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ABSTRACT
We introduce Optimal Transport MDPs (OT-MDPs), a framework

for learning principled latent world models via optimal transport.

Our approach formulates a generic optimal transport objective that

trains a generative model of the environment by minimising a cus-

tomisable cost function, which quantifies the discrepancy between

latent and real trajectories. Through this perspective, we highlight

the limitations of reconstruction-based methods and establish con-

ditions on the cost function that enable theoretical guarantees.

The quality of the learned model allows us to integrate reinforce-

ment learning and planning methods. In particular, we leverage

model-based value expansion to refine value estimates, providing

rigorous theoretical justification. Additionally, we examine the use

of Monte Carlo tree search and provide a theoretical analysis of the

assumptions under which its application remains sound. Empirical

evaluation across four MinAtar environments demonstrates that

OT-MDPs yield high-fidelity models, leading to strong performance.

Moreover, our results reveal challenges associated with planning in

the latent model, suggesting critical directions for future research.
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1 INTRODUCTION
Reinforcement learning (RL) provides a framework for solving com-

plex sequential decision-making problems by optimising policies

through trial and error [36]. Scaling RL to high-dimensional envi-

ronments requires effective representation learning to extract mean-

ingful state encodings while discarding irrelevant details [8, 43]. As

an alternative to direct representation learning,model-based RL em-

ploys an auxiliary model of the environment to generate imagined

rollouts [26], facilitate planning [35], or refine learning targets [41].

In this work, we unify representation and model learning by train-

ing a principled latent model whose latent state representations are

directly used to optimise the policy.

A key challenge in model learning is ensuring that the latent

model accurately reflects the true environment. Prior work has

addressed this by leveraging bisimulation metrics [17, 37], which
enforce similarity between functionally equivalent states in the
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latent space. Such models provide strong theoretical guarantees

[18, 43] and enable efficient policy learning [3, 28]. Among these,

theWasserstein auto-encoded Markov decision processes (WAE-MDP)

framework has demonstrated both theoretical soundness and empir-

ical success by minimising the optimal transport distance between

the real environment and its latent reconstruction [11, 12].

We introduce Optimal Transport MDPs (OT-MDPs), a generalisa-

tion of WAE-MDPs that allows custom cost functions, providing

greater flexibility in shaping latent representations for RL. This

approach facilitates a deeper analysis of the limitations inherent to

reconstruction-basedmethods and offers a direct means to structure

representations that enhance policy learning. As a key instantiation,

we propose value equivalence, which aligns the values of real and

latent critics. Since the encoder is trained to map bisimilar states

to similar representations, the policy can directly leverage it to

enhance learning. To further exploit the latent model, we incorpo-

rate model-based value expansion (MVE) [16] into policy learning,

yielding more accurate target values. We establish an upper bound

on the discrepancy between true and MVE-derived values, which

diminishes as model and critic quality improves. Furthermore, we

present a corollary that underscores a limitation of our framework

and suggests directions for future work. Additionally, we estab-

lish a theoretical foundation for applying Monte Carlo tree search

(MCTS) in an OT-MDP. Extensive experiments show that OT-MDPs

learn accurate world models and effectively combine planning with

learning, resulting in strong performance in challenging environ-

ments.

2 RELATEDWORK
Representation Learning in RL. Bisimulation metrics have been
widely considered for learning state representations. Zhang et al.

[43] propose learning a state representation for continuous con-

trol in pixel-based environments without relying on reconstruc-

tion terms, training the policy directly on a latent space; Rezaei-

Shoshtari et al. [34] introduce a policy gradient theorem applicable

to abstract MDPs. A common theme in these works is the assump-

tion of Gaussian transition kernels and the use of Wasserstein-2 dis-

tances to maintain computational tractability, which is not required

with our approach. Another common assumption is deterministic

MDPs, where computing exact Wasserstein distances is straightfor-

ward and leads to the development of several algorithms for this

setting [7, 39]. Gelada et al. [20] propose learning a latent model as

an auxiliary task for representation learning, offering strong the-

oretical justification for their approach. However, in practice, the
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Figure 1: A high-level overview of the OT-MDP framework. The OT-MDP component is presented in Section 5 and is responsible
for learning the latent model and policy. The planning approaches are explained in Section 6 and provide improved learning
targets for the policy.

algorithm uses the deterministic assumption to avoid computing

the Wasserstein distance. To overcome challenges in learning exact

bisimulation metrics, Castro et al. [8] introduce MICo, a diffuse

metric integrated with RL agents for effective representation learn-

ing. Finally, Agarwal et al. [1] present a contrastive representation

learning technique that encodes states with similar optimal policies

closer together in the latent space.

Principled representation. In contrast, our work focuses on learn-
ing a theoretically grounded representation and an accurate ab-

straction of the environment, both with bisimulation guarantees.

Learning latent space models with guarantees (and more particu-

larly, using optimal transport formulation) can be approached via

the Wasserstein-autoencoder [38] and -GAN [2, 23] frameworks

in the (un)supervised setting. Variational and Wasserstein auto-

encoded Markov decision processes [11, 13] have been considered

for distilling RL policies with bisimulation guarantees into tractable

controllers, amenable for formal verification. Incorporating distil-

lation into the RL process has been considered in [3, 10, 13, 14]

by alternating between optimizing DQN or A2C agents and WAE-

MDPs in a round-robin fashion, however all those methods may

suffer from stability issues and require reconstructing the input ob-

servations, which may paradoxically hinder bisimulation learning

in general.

Unifying representation learning andmodel-based approaches.
Other RL methods suggest that learning a latent model is not only

beneficial for sample efficiency, but also to learn a representation

that supports policy learning (evenwhen guarantees lack) [9, 19, 25].

In particular, [9, 25] show that using a discrete representation may

be practically beneficial. Our results demonstrate that this phenom-

enon is theoretically grounded when considering learning bisimu-

lation metrics.

3 BACKGROUND
3.1 Markov Decision Processes
Markov decision processes (MDPs) are used to model sequential

decision-making settings. An MDPM = ⟨S,A, P,R, 𝑠I , 𝛾⟩ is de-
fined as a tuple consisting of a set of states S, actions A, a tran-

sition function P : S × A → Δ(S), a bounded reward function

R : S × A → R, an initial state 𝑠I ∈ S, and a discount factor

𝛾 ∈ [0, 1). When A is a singleton,M is a purely stochastic process

named a Markov chain (MC). A trajectory (𝑠𝑡 , 𝑎𝑡 )𝑡≥0
is an infinite

sequence of states and actions produced inM, so that 𝑠0 = 𝑠I and

𝑠𝑡+1 ∼ P(· | 𝑠𝑡 , 𝑎𝑡 ).
To act in anMDP, we consider stationary policies 𝜋 : S → Δ(A)

mapping states to a distribution over actions. An MDP running

under 𝜋 induces a MCM𝜋 with reward and transition functions

R𝜋 (𝑠) = E𝑎∼𝜋 ( · |𝑠 ) R(𝑠, 𝑎), P𝜋 (· | 𝑠) = E𝑎∼𝜋 ( · |𝑠 ) P(· | 𝑠, 𝑎) along
with a unique probability measure over the produced trajectories

[33]. We write E𝜋 for the associated expectation operator and

E𝜋 [· | 𝑠I = 𝑠] for the one where we fix the initial state ofM to

𝑠 ∈ S. A stationary measure of a policy 𝜋 intuitively yields a dis-

tribution over states likely to be visited under 𝜋 and is formally

defined as a solution of the equation 𝜉𝜋 (·) = E𝑠∼𝜉𝜋 P𝜋 (· | 𝑠). Such a
measure is guaranteed to exist under reasonable assumptions (e.g, in

episodic RL [27]). In RL, the goal is to learn a policy 𝜋 thatmaximises

its discounted expected return from any state 𝑠 ∈ S, which is cap-

tured by the value function 𝑉 𝜋 (𝑠) = E𝜋
[∑∞

𝑡=0
𝛾𝑡R(𝑠𝑡 , 𝑎𝑡 ) | 𝑠I = 𝑠

]
.

