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ABSTRACT

Novelty detection, a widely studied problem in machine learning, is the task of de-
tecting a novel class of data that has not been previously observed. Deep networks
have driven the state-of-the-art work on this application in recent years due to their
successful applications on large and more complex datasets. The usual setting for
novelty detection is unsupervised whereby only examples of the normal class are
available during training, but more recently there has been a surge in interest in
semi-supervised methods. A common assumption about semi-supervised meth-
ods is their access to an additional set of labeled data that includes a few examples
of anomalies. Transductive novelty detection or positive-unlabeled (PU) learning
on the other hand assumes access to an additional unlabeled set that contains ex-
amples of anomalies. In this study, we focus on machine vision applications and
propose TransductGAN, a transductive generative adversarial network (GAN) that
attempts to learn how to generate image examples from the novel class by sepa-
rating the latter from the negative class in a latent space using a mixture of two
Gaussians. It achieves that by incorporating an adversarial autoencoder with a
GAN network; the ability to generate examples of novel data points offers not
only a visual representation of the new class, but also overcomes the hurdle faced
by many inductive methods about how to tune the model hyperparameters at the
decision rule level. In addition, the introduction of a latent space enables an en-
hanced discriminative learning. Our model has shown superior performance over
state-of-the-art work on several benchmark datasets.

1 INTRODUCTION

Novelty detection has been addressed widely in the machine learning literature, its basic form aims
to build a decision rule in order to distinguish a normal set of data points/ inliers from novelties/
anomalies. Due to their superior ability to handle high dimensional data, deep networks have over-
taken shallow methods such as one-class SVM Schölkopf et al. (1999); Tax & Duin (2004) in recent
years in driving the state-of-the-art (SOTA) work in applications such as machine vision. A com-
mon setting that deep network applications follow in novelty detection is unsupervised whereby
only examples of the normal data are available during training. Some notable contributions include
deep one class classification Ruff et al. (2018), adversarial models that rely on reconstructions errors
Akcay et al. (2019); Schlegl et al. (2017); Zenati et al. (2018a); Akçay et al. (2019); Zenati et al.
(2018b); Perera et al. (2019), deep energy-based models Zhai et al. (2016), autoencoding Gaus-
sian mixture models Zong et al. (2018), perturbation-based learning models Cai & Fan (2022) and
one-class anomaly classifiers using adversarially interpolated training samples Chen et al. (2022).

But there could be applications where an additional contaminated dataset is also available during
training, incorporating this set into the learning is referred to as semi-supervised. One subbranch of
semi-supervised learning assumes access to a labeled contaminated dataset. Most of the work using
that assumption has focused on shallow methods such as Görnitz et al. (2013) or is application or
data-specific such as Ergen & Kozat (2020); Min et al. (2018); Pang et al. (2019). Deep SAD Ruff
et al. (2020) is a more general method that was introduced as an extension to the unsupervised deep
one class classification Ruff et al. (2018) to account for the semi-supervised case.

Another slightly more challenging semi-supervised subbranch assumes access to an unlabelled con-
taminated dataset. The latter goes by the name of transductive novelty detection Blanchard et al.
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(2010) or PU learning. With the emergence of adversarial training, GAN-based Goodfellow et al.
(2014) models have become state-of-the-art in PU learning applications and mostly involve learn-
ing a binary classifier from positive and unlabelled data. In Chiaroni et al. (2018) a positive GAN
(PGAN) learns to generate counter-examples by being trained to learn the distribution of the unla-
belled dataset. It exploits the weakness in GAN training in order to achieve that but its performance
is limited to cases where the generated distribution does not perfectly match the unlabelled data
distribution. In Hou et al. (2018) a generative positive-unlabeled (GenPU) model is proposed that
makes use of a series of discriminators and generators to produce both positive and negative sam-
ples; GenPU requires prior knowledge of the contamination rate in the unlabeled set. Following the
latter two methods, Chiaroni et al. Chiaroni et al. (2020) have proposed another two-stage GAN
model (D-GAN) that learns the counter-examples distribution. D-GAN incorporates a biased PU
risk in the discriminator loss function that constrains the generator to learn the positive samples
distribution exclusively. The study also demonstrates that the standard GAN loss function in use
also alleviates the need for prior knowledge of the contamination rate. Concurrently Chen et al.
(2020) proposes a variational approach and Zhang et al. (2020) uses a mixture model of restricted
Boltzmann machines that also surpasses the need for a prior estimation.

