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ABSTRACT

In light of the burgeoning success of reinforcement learning (RL) in diverse real-
world applications, considerable focus has been directed towards ensuring RL
policies are robust to adversarial attacks during test time. Current approaches
largely revolve around solving a minimax problem to prepare for potential worst-
case scenarios. While effective against strong attacks, these methods often com-
promise performance in the absence of attacks or the presence of only weak at-
tacks. To address this, we study policy robustness under the well-accepted state-
adversarial attack model, extending our focus beyond only worst-case attacks. We
first formalize this task at test time as a regret minimization problem and establish
its intrinsic hardness in achieving sublinear regret when the baseline policy is from
a general continuous policy class, Π. This finding prompts us to refine the base-
line policy class Π prior to test time, aiming for efficient adaptation within a finite
policy class Π̃, which can resort to an adversarial bandit subroutine. In light of
the importance of a small, finite Π̃, we propose a novel training-time algorithm to
iteratively discover non-dominated policies, forming a near-optimal and minimal
Π̃, thereby ensuring both robustness and test-time efficiency. Empirical validation
on the Mujoco corroborates the superiority of our approach in terms of natural and
robust performance, as well as adaptability to various attack scenarios.

1 INTRODUCTION

With an increasing surge of successful applications powered by reinforcement learning (RL) on
robotics (Levine et al., 2016; Ibarz et al., 2021), creative generation (OpenAI, 2023), etc, its safety
issue has drawn more and more attention. There has been a series of works devoted to both the
attack and defense aspects of RL (Kos & Song, 2017; Huang et al., 2017; Pinto et al., 2017; Lin
et al., 2019b; Tessler et al., 2019; Gleave et al., 2019). Specifically, the vulnerability of RL policies
has been revealed under various strong threats, which in turn facilitates the training of deep RL
policies by accounting for the potential attacks to boost the robustness.

Existing approaches aimed at principled defense often prioritize robustness against worst-case at-
tacks (Tessler et al., 2019; Russo & Proutiere, 2019; Zhang et al., 2021; Sun et al., 2021; Liang et al.,
2022), focusing on the optimal attacker policy within a potentially constrained attacker policy space.
Such a focus can lead to suboptimal performance when RL policies are subjected to no or weak at-
tacks during test time. Real-world scenarios often diverge from these worst-case assumptions for
several reasons: (1) Launching an attack against an RL policy might first require bypassing well-
protected sensors, thus constraining the attack’s occurrence in terms of time steps and its intensity.
(2) Previous studies (Zhang et al., 2021; Sun et al., 2021) have highlighted the intriguing difficulty
of learning the optimal attack policy, particularly when attackers are constrained by algorithmic
efficiency or computational resources. Given these practical considerations and the prevalence of
non-worst-case attacks, we pose and endeavor to answer the following question:

Is it possible to develop a comprehensive framework that enhances the performance of the victim
against non-worst-case attacks, while maintaining robustness against worst-case scenarios?

†Equal contribution. Codes are available at https://github.com/umd-huang-lab/PROTECTED.git

1

https://github.com/umd-huang-lab/PROTECTED.git


Published as a conference paper at ICLR 2024

"(!, %!)

"(!, %")

("(#!, %"), "(#!, %!))    

("(#", %"), "(#", %!))

("(##, %"), "(##, %!))

("(#$, %"), "(#$, %!))

"(!, %")

("(#", %"), "(#", %!))

"(!, %!) "(!, %!)
("(#!, %"), "(#!, %!))

("(#", %"), "(#", %!))

("(##, %"), "(##, %!))

"(!, %")

("(#", %"), "(#", %!))

("(#!, %"), "(#!, %!))

"(!, %!)

"(!, %")

!!!" !#!$
"#

Iterative Discovery of Non-dominated Policies in Pre-training Test-time Online Adaptation

'

Adv ( Adv ) Adv *

!! !" !#!$ !! !" !#!$ !! !" !#!$

+" +! +#

Non-Dominated Policy Class !"

EXP *

Agent

Figure 1: Diagram of our PROTECTED framework. During training, we iteratively discover non-
dominated policies, forming a finite policy class Π̃. The blue area delineates the reward landscape
for victims against attackers, denoted as {(J(π, ν1), J(π, ν2)) |π ∈ Π}. Here, only two attackers
are visualized for clarity. The orange area, on the other hand, represents the space of policies that are
“dominated” by the discovered policy class Π̃. Dominated policies are those that are outperformed
by at least one (mixed) policy in Π̃ across the specified range of attackers. We refer to §C for more
detailed explanations. During test time, online adaptation mechanisms are activated to adjust the
weight of each policy in response to various attack scenarios adaptively.

To address these challenges, we introduce PROTECTED, which stands for pre-training non-
dominated policies towards online adaptation. In this work, the terms ‘pre-training’ and ‘training’
are used interchangeably. At test time, rather than deploying a single static policy, PROTECTED
maintains a set of policies, denoted as Π̃, and adaptively updates the weight of each policy based
on interactions with the attacker to minimize regret. Before that, during training, a finite Π̃ is con-
structed by iteratively discovering non-dominated policies, ensuring optimal defense against un-
known attackers. In summary, our contributions encompass both training and online adaptation
phases under the prevailing state-adversarial attack model:

▷ (1) Online adaptation. We formalize the problem of online adaptation and introduce regret
minimization as the objective. We also highlight the inherent difficulty in achieving sublinear
regret, advocating for a refined policy class Π̃ for online adaptation.

▷ (2) Non-dominated policy discovery during training. For training, we characterize the opti-
mality of Π̃ and propose an algorithm for iteratively discovering non-dominated policies. This
results in a Π̃ that is both optimal and efficient for online adaptation, subject to certain mild
conditions. Meanwhile, we also reveal the fundamental hardness of our problem that there are
problem instances requiring a relatively large Π̃ to achieve near-optimality.

▷ (3) Empirical investigations. Through empirical studies on Mujoco, we validate the effective-
ness of PROTECTED, demonstrating both improved natural performance and robustness, as well
as adaptability against unknown and dynamic attacks.

By investigating defenses against attacks beyond worst cases, we hope this work paves the way for
the development of more practical defense mechanisms against a broader range of attack scenarios.

2 RELATED WORKS

(State-)adversarial attacks on deep RL. Early research by Huang et al. (2017) exposed the vul-
nerabilities of neural policies by adapting adversarial attacks from supervised learning to RL. Lin
et al. (2019b) focused on efficient attacks, perturbing agents only at specific time steps. Following
these works, there have been advancements in stronger pixel-based attacks (Qiaoben et al., 2021;
Pattanaik et al., 2017; Oikarinen et al., 2020). Zhang et al. (2020a) introducing the theoretical
framework SA-MDP for state adversarial perturbations and suggesting a corresponding regularizer
for more robust RL policies. Building upon these, Sun et al. (2021) refined the framework to PA-
MDP for improved efficiency. Liang et al. (2022) further improved the efficiency of defense by
introducing the worse-case Q function, avoiding the alternating training. Those works as mentioned
before aim at improving the robustness against worst-case attacks. Havens et al. (2018) also dealt
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with the adversarial attacks for RL in an online setting, where it focuses on how to ensure robustness
in the presence of attackers during RL training time.

Online learning and meta-learning. During the test phase, our framework equips the victim with
the capability to adjust its policy in response to an unknown or dynamically changing attacker. This
is achieved through the utilization of feedback from previous interactions. In the literature, two
distinct paradigms have been advanced to examine how an agent can leverage historical tasks or ex-
periences to inform future learning endeavors. The first paradigm, known as meta-learning (Schmid-
huber, 1987; Vinyals et al., 2016; Finn et al., 2017), conceptualizes this as the task of “learning to
learn.” In meta-learning, prior experiences contribute to the formulation of a prior distribution over
model parameters or instruct the optimization of a learning procedure. Typically, in this frame-
work, a collection of meta-training tasks is made available together upfront. There are also works
extending meta-learning to deal with the streaming of sequential tasks (Finn et al., 2019), which
however require a task-specific update subroutine. The second paradigm falls under the rubric of
online learning (Hannan, 1957; Cesa-Bianchi & Lugosi, 2006), wherein tasks—or in the context of
our paper, attackers—are disclosed to the victim sequentially via bandit feedback. Extensive lit-
erature has been devoted to the subject of online learning, targeting the minimization of regret in
either stochastic settings (Lattimore & Szepesvári, 2020; Auer, 2002; Russo & Van Roy, 2016) or
adversarial settings (Auer et al., 2002; Neu, 2015; Jin et al., 2020). Our work primarily aligns with
the latter paradigm. However, existing methodologies within this domain generally permit only re-
ward functions to change arbitrarily, which is called the adversarial bandit problem or adversarial
MDP problem. In contrast, our scenario permits the attacker to introduce partial observability for
the victim, thereby also influencing the transition dynamics from the perspective of the victim.

