics, as expected: frequent
frontier re-selection increases the chance of quickly discov-
ering high-value UI segments.

Atomic-Action Budget (NA = 2). Capping atomic actions
per macro to 2 produces a slight drop in overall coverage
(–5% at 2 k steps). Qualitative traces show that the agent
generates partial macros, trying to continue the previous
intent, requiring stitching tasks such as “Create repository”
via multiple macros. With only two atomic steps, comple-
tion intent often spills over additional selections, reducing
efficiency. However, the decline is modest, which implies
that our prompting encourages continuation of the previous
intent (Sect. F).

Priority & Novelty Removal. When both macro-action
prioritization (LLM importance) and novelty scoring are
ablated, selecting frontier and in-state macros uniformly
at random, we observe a significant performance collapse
(–10% at 2 k steps). This confirms that prioritization is
critical: without it, the agent drifts into redundant or low-
value UI macro-actions.

7. Call for applications
We encourage the community to look beyond leaderboard
scores and use UIEXPLORE-BENCH and its exploration
dataset as a platform for broader research, including but not
limited to:

Downstream Exploitation with Shared Exploration Data.
Develop and compare algorithms that leverage our fixed
exploration dataset for solving downstream tasks. For exam-
ple, explore retrieval-augmented planning (RAG) for condi-
tioning agents on prior exploratory experience to improve
task-solving performance.

Self-Supervised Metrics. Design and evaluate new self-
supervised metrics to measure exploration progress at test

time, including metrics not reliant on privileged structural
information.

Reinforcement learning. Train agents with RL to maxi-
mize UFO and learn a better exploration policy, without
handcrafted novelty heuristics.

Intrinsic Reward Learning. Train agents to maximize
exploration-specific rewards (e.g., novelty, coverage, or “as-
sumption discovery”). For instance, our dataset enables
agents to analyze macro-action outcomes: if an agent pre-
dicts a button is for “merge” but the actual outcome differs,
it can detect such mistaken assumptions and build intrinsic
rewards for discovering surprises. We can train policies that
seek out and correct the agents own misconceptions.

We welcome creative uses of UIEXPLORE-BENCH for new
agent designs, metric development, or experimental proto-
cols. All resources are publicly released to enable repro-
ducibility and community-driven advancement.

8. Discussion and Future Work
We introduced UIEXPLORE-BENCH, a dedicated bench-
mark for evaluating user interface exploration by au-
tonomous agents. Motivated by a growing need in the com-
munity, UIEXPLORE-BENCH provides a standardized en-
vironment for isolating and studying exploration behaviors.
We launch a suite of baselines alongside our proposed algo-
rithm UIEXPLORE-ALGO, to highlight key challenges and
establish reference points for progress. UIEXPLORE-ALGO
combines novelty- and preference-based prioritization with
a hierarchical approach to efficient, structured exploration.

Our current setup focuses on a single application (GitLab),
which, while realistic, may not fully capture the diversity of
UI exploration challenges. Moreover, our algorithm does
not yet incorporate policy-based backtracking, which could
further enhance performance.

Future extensions of UIEXPLORE-BENCH could include
additional applications and introduce more subtle or less
conventional interactive elements to probe agent generaliza-
tion and robustness.

We believe that our work aligns with recent calls to move
beyond static datasets and toward continuous, experience-
driven learning (Silver & Sutton, 2025), which holds
promise for agents capable of long-term adaptation and
discovery.

We invite the community to contribute with new environ-
ments, metrics, and agents to UIEXPLORE-BENCH, and
to consider our call for action Section 7. Strengthening UI
exploration is a key step toward building truly autonomous
and robust agents for real-world digital tasks.
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Software, Data and Leaderboard
Benchmark Release. We will release the full UIEXPLORE-
BENCH benchmark environments, our exploration data
set, open source tools to load and explore the collected
dataset and the reporting code, within two months of
acceptance. Public Leaderboard. A continuously up-
dated leaderboard will be hosted, ranking submissions by
UI-FUNCTIONALITIES OBSERVED at 2,000 steps, with ad-
ditional reporting required at 500 and 1,000 steps. Scores
must be provided separately for the DOM and GUI modes,
and each submission must include a link to the trajectory
data and, preferably, the code.