3.2 Optimal Transport
Optimal transport (OT) concerns finding the most efficient way to

transform one probability distribution into another, given a spec-

ified cost function [40]. Formally, for two probability measures 𝜇

and 𝜈 defined over spacesX andY, respectively, and a cost function
𝑐 : X ×Y → [0,∞), the optimal transport problem is defined as

OT𝑐 (𝜇, 𝜈) ≜ inf

𝛾 ∈Γ (𝜇,𝜈 )
E

(𝑥,𝑦)∼𝛾
[𝑐 (𝑥,𝑦)] ,



where Γ(𝜇, 𝜈) denotes the set of all joint couplings of 𝜇 and 𝜈 .
When the probability measures are defined over the same space

X and the cost function is given by a metric 𝑑 on X, the problem
specialises to the computation of the Wasserstein distance. The
Wasserstein(-1) distance can be expressed in its dual form as

W𝑑 (𝜇, 𝜈) = sup

∥ 𝑓 ∥𝐿≤1

E
𝑥∼𝜇
[𝑓 (𝑥)] − E

𝑦∼𝜈
[𝑓 (𝑦)] (1)

where ∥ 𝑓 ∥𝐿 denotes the Lipschitz norm of 𝑓 . A generative model

with distribution 𝜈 can be trained to minimise the Wasserstein

distance to 𝜇 using this dual formulation [2, 24].

3.3 Bisimulation
Bisimulation [22, 30] defines equivalence relations between states

from which the agent exhibits similar behaviours, i.e., yielding

identical immediate rewards and transition dynamics. The coarsest
bisimulation relation (i.e., grouping the most states together) is

denoted by ∼. The equivalence class of a state 𝑠 ∈ S is denoted

[𝑠]∼ = { 𝑠′ ∈ S : 𝑠 ∼ 𝑠′ }. Two MDPsM andM′ are bisimilar (de-

notedM ∼ M′) if their initial states are bisimilar, which ensures
identical optimal values. While grouping states into equivalence

classes is appealing, bisimulation is rigid: states with minor differ-

ences in rewards or transitions are deemed completely distinct. To

relax this, bisimulation (pseudo-)metrics 𝑑 : S × S → [0,∞) are in-
troduced to provide a numerical similarity measure [18]. The bisim-

ulation distance 𝑑
∼
is the unique fixpoint of the operatorℱ : P → P,

defined by

ℱ(𝑑) (𝑠1, 𝑠2) =max

𝑎∈A
[ |R(𝑠1, 𝑎) − R(𝑠2, 𝑎) |

+ 𝛾 · W𝑑 (P(· | 𝑠1, 𝑎), P(· | 𝑠2, 𝑎)) ],
(2)

for all 𝑠1, 𝑠2 ∈ S, where P is the space of bounded pseudometrics.

The kernel of 𝑑
∼
recovers the coarsest bisimulation relation, as

𝑑
∼(𝑠1, 𝑠2) = 0 if and only if 𝑠1 ∼ 𝑠2.
Since bisimulationmetrics are challenging to compute online and

do not account for non-optimal policies [7], we adopt the on-policy
bisimulation distance, written 𝑑

∼
𝜋 , where bisimulation is computed

in the induced MCM𝜋 . A crucial aspect of this distance is its direct

influence on value functions:
1��𝑉 𝜋 (𝑠1) −𝑉 𝜋 (𝑠2)

�� ≤ 𝑑∼𝜋 (𝑠1, 𝑠2) . (3)

Thus, bisimilarly close states yield similar values under 𝜋 , mak-

ing latent encoders that capture this distance particularly beneficial.

3.4 Wasserstein Auto-Encoded MDPs
WAE-MDPs [11] are generative models that jointly learn a discrete

latent abstraction of the environmentM = ⟨S,A, P,R, 𝑠𝐼 , 𝛾⟩, an
encoder 𝜙 : S → S, and a decoder𝜓 : S → S. While these models

may also learn an action encoder, we assume finite action spaces

and hence A = A. In the following, we will also consider latent
policies (i.e., policies forM) 𝜋 : S → Δ(A). Such policies can be

executed inM: given a state 𝑠 ∈ S, one just needs to encode 𝑠 to
𝜙 (𝑠) and then draw 𝑎 ∼ 𝜋 (· | 𝜙 (𝑠)). In the following, by slightly

abusing notation, we may write 𝜉𝜋 for the distribution of first

drawing states 𝑠 from 𝜉𝜋 and then actions 𝑎 from 𝜋 (· | 𝜙 (𝑠)).
1
Namely, the value function is Lipschitz-continuous w.r.t. the pseudometric.

To minimise the bisimulation distance between the latent model

and the environment, WAE-MDPs employ a local reward loss 𝐿R
and a local transition loss 𝐿P, defined as

𝐿R = E
𝑠,𝑎∼𝜉𝜋

���R(𝑠, 𝑎) − R(𝜙 (𝑠), 𝑎)��� , (4)

𝐿P = E
𝑠,𝑎∼𝜉𝜋

W¯𝑑

(
𝜙♯P(· | 𝑠, 𝑎), P(· | 𝜙 (𝑠), 𝑎)

)
, (5)

where
¯𝑑 is the discrete metric and 𝜙♯P denotes the pushforward

measure of samples 𝑠′ ∼ P(· | 𝑠, 𝑎) that are subsequently encoded

to 𝑠′ = 𝜙 (𝑠′). The overall loss function, LWAE, is minimised:

E
𝑠,𝑎,𝑠′∼𝜉𝜋

[
𝑑S (𝑠,𝜓 ◦ 𝜙 (𝑠)) + 𝑑S

(
𝑠′,𝜓 ◦ 𝜙

(
𝑠′

) ) ]
+𝐿R +𝛽 ·

(
𝐿𝜉𝜋 + 𝐿P

)
,

(6)

where 𝑑S : S × S → [0,∞) is a metric over S, and 𝐿𝜉𝜋 serves as

a “steady-state regulariser,” minimising the distance between the

prior over latent transitions and the observed transitions, thereby

ensuring sufficient spread over the latent space. Thus, 𝐿𝜉𝜋 ensures

sufficient coverage of the encoder 𝜙 over the latent state space S
further preventing collapse issues [12, 20]. Intuitively, the goal of

𝑑S is to measure the distance between original states and those

reconstructed via𝜓 . Importantly, WAE-MDPs are accompanied by

bisimulation guarantees:

Theorem 3.1 ([13]). Minimizing the reward and transition losses
inWAE-MDPs almost surely (1) yields bisimilar models and (2) ensures
that states with the same representation are bisimilarly close inM:

(1) (Abstraction quality) For all states 𝑠 ∈ S,

E
𝑠∼𝜉𝜋

𝑑
∼
𝜋 (𝑠, 𝜙 (𝑠)) ≤

𝐿R + 𝛾𝐾 · 𝐿P
1 − 𝛾 ;

(2) (Representation quality) For all states 𝑠1, 𝑠2 grouped to the
same representation 𝜙 (𝑠1) = 𝜙 (𝑠2),

𝑑
∼
𝜋 (𝑠1, 𝑠2) ≤

𝐿R + 𝛾𝐾 · 𝐿P
1 − 𝛾 ·

(
1

𝜉𝜋 (𝑠1)
+ 1

𝜉𝜋 (𝑠2)

)
,

where 𝐾 = 2∥R∥∞/(1−𝛾 ).

4 LEARNING A MODEL THROUGH OPTIMAL
TRANSPORT

In this section, we describe how a model can be learned using

an optimal transport formulation. We show that this formulation

generalizes the one introduced in WAE-MDPs. Additionally, we

discuss the issues introduced by the reconstruction terms prevalent

in WAE-MDPs, which also appear in other model-based methods.

4.1 Problem Formulation
The fundamental objective of model-based reinforcement learning

(MBRL) is to learn a model that facilitates policy improvement

without relying on real-world transitions. This can be framed as

learning a model whose generated transitions are, in a well-defined

sense, “close” to those of the real environment. This viewpoint

naturally aligns with an optimal transport formulation.

LetM andM denote an MDP and a latent MDP, respectively

and T = { ⟨𝑠, 𝑎, 𝑟, 𝑠′⟩ : 𝑠′ ∈ supp(P(· | 𝑠, 𝑎)) and 𝑟 = R(𝑠, 𝑎) } de-
note the set of transitions in M. We define T similarly in M.