3 PRELIMINARIES

In this section, we adopt the similar setup and notations as existing works (Zhang et al., 2021; Sun
et al., 2021; Liang et al., 2022).

MDP and attacker model. We define a Markov decision process (MDP) as M =
(S,A,T, µ1, r,H), where S is the state space, A is the action space, T : S × A → ∆(S) de-
notes the transition kernel, µ1 ∈ ∆(S) is the initial state distribution, rh : S × A → [0, 1] is the
reward function for each h ∈ [H]. Given an MDPM, at each step h, the attacker sees the true state
sh ∈ S and selects a perturbed state ŝh ∈ S in a potentially adversarial way. Then the victim only
sees the perturbed state ŝh instead of the true sh and takes the corresponding action ah ∈ A. The
goal of the victim is to maximize its expected return while the attacker attempts to minimize it.

Policy and value function. We define the deterministic attacker policy ν = {νh}h∈[H] with νh :

S → S for any h ∈ [H], and denote the corresponding policy space as Vdet. We also consider
constraints on the attacker, where for any s, the attacker can only perturb s to some ŝ ∈ B(s) ⊆ S ,
e.g., B(s) can be the lp ball. We allow randomized policies for the attacker and the policy space is
denoted as V := ∆(Vdet). For any ν ∈ V , we adopt the representation that ν is conditioned on a
random seed z ∈ Z sampled at the beginning of each episode from a fixed probability distribution
P(z). For the victim, we denote history τh at time h as {ŝ1, a1, ŝ2, a2, · · · , ŝh} and T as the space
for all possible history at all steps. We consider history-dependent victim policy π : T → ∆(A) and
Π as the corresponding policy space. Finally, we use Πdet to denote deterministic victim policies.
Given the victim policy π and attacker policy ν, the value function for the victim is defined as:
J(π, ν) = Ez∼P(z)Esh∼T(· | sh−1,ah−1),ŝh∼νh(· | sh,z),ah∼π(· | τh)[

∑H
h=1 rh(sh, ah)].

4 THE PROTECTED FRAMEWORK

4.1 ONLINE ADAPTATION FOR ADAPTIVE DEFENSES

Before delving into our approach of online adaptation for adaptive defenses, it is essential to review
the limitations of existing works concerning the trade-off between natural rewards and robustness.
Then we discuss the necessity of an adaptive defending policy. Existing researches generally focus
on worst-case performance, formally characterized as follows:

3



Published as a conference paper at ICLR 2024

Definition 4.1 (Exploitability). Given a victim policy π, exploitability is defined by:
Expl(π) = max

π′∈Π
min
ν∈V

J(π′, ν)−min
ν∈V

J(π, ν).

Existing works aim to obtain a policy π⋆ that minimizes exploitability, i.e., π⋆ ∈ argminπ Expl(π),
during the training phase to defend against worst-case or strongest attacks. Such a trained policy,
π⋆, is then deployed universally at test time. However, this approach can be overly cautious, com-
promising performance under no or weak attacks (Zhang et al., 2021; Sun et al., 2021). To address
this limitation, we propose to consider a new metric for test-time performance:

Definition 4.2 (Regret). Given T total episodes at test time, at the start of each episode t, the victim
selects a policy πt from Π based on reward feedback from previous episodes, and the attacker selects
an arbitrary policy νt ∈ V . The regret is defined as 1

Regret(T ) = max
π∈Π

T∑
t=1

(
J(π, νt)− J(πt, νt)

)
, (4.1)

Therefore, instead of employing a static victim policy, π⋆, designed to minimize exploitability,
we propose adaptively selecting {πt}t∈[T ] during test time, based on online reward feedback, to
minimize regret. Once the adaptively selected victims, {πt}t∈[T ], ensure low regret, the performance
against either strong or weak (or even no) attacks is guaranteed to be near-optimal. While such an
objective could ideally provide a way to defend against non-worst-case attacks, unfortunately, it
turns out that there are no efficient algorithms that can always guarantee sublinear regret.

Proposition 4.3. Fix α ∈ [0, 1). There does not exist an algorithm that produces a sequence of
victim policies {πt}t∈[T ] such that E[Regret(T )] = poly(S,A,H)Tα for any {vt}t∈[T ].

Remark 4.4. On the downside, Proposition 4.3 remains valid even when the attacker’s actions are
constrained such that |B(s)| = 2 and s ∈ B(s) for each s ∈ S . However, there is a silver lining:
in the hard instance we constructed, the attacker must perturb a state s to another state ŝ such that
both the transition dynamics and the reward function differ greatly between s and ŝ. Therefore, if
real-world scenarios impose constraints – such as ∥s − ŝ∥ ≤ ϵ for some ϵ in continuous control
tasks, and if the transition dynamics and reward function are locally Lipschitz – Proposition 4.3
may not apply. Further investigation of this avenue is left for future work.

The earlier negative results inform us to focus on online adaptation within a smaller, finite policy
class Π̃, rather than the broader class Π. Specifically, in Equation 4.1, {πt}t∈[T ] and the best policy
π in hindsight in Definition 4.2 belongs to a rather large general policy class Π. Therefore, by
relaxing the regret definition to ensure the baseline policy π to come from a smaller and finite policy
class Π̃ ⊆ Π, achieving sublinear regret becomes possible. This can be done by treating each policy
in Π̃ as one arm and running an adversarial bandit algorithm, e.g., EXP3 (Bubeck et al., 2012).
Meanwhile, it is worth noting that if the test-time attacker is unknown but fixed, stochastic bandit
algorithms like UCB can be also effective. Given such a refined policy class Π̃, we can perform
online adaptation as in Algorithm 1, which maintains a meta-policy ωt ∈ ∆(Π̃) during online
adaptation and adjusts the weight of each policy based on the online reward feedback. The key is
that the victim should randomize its policy by sampling from Π̃, following the distribution ωt at the
start of each episode t. Formally, such an algorithm ensures the guarantees for a relaxed definition
of regret, following the analysis of EXP3.

Proposition 4.5 (Bubeck et al. (2012)). Given Π̃ ⊆ Π with |Π̃| < ∞, we define R̃egret(T ) =

maxπ∈Π̃

∑T
t=1 (J(π, ν

t)− J(πt, νt)) for any T ∈ N, {πt}t∈[T ], {νt}t∈[T ]. Algorithm 1 for pro-

ducing {πt}t∈[T ] enjoys the guarantees E[R̃egret(T )]/T ≤ 2H

√
|Π̃| log |Π̃|

T .

Finally, we remark that the adaptation method used here is computationally efficient as it only main-
tains and updates the vector ωt ∈ R|Π̃|, rather than fine-tuning a policy network (or its last layer).
This makes it more suitable for scenarios where computational budgets are limited at test time.

1Regret depends on the specific attackers {νt}t∈[T ]. However, we omit such dependency in Regret(T ) for
notational convenience since both the regret upper bound of interest for our paper and the literature of online
learning and adversarial bandit (Hazan et al., 2016; Lattimore & Szepesvári, 2020) will be for any {νt}t∈[T ].
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Algorithm 1 Online adaptation with refined policy class

Input: Π̃, T , η
Initialize ω1 ∈ ∆(Π̃) to be the uniformly random distribution.
for t ∈ [T ] do

Draw πt ∼ ωt ▷ sampling randomly
Execute πt in the underlying environment and observe total rewards Rt(πt) :=

∑H
h=1 rh

for π ∈ Π̃ do
ωt+1(π)← eη

∑t
s=1 R̂s(π)∑

π′∈Π̃ eη
∑t

s=1 R̂s(π′) , where R̂s(π) = Rs(π)
ωs(π)1π=πs for s ∈ [t]

end for
end for

4.2 PRE-TRAINING FOR NON-DOMINATED POLICIES VIA ITERATIVE DISCOVERY

The analysis above inspires us to discover a refined policy class, Π̃, during training. At test time,
the relaxed definition, R̃egret(T ), with respect to the refined policy class Π̃ can be efficiently mini-
mized. However, the gap between R̃egret(T ) and Regret(T ) can be significant when policies in Π̃

are suboptimal, meaning that policies from Π \ Π̃ could provide much higher rewards against some
attacks. Consequently, we introduce the following definition to characterize the optimality of Π̃.

Definition 4.6. For given policy class Π̃, we define the optimality gap between Π̃ and Π as

Gap(Π̃,Π) := max
ν∈V

(
max
π∈Π

J(π, ν)−max
π′∈Π̃

J(π′, ν)

)
.