Indeed, the latter study proposes to minimize the overlap between the normal class conditional PDF
and the anomaly class conditional PDF by separating them. In this study we adopt a similar idea
but propose to achieve that using a lower-dimensional latent space where separating the two PDFs is
more efficient. To the best of our knowledge, none of the SOTA work on PU learning has attempted
to explore learning in a latent space using deep networks. Our proposed TransductGAN model fills
that gap precisely, it combines an adversarial autoencoder (Makhzani et al., 2016) that maps the data
to a latent space with a GAN. It attempts to simultaneously separate the inliers from the novelties
in the latent space and learn how to generate anomalies. A standard binary classifier can then be
trained using the artificially generated novel and normal samples projections in order to perform
anomaly detection. A diagram of TransductGAN is provided in Figure 1 and our main contributions
are summarized below:

• we propose a novel GAN-based model capable of learning how to generate novelties in a
transductive/ PU learning setup

• by being able to generate the anomalies artificially we can train a binary classifier and tune
its hyperparameters without explicitly accessing the unknown class; this overcomes the
hurdle faced by many unsupervised methods of how to tune their hyperparameters in the
absence of novel data examples

• the introduction of a latent space constitutes our main contribution; it enables the use of
more discriminative features by modeling two non-overlapping Gaussian distributions in
the latent space

• we thoroughly test our model on three benchmark datasets using two different protocols

• our model exhibits superior performance over several SOTA unsupervised and semi-
supervised models

2 TRANSDUCTGAN

2.1 MODEL OBJECTIVES

In the below we will refer to the normal/ novel class as positive/ negative class respectively. Trans-
ductGAN’s objectives are to ensure the distributions of these two classes remain non-overlapping in
the latent space while it learns to generate examples of the negative class. The transductive setup
assumes access to a positive dataset and an unlabeled dataset containing examples of the negative
class. TransductGAN includes an adversarial autoencoder Makhzani et al. (2016) that matches the
aggregated posterior distribution of the latent space with a bimodal distribution (a mixture of two
Gaussians), and a generative model that learns how to map the negative class mode in the latent
space to image examples belonging to the negative class. A binary classifier (e.g. a support vector
machine) can then be trained to identify the novel data points in the unlabeled set. This operation
takes place in the absence of any labeled negative data examples.
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Figure 1: TransductGAN. The network includes an adversarial autoencoder that ensures the latent
distributions match with the priors as per equation 5, and a transductive network that learns to map
samples from pn(z) into images that belong to the novel class.

More formally, let us define the input as x ∈ Rm and its projection in the latent space (i.e. the output
of the encoder E in Figure 1) as z ∈ Rn with m >> n. We have access to the positive dataset
Xp = {xi

p}
np

i=1 ∼ Pxp
and an unlabeled dataset that includes novel data Xu = {xi

u}
nu
i=1 ∼ Pxu

. Let
us also define y ∈ {−1,+1} as the class label (negative or positive). The class conditional negative
density (representing the negative samples in the latent space) is:

qn(z) = q(z|y = −1), (1)
and the class conditional positive density (representing the positive data samples) in the latent space:

qp(z) = q(z|y = 1). (2)

The unlabeled density in the latent space is hence defined as:

qu(z) = πqn(z) + (1− π)qp(z). (3)

π is the prior for the negative class also known as the contamination rate, we assume we have access
to this figure and that it is strictly positive π > 0:

π = p(y = −1) (4)

The prior distributions we want to impose directly are pp(z) for the positive dataset with N(µp,Σp)
and pu(z) for the unlabeled dataset, and indirectly pn(z) for the negative dataset with N(µn,Σn).
The unlabeled prior can also be defined as:

pu(z) = πpn(z) + (1− π)pp(z) (5)

We assume we have access to np positive samples and nu unlabeled samples.

2.2 TRAINING METHODS

The proposed model for learning how to generate negative and positive samples is summarised in
Figure 1. The first part of the model is an adversarial autoencoder that includes the networks E, G,
and the critic networks Dzu and Dzp . E and G are trained to minimize a reconstruction loss, or a
minimal L2 distance between an image and its reconstructed version:

Lreconstruction = min
E

min
G

Ex∼Px
∥x−G(E(x))∥2 (6)
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In the above Px could refer to either PXu
or PXp

.