To measure how M differs from M via the OT, let us consider



the disjoint union of the transition space of both models, denoted

T ∗ = T ⊎ T . To quantify the cost of transforming a real transition

𝜏 ∈ T into a latent transition 𝜏 ∈ T , we introduce a cost function
𝑐∗ : T ∗ × T ∗ → R≥0, as required in OT problems.

By a slight abuse of notation, we let 𝜉𝜋 and 𝜉𝜋 denote the sta-

tionary distributions over transitions induced by policies 𝜋 and 𝜋

inM andM, respectively, rather than merely the distributions

over states. Our objective is to learn a latent reward function R
and a latent transition function P such that the induced stationary

distributions minimise the OT:

OT𝑐∗
(
𝜉𝜋 , 𝜉𝜋

)
= inf

𝜗∈Γ
(
𝜉𝜋 ,𝜉𝜋

) E
(𝜏,𝜏 )∼𝜗

𝑐∗ (𝜏, 𝜏) (7)

This is in contrast to WAE-MDPs, for which the cost function

coincides with a distance metric solely defined over the original

spaces. WAE-MDPs formulation thus boils down to recovering the

Wasserstein distance instead of the general OT formulation, which

requires reconstructing latent transitions to the original space.

While Eq. (7) is theoretically elegant, finding the optimal cou-

pling between both distributions is hardly tractable in practice.

Furthermore, it requires distinct real and latent policies, which

complicates the learning process. A common technique in MBRL is

instead to learn an encoder 𝜙 : S → S that encodes real states into

a latent representation. Importantly, as already mentioned, such an

encoder allows executing a latent policy in the real environment

by first mapping states to latent states. We will thus simply learn a

single latent policy 𝜋 and consider both 𝜉𝜋 and 𝜉𝜋 .

Bousquet et al. [5] demonstrated that the optimal transport prob-

lem posed in Eq. (7) can be reformulated to avoid directly optimising

the infimum coupling. Instead, given a space over latent variables

Z, one can optimise over encoders 𝑞 : T → Δ(Z) whose marginal

distribution 𝑄 (·) = E𝜏∼𝜉𝜋 𝑞(· | 𝜏) matches a given prior 𝑃 ∈ Δ(Z).
As a specific instantiation of this theorem, we consider a latent space

Z = S ×A×S with fixed prior 𝑃 . We assume this prior is ruled by

underlying latent dynamics P, from which one can “renconstruct”

the rewards via the latent reward function R, obtaining

OT𝑐

(
𝜉𝜋 , 𝜉𝜋

)
= inf

𝑞 : 𝑄=𝑃
E

𝜏∼𝜉𝜋
E

𝑠,𝑎,𝑠′∼𝑞 ( · |𝜏 )
𝑐∗

(
𝜏, 𝜏 =

〈
𝑠, 𝑎,R(𝑠, 𝑎), 𝑠′

〉)
.

(8)

Note thatR and P are learned. In practice, we consider deterministic

encoders 𝑞 such that 𝑞(𝑠, 𝑎, 𝑠′, 𝑟 ) = ⟨𝜙 (𝑠), 𝑎, 𝜙 (𝑠′)⟩. Recall that the
stationary distribution of the latent model 𝜉𝜋 depends on a learned

transition function P and reward function R. Intuitively, as 𝑃 is

a prior over (rewardless) transitions drawn inM, requiring the

marginal distribution of the encoded real transitions to match 𝑃

enforces the stationary distribution 𝜉𝜋 to mimic the dynamics ofM.

This allows obtaining a robust abstraction of the real environment.

Then, a well-defined cost 𝑐∗, that allows measuring the distance

between original and latent rewards, permits to learn an appropriate

generative model of the reward signal.

So, to obtain a strong model of the environment, all we require is

to learn P,R, and an encoder𝜙 that minimises the optimal transport

as defined in Eq. (8). However, solving this OT problem remains

challenging due to the strict constraint on the marginal distribution
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00

0

Figure 2: An MDP illustrating the issues with the reconstruc-
tion terms in 𝑐WAE.

of the encoder. Instead, we introduce a regularised OT formulation,

replacing the infimum constraint with a regularisation term:

ROT𝑐

(
𝜉𝜋 , 𝜉𝜋

)
= inf

𝜙,P,R
E

𝜏∼𝜉𝜋

[
𝑐∗

(
𝜏,R ⊕ 𝑞(𝜏)

)]
+ 𝜆 · 𝐷 (𝑄, 𝑃) (9)

where 𝜆 > 0 is a scale factor, 𝐷 is a discrepancy between the

distributions, and R ⊕ 𝑞 is the function mapping any transition

𝜏 = ⟨𝑠, 𝑎, 𝑟, 𝑠′⟩ to 𝑞(𝜏) =
〈
𝑠, 𝑎, 𝑠′

〉
and augmenting the resulting

tuple with the latent reward 𝑟 = R(𝑠, 𝑎). This yields the latent

transition 𝜏 =
〈
𝑠, 𝑎, 𝑟, 𝑠′

〉
. We define the discrepancy 𝐷 (𝑄, 𝑃) as the

Wasserstein distance between 𝑄 and 𝑃 . As mentioned, 𝑐∗ should
embed the distance between original and generated rewards. Ac-

cordingly, let 𝑐∗ = 𝑐 + 𝑐R where 𝑐 is, again, some cost function over

T ∗ and 𝑐R (𝜏, 𝜏 ′) = 𝜆 ·
��
projR (𝜏) − projR (𝜏 ′)

��
, where projR (𝜏) = 𝑟

is the projection of 𝜏 = ⟨𝑠, 𝑎, 𝑟, 𝑠′⟩ on the reward space. By a previ-

ous result from Delgrange et al. [11], we obtain the following final

optimisation problem:

inf

𝜙,P,R
E

𝜏∼𝜉𝜋

[
𝑐

(
𝜏,R ⊕ 𝑞(𝜏)

)]
+ 𝜆

(
𝐿𝜉𝜋 + 𝐿P + 𝐿R

)
. (10)

As this loss includes both the local reward loss 𝐿R and the local

transition loss 𝐿P, minimising it results in learning a bisimilar model.

Furthermore, since all theoretical guarantees for WAE-MDPs are

based on these local losses (Thm. 3.1), they naturally extend to this

novel formulation.

4.2 The ProblemWith Reconstruction
As shown, optimising Eq. (10) is sufficient to learn a bisimilar la-

tent model of the real environment. Notably, there are no inherent

constraints on the cost function, allowing it to be chosen freely.

However, in practice, we ideally enforce that if a transition from the

real MDP is encoded into a latent bisimilar MDP, the cost function

assigns zero cost, ensuring high model fidelity. We define a cost

function satisfying this property as recognising and formalise it

below.

Property 4.1 (Recognising). Given an optimal encoder 𝜙∗ such
that 𝜙∗ ( [𝑠]∼) = { 𝑠 },
𝑐
(〈
𝑠, 𝑎, 𝑠′, 𝑟

〉
,
〈
𝜙∗ (𝑠), 𝑎, 𝜙∗

(
𝑠′

)
, 𝑟

〉)
= 0 ∀

〈
𝑠, 𝑎, 𝑠′, 𝑟

〉
∈ T . (11)

Looking back to WAE-MDP, we can recover the implicit cost

function as follows:

𝑐WAE (𝜏, 𝜏) = 𝑑S (𝑠,𝜓 (𝑠)) + 𝑑S
(
𝑠′,𝜓

(
𝑠′

) )
. (12)



where 𝑑S is usually assumed to be the Euclidean distance. This cost

function measures the distance between a real state and a decoded

latent state.While this cost function is conceptually straightforward,

we demonstrate in the following theorem that it is not recognising.

Theorem 4.2. The cost function 𝑐WAE as shown in Eq. (12) is not
recognising.