This definition implies that if we have Gap(Π̃,Π) ≤ ϵ, then whatever policy the attacker uses, the
optimal policy in Π̃ is also ϵ-optimal in Π. With this quantity, we can relate the two notions of regret.

Proposition 4.7. Given Π̃, it holds that for any T ∈ N, {πt}t∈[T ], and {νt}t∈[T ]

Regret(T )

T
≤ R̃egret(T )

T
+Gap(Π̃,Π).

If |Π̃| <∞, Algorithm 1 satisfies E[Regret(T )]/T ≤ 2H

√
|Π̃| log |Π̃|

T +Gap(Π̃,Π).

According to this proposition, there is a clear trade-off between optimality, i.e., Gap(Π̃,Π), and
efficiency, i.e., |Π̃|. A natural question arises: can we achieve a small Gap(Π̃,Π) while Π̃ is finite?
Indeed, we answer this in the affirmative.

Proposition 4.8. There exists Π̃ such that Gap(Π̃,Π) = 0 while |Π̃| <∞.

This confirms that we can always find an optimal Π̃ with finite cardinality, enabling the execution of
Algorithm 1. However, |Π̃| in our construction is contingent on the deterministic policy set, which
is relatively large. This indeed arises because an optimal Π̃ can also encompass many redundant
policies. Removing these redundant policies from Π̃ does not impact its optimality. To characterize
such redundant policies, we define dominated policies as follows.

Definition 4.9 (Dominated and Non-dominated Policy). Given δ ≥ 0 and Π̃. We define (δ, Π̃)-
dominated policy π ̸∈ Π̃ as that there exists some ω ∈ ∆(Π̃), for any ν ∈ V , J(π, ν) ≤
Eπ′∼ω[J(π

′, ν)] + δ. For δ = 0, we also say π is dominated by Π̃. If π is not a (0, Π̃ \ {π})-
dominated policy, we say π is a non-dominated policy (w.r.t Π̃).

It’s clear that for a (δ, Π̃)-dominated policy π, i.e., minω∈∆(Π̃) maxν (J(π, ν)− Eπ′∼ω[J(π
′, ν)]) ≤

δ, including π in Π̃ allows the optimality gap to decrease by at most δ. With this principle, a
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straightforward algorithm to construct a small and optimal policy class is to start from an optimal
Π̃ (potentially with redundant policies), i.e., Gap(Π̃,Π) = 0, and then enumerate all π ∈ Π̃ to
examine whether π is dominated by Π̃ \ π. If it is true, one can remove π from Π̃ to reduce its
cardinality. This process is akin to (iterated) elimination of dominated actions in normal-form
games (Roughgarden, 2010).

While such procedures can maintain the optimality of Π̃ and effectively reduce its cardinal-
ity, the overhead of enumerating all π ∈ Π̃ can be unacceptable. Consequently, a natural
and more efficient approach is to construct Π̃ from scratch by iteratively expanding Π̃. Specif-
ically, given Π̃, any policy π such that minω∈∆(Π̃) maxν (J(π, ν)− Eπ′∼ω[J(π

′, ν)]) > δ

can be used to expand Π̃. Thus, we propose to select the one that maximizes this quantity
minω∈∆(Π̃) maxν (J(π, ν)− Eπ′∼ω[J(π

′, ν)]). In other words, at each iteration k, given Π̃k =

{π1, · · · , πk} already discovered, we solve the following optimization problem:

πk+1 ∈ argmax
π∈Π

min
ω∈∆({π1,··· ,πk})

max
ν∈V

(J(π, ν)− Eπ′∼ω[J(π
′, ν)]) , (4.2)

fk+1 = max
π∈Π

min
ω∈∆({π1,··· ,πk})

max
ν∈V

(J(π, ν)− Eπ′∼ω[J(π
′, ν)]) .

It turns out such an iterative process enjoys guarantees for both optimality and efficiency.

Theorem 4.10. For any δ > 0, there exists K ∈ N such that fK ≤ δ. Correspondingly, the policy
class Π̃K := {π1, · · · , πK} satisfies that Gap(Π̃K ,Π) ≤ δ. Furthermore, we have the regret

guarantee that E[Regret(T )]/T ≤ 2H
√

K logK
T + δ for Algorithm 1.

Moreover, let K⋆ = minGap(Π̃,Π)=0 |Π̃| and Kfin = minK∈N:fK=0 K, as long as our objective 4.2
admits a unique solution at every iteration, our algorithm finishes within at most K⋆ + 1 iterations,
i.e., we have Kfin ≤ K⋆ + 1.

Implications. The first part of Theorem 4.10 implies that we can simply set an error threshold
δ > 0 and sequentially solve Equation 4.2 until the optimal value is less than or equal to δ. Then,
Theorem 4.10 predicts this process will always finish in finite iterations, thus leading to a finite Π̃

for any given δ. Once it converges, it is guaranteed that Gap(Π̃,Π) ≤ δ. In addition, the second
part of Theorem 4.10 proves that, under mild conditions, once the algorithm discovers a Π̃ such that
the optimality gap is 0, Π̃ is guaranteed to be the smallest one.

A practical algorithm. To solve the objective 4.2 and develop a practical algorithm, we leverage
the fact by weak duality that

max
π∈Π

min
ω∈∆({π1,··· ,πk})

max
ν∈V

(J(π, ν)− Eπ′∼ω[J(π
′, ν)])

≥ max
π∈Π

max
ν∈V

min
ω∈∆({π1,··· ,πk})

(J(π, ν)− Eπ′∼ω[J(π
′, ν)]) .

Therefore, we propose to optimize RHS, a lower bound for the original problem, bringing two bene-
fits: (1) the maximization for π and ν can be merged and updated together (2) the inner minimization
problem is tractable. To solve RHS, we follow the common practice for nonconcave-convex opti-
mization problems, repeating the process of first solving the inner problem exactly, and then running
gradient ascent for the outer max problem (Lin et al., 2020). The detailed algorithm is presented in
Algorithm 2. Notably, the attacker ν is not modeled as the worst-case to minimize the victim
rewards anymore. For a more intuitive illustration, we refer to the left part of Figure 1.

Finally, to deepen the understanding of our problem and algorithm, we provide a negative result
regarding |Π̃|. In Theorem 4.10, we have not shown how Kfin explicitly depends on δ or other
problem parameters (S, A, H). Indeed, this is not a caveat of our algorithm or analysis. We point
out in the following theorem that, for some problems, Π̃ must be large to be near-optimal.

Theorem 4.11. There exists an MDP with S = 2, A = 2 such that for any |Π̃| < 2H , we must have
Gap(Π̃,Π) ≥ 1

4 .
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Algorithm 2 Iterative discovery of non-dominated policy class

Input: δ, η1, η2,K,N

Initialize Π̃1 ← {π1}, k ← 1, fk ←∞
for k = 1, · · · ,K iterations do

Initialize πk+1,0, ν0, t← 0, and fk+1 ← 0
for t = 1, · · · , N iterations do

k⋆ ← argmaxk′∈[k] J(π
k′
, νt) ▷ estimating accumulative rewards with samples

νt+1 ← νt + η1∇ν(J(π
k+1,t, νt)− J(πk⋆

, νt)) ▷ updating with SA-RL (Zhang et al.,
2021) or PA-AD (Sun et al., 2021)

πk+1,t+1 ← πk+1,t + η2∇πJ(π
k+1,t, νt) ▷ updating with PPO

fk+1 ← J(πk+1,t+1, νt+1)− J(πk⋆

, νt+1)
t← t+ 1

end for
πk+1 ← πk+1,t

Π̃k+1 ← Π̃k ∪ {πk+1}
end for

Nevertheless, this does not mean the problem is always intractable. As for concrete applications,
it is possible that fk can still converge to a small value quickly as k increases. Therefore, we
shall investigate how the cardinality of Π̃ affects empirical performance on standard benchmarks.
We remark that Proposition 4.3 and Theorem 4.11 reveal the fundamental hardness of our problem
setting for test time and training time respectively.

4.3 HOW TO ATTACK ADAPTIVE VICTIM POLICIES OPTIMALLY?

Although our primary focus is on developing robust victims against attacks beyond worst-case sce-
narios, we also explore how to attack an adaptive victim optimally. Existing works typically formu-
late this as a single-agent RL problem, as the attacker usually targets only a single static victim in
a stationary environment. However, once the victim can adapt, the attack problem becomes more
challenging. Since our focus is on developing robust victims, we consider a white-box attack setup,
where the attacker is aware that the victim will be adaptive and will use the refined policy class Π̃ at
test time. Consequently, its attack objective can be framed as

min
ν

max
ω∈∆(Π̃)

Eπ∼ωJ(π, ν),

accounting for the fact that the victim can adaptively identify its optimal choice from Π̃ in response
to any arbitrary static attacker ν, as per Proposition 4.5. While this objective might seem formidable
to solve, it turns out that existing works have already laid the groundwork for this problem. In
this context, the inner problem can be solved tractably, and the outer minimization problem can be
addressed by employing existing RL-based methods, such as SA-RL (Zhang et al., 2021) and PA-
AD (Sun et al., 2021). Consequently, we can repeat the process of solving the inner maximization
first and then applying a gradient update for the outer minimization problem (Lin et al., 2019a).