When using Xu, Dzu and E are trained to match the projections of Xu onto the latent space with
pu(z) defined in equation 5, a Wasserstein loss with a gradient penalty (WGAN-GP) (Gulrajani
et al., 2017) is used in order to ensure that. And similarly when using Xp, Dzp and E are trained to
match the projections of Xp onto the latent space with pp(z). In both cases, the latent loss can be
defined as:

Lregularization = min
E

max
D

Ex∼Px [D(E(x))]−Ez∼p(z)D(z) + λEẑ∼Pẑ
[(∥∇ẑD(ẑ)∥2 − 1)2] (7)

In the above, depending on whether we are using Xu or Xp during training, Px refers to either
PXu

or PXp
. p(z) refers to either pu(z) or pp(z) and the critic network D refers to either Dzu

or Dzp . Similarly to the gradient penalty definition in (Gulrajani et al., 2017), the sampling Pẑ is
a uniform distribution along straight lines between pairs of points sampled from (qu(z), pu(z)) or
(qp(z), pp(z)). Crucially, by imposing pu(z) and pp(z) on qu(z) and qp(z) respectively, qn(z) will
implicitly match with pn(z).

The second part of the model focuses on G and DXu
, the generator G will be trained to produce

fake negative samples G(zn). Let us define X
′

u to be the result of a concatenation operation between
Xp and G(zn) with proportions of 1− π and π respectively. With regards to generating G(zn), the
intuition is that Xu is formed by samples from both the positive set Xn and unknown negative
samples Xn, we ensure Xp already forms a subset of X

′

u, the generator G is then left with the task
of complementing X

′

u with samples not already provided by Xp, i.e. samples that are similar to
the novel samples Xn. The role of Dxu is hence to challenge G to produce a set G(zn) that is
indistinguishable from Xn.

The adversarial loss, also a WGAN-GP, is defined as:

Ladv = min
G

max
DXu

E[DXu
(X

′

u)]− E[DXu
(Xu)] + λEx̂∼Px̂

[(∥∇x̂DXu
(x̂)∥2 − 1)2] (8)

Similarly to the gradient penalty definition in (Gulrajani et al., 2017), the sampling Px̂ is a uniform
distribution along straight lines between pairs of points sampled from (X

′

u, Xu). A pseudocode of
TransductGAN is provided in algorithm 0.

Once the TransductGAN training is completed, a binary classifier can be trained using the latent
projections of Xp onto the latent space as one class and the latent projections of the fake negative
images as the other class as per Algorithm 2.

3 EXPERIMENTS

3.1 DATASETS

3.1.1 MNIST LECUN & CORTES (2010).

This dataset consists of 28x28 grayscale images of handwritten digits split evenly across 10 classes.
The training set includes 60000 examples and the test set includes 10000 examples.

3.1.2 FASHION-MNIST XIAO ET AL. (2017)

This dataset shares the same specifications as MNIST in terms of size and train/ test split, it consists
of grayscale images of different fashion products.

3.1.3 CIFAR10 KRIZHEVSKY & HINTON (2009).

This dataset consists of 32x32 coloured images of animals or modes of transport with 50000 training
samples and 10000 test samples. The dataset is split evenly across 10 classes.
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Algorithm 1 TransductGAN. We use default values of λ = 10, ncritic = 5 (Gulrajani et al., 2017).

Require: the contamination rate π, the gradient penalty coefficient λ, the number of critic iterations
per generator iteration ncritic, the batch size m.

Require: initial critics parameters θDzu
, θDzp

, θDXu
, initial encoder parameters θE and initial

generator parameters θG.
select next batch of m samples from Xu

minimize Lrec wrt θE and θG and update parameters accordingly
sample z ∼ pu(z)
minimize Lreg wrt θE and update parameters accordingly
for i = 1, ..., ncritic do

maximize Lreg wrt θDzu
and update parameters accordingly

end for
select next batch of m samples from Xp

minimize Lrec wrt θE and θG and update parameters accordingly
sample z ∼ pp(z)
minimize Lreg wrt θE and update parameters accordingly
for i = 1, ..., ncritic do

maximize Lreg wrt θDzp
and update parameters accordingly

end for
select next batch of m samples from Xu

sample int(π ∗m) samples z ∼ pn(z)

combine G(z) with (m− int(π ∗m)) samples from Xp to form X
′

u
minimize Ladv wrt θG and update parameters accordingly
for i = 1, ..., ncritic do

maximize Ladv wrt θDXu
and update parameters accordingly

end for

Algorithm 2 Binary classifier for novelty detection.