Proof. We illustrate that 𝑐WAE is not recognising using theMDP

shown in Fig. 2. Suppose the initial state is 𝑠1 and 𝜋 (red, 𝑠1) =
𝜋 (red, 𝑠2) = 1. Clearly, 𝑠1 and 𝑠2 are in 𝜋-bisimulation and can be

represented by a single latent state 𝑠1. However,𝜓 (𝑠1) can at best

reconstruct the true state correctly 50% of the time. Since 𝑐WAE

measures the distance between 𝑠 and𝜓 (𝑠), 𝑐WAE > 0 for half of the

generated transitions and is therefore not recognising. □

In practice, this issue is further exacerbated due to WAE-MDPs

minimising the 𝐿2 distance between 𝑠 and 𝜓 ◦ 𝜙 (𝑠), which can

introduce unintended side effects. For instance, a decoder that min-

imises the reconstruction distance between the white 𝑠1 and dark

𝑠2 may decode 𝑠1 and 𝑠2 to grey 𝑠3, as it minimises the 𝐿2 distance

to both white and dark. This hinders the cost function’s ability

to accurately evaluate whether the encoding is effective. Notably,

while 𝑉 ∗ (𝑠1) = 𝑉 ∗ (𝑠2) = 1

1−𝛾 and 𝑉 ∗ (𝑠3) = 0, it follows that

𝑉 ∗ (𝜓 ◦ 𝜙 (𝑠1)) = 𝑉 ∗ (𝑠3), further demonstrating the issue.

Consequently, cost functions that measure the distance between

a real and reconstructed state can only be recognising for latent

models whose state space permits a one-to-one mapping to the

real state space. However, since the goal is typically to learn a

more compact representation, reconstruction-based approaches are

inherently unsuitable for this purpose.

4.3 Cost Function Analysis
We present a preliminary analysis of cost functions that may be

more suitable for learning a bisimilarmodel than prior reconstruction-

based approaches. Specifically, we consider cost functions that de-

pend only on the state and latent state of transitions, defined as

𝑐 (𝜏, 𝜏) = ℎ(𝑓 (𝑠), 𝑔(𝑠)) . (13)

where ℎ computes the cost after applying a transformation 𝑓 to the

real state and another transformation 𝑔 to the latent state. For such

a cost function, we establish the following result:

Theorem 4.3. Let 𝑐 be a cost function as defined in Eq. (13) and
𝜙∗ be an optimal encoder such that 𝜙∗ ( [𝑠]∼) = 𝑠 . Then the following
properties hold,

(1) When ℎ is a metric, 𝑐 is recognising if and only if 𝑓 ( [𝑠]∼) =
{ 𝑧 } and 𝑔 ◦ 𝜙∗ (𝑠) = 𝑧 ;

(2) For a recognising cost function 𝑐 , it suffices to learn a deter-
ministic encoder 𝜙∗ .

Proof. By definition of a metric, ℎ(𝑥,𝑦) = 0 if and only if 𝑥 = 𝑦.

From the definition of the recognising property, this implies that

𝑐 is recognising if and only if for all 𝑠 ∈ S, 𝑓 (𝑠) = 𝑔(𝜙∗ (𝑠)). From
this, (1) follows immediately, as it ensures that 𝑐 is recognising

if and only if 𝑓 ( [𝑠]∼) = { 𝑧 } and 𝑔 ◦ 𝜙∗ (𝑠) = 𝑧. (2) is a straight-

forward consequence of the equivalence between lax bisimulation

and MDP homomorphism [37] and the fact that the cost function

is recognising and therefore attains a minimum with the optimal

encoder. □

Although WAE-MDP also considered deterministic encoders,

this choice was justified on the grounds of simplicity rather than

principle. Moreover, when relying on reconstruction, as in WAE-

MDPs, a deterministic encoder can perform significantly worse

than a stochastic encoder as demonstrated in Section 4.2.

5 OPTIMAL TRANSPORT MARKOV DECISION
PROCESSES

We introduce OT-MDPs, a generalisation and simplification of the

WAE-MDP framework, that learns a principled model through our

optimal transport formulation. In contrast to WAE-MDPs, which

focus on policy distillation, our approach unifies model and policy

learning and incorporates architectural improvements that stabilise

training and reduce the number of hyperparameters.

5.1 OT-MDP Cost Functions
One advantage of allowing general cost functions, is that we can

introduce additional feedback to guide the encoder during optimi-

sation. Specifically, when training an RL agent within the model,

the learned encodings should facilitate effective learning. To this

end, we introduce the concept of value equivalence, which utilises

the value function as a cost function.

𝑐
value
(𝑠, 𝑠) =

���𝑉 𝜋 (𝑠) −𝑉 𝜋 (𝑠)
��� (14)

Proposition 5.1. The cost function 𝑐value as shown in Eq. (14) is
recognising.

This function assumes access to the value function for real states,

𝑉 𝜋
, and measures its distance to a latent value function, 𝑉 𝜋

. No-

tably, whenM ∼ M, it follows that 𝑉 𝜋 (𝑠) = 𝑉 𝜋 (𝜙 (𝑠)) [22, 30],
ensuring that 𝑐

value
is recognising. Crucially, this cost function elim-

inates the need to train additional reconstruction networks. In con-

trast, one could be tempted to only learn a single value function and

incorporate a decoder network, i.e. 𝑐 (𝑠, 𝑠) =
���𝑉 𝜋 (𝑠) −𝑉 𝜋 (𝜓 (𝑠))

���.
However, this cost function is also not recognising, as demonstrated

in Section 4.2.

5.2 Learning a Model and a Policy
In this work, we propose using the representation generated by

the OT-MDP for policy learning. Since the OT-MDP framework

learns a bisimilar discrete abstraction of the real environment, we

hypothesise that directly learning a policy on latent states leads to

more efficient learning. Below, we outline the architecture of our

algorithm and its training methodology. Complete pseudocode is

provided in Algorithm 1. Additionally, we provide a schematic illus-

trating the different losses used to train OT-MDPs and the RL agent,

highlighting their respective influences on various components of

the framework.

Architecture. To map real states to latent states, we train an

encoder 𝜙 . The latent MDP consists of a latent reward function

R : S×A → R and a latent transition function P : S×A → Δ(S).
In the OT-MDP framework, P is only required for sampling, rather



Algorithm 1 Optimal Transport Auto-Encoded MDP with DQN

Input: no. of maximiser iterations 𝑁max, regulariser scale factor 𝜆

and OT scale factor 𝛽

Output: A latent MDPM and policy 𝜋

1: Initialise 𝛼 = 1

2: while not done do
3: Collect transitions 𝜏 and store in replay buffer D
4: for 𝑗 = 1 to 𝑁max do
5: Sample batch Bmax

6: Maximise 𝐿𝜉𝜋 + 𝐿P ⊲ To optimize Eq. 1, details in [11]

7: Sample B𝑐 and update parameters 𝜈 of the cost function

8: Sample batch Bmin

9: Compute DQN targets 𝑉
DQN

on Bmin

10: Compute planning targets 𝑉
plan

on Bmin ⊲ See Section 6

11: 𝑉
target

← 𝛼𝑉
DQN
+ (1 − 𝛼)𝑉

plan

12: Compute 𝐿RL using with 𝑉
target

13: 𝐿OT ← E𝜏∼𝜉𝜋 𝑐
(
𝜏,R ⊕ 𝑞(𝜏)

)
+ 𝜆

(
𝐿𝜉𝜋 + 𝐿P + 𝐿R

)
14: Minimise combined loss: (1 − 𝛽)𝐿RL + 𝛽𝐿OT
15: 𝛼 ← clip

(
𝐿P, 0, 1

)

ϕ(s)
a

Q
π

θ (ϕ(s), a)

LRL

V π(s)

c(τ, τ) LPLR

P(ϕ(s), a)

LTD

LOT

r

s s′

ϕ(s′)

R(ϕ(s), a)

Figure 3: A diagram of the different losses used to train the
components of the latent MDPM and policy 𝜋 .

than computing transition probabilities explicitly. Therefore, we

learn a generative model of P using an Inverse Autoregressive Flow

(IAF, 29). IAFs leverage masked autoregressive distribution esti-

mators [21], allowing them to approximate arbitrary distributions

instead of being restricted to normal or deterministic ones, as is

common in related work. Moreover, IAFs enable efficient sampling

with a single forward pass through the network, significantly re-

ducing computational overhead.