5 EXPERIMENTS
In this section, our primary focus is to explore the following questions:

▷ Can our methods attain improved robustness against non-worst-case static attacks in comparison
to formulations that explicitly optimize for worst-case performance, while maintaining compa-
rable robustness against worst-case attacks?

▷ Can our methods render better test-time performance against dynamic attackers through online
adaptation compared to baselines deploying a single, static victim?

▷ Are our methods capable of achieving competitive performance with a reasonably small Π̃?

5.1 EXPERIMENTAL SETUP AND BASELINES

For empirical studies, we implement our framework in four Mujoco environments with continuous
action spaces, specifically, Hopper, Walker2d, Halfcheetah, and Ant, adhering to a setup similar to
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Environment Model Natural
Reward

Random RS SA-RL PA-AD

Hopper
state-dim: 11

ϵ=0.075

ATLA-PPO 3291 ± 600 3165 ± 576 2244 ± 618 1772 ± 802 1232 ± 350
PA-ATLA-PPO 3449 ± 237 3325 ± 239 3002 ± 329 1529 ± 284 2521 ± 325

WocaR-PPO 3616 ± 99 3633 ± 30 3277 ± 159 2390 ± 145 2579 ± 229
Ours 3652 ± 108 3653 ± 57 3332 ± 713 2526 ± 682 2896 ± 723

Walker2d
state-dim: 17

ϵ=0.05

ATLA-PPO 3842 ± 475 3927 ± 368 3239 ± 294 3663 ± 707 1224 ± 770
PA-ATLA-PPO 4178 ± 529 4129 ± 78 3966 ± 307 3450 ± 178 2248 ± 131

WocaR-PPO 4156 ± 495 4244 ± 157 4093 ± 138 3770 ± 196 2722 ± 173
Ours 6319 ± 31 6309 ± 36 5916 ± 790 6085 ± 620 5803 ± 857

Halfcheetah
state-dim: 17

ϵ=0.15

ATLA-PPO 6157 ± 852 6164 ± 603 4806 ± 392 5058 ± 418 2576 ± 548
PA-ATLA-PPO 6289 ± 342 6215 ± 346 5226 ± 114 4872 ± 379 3840 ± 273

WocaR-PPO 6032 ± 68 5969 ± 149 5319 ± 220 5365 ± 54 4269 ± 172
Ours 7095 ± 88 6297 ± 471 5457 ± 385 5089 ± 86 4411 ± 718

Ant
state-dim: 111

ϵ=0.15

ATLA-PPO 5359 ± 153 5366 ± 104 4136 ± 149 3765 ± 101 220 ± 338
PA-ATLA-PPO 5469 ± 106 5496 ± 158 4124 ± 291 3694 ± 188 2986 ± 364

WocaR-PPO 5596 ± 225 5558 ± 241 4339 ± 160 3822 ± 185 3164 ± 163
Ours 5769 ± 290 5630 ± 146 4683 ± 561 4524 ± 79 4312 ± 281

Table 1: Average episode rewards ± standard deviation over 50 episodes with three baselines on
Hopper, Walker2d, Halfcheetah, and Ant. ϵ stands for the attack budget chosen to be the same as
related works. We use |Π̃| = 5 for ours and discuss its choice later. Natural reward and rewards
under four types of attacks are reported. Under each column corresponding to an evaluation metric,
we bold the best results. And the row for the most robust agent is highlighted as gray .
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Figure 2: Online adaptation when facing unknown static attackers. It can be seen that the best policy
can be identified quickly and reliably within 800 episodes or less against different attackers.

most related works (Zhang et al., 2020a; 2021; Sun et al., 2019; Liang et al., 2022). We compare our
methods with several state-of-the-art robust training methods including ATLA-PPO (Zhang et al.,
2021), PA-ATLA-PPO (Sun et al., 2021), and WocaR-PPO (Liang et al., 2022). WocaR-PPO is
reported to be the most robust in most environments. We defer the comparison with other baselines,
along with additional implementation and hyperparameter details to the Appendix.
5.2 PERFORMANCE AGAINST STATIC ATTACKS

In this subsection, we showcase improved performance against a spectrum of attacks, ranging from
no attacks to the strongest ones. Accordingly, we present the natural rewards to depict the scenario
without any attacks. We incorporate two heuristic attacks: random perturbations and robust SARSA
(RS) (Zhang et al., 2020a), representing attacks beyond worst-case scenarios. We also include SA-
RL attacks (Zhang et al., 2021) to reflect scenarios where the attacker might have limited algorithmic
efficiency to devise an optimal attack policy since SA-RL can struggle with large action space in its
formulation, and its attack performance can be further enhanced as indicated by Sun et al. (2021),
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(a) Attack Period T = 1000
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(b) Attack Period T = 200
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(c) Attack Probability p = 0.4
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Figure 3: Time averaged accumulative rewards during online adaptation against periodic and prob-
abilistic switching attacks on Ant. The shaded area indicates PA-AD attacks are active while the
unshaded area indicates no attacks.
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Figure 4: Ablation study of |Π̃| against PA-AD attacks on 4 environments.

making it non-worst-case as well. Lastly, we incorporate PA-AD, the currently strongest attack. As
observed in Table 1, our methods yield considerably higher natural rewards and consistently
enhanced robustness against a spectrum of attacks. To further show the improved performance
against non-worst-case attacks, we report the robustness under random attacks with various
intensities in §E.3, where our methods are consistently better. Given that our victim policy is
adaptive, some additional adaptation steps might be necessary to identify the optimal policy against
the attackers. To illustrate this, we detail the adaptation process in Figure 2, showcasing that the
best policy within Π̃ can be identified rapidly and reliably.

5.3 PERFORMANCE AGAINST DYNAMIC ATTACKS

We also examine scenarios where the attacker can exhibit dynamic behavior. To model such scenar-
ios, we let attackers switch between no attacks and PA-AD attacks in the following two fashions.

Periodic attacks. Here we examine a mode where the attacker is weaker than in the worst-case
scenarios, characterized by attacks appearing only periodically. We depict the performance against
periodic attacks with varied frequencies.

Probabilistic switching attacks. In this section, we explore another mode where the attacker is less
severe than in the worst-case scenarios. The attacker can toggle between being active and inactive.
This switching is constrained to occur only with a probability p at regular intervals.

The results are shown in Figure 3, illustrating that the average cumulative reward, or conversely, the
negative of the regret, consistently outperforms the baselines.

5.4 ON THE SCALABILITY OF |Π̃|
One major concern regarding our approach is that it may require a rather large policy class Π̃ to
achieve desirable performance. We report the performance of our methods with different |Π̃| against
PA-AD attacks in Figure 4 on all environments. Surprisingly, our methods only need within 3

policies for Π̃ to achieve improved performance compared with baselines.

6 CONCLUDING REMARKS AND LIMITATIONS

In this paper, we develop a general framework to improve victim performance against attacks beyond
worst-case scenarios. There are two phases: pre-training of non-dominated policies and online
adaptation via no-regret learning. One limitation is the potentially high overhead during training
(approximately 2× running time compared with Sun et al. (2021); Liang et al. (2022)), as highlighted
by Theorem 4.11. Additionally, identifying natural conditions to circumvent the hardness results
outlined in Proposition 4.3 and Theorem 4.11, such as Lipschitz transition dynamics and rewards, is
not fully addressed and remains an important topic for future works.
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Appendix for “Beyond Worst-case Attacks: Robust RL with
Adaptive Defense via Non-dominated Policies”
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A ADDITIONAL RELATED WORKS

Other works related to adversarial RL. Although our paper mainly studies the popular attack
model of adversarial state perturbations, the vulnerability of RL is also studied under other different
threat models. Adversarial action attacks are developed separately from state attacks including Pan
et al. (2019); Tessler et al. (2019); Tan et al. (2020); Lee et al. (2021). Poisoning (Behzadan &
Munir, 2017; Huang & Zhu, 2019; Sun et al., 2020; Zhang et al., 2020b; Rakhsha et al., 2020) is
another type of adversarial attack that manipulates the training data, different from the test-time
attacks that deprave a well-trained policy.