Limitations
Budget Constraints. Due to the limitations of the com-
pute and API rate, our experimental evaluation was limited
in the number of seeds, agent variants and ablation runs.
For efficiency, we used a hybrid setup: GPT-4o for state
description and macro-action generation, and Claude for
action selection, enabling balanced querying under usage
caps. Although this configuration was fixed across runs, it
would be valuable future work to systematically evaluate
different combinations of models for each component to
better understand their respective contributions.

Scope. The benchmark currently targets a single applica-
tion (GitLab) and supports exploration with goto commands.
Although this reflects real-world usage, it may reduce explo-
ration challenge compared to stricter navigation constraints.
We plan to release a goto-free version to support more rigor-
ous future comparisons.

Impact Statement
Positive Impact. This work aims to advance the study of
structured exploration in user interfaces, enabling agents to
autonomously build actionable knowledge from real-world
environments. Potential applications include more reliable
task automation, better user accessibility testing, and scal-
able collection of experience data for training downstream
models.

Potential Risks. As with any tool that improves understand-
ing of the environment, there is a risk of misuse such as
aggressive scraping and automating spam-like interactions.
However, our benchmark is designed for sandbox environ-
ments and focuses on measuring functional discovery rather
than real-world automation. We encourage future work to
build safeguards when deploying such agents broadly.
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Table 4. Scores for UI-FUNCTIONALITIES OBSERVED (UFO) at 2,000 steps for each level (Abundant, Moderate, Sparse), and mean
scores across all levels at 500, 1,000, and 2,000 steps. Results are reported for a single seed.

Levels Average
Agent A@2k M@2k S@2k @500 @1k @2k

Structured Mode
DFS 375.0 508.0 57.0 179.3 241.0 313.3
random 1050.0 414.0 88.0 335.7 431.3 517.3
BFS 2132.0 726.0 137.0 648.3 919.7 998.3
heuristic-random 1689.0 602.0 118.0 523.3 651.3 803.0
UIExplore-AlGo 1914.0 1784.0 1821.0 1180.0 1447.7 1839.7

Screen Mode
random 604.0 144.0 50.0 167.0 217.3 266.0
heuristic-random 1086.0 375.0 84.0 346.0 430.3 515.0
GUI-Bee‡ 1123.0 415.0 85.0 368.3 450.7 541.0
UIExplore-AlGo 952.0 966.0 925.0 337.3 598.7 947.7

Figure 4. UFO by time in Structured mode (left) and Screen mode (right) for three human participants having various levels of expertise

A. Extended results
The absolute UI-FUNCTIONALITIES OBSERVED counts can be found in Table 4.

B. Human evaluation
We collected exploration trajectories from three human participants with different levels of expertise: novice, intermediate,
and expert. Participants were asked to “explore the Gitlab website to discover the functionalities exposed by the platform”
in Abundant level. The data were collected for approximately one hour. Observations were captured at a rate of at most one
observation per second. The observation captures were paused while the web pages were being loaded to avoid redundant
data captures.

The graph of human exploration over 1 hour can be found in Fig. 4. Since the different human annotators captured a slightly
different number of observations, the x-axis has been renormalized to be 1 hour.

C. Metric Formalism
Our primary metric, UFO, is based on functionalities exposed by an application in a given observation. A functionality is
defined as a group of individual actions that share transitional and visual characteristics.
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Figure 5. Functionality groupings in project page (left) and create group page (right). Within each image, boxes of the same color are
grouped under the same functionality.

Figure 6. UFO Structured Mode (left) includes all functionalities present in the DOM regardless of their visibility and interactivity status
and UFO Screen Mode (right) includes functionalities that are visible and interactive

For Gitlab environment, the transitional characteristics are extracted using DOM tags. All button, input, select,
and textarea tags that are not disabled are considered as providing inputs for web state transitions. The a (link) tags
are grouped based on URL-patterns specific to Gitlab. For example, links to org1/project1 and org2/project2
are treated to provide the same functionality – navigation to a project, {org}/{project}. The visual characteristics
are extracted primarily by observing the class attribute associated with the DOM tags. However, this is insufficient for
addressing complex styling within Gitlab. To address the corner cases, hand-crafted rules are applied for grouping visual
characteristics based on DOM attributes. Additional examples of groupings on the Gitlab “project page” and “create group”
can be found in Fig. 5.

Our metrics can be applied for both the Structured mode and the Screen mode. The Structured mode considers all the
functionalities that are present in the DOM structure of the webpage. Screen mode only includes functionalities that are
visible and actionable within the browser’s viewport. An example showing this difference can be found in Fig. 6.