For reinforcement learning, OT-MDPs can in principle be paired

with any algorithm. In this work, we employ DQN [31], trained on

latent states produced by the encoder. Specifically, we train a latent

critic 𝑉 𝜋
and use epsilon-greedy action selection during training.

The cost function 𝑐
value

in the OT objective computes the difference

between a learned value of the real state𝑉 𝜋 (𝑠) and the value of the
latent state 𝑉 𝜋 (𝑠). Notably, the critic learned by the reinforcement

learning algorithm can be reused, eliminating the need for training

an additional latent critic.

Training. The OT-MDP training process alternates between col-

lecting transitions from the policy and performing joint updates

for the model and policy. Before updating these components, we

train the cost function 𝑐
value

that depends on a real and latent critic.

While OT-MDPs theoretically require the latent states to be dis-

crete, in practice, we adopt the same relaxation as Delgrange et al.

[11] for stability. These continuous approximations ensure that the

entire architecture remains differentiable. Crucially, we gradually

anneal this relaxation so that the latent states progressively ap-

proach discreteness. Subsequently, we optimise the encoder 𝜙 , the

latent transition and reward networks P,R, and the policy and critic
networks 𝜋,𝑉 𝜋

. Following Castro et al. [8], we merge agent and

model training into a single step by combining all relevant losses,

thereby enabling the state encoder to be influenced by both the RL

agent’s performance and the model quality.

Learning the Wasserstein estimator. Recall that we learn the

latent transition function by minimising its Wasserstein distance

to the real transition function. Crucially, this requires learning a

Lipschitz-1 function 𝑓 to approximate the supremum in the dual

formulation. In previous work, particularly in WAE-MDPs [11],

this was achieved by adding a gradient penalty that forces the

network to belong to this class [24]. We propose an architectural

alternative: discretising the relaxed latent state while applying a

gradient using the straight-through estimator [4]. This approach

ensures a discretised state space, where we obtain the convenient

result that optimal transport collapses to the total variation distance,

𝑑TV [40]. Moreover, this distance has a convenient formulation,

𝑑TV (𝜇, 𝜈) = sup𝑓 ∈F
��E𝑥∼𝜇 [𝑓 (𝑥)] − E𝑦∼𝜈 [𝑓 (𝑦)]�� where F is the

set of 1/2-bounded functions [32]. Thus to learn 𝑓 , rather than

imposing a gradient penalty to enforce 1-Lipschitzness, we ensure

that it is 1/2-bounded through a penalty term that encourages the

network to remain within the required bounds.

6 INTEGRATING PLANNING AND LEARNING
In this section, we propose two principled approaches to integrate

learning and planning within the OT-MDP framework. Specifically,

we demonstrate how the model can be used as a simulator and,

under certain conditions, how it can facilitate direct policy search.

6.1 Model-Based Value Expansion
OT-MDPs learn a latent MDP that is 𝜋-bisimilarly close to the real

MDP under policy 𝜋 . Since the policy is trained on latent states,

an intuitive approach is to perform additional rollouts within the

learned model, effectively bypassing the need for real environment

interactions and thereby improving sample efficiency. However,

exact 𝜋-bisimulation is guaranteed only when local losses converge

to zero, and conducting complete policy rollouts in an approximate

model can lead to suboptimal results due to compounding model

errors. Model-Based Value Expansion (MVE) offers a compromise

by proposing finite-depth policy rollouts [16]. The resulting model-

based value is then used as a value target (see Algorithm 1).

Let us first define the process through which we can sample

from a model. Let P𝜋 be the transition function of the Markov

chain induced by 𝜋 . Then we define sampling from this distribution



at depth ℎ as,

P0

𝜋 (· | 𝑠) = 𝛿𝑠 where 𝛿𝑠 is the Dirac measure with impulse 𝑠;

Pℎ+1𝜋 (· | 𝑠) = E
𝑠′∼P𝜋 ( · |𝑠 )

[
Pℎ𝜋

(
· | 𝑠′

) ]
∀ℎ ≥ 0.

The model-based value obtained by unrolling the policy with

the latent transition function P and reward function R until a given

depth 𝐻 is then defined as follows:

Definition 6.1. Let 𝑉 𝜋
𝜃
(·) be a latent critic with parameters 𝜃 .

We define the model-based value function 𝑉 𝜋
𝜃,𝐻
(·) as the 𝐻 -step

bootstrapping of 𝑉 𝜋
𝜃
using the latent reward function R and latent

transition function P as,

𝑉 𝜋
𝜃,𝐻
(𝑠) =

𝐻−1∑︁
𝑡=0

𝛾𝑡 E
𝑠𝑡 ,𝑎𝑡∼P𝑡𝜋

[
R(𝑠𝑡 , 𝑎𝑡 )

]
+ 𝛾𝐻 E

𝑠𝐻 ,𝑎𝐻∼P𝐻𝜋

[
𝑉 𝜋
𝜃
(𝑠𝐻 )

]
(15)

The goal of incorporatingMVEwithin our framework is to obtain

improved value estimates for latent states 𝑠 = 𝜙 (𝑠). Consequently,
it is important to theoretically analyse the difference between the

model-based value 𝑉 𝜋
𝜃,𝐻
(𝜙 (𝑠)) and real value 𝑉 𝜋 (𝑠). Let the local

value loss 𝐿
𝑉
be defined as the difference between the learned latent

critic and the true value,

𝐿𝑉 = E
𝑠∼𝜉𝜋

[���𝑉 𝜋
𝜃
(𝜙 (𝑠)) −𝑉 𝜋 (𝑠)

���] . (16)

In Theorem 6.1, we show that the difference between the true and

the model-based value can be bounded by the model losses and the

value loss. Importantly, all of these values can be well-approximated

since they are local, as opposed to the global losses that are generally
intractable [20]. We provide a formal proof in the appendix.

Theorem 6.1. For any policy 𝜋 with local losses 𝐿R , 𝐿P and 𝐿
𝑉
,

we obtain for any rollout horizon 𝐻 ,

E
𝑠∼𝜉𝜋

[���𝑉 𝜋
𝜃,𝐻
(𝜙 (𝑠)) −𝑉 𝜋 (𝑠)

���] ≤ 1 − 𝛾𝐻
1 − 𝛾

(
𝐿R + 𝛾𝐾𝐿P

)
+ 𝛾𝐻𝐿𝑉

(17)

where 𝐾 is a constant related to the model-based value function.

This result is significant as it provides a quantifiable measure of

the model’s performance. However, since the local losses and value

loss are computed as expectations over the stationary distribution

𝜉𝜋 , they provide only an aggregate estimate of the model and critic

quality. This necessitates that the value gap is also obtained in ex-

pectation rather than state-dependent. Consequently, determining

the appropriate planning depth involves an aggregate approach,

balancing the benefits of using the model against relying on the

value estimate. A straightforward corollary is that the planning

horizon 𝐻 that minimises the bound is always either 0 or∞.

Corollary 6.2. The rollout horizon𝐻 minimising the bound from
Theorem 6.1, denoted as 𝐻min is given by,

𝐻min =

{
0 if 𝐿R + 𝛾𝐾𝐿P >= 𝐿𝑉

∞ otherwise
(18)

As a result, Corollary 6.2 dictates that values should be computed

either entirely within the model or solely from the value function.

However, model-based values may still provide useful estimates up

to a limited depth. To reconcile this, we define the final value target

as 𝑉 𝜋
target

(𝑠) = 𝛼𝑉 𝜋
DQN
(𝑠) + (1 − 𝛼)𝑉 𝜋

MVE
(𝑠), where 𝑉 𝜋

DQN
is the

standard DQN value target, 𝑉 𝜋
MVE

is the value target from MVE,

and 𝛼 controls the relative influence of the model. We dynamically

adjust 𝛼 based on the transition loss 𝐿P, a strong indicator of model

quality, defining 𝛼 = clip

(
𝐿P, 0, 1

)
. Intuitively, lower transition

losses suggest a more accurate model, allowing for greater reliance

on 𝑉 𝜋
𝜃,𝐻

. This strategy also mitigates excessive dependence on

the model during early learning. We emphasise that extending

Theorem 6.1 to be state-specific could offer significant algorithmic

advantages.