Diverse multi-policy RL. There are also a bunch of related works dedicated to developing RL
policies that can generalize to unknown test environments. The main idea is to encourage the di-
versity of learned policies (Eysenbach et al., 2018; Kumar et al., 2020), by ensuring good coverage
in the state occupancy space for the training environment. However, the robustness of such policies
against malicious, and even adaptive attackers during test time remains an open question. We posit
that incorporating the possibility of adaptive test-time attackers into the training phase is critical for
developing robust policies. Meanwhile, Zahavy et al. (2021) considers constructing a diverse set of
policies through a robustness objective, which targets the worst-case reward.

Multi-objective RL and optimization. In the training phase, the problem we investigate is con-
ceptually similar to multi-objective RL, wherein the objective functions correspond to the victim’s
rewards against a range of potential attackers. Extant literature primarily adopts one of two ap-
proaches to this challenge (Roijers et al., 2013). The first approach converts the multi-objective
problem into a single-objective optimization task through a variety of techniques, subsequently em-
ploying traditional algorithms to identify solutions (Kim & de Weck, 2006; Konak et al., 2006;
Nakayama et al., 2009). However, such methods inherently yield an average policy over the prefer-
ence space and lack the flexibility to optimize for individualized preference vectors. In contrast, our
methodology during the training phase aligns more closely with the second category of approaches,

13



Published as a conference paper at ICLR 2024

which seeks an optimal policy set that spans the entire domain of feasible preferences (Natarajan
& Tadepalli, 2005; Barrett & Narayanan, 2008; Mossalam et al., 2016; Yang et al., 2019). Unfor-
tunately, existing techniques are not well-suited to address the unique complexities of our problem.
Specifically, conventional methods are predicated on the assumption that, in multi-objective RL,
distinct objectives only alter the reward function of the MDP, while the transition dynamics remain
invariant. This structure facilitates the use of established algorithms such as value iteration or Q-
learning. In the context of our problem, as mentioned before, this assumption does not hold, as the
attacker significantly influences the transition dynamics from the victim’s standpoint.

B THEORETICAL ANALYSIS

B.1 SUPPORTING LEMMAS

Here we prove the following series of lemmas for the proof of our propositions and theorems. From
now on, for any ω ∈ ∆(Π) and ν, we use the shorthand notation J(ω, ν) := Eπ∼ωJ(π, ν).

Lemma B.1. For any π ∈ Π, there always exists ω ∈ ∆(Πdet) such that J(π, ν) = J(ω, ν) for any
ν ∈ V .

Proof. Consider any trajectory {sh, ŝh, ah}h∈[H] and random seed z ∈ Z , we compute its proba-
bility under policy π ∈ Π and ν ∈ V as follows

Pπ,ν({sh, ŝh, ah}h∈[H], z)

= P(z)µ1(s1)ν1(ŝ1 | s1, z)π(a1 | ŝ1)
H∏

h=2

T(sh | sh−1, ah−1)νh(ŝh | sh, z)π(ah | ŝ1:h, a1:h−1)

=

[
π(a1 | ŝ1)

H∏
h=2

π(ah | ŝ1:h, a1:h−1)

]
P(z)µ1(s1)ν1(ŝ1 | s1, z)

H∏
h=2

T(sh | sh−1, ah−1)νh(ŝh | sh, z).

Now we are ready to construct the mixture of policy ω ∈ ∆(Πdet). For any π′ ∈ Πdet, we define its
probability in the mixture as

ω(π′) :=
∏

h′∈[H]

∏
{ŝ′h,a

′
h}h∈[h′]

π(π′(ŝ′1:h, a
′
1:h−1) | ŝ′1:h, a′1:h−1). (B.1)

Now we can compute

Pω,ν({sh, ŝh, ah}h∈[H], z) = Eπ′∼ωPπ′,ν({sh, ŝh, ah}h∈[H], z)

=

[
P(z)µ1(s1)ν1(ŝ1 | s1, z)

H∏
h=2

T(sh | sh−1, ah−1)νh(ŝh | sh, z)
]
Eπ′∼ω1

[
a1 = π′(ŝ1), {ah = π′(ŝ1:h, a1:h−1)}Hh=2

]
=

[
P(z)µ1(s1)ν1(ŝ1 | s1, z)

H∏
h=2

T(sh | sh−1, ah−1)νh(ŝh | sh, z)
]
P(a1 = π′(ŝ1), {ah = π′(ŝ1:h, a1:h−1)}Hh=2)

=

[
P(z)µ1(s1)ν(ŝ1 | s1, z)

H∏
h=2

T(sh | sh−1, ah−1)νh(ŝh | sh, z)
][

π(a1 | ŝ1)
H∏

h=2

π(ah | ŝ1:h, a1:h−1)

]
,

where the last step comes from the construction of ω in Equation B.1 by marginalization. Therefore,
we conclude that Pπ,ν({sh, ŝh, ah}h∈[H], z) = Pω,ν({sh, ŝh, ah}h∈[H], z), where construction of ω
does not depend on ν, proving our lemma.

Lemma B.2. The optimization problem of Equation 4.2 always admits a deterministic solution.

Proof. Note by the definition of V := ∆(Vdet), indeed strong duality holds:

max
πk+1∈Π

min
ω∈∆({π1,··· ,πk})

max
ν∈V

(
J(πk+1, ν)− Eπ′∼ω[J(π

′, ν)]
)

= max
πk+1∈Π

max
ν∈V

min
ω∈∆({π1,··· ,πk})

(
J(πk+1, ν)− Eπ′∼ω[J(π

′, ν)]
)
.
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Then for any πk+1,⋆, ν⋆ ∈ argmaxπk+1∈Π,ν∈V minω∈∆({π1,··· ,πk})
(
J(πk+1, ν)− Eπ′∼ω[J(π

′, ν)]
)
,

we denote π⋆(ν⋆) := argmaxπk+1∈Π J(πk+1, ν⋆). Note that π⋆(ν) can be always selected to be a
deterministic policy by Lemma B.1. Meanwhile, it is easy to see that since πk+1,⋆, ν⋆ is an optimal
solution, π⋆(ν⋆), ν⋆ is also an optimal solution, i.e.,

π⋆(ν⋆), ν⋆ ∈ arg max
πk+1∈Π,ν∈V

min
ω∈∆({π1,··· ,πk})

(
J(πk+1, ν)− Eπ′∼ω[J(π

′, ν)]
)
,

concluding our lemma.

Lemma B.3. Let K ∈ N be the integer such that fK+1 = 0 and fK > 0. For any 2 ≤ k ≤ K,
there does not exist some ω⋆ ∈ ∆(Πdet \ {πk}) such that maxν∈V

(
J(πk, ν)− J(ω⋆, ν)

)
≤ 0.

Proof. To begin with, it is easy to see that there does not exist 1 ≤ k1 < k2 ≤ K such that
πk1 = πk2 . This is because it will lead to the fact that fk2 = 0. Now suppose there exists some
ω⋆ ∈ ∆(Πdet \ {πk}) such that

max
ν∈V

(
J(πk, ν)− J(ω⋆, ν)

)
≤ 0.

This leads to the fact that

min
ω∈∆({π1,··· ,πk−1})

max
ν∈V

(
J(πk, ν)− J(ω, ν)

)
≤ min

ω∈∆({π1,··· ,πk−1})
max
ν∈V

(J(ω⋆, ν)− J(ω, ν))

≤ max
ω′∈∆(Πdet\{πk})

min
ω∈∆({π1,··· ,πk−1})

max
ν∈V

(J(ω′, ν)− J(ω, ν))

= max
ω′∈∆(Πdet\{πk})

max
ν∈V

min
ω∈∆({π1,··· ,πk−1})

(J(ω′, ν)− J(ω, ν))

= max
π∈Πdet\{πk}

max
ν∈V

min
ω∈∆({π1,··· ,πk−1})

(J(π, ν)− J(ω, ν))

= max
π∈Πdet\{πk}

min
ω∈∆({π1,··· ,πk−1})

max
ν∈V

(J(π, ν)− J(ω, ν)) ,

where the second last step comes from exactly the same as the proof of Lemma B.2. This contradicts
the fact that πk is the unique optimal solution at iteration k.