Require: Training of TransductGAN as per Algorithm 0
sample 5000 samples zn from pn(z)
select 5000 samples Xp from Xn

train a two-class SVM with linear kernel with E(G(zn)) as one class and E(Xp) as another
apply classifier on E(Xu) as novelty detector
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3.2 PROTOCOLS

We will use two widely used protocols when running our experiments. In the first protocol, we will
treat one of the classes as novel and remove it from the training set and the rest of the classes will be
treated as normal. In the second protocol we will adopt the one-versus-all approach where a single
class will be treated as normal and the rest of the classes as anomalies. In both protocols we will
iterate through all the class combinations when reporting our results.

3.3 PERFORMANCE MEASURE

Our performance is measured using the area under the curve of the Receiver Operating Characteristic
(AUROC). The Receiver Operating Characteristic curve plots the true positive rate against the false
positive rate as we vary the threshold of our classifier. We also include image outputs of the produced
novel images.

3.4 NETWORK ARCHITECTURES

The transductive network architecture as highlighted in red in Figure 1 follows the same implemen-
tation 1 as was provided by Gulrajani et al. (2017). Our open source implementation will provide
further details about the adversarial network implementation.

3.5 METHODS FOR COMPARISON

When using protocol 1, we compare our model against the unsupervised shallow OCSVM model
Schölkopf et al. (1999); Tax & Duin (2004), the unsupervised deep EGBAD Zenati et al. (2018a)
and GANomaly Akcay et al. (2019) models and a variant of the semi-supervised D-GAN model
Chiaroni et al. (2020). We use the scikit implementation of OCSVM 2 with the ’scale’ default kernel
width value. We follow the same training procedures stated in the original publications regarding
EGBAD and GANomaly’s results. EGBAD’s results with CIFAR10 were taken from (Akcay et al.,
2019). The D-GAN implementation made available by the authors did not include the version
they used with MNIST and CIFAR10 datasets; our attempt to reproduce their results resulted in
a mode collapse with classification results no better than random so we have not included these
in our comparison. We have however built a variant of their model which we call D-GAN-V. It
adopts an architecture that is identical to D-GAN with the exception that we are now using the earth
mover distance as the loss function; this alleviates the problem of mode collapse but because of this
modification the model now requires prior knowledge of the contamination rate. In addition, the
generator and discriminator networks are identical to the ones used in TransductGAN, this ensures
a fair comparison to D-GAN.

When using protocol 2 we compare our results against three unsupervised methods with deep net-
works, namely one-class deep SVDD Ruff et al. (2018) (DSVDD), deep structured energy-based
model (DSEBM) Zhai et al. (2016) and one-class GAN (OCGAN) Perera et al. (2019). For the case
of semi-supervised learning competitors we choose a method that have made use of labeled anoma-
lies and report results from Ruff et al. (2020) on deep SAD, in this case we choose the setting with
no polluted data in the training set and use a 10% ratio of labeled anomalies. We also include the
results of the PU learning method D-GAN from Chiaroni et al. (2020).

3.6 CRUCIAL MODEL PARAMETERS

We have highlighted previously that the main contribution of this work is the introduction of a
latent space where we train the data projections to fit a bimodal distribution. In order to ensure
the distributions of the positive and negative data projections do not overlap in the latent space it is
essential to set the means and covariances of the priors carefully.

1https://github.com/igul222/improved wgan training
2https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html
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3.7 RESULTS

We present our results for protocol 1 in Tables 1, 5 and 4 for MNIST, CIFAR10 and Fashion-MNIST
respectively. The results are broken down by rows corresponding to the normal data (included in the
leftmost column). The best average results are highlighted in bold. Due to time constraints we only
include the results for D-GAN-V and our method with Fashion-MNIST. For the same protocol, we
also include some output examples in 2 and notice the presence of normal data points within the fake
negative dataset. We include further image outputs in the appendix while varying the contamination
rate. Unsurprisingly the generated examples are less polluted with a higher contamination rate. For
protocol 2 we only report the average results only for all three datasets.