6.2 Monte-Carlo Tree Search
Given that we learn a model of the environment, it is natural to

consider moving beyond imagined policy rollouts to direct policy

search. However, OT-MDPs are trained to approximate a 𝜋-bisimilar

model, which depends on the data-collection policy. Moreover, all

theoretical guarantees relate the real and latent MDPs under the

behaviour policy. Consequently, deviating from this policy may

yield inaccurate value estimates for candidate policies. Additionally,

if certain regions of the real MDP are absent from the stationary

distribution of the behaviour policy, relying on the model in these

regions is unlikely to be effective.

To address this, we show that ensuring full support in each state

is sufficient to theoretically guarantee that all states of the real

MDP are represented in the support of the stationary distribution.

This, in turn, implies that when all losses converge to zero, the

model achieves exact bisimulation with the real MDP. Unlike 𝜋-

bisimulation, exact bisimulation preserves the values of the optimal

policy, making direct policy search viable. Notably, the full support

assumption is also common in maximum entropy RL and robust

RL [15], highlighting intriguing connections for future work. We

provide a complete proof for Theorem 6.3 in Appendix B

Theorem 6.3. LetM be an ergodic MDP and assume that the
latent policy 𝜋 has full support in every state, i.e. ∀(𝑠, 𝑎) ∈ S × A,
𝜋 (𝑎 |𝜙 (𝑠)) > 0. For a latent MDPM, the local losses defined in Eq. (4)
are zero if and only ifM ∼M.

While this theorem guarantees exact bisimulation in the limit,

it is unlikely to hold throughout training. Therefore, we adopt

a similar principle as in Section 6.1, balancing the regular DQN

target and the MCTS target using the transition loss. This approach

intuitively encourages agents to act according to the optimal policy

while mitigating overreliance on the model.

7 EARLY-STAGE EVALUATION
We compare the learning dynamics of a standard DQN agent to a

DQN agent trained jointly with OT-MDPs, which operates directly

on the learned latent representation and uses the value equivalence

cost function (see Eq. (14)). We refer to this approach as Reinforce-

ment Learning with Optimal Transport (RLOT). To evaluate its
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(d) Asterix

Figure 4: The evaluation return of the greedy latent policy 𝜋 (top); the local transition loss 𝐿P (middle); and the local reward
loss 𝐿R (bottom).

performance, we test both agents across four MinAtar environ-

ments [42]. Our implementation is completely in JAX [6], ensuring

efficient, batched execution on the GPU. We evaluate all experi-

ments across five seeds on all environments.

7.1 Learning a Model and Policy
We present our results on Space Invaders, Freeway, Breakout, and

Asterix in Fig. 4. In all environments, RLOT matches the perfor-

mance of DQN while simultaneously learning a strong model of

the environment. However, Asterix proves significantly more chal-

lenging, likely due to suboptimal hyperparameter selection. We do

observe difficulties in model learning for RLOT in Space Invaders,

alongside instability in episode returns. Addressing this challenge

remains an important direction for future work.

7.2 Evaluating Planning
We conduct an initial evaluation of model-based value expansion

(MVE) within our framework, deferring the evaluation of MCTS to

future work. To isolate the impact of MVE, we perform 32 model-

based rollouts with 𝐻 = 1, ensuring the smallest possible incremen-

tal difference between using MVE and not. Notably, we find that the

agent leveraging MVE achieves performance comparable to RLOT,

except in Freeway where it fails to find an effective policy. However,

upon inspecting the model losses, it is clear it only reaches similar

performance to RLOT and DQN when the transition loss, 𝐿P, is
approximately equal to 1. This is due to our introduction of the

parameter 𝛼 = clip

(
𝐿P, 0, 1

)
, which controls the influence of MVE

on the value target. When 𝐿P = 1, MVE is effectively excluded and

has no impact on learning. This outcome suggests potential issues,

such as premature reliance on the model or a faulty implementa-

tion, warranting further investigation. For future work, we aim to

evaluate this further.

8 CONCLUSION
We introduce OT-MDPs, a principled extension of WAE-MDPs that

moves beyond the limitations of reconstruction-based objectives.

By formulating model-based RL through optimal transport, we

provide a flexible framework that enables the design of custom cost

functions to directly shape latent representations for downstream

tasks. This approach not only enhances model quality but also

facilitates direct policy learning within the latent space. A key

contribution of OT-MDPs is the unification of model and policy

learning, allowing for a consolidated training process. Additionally,

we integrate two planning methods, model-based value expansion

andMonte Carlo tree search, within OT-MDPs and provide rigorous

guarantees that justify their use. Empirical results demonstrate that

OT-MDPs, when combined with DQN, yield strong policies while

leveraging the learned model effectively. Notably, our experimental

results with model-based value expansion highlight the importance

of balancing model quality and exploitation during training. In

future work, we aim to expand our experimental evaluation and

explore architectural refinements that further stabilise learning.
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A PROOF OF THEOREM 6.1.
We first restate Theorem 6.1 for clarity:

Theorem A.1. For any policy 𝜋 with local losses 𝐿R , 𝐿P and 𝐿
𝑉
, we obtain for any rollout horizon 𝐻 ,

E
𝑠∼𝜉𝜋

[���𝑉 𝜋
𝜃,𝐻
(𝜙 (𝑠)) −𝑉 𝜋 (𝑠)

���] ≤ 1 − 𝛾𝐻
1 − 𝛾

(
𝐿R + 𝛾𝐾𝐿P

)
+ 𝛾𝐻𝐿𝑉 (19)

where 𝐾 is a constant related to the model-based value function.

Proof. Our proof follows a similar pattern as the proof presented by Xiao et al. [41]. Let us define𝑈ℎ as follows, noting that P0

𝜋
= 𝑠

𝑈ℎ (𝑠) =
ℎ−1∑︁
𝑡=0

𝛾𝑡 E
𝑠𝑡 ,𝑎𝑡∼P𝑡𝜋

[R(𝑠𝑡 , 𝑎𝑡 )] +
𝐻−1∑︁
𝑡=ℎ

𝛾𝑡 E
𝑠𝑡 ,𝑎𝑡∼P𝑡−ℎ𝜋

◦Pℎ
𝜋

[
R(𝑠𝑡 , 𝑎𝑡 )

]
+ 𝛾𝐻 E

𝑠𝐻 ,𝑎𝐻∼P𝐻−ℎ𝜋
◦Pℎ
𝜋

[
𝑉 𝜋
𝜃
(𝑠𝐻 )

]
(20)

In what follows, we are going to make a telescopic sum argument. For this, we first demonstrate two ways of writing𝑈ℎ :

𝑈ℎ (𝑠) =
ℎ−1∑︁
𝑡=0

𝛾𝑡 E
𝑠𝑡 ,𝑎𝑡∼P𝑡𝜋

[R(𝑠𝑡 , 𝑎𝑡 )] + 𝛾ℎ E
𝑠ℎ∼Pℎ𝜋

[
𝑉 𝜋
𝜃,𝐻−ℎ (𝜙 (𝑠ℎ))

]
(21)

and also as,

𝑈ℎ (𝑠) =
ℎ−1∑︁
𝑡=0

𝛾𝑡 E
𝑠𝑡 ,𝑎𝑡∼P𝑡𝜋

[R(𝑠𝑡 , 𝑎𝑡 )] + 𝛾ℎ E
𝑠ℎ,𝑎ℎ∼Pℎ𝜋

[
R(𝜙 (𝑠ℎ), 𝑎ℎ)

]
+ 𝛾ℎ+1 E

𝑠ℎ+1∼P◦Pℎ𝜋

[
𝑉 𝜋
𝜃,𝐻−ℎ−1

(𝑠ℎ+1)
]

(22)

Let us use the first one for𝑈ℎ+1 and the second one for𝑈ℎ :