B.2 PROOF OF PROPOSITION 4.3

Proof. We construct the MDP M with the state space S = {sgood, sbad, sdummy}, action space
A = {agood, abad}. For the reward, we define rh(·, ·) = 0 for h ∈ [H−1] and rH(sgood, ·) = 1 and
rH(sbad, ·) = 0. For the transition, we define T(sgood | sgood, agood) = 1, T(sbad | sgood, abad) = 1,
T(sbad | sbad, ·) = 1. The initial state is always sgood. We consider the attacker’s policy ν such that
ν(sdummy | ·) = 1, which means the attacker deterministically perturbs the state to sdummy . There-
fore, for the victim to learn the optimal policy against such an attacker, it is equivalent to a multi-arm
bandit problem with 2H arms, for which the sample complexity of finding an approximately optimal
policy must suffer from Ω(2H). Meanwhile, if such a desirable regret in the proposition is possible,
it means we can learn an ϵ-optimal policy in such kind of multi-arm bandit problem with sample
complexity poly(S,A,H, 1

ϵ ), leading to the contradiction.

B.3 PROOF OF PROPOSITION 4.7

Proof. For any ν1:T , we denote π⋆ ∈ argmaxπ∈Π
1
T

∑T
t=1 J(π, ν

t). Then according to Definition
4.2, we have

Regret(T ) =

T∑
t=1

(
J(π⋆, νt)− J(πt, νt)

)
=

(
T∑

t=1

J(π⋆, νt)−max
π∈Π̃

T∑
t=1

J(π, νt)

)
+max

π∈Π̃

T∑
t=1

(
J(π, νt)− J(πt, νt)

)
≤ T Gap(Π̃,Π) + R̃egret(T ),

where the last step comes from choosing ν = Unif(ν1:T ) in Definition 4.6.
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B.4 PROOF OF PROPOSITION 4.8

Proof. Note since in this proposition, we only care about the existence of a finite Π̃, we do not
care about its efficiency, i.e., how large the constructed Π̃ is. Indeed, we can consider Πdet,
which is a finite policy class with cardinality |Πdet| = O((SA)H). Now we verify the opti-
mality of Πdet. For any ν ∈ V , assume π⋆ ∈ argmaxπ∈Π J(π, ν). Then by Lemma B.1, we
have there exists an ω⋆ ∈ ∆(Πdet) such that J(π⋆, ν) = Eπdet∼ω⋆J(πdet, ν). Now we choose
πdet,⋆ = argmaxπdet∈ω⋆ J(πdet, ν). Then we have J(πdet,⋆, ν) ≥ Eπdet∼ω⋆J(πdet, ν) = J(π⋆, ν).
Therefore, we conclude that for any ν ∈ V , we have maxπ∈Π J(π, ν) = maxπ∈Πdet J(π, ν). There-
fore, Gap(Πdet,Π) = 0.

B.5 PROOF OF THEOREM 4.10

Proof. We begin with the proof for the part of the theorem. For δ > 0 and any i1, i2, · · · , i|Vdet| ∈
[⌈Hδ ⌉], we define the set D(i1, · · · , i|Vdet|) = {π ∈ Π | (ij − 1)δ ≤ J(π, νj) < ijδ, ∀j ∈ [|Vdet|]}.
Then according to Pigeonhole principle, there must exist K ∈ N and k ∈ [K] such that πK+1 ∈
D(i′1, · · · , i′|Vdet|) and πk ∈ D(i′1, · · · , i′|Vdet|) for some i′1, i

′
2, · · · , i′|Vdet| ∈ [⌈Hδ ⌉]. Therefore, we

conclude that |J(πK+1, ν) − J(πk, ν)| ≤ δ for any ν ∈ Vdet, and correspondingly for any ν ∈ V .
This lead to that fK+1 ≤ δ. Now we are ready to show that Gap(Π̃K+1,Π) ≤ δ. For any ν ∈ V ,
we define π⋆ ∈ argmaxπ∈Π J(π, ν). Meanwhile, there exists ω ∈ ∆(Π̃K+1) such that J(π⋆, ν) ≤
J(ω, ν) + δ since fK+1 ≤ δ. This implies that J(π⋆, ν) − maxπ′∈Π̃K+1 J(π

′, ν) ≤ δ, proving
Gap(Π̃K+1,Π) ≤ δ.

Now we prove the second part of our theorem. Suppose K⋆ < Kfin−1, we denote the corresponding
optimal policy set as Π⋆ = {π̂1, · · · , π̂K⋆}. By Lemma B.1, for any k ∈ [K⋆], there exists a
ωk ∈ ∆(Πdet) such that

J(π̂k, ν) =

|Πdet|∑
j=1

ωk(πj)J(πj , ν),

for any ν ∈ V , where we have abused our notation for {π2, · · · , πKfin} to denote deter-
ministic policies, which are policies discovered by our algorithm since according to Lemma
B.2, those policies are different and deterministic. Now since K⋆ < Kfin − 1, there ex-
ists some 2 ≤ j ≤ Kfin such that ωk(πj) ≤ 2

3 for any k ∈ [K⋆]. Now we de-
note ϵ = minω∈∆(Πdet\{πj}) maxν∈V

(
J(πj , ν)− J(ω, ν)

)
> 0 by Lemma B.3, and let

ν⋆ ∈ argmaxν∈V minω∈∆(Πdet\{πj})
(
J(πj , ν)− J(ω, ν)

)
. Therefore, it holds that J(πj , ν⋆) ≥

J(π, ν⋆) + ϵ for any π ∈ ∆(Πdet \ {πj}). Then we are ready to examine Gap(Π⋆,Π) as follows:

Gap(Π⋆,Π) ≥ max
π∈Π

J(π, ν⋆)− max
π′∈Π⋆

J(π′, ν⋆) ≥ J(πj , ν⋆)− max
π′∈Π⋆

J(π′, ν⋆) ≥ ϵ

3
> 0,

contradicting that Gap(Π⋆,Π) = 0.

B.6 PROOF OF THEOREM 4.11

Proof. Let us firstly consider a one-step MDP with state space S = {s1, s2}, action space A =
{a1, a2}, reward function r(s1, a1) = r(s2, a2) = 1 otherwise 0, and µ1(s1) = µ1(s2) =

1
2 . Now

assume the attacker can only choose two policies νgood such that νgood(s1) = s1, ν
good(s2) =

s2, and νbad such that νbad(s1) = s2, ν
bad(s2) = s1. Let us consider four basis victim policies

{π1, · · · , π4}, which select the action (a1, a2), (a1, a1), (a2, a1), (a2, a2) respectively for states s1
and s2. Then it holds that for any policy π ∈ Π, there exists αj ∈ [0, 1] and

∑
j α

j = 1 such that
J(π, ·) =

∑4
j=1 α

jJ(πj , ·) by Lemma B.1. Now we have either α1 ≤ 1
2 or α3 ≤ 1

2 . Let us say
α1 ≤ 1

2 and the case for α3 ≤ 1
2 can be proved similarly. Consider the case where the attacker takes

the policy νgood. Then we have J(π1, νgood)− J(π, νgood) ≥ 1− ( 12 +
1
2 × 1

2 ) =
1
4 . Therefore, we

conclude that if |Π̃| < 2, we must have Gap(Π̃,Π) ≥ 1
4 .
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Now let us extend it to the MDP with H steps, where in the previous MDP, at each time step,
the current state transits to the next two states with uniform probability regardless of the action
taken. We consider the attacker’s policies, where at each time step it uses the policy νgood or νbad,
resulting in totally 2H policies, {ν1, · · · , ν2H}. Similarly, we can define basis policies, which at
each time step selects the policy from {π1, · · · , π4}, ignoring the history information except the
current observation (perturbed state). This results in a total of 4H policies, for which we denote
{π̄1, · · · , π̄4H}. Due to the transition dynamics we have defined, for any π ∈ Π, there exists some
αj(π) ∈ [0, 1] and

∑
j α

j(π) = 1 such that J(π, ·) =
∑4H

j=1 α
j(π)J(π̄j , ·). W.L.O.G, we say

policies π̄1:2H as all the policies only selecting policies from {π1, π3} at each time step. Now
consider any Π̃ = {π̃1, π̃2, · · · , π̃K} with K < 2H . Then there must be some m ∈ [2H ] such that
αm(π̃k) ≤ 1

2 for any k ∈ [K]. Let us say π̄m is the policy always choosing π1 at all time steps and
correspondingly denote ν⋆ as the policy always choosing νgood at each step. Therefore, we have
J(π̄m, ν⋆) − J(π̃k, ν⋆) ≥ H − (H − 1 + 1

2 + 1
2 × 1

2 ) =
1
4 for any k ∈ [K]. This concludes that

Gap(Π̃,Π) ≥ 1
4 .

