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Abstract

This work presents a systematic framework for improving the
predictions of statistical quantities for turbulent systems, with
a focus on correcting climate simulations obtained by coarse-
scale models. Specifically, failure to incorporate all relevant
scales in climate simulations leads to discrepancies in the en-
ergy spectrum as well as higher order statistics. While high
resolution simulations or reanalysis data are available, at least
for short periods, they cannot be directly used as training
datasets to machine learn a correction for the coarse-scale
climate model outputs, since chaotic divergence, inherent in
the climate dynamics, makes datasets from different resolu-
tions incompatible. To overcome this fundamental limitation
we employ coarse-resolution model (here we employ Energy
Exascale Earth System Model, E3SM) simulations nudged
towards high quality climate realizations, here in the form
of ERA5 reanalysis data. The nudging term is sufficiently
small to not “pollute” the coarse-scale dynamics over short
time scales, but also sufficiently large to keep the coarse-scale
simulations “close” to the ERA5 trajectory over larger time
scales. The result is a “compatible” pair of the ERA5 trajec-
tory (used as output training data) and the weakly nudged
coarse-resolution E3SM output that is used as input train-
ing data to machine learn a correction operator. We empha-
size that the nudging step is used only for the training phase.
Once training is complete, we perform free-running coarse-
scale E3SM simulations without nudging and use those as
input to the machine-learned correction operator to obtain
high-quality (corrected) outputs. The model is applied to at-
mospheric climate data with the purpose of predicting global
and local statistics of various quantities of a time-period of a
decade. Using ERA5 datasets that are not employed for train-
ing, we demonstrate that the produced datasets from the ML-
corrected coarse E3SM model have statistical properties that
closely resemble the observations. In particular, the corrected
coarse-scale E3SM output closely captures the non-Gaussian
statistics of quantities such as temperature, wind speed and
humidity, as well as the frequency of occurrence of extreme
events, such as tropical cyclones and atmospheric rivers. We
present thorough comparisons and discuss limitations of the
approach.
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Problem Formulation
Accurate statistical climate predictions require high-fidelity
simulations that come with large computational cost. As a
result, improving upon the predictions of coarse-scale cli-
mate models has become a critical goal in order to develop
credible climate scenarios. The developed method aims to
augment the accuracy of statistical properties of coarse-
scale free-running (i.e. without the influence of observations
which are obviously not available for future projections) cli-
mate models, via corrections based on past data. Despite re-
cent successes in using online correction terms in the evo-
lution equations of the model (Yuval and O’Gorman 2020;
Yuval, O’Gorman, and Hill 2021; Sanford et al. 2022; Char-
alampopoulos and Sapsis 2022a), many such implementa-
tions face severe stability issues. To circumvent this ob-
stacle, a non-intrusive approach is developed. Hence, after
a free-running coarsely resolved climate output has been
generated, the hybrid approach corrects the model output
in a post-processing manner. A reference dataset is se-
lected for testing the effectiveness of the scheme, the ERA5
dataset (Hersbach et al. 2020). For the generation of coarse-
scale climate data, the atmospheric component of the Energy
Exascale Earth System Model (E3SM) is used. In particular,
version 2 of the E3SM Atmospheric Model (EAMv2) (Den-
nis et al. 2012; Taylor, Cyr, and Fournier 2009; Golaz et al.
2022). Appropriate boundary conditions over the Earth’s
surface are prescribed (Oleson et al. 2013). Simulations are
run on an unstructured grid of approximately 1o(∼ 110[km])
resolution per sigma-level and 72 levels along the vertical
direction. The vertical levels extend from the Earth surface
up to altitude of about 64[km], corresponding to ∼ 0.1[hPa].
The evolution model equations for the coarse-scale model
have the form

∂Xc

∂t
= D (Xc) + P (Xc) , (1)

where Xc = (U, V, T,Q) represent the set of coarsely-
resolved system variables, D is the operator containing the
dynamics of the system (Zhang and McFarlane 1995; Golaz,
Larson, and Cotton 2002) and P is the operator concerning
the physics of the system (Morrison and Gettelman 2008;
Liu et al. 2016; Mlawer et al. 1997). Variables (U, V ) corre-
spond the zonal and meridional components of wind veloc-
ity, T is wind temperature and Q is specific humidity. From



Figure 1: Description of the method that learns a map between the attractor of the coarsely-resolved equations and the
attractor of the reference trajectory. Left: the red dashed curve represents a reference trajectory (here ERA5). The black curve
is a coarsely-resolved nudged trajectory towards the reference trajectory. The blue curve is the free-run coarsely-resolved
trajectory that is not used for training (shown for reference). Right: the target attractor and the target trajectory (red), same as
the dashed curve shown at the left plot. For training we use the coarsely-resolved nudged trajectory as input and the reference
trajectory as output to machine learn a map between them. After we obtain the map we use as input coarsely-resolved free-run
simulations (blue) and obtain a trajectory that accurately captures the shape of the target attractor.

here on now, the coarse-scale free-running dataset will be
labeled as CLIM and will be denoted as Xc.