𝑈ℎ (𝑠) −𝑈ℎ+1 (𝑠) =
ℎ−1∑︁
𝑡=0

𝛾𝑡 E
𝑠𝑡 ,𝑎𝑡∼P𝑡𝜋

[R(𝑠𝑡 , 𝑎𝑡 )] + 𝛾ℎ E
𝑠ℎ,𝑎ℎ∼Pℎ𝜋

[
R(𝜙 (𝑠ℎ), 𝑎ℎ)

]
(23)

+ 𝛾ℎ+1 E
𝑠ℎ+1∼P◦Pℎ𝜋

[
𝑉 𝜋
𝜃,𝐻−ℎ−1

(𝑠ℎ+1)
]

(24)

−
(
ℎ∑︁
𝑡=0

𝛾𝑡 E
𝑠𝑡 ,𝑎𝑡∼P𝑡𝜋

[R(𝑠𝑡 , 𝑎𝑡 )] + 𝛾ℎ+1 E
𝑠ℎ+1∼Pℎ+1𝜋

[
𝑉 𝜋
𝜃,𝐻−ℎ−1

(𝜙 (𝑠ℎ+1))
] )

= 𝛾ℎ E
𝑠ℎ,𝑎ℎ∼Pℎ𝜋

[
R(𝜙 (𝑠ℎ), 𝑎ℎ) − R(𝑠ℎ, 𝑎ℎ)

]
(25)

+ 𝛾ℎ+1 ©­« E
𝑠ℎ+1∼P◦Pℎ𝜋

[
𝑉 𝜋
𝜃,𝐻−ℎ−1

(𝑠ℎ+1)
]
− E

𝑠ℎ+1∼Pℎ+1𝜋

[
𝑉 𝜋
𝜃,𝐻−ℎ−1

(𝜙 (𝑠ℎ+1))
]ª®¬ (26)

= 𝛾ℎ E
𝑠ℎ,𝑎ℎ∼Pℎ𝜋

[
R(𝜙 (𝑠ℎ), 𝑎ℎ) − R(𝑠ℎ, 𝑎ℎ)

]
(27)

+ 𝛾ℎ+1 E
𝑠ℎ∼Pℎ𝜋

[
E

𝑠ℎ+1∼P

[
𝑉 𝜋
𝜃,𝐻−ℎ−1

(𝑠ℎ+1)
]
− E

𝑠ℎ+1∼P

[
𝑉 𝜋
𝜃,𝐻−ℎ−1

(𝜙 (𝑠ℎ+1))
] ]

(28)

𝑈0 (𝑠) −𝑈𝐻 (𝑠) =
𝐻−1∑︁
ℎ=0

(𝑈ℎ (𝑠) −𝑈ℎ+1 (𝑠)) (29)

=

𝐻−1∑︁
ℎ=0

(
𝛾ℎ E

𝑠ℎ,𝑎ℎ∼Pℎ𝜋

[
R(𝜙 (𝑠ℎ), 𝑎ℎ) − R(𝑠ℎ, 𝑎ℎ)

]
(30)

+𝛾ℎ+1 E
𝑠ℎ∼Pℎ𝜋

[
E

𝑠ℎ+1∼P

[
𝑉 𝜋
𝜃,𝐻−ℎ−1

(𝑠ℎ+1)
]
− E

𝑠ℎ+1∼P

[
𝑉 𝜋
𝜃,𝐻−ℎ−1

(𝜙 (𝑠ℎ+1))
] ])

(31)

This conveniently leads to the following values for𝑈0 and𝑈𝐻 for any state 𝑠 ,

𝑈0 (𝑠) = 𝑉 𝜋
𝜃,𝐻
(𝜙 (𝑠)) (32)



𝑈𝐻 (𝑠) = 𝑉 𝜋 (𝑠) − 𝛾𝐻 E
𝑠∼P𝐻

𝜋

[
𝑉 𝜋 (𝜙 (𝑠𝐻 )) −𝑉 𝜋

𝜃
(𝜙 (𝑠𝐻 ))

]
(33)

From these definitions, we find that the expected difference between𝑈0 and𝑈𝐻 is as follows,

𝑈0 (𝑠) −𝑈𝐻 (𝑠) = 𝑉 𝜋
𝜃,𝐻
(𝜙 (𝑠)) −

(
𝑉 𝜋 (𝑠) − 𝛾𝐻 E

𝑠∼P𝐻
𝜋

[
𝑉 𝜋 (𝑠𝐻 ) −𝑉 𝜋

𝜃
(𝜙 (𝑠𝐻 ))

] )
(34)

= 𝑉 𝜋
𝜃,𝐻
(𝜙 (𝑠)) −𝑉 𝜋 (𝑠) + 𝛾𝐻 E

𝑠∼P𝐻
𝜋

[
𝑉 𝜋 (𝑠𝐻 ) −𝑉 𝜋

𝜃
(𝜙 (𝑠𝐻 ))

]
(35)

by plugging Eqs. (31) and (35)

𝑉 𝜋
𝜃,𝐻
(𝜙 (𝑠)) −𝑉 𝜋 (𝑠) =

𝐻−1∑︁
ℎ=0

(
𝛾ℎ E

𝑠ℎ,𝑎ℎ∼Pℎ𝜋

[
R(𝜙 (𝑠ℎ), 𝑎ℎ) − R(𝑠ℎ, 𝑎ℎ)

]
(36)

+𝛾ℎ+1 E
𝑠ℎ∼Pℎ𝜋

[
E

𝑠ℎ+1∼P

[
𝑉 𝜋
𝜃,𝐻−ℎ−1

(𝑠ℎ+1)
]
− E

𝑠ℎ+1∼P

[
𝑉 𝜋
𝜃,𝐻−ℎ−1

(𝜙 (𝑠ℎ+1))
] ])

(37)

− 𝛾𝐻 E
𝑠∼P𝐻

𝜋

[
𝑉 𝜋 (𝑠𝐻 ) −𝑉 𝜋

𝜃
(𝜙 (𝑠𝐻 ))

]
(38)

Let us add absolute values and expectations over the stationary distribution.

E
𝑠∼𝜉𝜋

[���𝑉 𝜋
𝜃,𝐻
(𝜙 (𝑠)) −𝑉 𝜋 (𝑠)

���] = E
𝑠∼𝜉𝜋

�����𝐻−1∑︁
ℎ=0

(
𝛾ℎ E

𝑠ℎ,𝑎ℎ∼Pℎ𝜋

[
R(𝜙 (𝑠ℎ), 𝑎ℎ) − R(𝑠ℎ, 𝑎ℎ)

]
(39)

+𝛾ℎ+1 E
𝑠ℎ∼Pℎ𝜋

[
E

𝑠ℎ+1∼P

[
𝑉 𝜋
𝜃,𝐻−ℎ−1

(𝑠ℎ+1)
]
− E

𝑠ℎ+1∼P

[
𝑉 𝜋
𝜃,𝐻−ℎ−1

(𝜙 (𝑠ℎ+1))
] ])

(40)

−𝛾𝐻 E
𝑠𝐻∼P𝐻𝜋

[
𝑉 𝜋 (𝑠𝐻 ) −𝑉 𝜋

𝜃
(𝜙 (𝑠𝐻 ))

] ����� (41)

= E
𝑠∼𝜉𝜋

�����𝐻−1∑︁
ℎ=0

𝛾ℎ E
𝑠ℎ,𝑎ℎ∼Pℎ𝜋

[
R(𝜙 (𝑠ℎ), 𝑎ℎ) − R(𝑠ℎ, 𝑎ℎ)

]
(42)

+
𝐻−1∑︁
ℎ=0

𝛾ℎ+1 E
𝑠ℎ∼Pℎ𝜋

[
E

𝑠ℎ+1∼P

[
𝑉 𝜋
𝜃,𝐻−ℎ−1

(𝑠ℎ+1)
]
− E

𝑠ℎ+1∼P

[
𝑉 𝜋
𝜃,𝐻−ℎ−1

(𝜙 (𝑠ℎ+1))
] ]

(43)

−𝛾𝐻 E
𝑠𝐻∼P𝐻𝜋

[
𝑉 𝜋 (𝑠𝐻 ) −𝑉 𝜋

𝜃
(𝜙 (𝑠𝐻 ))

] ����� (44)