C EXAMPLE AND DETAILED EXPLANATIONS OF ITERATIVE DISCOVERY

𝑱(𝝅, 𝝂𝟐)

𝑱(𝝅, 𝝂𝟏)

(𝑱(𝝅𝟐, 𝝂𝟏), 𝑱(𝝅𝟐, 𝝂𝟐))    

(𝑱(𝝅𝟏, 𝝂𝟏), 𝑱(𝝅𝟏, 𝝂𝟐))

(𝑱(𝝅𝟑, 𝝂𝟏), 𝑱(𝝅𝟑, 𝝂𝟐))

(𝑱(𝝅𝟒, 𝝂𝟏), 𝑱(𝝅𝟒, 𝝂𝟐))

𝑱(𝝅, 𝝂𝟏)

(𝑱(𝝅𝟏, 𝝂𝟏), 𝑱(𝝅𝟏, 𝝂𝟐))

𝑱(𝝅, 𝝂𝟐) 𝑱(𝝅, 𝝂𝟐)

(𝑱(𝝅𝟐, 𝝂𝟏), 𝑱(𝝅𝟐, 𝝂𝟐))

(𝑱(𝝅𝟏, 𝝂𝟏), 𝑱(𝝅𝟏, 𝝂𝟐))

(𝑱(𝝅𝟑, 𝝂𝟏), 𝑱(𝝅𝟑, 𝝂𝟐))

𝑱(𝝅, 𝝂𝟏)

(𝑱(𝝅𝟏, 𝝂𝟏), 𝑱(𝝅𝟏, 𝝂𝟐))

(𝑱(𝝅𝟐, 𝝂𝟏), 𝑱(𝝅𝟐, 𝝂𝟐))

𝑱(𝝅, 𝝂𝟐)
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Figure 5: Iteration discovery of non-dominated policies in two dimensions.

Here we explain how our algorithm discovers the four policies π1:4 in Figure 5, i.e., the left part
of Figure 1. For simplicity, we consider there are only two pure attackers ν1 and ν2, and thus
V = ∆({ν1, ν2}).
For the first iteration, since there are no policies already discovered, the optimization problem we
need to solve is π1 ∈ argmaxπ∈Π maxν∈V J(π, ν) = argmaxπ∈Π max{J(π, ν1), J(π, ν2)}. By
comparing ν1 and ν2, we can see the discovered policy is the rightmost one in Figure 5.

For the second iteration, given Π̃ = {π1} already discovered, the optimization problem we need
to solve is π2 ∈ argmaxπ∈Π maxν∈V

(
J(π, ν)− J(π1, ν)

)
. Since π1 ∈ argmaxπ∈Π J(π, ν1), we

have π2 ∈ argmaxπ∈Π maxν∈V
(
J(π, ν)− J(π1, ν)

)
= argmaxπ∈Π

(
J(π, ν2)− J(π1, ν2)

)
=

argmaxπ∈Π J(π, ν2). Therefore, π2 is the uppermost one in Figure 5.

For the third iteration, given Π̃ = {π1, π2} already discovered, the optimization problem we need
to solve is π3 ∈ argmaxπ∈Π minω∈∆({π1,π2}) maxν∈V

(
J(π, ν)− J(π1, ν)

)
. It is easy to see that

in Figure 5, the optimal solution should be the one that’s farthest from the line segment between
π1 and π2. To see the reason, we can find that the optimal ω will be the point on the line segment
between π1 and π2 such that J(π3, ν1)− J(ω, ν1) = (π3, ν2)− J(ω, ν2).

For the fourth iteration, given Π̃ = {π1, π2, π3} already discovered, the optimization problem
we need to solve is π4 ∈ argmaxπ∈Π minω∈∆({π1,π2,π3}) maxν∈V

(
J(π, ν)− J(π1, ν)

)
. From

Figure 5, the optimization for ω will not put mass on policy π1. Thus, what we need to solve is
π4 ∈ argmaxπ∈Π minω∈∆({π2,π3}) maxν∈V

(
J(π, ν)− J(π1, ν)

)
. Under the same reason as the

third iteration, π4 will be the one that is farthest to the line segment between π2 and π3.

Finally, it is worth mentioning that the analysis above holds only specifically (and roughly) for the
reward landscape of Figure 5, for which we have simplified significantly to convey the intuitions.
Actual problems we aim to deal with can be much more complex.
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D DETAILS OF EXPERIMENTAL SETTINGS

In this section, we provide details of implementation and training hyperparameters for MuJoCo
experiments. All experiments are conducted on NVIDIA GeForce RTX 2080 Ti GPU.

Implementation details. For the network structure, we employ a single-layer LSTM with 64 hidden
neurons in Ant and Halfcheetah, and the original fully connected MLP structure in the other two
environments. Both the victims and the attackers are trained with independent value and policy
optimizers by PPO.

Victim training. For the baseline methods, we directly utilize the well-trained models for ATLA-
PPO (Zhang et al., 2021), PA-ATLA-PPO (Sun et al., 2021), and WocaR-PPO (Liang et al., 2022)
provided by the authors.

For the iterative discovery in Algorithm 2, we employ PA-AD to update attack models νt and PPO
to update the victim. For the first policy π1 in Π̃, we train for 5 million steps (2441 iterations) in
Ant and 2.5 million steps (1220 iterations) in the other three environments. For subsequent policies,
we use the previously trained policy as the initialization and train for half of the steps of the first
iteration to accelerate training.

Due to the high variance in RL training, the reported results are reported as the median performance
from 21 agents trained with the same set of hyperparameters for reproducibility.

Attack training. The reported results under RS attack are from 30 trained robust value functions.

For evasion attacks such as SA-RL and PA-AD, we conduct a grid search of the optimal hyperparam-
eters (including learning rates for the policy network and the adversary policy network, the ratio clip
for PPO, and the entropy regularization) for each victim training method. We train for 10 million
steps (4882 iterations) in Ant and 5 million steps (2441 iterations) in the other three environments.
The reported results are from the strongest attack among all 108 trained adversaries.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 ROBUSTNESS AGAINST VARIOUS DYNAMIC ATTACKS

In this section, we present the supplementary results demonstrating the robustness of our methods
against various dynamic attacks. Two modes of dynamic attacks, periodic attacks, and probabilistic
switching attacks, have been briefly introduced in §5.3. Here we show more details and results
corresponding to these two dynamic attack modes.

Periodic attacks. We adjust the attack period T from 1000 to 100 and examine the performance of
our methods alongside two baselines. Additionally, we use a non-fixed period where T alternates
between 500 and 1000.

The average accumulative rewards and evolution of policy weights ωt are shown in plots and heat
maps in §6. Our observations are as follows: (1) Regardless of the duration of the periods, our
methods consistently achieve higher average accumulative rewards than the two baseline methods.
This underscores the efficacy of online adaptation in Algorithm 1. (2) The values of ωt exhibit
noticeable shifts during each period, highlighting the online adaptation process. (3) Even when T
alternates, our methods maintain their superiority over the baselines. The evolution of ωt shows that
our methods can effectively perceive the transition between two periods.

Probabilistic attack. We adjust the switching probability p from 0.2 to 0.8. A higher value of
p signifies more frequent switching. We anticipate that it will be more challenging for the online
adaptation of the agent. We keep the interval between two potential switching points as 50 rounds.

The results are exhibited in Figure 7, showcasing both the average accumulative rewards and the
evolution of the weight ωt. We conclude that: (1) Our methods consistently outpace the two base-
lines. The superiority becomes more pronounced as the value of p increases. (2) In contrast to the
scenario with periodic attacks, the weights ωt display a more random evolution. Nonetheless, they
effectively converge to the arms yielding higher rewards.
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Figure 6: Time averaged accumulative rewards during online adaptation against periodic attacks on
Ant. The shaded area showed in the indicates PA-AD attacks are active while the unshaded area
indicates no attacks. The evolution of corresponding weights ωt is shown in the heatmap where the
brighter color means the higher value.

E.2 ABLATION STUDY ON THE SCALABILITY OF |Π̃|

A potential concern for our methods is the high computational cost of iterative discovery, which
could render them impractical. To tackle this concern, we assess our methods using different scales
of the policy class |Π̃| under PA-AD attacks across all four environments. The original value of |Π̃|
in Table 1 is set to 5, and we modify it to both 3 and 7 for this ablation study. All other experimental
parameters remain the same.