D. Environment Details
UIEXPLORE-BENCH uses a customized version of the Webarena (Zhou et al., 2023b) Gitlab environment.

In order to contain agents within the environment, we redirect all access to external websites and file-upload dialog boxes to
a boundary page. The boundary page displays a message stating that the action is to be considered successful, along with a
home button and a go-back button. Additionally, in the Abundant and Moderate modes, all attempts to log-out are disabled
and redirected to a log-out-disabled page. Fig. 7 shows the visual representation of these two pages.

Environment reset details.
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Figure 7. Boundary Page (left) and Logout-disabled Page (right)

Figure 8. Indigo theme (left) and Light Red theme (right) updates the DOM at body tag (depth 1)

1. Abundant mode resets to the default Webarena’s Gitlab instance.

2. Moderate mode resets to the default Webarena’s Gitlab instance followed by the deletion of all Gitlab projects. All
users are retained.

3. Sparse mode resets to the default Webarena’s Gitlab instance followed by the deletion of all Gitlab projects and users.

E. D3C Discussion
Fig. 8 shows an example in which changes in the user preference of theme affects D3C computation. Updating the theme
modifies the class attribute of the body tag. Since this change occurs at depth 1, all pages visited under one theme
is treated to be distinct from the same pages visited under another theme, thereby incentivizing the exploration agent to
change themes often.

F. UIExplorer Agent Details
Our proposed algorithm, UIEXPLORE-ALGO, is designed for efficient and structured UI exploration, combining insights
from hierarchical exploration strategies and novelty-driven search inspired by Go-Explore (Ecoffet et al., 2019). Its core
features include macro-actions for high-level interaction, novelty-based prioritization, and systematic frontier state selection.
We provide the pseudocode in Algorithm 1, and further detail its primary components and computation methodologies here.

Core Exploration Loop. The algorithm operates by repeatedly describing the current UI state using GPT-4o to generate
textual descriptions of states and macro-actions (higher-level UI interaction tasks). These macro-actions encapsulate
sequences of atomic UI interactions (e.g., filling a form, creating a repository). The agent alternates between exploring
novel macro-actions from the current state and periodically revisiting frontier states identified as promising based on their
exploration potential.

Knowledge Graph and Dataset. All states, macro-actions, and their resulting state transitions are recorded in a semi-
structured dataset G, organized as a knowledge graph. We publicly release this dataset as part of our benchmark to facilitate
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downstream research, enabling agents to utilize past exploration experiences.

Novelty-Based Macro-Action Selection. Novelty-driven macro-action selection involves three primary considerations:

- Predictive State Novelty GPT-4o generates an anticipated future state description sf for each candidate macro-action. Let
F represent embeddings of predicted future state descriptions andR embeddings of actually experienced state descriptions.
We compute novelty via cosine similarity:

Noveltystate(a) = 1−max
r∈R

fa · r
∥fa∥∥r∥

, where fa ∈ F

- State-Action Pair Novelty We calculate novelty between candidate state-action embeddings C and embeddings of
previously executed state-action pairs P:

Noveltyaction(a) = 1−max
p∈P

ca · p
∥ca∥∥p∥

, where ca ∈ C

- Importance Ranking by GPT-4o GPT-4o also ranks macro-actions based on their predicted complexity and exploration
depth potential. The top-ranked actions by GPT-4o are given additional priority to balance purely novelty-driven selection.

Macro-action Choice Macro-actions are selected in two stages: a novelty-based filtering step followed by GPT-based
prioritization.

- Filtering.

• In the frontier-based setting, we select the top 20 macro-actions with the highest novelty scores.

• In the local exploration setting, we select the top 30% most novel macro-actions available at the current state.

- Prioritization. From the filtered set Anovel ⊆ A, the final macro-action is chosen based on GPT-4o’s ranking:

a∗M = argmax
a∈Anovel

RankGPT (a)
−1

That is, we select the most important macro-action (according to GPT-4o) among the most novel ones.

Frontier State Selection Periodically, the algorithm selects frontier states—previously encountered states judged promising
based on novelty and potential exploration gains. We reuse the novelty computation described above, applied to all recorded
states and their available macro-actions, choosing frontier states-actions with maximal exploration potential.

Macro-action Execution and Atomic Actions The execution of macro-actions is handled by a secondary agent, Claude,
optimized empirically for the direct execution of low-level UI actions. Claude’s responsibility is executing sequences of
atomic actions until the macro-action goal is completed or a step limit NA is reached.