≤ E
𝑠∼𝜉𝜋

E
𝑠ℎ∼Pℎ𝜋

𝐻−1∑︁
ℎ=0

𝛾ℎ
���R(𝜙 (𝑠ℎ), 𝑎ℎ) − R(𝑠ℎ, 𝑎ℎ)��� (45)

+ E
𝑠∼𝜉𝜋

E
𝑠ℎ∼Pℎ𝜋

𝐻−1∑︁
ℎ=0

𝛾ℎ+1
����� E
𝑠ℎ+1∼P

[
𝑉 𝜋
𝜃,𝐻−ℎ−1

(𝑠ℎ+1)
]
− E

𝑠ℎ+1∼P

[
𝑉 𝜋
𝜃,𝐻−ℎ−1

(𝜙 (𝑠ℎ+1))
] ����� (46)

+ 𝛾𝐻 E
𝑠∼𝜉𝜋

E
𝑠𝐻∼P𝐻𝜋

���𝑉 𝜋 (𝑠𝐻 ) −𝑉 𝜋
𝜃
(𝜙 (𝑠𝐻 ))

��� (47)

By definition of the stationary distribution, E𝑠∼𝜉𝜋 E𝑠ℎ∼Pℎ𝜋
𝑋 = E𝑠∼𝜉𝜋 𝑋 and so we have,



E
𝑠∼𝜉𝜋

[���𝑉 𝜋
𝜃,𝐻
(𝜙 (𝑠)) −𝑉 𝜋 (𝑠)

���] ≤ E
𝑠∼𝜉𝜋

𝐻−1∑︁
ℎ=0

𝛾ℎ
���R(𝜙 (𝑠), 𝑎) − R(𝑠, 𝑎)��� (48)

+ E
𝑠∼𝜉𝜋

𝐻−1∑︁
ℎ=0

𝛾ℎ+1
����� E
𝑠′∼P

[
𝑉 𝜋
𝜃,𝐻−ℎ−1

(
𝑠′

) ]
− E

𝑠′∼P

[
𝑉 𝜋
𝜃,𝐻−ℎ−1

(
𝜙
(
𝑠′

) ) ] ����� (49)

+ 𝛾𝐻 E
𝑠∼𝜉𝜋

���𝑉 𝜋 (𝑠) −𝑉 𝜋
𝜃
(𝜙 (𝑠))

��� (50)

=
1 − 𝛾𝐻
1 − 𝛾

(
E

𝑠∼𝜉𝜋

���R(𝜙 (𝑠), 𝑎) − R(𝑠, 𝑎)��� (51)

+𝛾 E
𝑠∼𝜉𝜋

����� E
𝑠′∼P

[
𝑉 𝜋
𝜃,𝐻−ℎ−1

(
𝑠′

) ]
− E

𝑠′∼P

[
𝑉 𝜋
𝜃,𝐻−ℎ−1

(
𝜙
(
𝑠′

) ) ] �����
)

(52)

+ 𝛾𝐻 E
𝑠∼𝜉𝜋

���𝑉 𝜋 (𝑠) −𝑉 𝜋
𝜃
(𝜙 (𝑠))

��� (53)

=
1 − 𝛾𝐻
1 − 𝛾

(
𝐿R (54)

+𝛾 E
𝑠∼𝜉𝜋

����� E
𝑠′∼P

[
𝑉 𝜋
𝜃,𝐻−ℎ−1

(
𝑠′

) ]
− E

𝑠′∼P

[
𝑉 𝜋
𝜃,𝐻−ℎ−1

(
𝜙
(
𝑠′

) ) ] �����
)

(55)

+ 𝛾𝐻𝐿𝑉 (56)

We now upperbound Eq. (55). First, we note that R is Lipschitz from the fact that the latent MDP is discrete. Furthermore, this also implies

that 𝑉 𝜋
is Lipschitz continuous as well. From this, we have that 𝑉 𝜋

𝜃,𝐻−ℎ−1

(
𝑠′

)
is Lipschitz continuous with some constant 𝐾 ,

E
𝑠∼𝜉𝜋

����� E
𝑠′∼P

[
𝑉 𝜋
𝜃,𝐻−ℎ−1

(
𝑠′

) ]
− E

𝑠′∼P

[
𝑉 𝜋
𝜃,𝐻−ℎ−1

(
𝜙
(
𝑠′

) ) ] ����� (57)

≤ E
𝑠∼𝜉𝜋

sup

𝑓 ∈F𝐾

����� E
𝑠′∼P

[
𝑓
(
𝑠′

) ]
− E

𝑠′∼P

[
𝑓
(
𝜙
(
𝑠′

) ) ] ����� (58)

= 𝐾𝐿P (59)

This leads to our final inequality,

E
𝑠∼𝜉𝜋

[���𝑉 𝜋
𝜃,𝐻
(𝜙 (𝑠)) −𝑉 𝜋 (𝑠)

���] ≤ 1 − 𝛾𝐻
1 − 𝛾

(
𝐿R + 𝛾𝐾𝐿P

)
+ 𝛾𝐻𝐿𝑉 (60)

□

B PROOF OF THEOREM 6.3.
Restating Theorem 6.3 for clarity:

Theorem B.1. LetM be an ergodic MDP and assume that the latent policy 𝜋 has full support in every state, i.e. ∀(𝑠, 𝑎) ∈ S×A, 𝜋 (𝑎 |𝜙 (𝑠)) > 0.
For a latent MDPM, the local losses defined in Eq. (4) are zero if and only ifM ∼M.

Proof. We first show that for the markov chainM𝜋 induced by the lifted policy 𝜋 (𝑠, 𝑎) = 𝜋 (𝜙 (𝑠), 𝑎), every state 𝑠 ∈ S has strictly

positive probability in the stationary distribution, i.e. 𝜉𝜋 (𝑠) > 0. Since every state in the MDPM is accessible, the Markov chainM𝜋 induced

by the policy 𝜋 is irreducible.

Therefore, there exists a path 𝜌 (𝑠I , 𝑠) from 𝑠I to any other state 𝑠 . Due to the assumption of full support, this path has a positive probability

of occurring. The ergodicity of the MDP guarantees that 𝑠I will be visited infinitely often. Hence, , will also be visited infinitely often and

therefore 𝜉𝜋 (𝑠) > 0.

We now show that when the local losses are zero, we recover a bisimulation relation between the real MDPM and latent MDPM. We

know by [12] that ∀𝑠1, 𝑠2 such that 𝜙 (𝑠1) = 𝜙 (𝑠2) it is guaranteed that,

˜𝑑𝜋 (𝑠1, 𝑠2) ≤
[
𝐿R +

𝛾𝐿P
1 − 𝛾

]
(𝜉−1

𝜋
(𝑠1) + 𝜉−1

𝜋
(𝑠2)) . (61)



Obviously, when 𝐿R = 0 and 𝐿P = 0 this implies that
˜𝑑𝜋 (𝑠1, 𝑠2) = 0.

( =⇒ ) Since for all states 𝜉−1

𝜋
(𝑠) > 0 and the local losses are zero, we have that,

E
𝑠,𝑎∼𝜉

[���R(𝑠, 𝑎) − R(𝜙 (𝑠), 𝑎)���] = 0. (62)

This implies that ∀𝑠, 𝑎 ∈ 𝜉 :

���R(𝑠, 𝑎) − R(𝜙 (𝑠), 𝑎)��� = 0 and therefore that R(𝑠, 𝑎) = R(𝜙 (𝑠), 𝑎).
Additionally, since the local transition loss is also zero, we have,

E
𝑠,𝑎∼𝜉

[
W𝑑S

(
𝜙 (P(·|𝑠, 𝑎)), P(·|𝜙 (𝑠), 𝑎)

)]
= 0. (63)

which analogously implies 𝜙 (P(·|𝑠, 𝑎)) = P(·|𝜙 (𝑠), 𝑎). Note that the metric used here is not a pseudometric but specifically
˜𝑑𝑠 = 1≠. This

guarantees that we learned an MDP homomorphism and from [37] this further implies bisimulation.

(⇐= ) In the other direction, we aim to show that when the model learns exact lax bisimulation, the local losses are zero. This follows by

definition. □
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