19



Published as a conference paper at ICLR 2024

0 400 800 1200 1600 2000
Testing rounds

2750

3250

3750

4250

4750

5250

A
ve

ra
ge

ac
cu

m
ul

at
iv

e
re

w
ar

ds

ours
WocaR
PA-ATLA

0 400 800 1200 1600 2000
Testing rounds

2750

3250

3750

4250

4750

5250

A
ve

ra
ge

ac
cu

m
ul

at
iv

e
re

w
ar

ds

ours
WocaR
PA-ATLA

0 400 800 1200 1600 2000
Testing rounds

2750

3250

3750

4250

4750

5250

A
ve

ra
ge

ac
cu

m
ul

at
iv

e
re

w
ar

ds

ours
WocaR
PA-ATLA

250 750 1250 1750

6
5

4
3

2
1

0
A

rm
s

(ω
t )

0.0 0.2 0.4 0.6

(a) p = 0.2

250 750 1250 1750

6
5

4
3

2
1

0
A

rm
s

(ω
t )

0.0 0.2 0.4 0.6 0.8

(b) p = 0.4

250 750 1250 1750

6
5

4
3

2
1

0
A

rm
s

(ω
t )

0.0 0.2 0.4 0.6 0.8

(c) p = 0.5

0 400 800 1200 1600 2000
Testing rounds

2750

3250

3750

4250

4750

5250

A
ve

ra
ge

ac
cu

m
ul

at
iv

e
re

w
ar

ds

ours
WocaR
PA-ATLA

0 400 800 1200 1600 2000
Testing rounds

2750

3250

3750

4250

4750

5250

A
ve

ra
ge

ac
cu

m
ul

at
iv

e
re

w
ar

ds
ours
WocaR
PA-ATLA

250 750 1250 1750

6
5

4
3

2
1

0
A

rm
s

(ω
t )

0.0 0.2 0.4 0.6 0.8

(d) p = 0.6

250 750 1250 1750

6
5

4
3

2
1

0
A

rm
s

(ω
t )

0.0 0.2 0.4 0.6

(e) p = 0.8

Figure 7: Time averaged accumulative rewards during online adaptation against probabilistic switch-
ing attacks on Ant. The shaded area showed in the indicates PA-AD attacks are active while the
unshaded area indicates no attacks. The evolution of corresponding weights ωt is shown in the
heatmap where the brighter color means the higher value.

The results are depicted in Figure 8. We notice that: (1) The larger scale leads to higher rewards in
all four environments. This implies that the non-dominated policy class, as it expands via iterative
discovery, approaches the optimal one more accurately with increasing scales. (2) Even with a
relatively modest scale of 3, our methods outpace the baseline methods in Table 1. This alleviates
concerns about our new methods being reliant on unaffordable computational costs.

E.3 ABLATION STUDY ON THE ATTACK BUDGET ϵ

To examine how our methods perform under attacks with different values of the attack budget ϵ, we
evaluate their performance under a random attack across all four environments and compare them
with two baselines. From Table 1, we observe that the random attack is relatively mild. However,
its impact can be much worse if the attack budget is higher. Our goal is to evaluate the robustness of
against non-worst-case attacks across various spectra.

The corresponding results are displayed in Figure 9. We derive the following observations: (1) When
ϵ is small, the rewards of our methods are slightly higher than the baseline methods in nearly all envi-
ronments. The exception is on Walker2d, where our methods distinctly outperform the baselines. It
indicates the effectiveness of our methods in relatively clean environments. (2) As ϵ becomes mod-
erate and continues to increase, although the performances of our methods decrease as PA-ATLA
and WocaR, the rate of decline is slower compared to the two baseline methods. Previously, we only
consider the non-worst-case attacks with the same ϵ by different modes. In this context, increasing
values of ϵ for the same attack can be also interpreted as another non-worst-case attack. Thus, the
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Figure 8: The performance for our methods with different non-dominant policy class scales |Π̃| in
all four environments.

high rewards of our methods confirm their enhanced robustness against various types of non-worst-
case attacks. (3) When ϵ is large, our methods continue to hold an advantage over the baseline
methods. The only exception is Hopper, where the rewards from all three methods are nearly identi-
cal. This suggests that our new methods compromise little in terms of robustness against worst-case
attacks.
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Figure 9: The performance for our methods and two baseline methods under attacks with different ϵ
in all four environments.
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E.4 ABLATION STUDY ON THE WORST-CASE ROBUSTNESS

Although our primary goal is to improve the robustness against attacks beyond the worst cases,
surprisingly, we find the robustness of our approach against currently strongest attacks PA-AD is
also improved. To understand such reasons, we firstly notice that although related works including
Zhang et al. (2021); Sun et al. (2021); Liang et al. (2022) share the same objective of explicitly max-
imizing the worst-case performance, Sun et al. (2021) improves over Zhang et al. (2021) and Liang
et al. (2022) improves over Sun et al. (2021). Therefore, we make the hypothesis that baseline
approach may not have found the global optimal solution for their objective of maximizing
robustness against the worst-case attacks reliably. Specifically, one possible explanation from
the perspective of optimization is that baselines could often converge to a local optima, while our
approach explicitly encourages the new policy to behave differently in the reward space compared
with policies discovered already, thus not stuck at a single local optimal solution easily. To further
verify our hypothesis, we design the experiments as follows.

Firstly, note the number we report in Table 1 is a median number of 21 agents trained with the same
set of hyperparameters following the set up of Zhang et al. (2021); Sun et al. (2021); Liang et al.
(2022). To verify our hypothesis, we compare the performance of the best one and the median one of
different approaches in Table 2. We can see that baselines like Sun et al. (2021); Liang et al. (2022)
can match the high performance of ours in terms of the best run, while the median is low by a large
margin. This means it is possible for baselines to achieve high worst-case robustness occasionally
as its objective explicitly encourages so, but not reliably. In contrast, our methods are much more
stable. This effectively supports our hypothesis.

Environment Model PA-AD
(Median)

PA-AD
(Highest)

Hopper
state-dim: 11

ϵ=0.075

PA-ATLA-PPO 2521 ± 325 3129 ± 316
WocaR-PPO 2579 ± 229 3284 ± 193

Ours 2896 ± 723 3057 ± 809

Walker2d
state-dim: 17

ϵ=0.05

PA-ATLA-PPO 2248 ± 131 3561 ± 357
WocaR-PPO 2722 ± 173 4239 ± 295

Ours 4239 ± 295 6052 ± 944

Halfcheetah
state-dim: 17

ϵ=0.15

PA-ATLA-PPO 3840 ± 273 4260 ± 193
WocaR-PPO 4269 ± 172 4579 ± 368

Ours 4411 ± 718 4533 ± 692

Ant
state-dim: 111

ϵ=0.15

PA-ATLA-PPO 2986 ± 364 3529 ± 782
WocaR-PPO 3164 ± 163 4273 ± 530

Ours 4273 ± 530 4406 ± 329

Table 2: Average episode rewards ± standard deviation with two baselines on Hopper, Walker2d,
Halfcheetah, and Ant. The median and highest performance from 21 agents trained with the same
set of hyperparameters are reported in two columns respectively.

E.5 ABLATION STUDY ON ONLINE REWARD FOR BASELINES.

To clarify our novel Algorithm 2 to minimize Gap(Π̃,Π) contributes to the major improvements of
our approach instead of simply using online reward feedback, we conduct further ablation studies
by also allowing baselines to use online reward feedbacks through our Algorithm 1. However, all
baselines are essentially a single victim policy instead of a set, making it trivial to run Algorithm 1
since it will only have one policy to select. To address such a challenge, we propose a new, stronger
baseline as follows by defining a Π̃baseline = {ATLA-PPO,PA-ATLA-PPO,WocaR-PPO}. Note that
since Π̃baseline has effectively aggregated all previous baselines, it should be no worse than them.
Now Π̃baseline and our Π̃ are comparable since they both use Algorithm 1 to utilize the online reward
feedback. The detailed comparison is in Table 3. We can see that even with this new, stronger
baseline utilizing the reward feedback in the same way as us, our results are still consistently better.
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Environment Model Natural
Reward

Random RS SA-RL PA-AD

Hopper Π̃baseline 3624 ± 186 3605 ± 41 3284 ± 249 2442 ± 150 2627 ± 254
Ours 3652 ± 108 3653 ± 57 3332 ± 713 2526 ± 682 2896 ± 723

Walker2d Π̃baseline 4193 ± 508 4256 ± 177 4121 ± 251 4069 ± 397 3158±197
Ours 6319 ± 31 6309 ± 36 5916 ± 790 6085 ± 620 5803 ± 857

Halfcheetah Π̃baseline 6294 ± 203 6213 ± 245 5310 ± 185 5369 ± 61 4328±239
Ours 7095 ± 88 6297 ± 471 5457 ± 385 5089 ± 86 4411 ± 718

Ant Π̃baseline 5617 ± 174 5569 ± 132 4347 ± 170 3889 ± 142 3246 ± 303
Ours 5769 ± 290 5630 ± 146 4683 ± 561 4524 ± 79 4312 ± 281

Table 3: Average episode rewards ± standard deviation over 50 episodes with three baselines on
Hopper, Walker2d, Halfcheetah, and Ant. Here Π̃baseline is used as a baseline policy class for online
adaptation.

This justifies that it is our novel Algorithm 2 for discovering a set of high-quality policies Π̃ that
makes ours improve over baselines.
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