Backtracking and Goal-Conditioned Navigation To efficiently revisit frontier states, we leverage a built-in goto function.
For applications lacking this capability, future extensions could incorporate learned goal-conditioned navigation policies as
suggested in related work (Ecoffet et al., 2021).

Implementation and Hyperparameters Full algorithm details, including prompt templates and additional hyperparameter
settings, are available publicly alongside the benchmark release to facilitate reproducibility and extension.

F.1. Prompts

Describe state and macro-actions prompt:

<system prompt>
You are an autonomous UI explorer. Your goal is to map out an application’s full feature set by
systematically driving it from its current state into new states that unlock yet more functionality.
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Guiding principles:
1. **Depth-first discovery** Order your actions by their likelihood of leading you deeper into the
app|unlocking new screens, flows, or features.
2. **Complex over trivial** Prefer composite tasks (e.g. \submit registration form") over atomic ones
(\click this icon").
3. **Cover all unique interactive types** Ensure that each type of interactive element (e.g. buttons,
links, icons, inputs) is exercised by at least one action. You don’t need a separate task for every
instance|group similar elements into a single representative action (e.g. \click one repository link" or
\try clicking a like button"). If needed, use actions like \click one of the X buttons" or \click each X
button" to generalize. Even if you don’t know what an icon or button does, include an action to \interact
with" it.
4. **Keep it in-app** Actions that navigate outside the app (external links, file uploads, downloads) go at
the end.
5. **ASCII only** Use plain ASCII for all descriptions and actions.
6. **Fallback on dead-ends** If you hit a missing page or error boundary, issue a \go back" action.
When you receive a state you’ll reply in JSON:
‘‘‘json "state": "<text description of the current screen, its inputs, icons, buttons and links>",
"actions": [ "<highest-priority action>", "... next action ...", "... lowest-priority action ..." ] ‘‘‘
Your goal is to ensure all unique interactive element types are covered by at least one action, with grouping
used when multiple similar elements are present.
</system prompt>
<user prompt>
Current application state
state description
Last action taken last action
Generate your JSON response based on the system rules above. Focus first on sequences that open up new app
modules (e.g. \complete registration"), then on other in-app features, then on external links.
</user prompt>

Act-agent prompt for Structured Mode:

<system prompt>
You are **AxBrowser-Agent**, a deterministic web-automation specialist. You only see the page through an

**AXTree** snapshot that is refreshed after every action.
TASK
1. Fulfil the user’s goal.
2. If the goal seems reached, finish with ‘<action>send msg to user("completed")</action>‘
3. If you are stuck (e.g. the last 2-3 actions had no effect, or the required element is missing) finish
with ‘<action>report infeasible()</action>‘
ACTION FORMAT

* Use the element number id (without the ’browsergym id ’ prefix) * Return **exactly** the following XML tags
per reply, nothing else:
‘‘‘xml <previous action outcome>...</previous action outcome>
<action description>...</action description>
<action>click("element id")</action> ‘‘‘
Action space is provided below:
action space
REASONING GUIDELINES (keep your chain-of-thought PRIVATE)
Always inspect the new AXTree (**Current page**) after every action.
Detect dropdowns/menus: If the clicked element now has expanded="true" or you see new list / menu items,
assume a sub-menu opened.
Prefer selectors that match AX name, label, value, or role. When several candidates exist, choose the one
closest in the tree to the element you just interacted with.
Avoid loops: if the URL AND top-level AXTree snippet have not changed after two actions, rethink or quit.
Stop if the **Current page** content reflects the ambiguous goal, otherwise, continue exploring.
Tasks can be ambiguous or slightly wrong; interpret generously.
</system prompt>
<user prompt>
# Mini-task
goal object
Recent history (last steps, from oldest to newest. - n steps before.)
<action history>
forhinactionhistory[:: −1]
<step h.idx >
acted= <previous action h.idx > h.action </previous action h.idx >
saw = <previous observation h.idx > h.observation </previous observation h.idx >
</step>
</action history>
Current page
URL: open tabs
state description

**Reply with the following XML tags, according to the instructions and action space:**
‘‘‘xml
<previous action outcome>...</previous action outcome>
<action description>...</action description>
<action>...</action>
‘‘‘
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</user prompt>

Act-agent prompt for Screen Mode:

<system prompt>
You are **GUIBrowser-Agent**, a deterministic web-automation specialist. You only see the page through a

**screenshot**. You are a computer use agent.
TASK
1. Fulfil the user’s goal.
2. If the goal seems reached, finish with ‘<action>send msg to user("completed")</action>‘
3. If you are stuck (e.g. the last 2-3 actions had no effect, or the required element is missing) finish
with ‘<action>report infeasible()</action>‘
ACTION FORMAT
Return **exactly** the following XML tags per reply, nothing else:
‘‘‘xml <previous action outcome>...</previous action outcome>
<action description>...</action description>
<action>click("element id")</action> ‘‘‘
Action space is provided below:
action space
REASONING GUIDELINES (keep your chain-of-thought PRIVATE)
Always inspect the new screenshot (Current page) after every action.
Detect dropdowns/menus: If the clicked element now has expanded or you see new list / menu items, assume a
sub-menu opened which could give you further options for the goa.
Avoid loops: if the visual state has not changed after two actions, rethink or quit.
Tasks can be ambiguous or slightly wrong; interpret generously. You can also take actions that could lead
later to the goal. Keep exploring until you think the goal has been reached.
</system prompt>
<user prompt>
# Mini-task
goal object
Recent history (last steps, from oldest to newest. - n steps before.)
<action history>
<step h.idx >
acted= <previous action h.idx > h.action </previous action h.idx >
saw = <previous observation h.idx > h.observation </previous observation h.idx >
</step>
</action history>
Current page
URL: open tabs
state description
Analyze first the **Current page** content to understand very well what was the outcome of the last action
and what is the current state of the page.

**Reply with the following XML tags, according to the instructions and action space:**
‘‘‘xml
<previous action outcome>...</previous action outcome>
<action description>...</action description>
<action>...</action>
‘‘‘
</user prompt>

F.2. Agent exploration trajectory example

Partial Trajectory: Realizing Action Failure and Retrying

STEP 1: AGENT OBSERVES THE CURRENT UI STATE

State Description and Macro-Actions

State: The application is currently displaying a GitLab repository pa titled ’My awesome project’. It is showing the file structure
on the left (e.g., app, bin, config, db, etc.), a file editor in the center displaying the contents of a file named ’.browserslist’, and a
highlighted commit button (’Create commit...’) at the bottom. The top navigation bar features search bar (’Search GitLab’), a
project dropdown for branches or tags (currently ’master’), and various icons like settings, issues, and merge requests..
Available Macro-Actions:

• ”Interact with the branch/tag dropdown to explore branch-related features.”

• ”Click the ’settings’ icon in the top navigation bar to access project settings.”

• ”Click the ’issues’ icon to explore issue-related functionality.”

• ”Click the ’merge requests’ icon to explore merge request-related functionality.”
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Figure 9. UI State: GitLab repository view with file tree and top navigation bar.

• ”Click on a specific file or folder (e.g., ’app’) in the file tree to navigate to its content.”

• ”Edit the text in the ’.browserslistrc’ file.”

• ”Interact with the commit history link in the bottom left corner to se previous commits.”

• ”Interact with the ’...’ menu next to the file name to explore additional file options.”

• ”Access the left sidebar toggle button to explore collapsing or expanding sidebar functionality.”

• ”Click the ’help’ or question mark icon in the top navigation bar to explore help/documentation options.”

STEP 2: AGENT SELECTS A MACRO-ACTION

Chosen Macro-Action

Goal: Click the ’settings’ icon in the top navigation bar to access project settings.

STEP 3: AGENT EXECUTES FIRST ATTEMPT

Attempt 1

Previous Outcome:

I am looking at a GitLab project page with a file browser interface. The top navigation bar contains several
icons including notifications, merge requests, and settings.

Action Description:

I will click the settings/cog icon located in the top right corner of the navigation bar.

Atomic Action: mouse click(1171, 23)

STEP 4: AGENT RECOGNIZES FAILURE AND RETRIES

Attempt 2 – Retry

Previous Outcome:

The previous click did not open the project settings. I’m still in the repository view showing the file
browser interface. There’s a settings icon in the top navigation bar that may be in a different position than
previously attempted.
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Figure 10. Post-action: The UI did not change, agent remains in repository view.

Action Description:

I I will try clicking the settings icon (gear/cog icon) that appears to be located in the top navigation bar in
a different position than previously attempted.

Atomic Action: mouse click(1170, 80)
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