Our method outperforms its unsupervised learning counterparts by the largest margins, this is un-
surprising given that we make use of the anomalies present in the test set albeit without the labels.
TransductGAN also outperforms its PU learning competitors D-GAN/ D-GAN-V by a smaller mar-
gin than the unsupervised methods. This outperformance highlights the advantage of introducing
a latent space. In fact we go further and conduct an ablation study where we compare our model
against a vanilla model where the adversarial network is completely omitted (the adversarial network
is coloured in blue in Figure 1. The vanilla network does not make use of a latent space and trains a
binary classifier (a SVM with a radial basis function kernel) based on the fake (negative) generated
samples from the generator and the positive real images Xp, it is summarised in Figure 3) and an
outline of the overall procedure is provided in Algorithm 3 and Algorithm 4 in the appendix. As
we can clearly see from Table 5, the latent space offers 11.1%, 9.6%, and 8.2% improvements over
its vanilla counterpart for 5%, 10% and 30% contamination rate respectively. This suggests that a
latent space is all the more relevant as the examples of anomalies become rarer in the unlabelled set.
Finally, TransductGAN also outperforms deepSAD although the latter makes use of a few labeled
anomalies. TransductGAN does carry an advantage over deepSAD in protocol2 where it is able to
see a large amount of anomalous data (the contamination rate is 90%).

OCSVM GANomaly EGBAD TransductGAN D-GAN-V
0 0.853(0) 0.882 0.86 0.991(0.002) 0.995(0)
1 0.315(0.001) 0.663 0.314 0.996(0) 0.996(0)
2 0.775(0.002) 0.952 0.835 0.985(0.002) 0.981(0.001)
3 0.655(0.004) 0.794 0.712 0.975(0.005) 0.972(0.004)
4 0.498(0.003) 0.803 0.655 0.978(0.004) 0.976(0.005)
5 0.589(0.003) 0.864 0.713 0.975(0.002) 0.962(0.004)
6 0.691(0.003) 0.852 0.753 0.994(0.002) 0.994(0)
7 0.582(0.009) 0.697 0.525 0.976(0.005) 0.974(0.001)
8 0.544(0.002) 0.792 0.728 0.967(0.001) 0.964(0.003)
9 0.349(0.005) 0.534 0.547 0.968(0.005) 0.912(0.063)

0.585 0.783 0.664 0.98 0.973

Table 1: ROC (AUC) results summary for protocol 1 - MNIST. Three different random seeds are
used with standard deviations shown in brackets.

4 CONCLUSION AND FUTURE WORK

We have introduced a latent representation for PU/ transductive learning methods that take advantage
of a lower-dimensional space in order to separate the normal data from the anomalies. Our method
outperforms several SOTA unsupervised and semi-supervised learning methods. One of the main
disadvantage of our method is its need to have access to the contamination rate, we plan to work
on estimating that figure in future work. We have also noticed through the results in Table 5 that
our model performs better with a higher contamination rate, this may in fact be a weakness in the
model (and more generally in PU learning algorithms) and we leave it for future studies to ensure the
model’s performance does not degrade as the examples of anomalies become rarer in the unlabeled
set. Finally we also plan to incorporate self-supervised learning in our work following the example
of Golan & El-Yaniv (2018) in order to enhance the feature extraction in the latent space.
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OCSVM GANomaly EGBAD TransductGAN DGAN-V
plane 0.54(0.01) 0.622 0.582 0.81(0.004) 0.786(0.009)
car 0.657(0.002) 0.632 0.527 0.85(0.002) 0.77(0.007)
bird 0.384(0.011) 0.513 0.386 0.66(0.007) 0.633(0.015)
cat 0.577(0.012) 0.575 0.455 0.655(0.004) 0.64(0)
deer 0.32(0.005) 0.591 0.385 0.686(0.007) 0.62(0.008)
dog 0.57(0.005) 0.625 0.490 0.715(0.011) 0.68(0.018)
frog 0.397(0.001) 0.668 0.359 0.736(0.015) 0.643(0.007)
horse 0.54(0.005) 0.650 0.527 0.74(0.011) 0.696(0.012)
ship 0.51(0.009) 0.622 0.411 0.87(0.006) 0.836(0.019)
truck 0.66(0.006) 0.615 0.554 0.81(0.009) 0.776(0.005)

0.515 0.611 0.468 0.7533 0.7053

Table 2: ROC (AUC) results summary for protocol 1 - CIFAR10. Three different random seeds are
used with standard deviations shown in brackets.

D-GAN-V TransductGAN
T-shirt/top 0.868(0.002) 0.955(0.005)
Trouser 0.922(0.002) 0.996(0.000)
Pullover 0.872(0.006) 0.954(0.005)
Dress 0.893(0.000) 0.974(0.002)
Coat 0.880(0.003) 0.951(0.005)
Sandal 0.763(0.002) 0.993(0.001)
Shirt 0.848(0.005) 0.891(0.01)
Sneaker 0.928(0.000) 0.993(0.000)
Bag 0.917(0.001) 0.991(0.000)
Ankle boot 0.921(0.003) 0.995(0.000)

0.881 0.969

Table 3: ROC (AUC) results summary - Fashion-MNIST. Three different random seeds are used
with standard deviations shown in brackets.

DSVDD DSEBM OCGAN deepSAD D-GAN TransductGAN
MNIST 0.948 - 0.9750 0.97 0.989 0.995
Fashion-MNIST - 0.866 - 0.91 - 0.983
CIFAR10 0.6481 0.609 0.6566 0.8 0.815 0.841

Table 4: ROC (AUC) results summary for protocol 2.

TransductGAN(5%) Vanilla(5%) TransductGAN(10%) Vanilla(10%) TransductGAN(30%) Vanilla(30%)
plane 0.763(0.003) 0.625(0.005) 0.81(0.004) 0.786(0.009) 0.86(0.002) 0.84(0)
car 0.7(0.009) 0.756(0.018) 0.85(0.002) 0.77(0.007) 0.906(0.004) 0.843(0.037)
bird 0.6(0.018) 0.39(0.011) 0.66(0.007) 0.633(0.015) 0.766(0.008) 0.713(0.018)
cat 0.586(0.045) 0.56(0.013) 0.655(0.004) 0.64(0) 0.786(0.009) 0.69(0.025)
deer 0.55(0.007) 0.376(0.055) 0.686(0.007) 0.62(0.008) 0.796(0) 0.713(0.006)
dog 0.65(0.021) 0.62(0.01) 0.715(0.011) 0.68(0.018) 0.816(0.006) 0.753(0.004)
frog 0.613(0.022) 0.493(0.073) 0.736(0.015) 0.643(0.007) 0.86(0.011) 0.746(0.011)
horse 0.636(0.021) 0.606(0.007) 0.74(0.011) 0.696(0.012) 0.856(0.009) 0.78(0.031)
ship 0.8(0.007) 0.736(0.008) 0.87(0.006) 0.836(0.019) 0.9(0.001) 0.89(0.003)
truck 0.696(0.027) 0.77(0.007) 0.81(0.009) 0.776(0.005) 0.876(0.005) 0.816(0.028)

0.6596 0.5935 0.7533 0.7053 0.8426 0.7786

Table 5: ROC (AUC) results summary for ablation study - CIFAR10. Results for TransductGAN
and the vanilla model for a varying contamination rate in brackets. Three different random seeds are
used with standard deviations included (using protocole 1).
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Figure 2: Examples of generated outputs. The left column represents real images and the right
column represents examples of generated anomalies using protocol 1. The anomaly categories are
’0’, ’ship’ and ’T-shirt/top’ for the respective datasets.
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A APPENDIX

A.1 VANILLA MODEL

In this section we include details related to the vanilla model.

Figure 3: Vanilla model.

Algorithm 3 Vanilla model. We use default values of λ = 10, ncritic = 5 (Gulrajani et al., 2017).

Require: the contamination rate π, the gradient penalty coefficient λ, the number of critic iterations
per generator iteration ncritic, the batch size m.

Require: initial critics parameters θDXu
and initial generator parameters θG.

select next batch of m samples from Xu

sample int(π ∗m) samples z ∼ N(µ,Σ)

combine G(z) with (m− int(π ∗m)) samples from Xp to form X
′

u
minimize Ladv wrt θG and update parameters accordingly
for i = 1, ..., ncritic do

maximize Ladv wrt θDXu
and update parameters accordingly

end for

Algorithm 4 Binary classifier for novelty detection with vanilla model.

Require: Training of vanilla model as per Algorithm 3
sample 5000 samples z from N(µ,Σ)
select next batch of 5000 samples from Xp

train a two-class SVM with radial basis function kernel with G(z) as one class and Xp as another
apply classifier on E(Xu) as novelty detector

A.2 EFFECT OF CONTAMINATION RATE
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(a) Real novel images (b) Fake novel images (5%)

(c) Fake novel images (10%) (d) Fake novel images (30%)

Figure 4: MNIST example with ’0’ as novel class. For the fake examples, the value in brackets
corresponds to the contamination rate in the test set that was used during training.
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(a) Real novel images (b) Fake novel images (5%)

(c) Fake novel images (10%) (d) Fake novel images (30%)

Figure 5: CIFAR10 example with ship as novel class. For the fake examples, the value in brackets
corresponds to the contamination rate in the test set that was used during training.
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