For reference data, denoted as Xref, ERA5 reanalysis data
is used, which is projected onto the coarse unstructured grid
of EAMv2. The datasets discussed herein contain informa-
tion from 2007-2017. For this timescale the studied climate
systems can be assumed to be in a statistical steady state.

Since the goal of the approach is to correct the long-
time statistics of coarse-scale climate simulations in a post-
processing manner, it is important to isolate the main dis-
crepancies between the coarse-scale simulations and the ref-
erence data that are responsible for these differences. In gen-
eral, discrepancies between two turbulent simulations, one
high-fidelity (i.e. reference) and one free-running coarse,
can be grouped into two categories: (i) discrepancies due to
chaotic divergence; (ii) discrepancies due to deformation of
the attractor due to coarse-scale resolution.

Chaotic divergence is an intrinsic property of turbulent
systems. It can be observed even between two solutions of
the same dynamical system, with ever slightly different ini-
tial conditions. It is a manifestation of the fact that by def-
inition, at least one of the eigenvalues of the linear part
of the system is positive. As a result, infinitesimal energy
transferred to perturbations along these directions will re-
sult in finite magnitude perturbations. The system is allowed
to equilibrate with the intervention of nonlinear terms that
will transfer this energy from the unstable perturbations to
stable ones. However, the two deviating trajectories will still
remain on the same attractor and thus retain the same statisti-
cal properties. Therefore these chaos-induced discrepancies
should not contribute to the correction scheme for long-time
statistics.

On the other hand, difference in long-time statistics im-
plies a different statistical steady-state and thus different at-
tractors. These intrinsic dynamical differences between the
simulations produce energy discrepancies in various scales
between the produced datasets. It is exactly these corrections
we aim to learn and fix.

Given the two previous observations, it is clear that it is
not possible to use a dataset of free-running climate simu-
lation (CLIM) and one of ERA5 and try to machine learn a
map between the two, i.e. a map that takes as input a CLIM
timeseries and produces as output an ERA5 timeseries. To
eliminate the problematic component, i.e. chaos-induced di-
vergence we design a new CLIM dataset (we call it nudged
CLIM and denote it as Xc,n). Ideally, one can produce a
dataset that is preserving the coarse-scale behavior of the
climate model but does not suffer from the chaos-induced
divergence with the ERA5. To this end, the concept of nudg-
ing, that has been used extensively in the context of data as-
similation (Sun et al. 2019; Zhang et al. 2022), is employed.
Specifically, we utilize the EAMv2 solver (generator of the
CLIM dataset) with an extra term, the nudging term, that is
‘pulling’ the CLIM solution close to the ERA5 solution:

∂Xc,n

∂t
= D (Xc,n) + P (Xc,n) +N

(
Xc,n;X

ref) , (2)

where the relaxation term N is called the nudging tendency
and it corrects the coarse-scale solution based on the ERA5
reference solution. In this study, the nudging tendency N is
given by the algebraic term

N
(
Xc,n −Xref) = −1

τ

(
Xc,n −H

[
Xref]) . (3)

Parameter τ is a relaxation timescale that has a large value
(so that 1/τ is small compared with the other terms in the
equation), and H is an operator that maps Xref to the coarse
resolution. A schematic of the proposed mapping learned
during training can be seen in fig. 1.

The resulted nudged trajectory (black curve on the right
panel) is subjected to this very small perturbation, the nudg-
ing term that is keeping it close to the reference trajec-
tory, i.e. the ERA5 trajectory (red dashed line). More-
over, because the overall magnitude of the nudging term
is very small the long-time statistics of the coarsely re-
solved before-nudge trajectory should be close to that of the
free-running coarsely-resolved trajectory that starts from the



Figure 2: Schematics of the training process (top) and testing process (bottom), for the non-intrusive hybrid method.

before-nudge state (shown with blue color). The latter will
naturally diverge from the ERA5 if not continuously being
nudged due to chaotic properties, even if it was initiated
very close to ERA5. Having the before-nudge trajectory we
can now use it to machine learn a scheme that will map it
to the reference trajectory, i.e.the ERA5. That is the basic
approach of our framework. We emphasize that nudging is
used ONLY for the generation of training data. Once the map
has been trained we will feed it with free-run CLIM simu-
lations (i.e. free-run coarse-scale climate simulations with-
out nudging) to obtain outputs that have corrected long-time
statistics, i.e. represent the target attractor accurately.

The resulting training and testing process are described
in fig. 2. During training, the Nudged EAMv2 solver is used
to produce training data. After a spectral correction of the
data (described in the next section), the resulting R-nudged
dataset is used as input for the neural network. The neural
network then learns a mapping between the reference ERA5
data and the input R-nudged dataset. The neural network
used is described in detail in subsection ‘Neural Network
Architecture’. During testing, EAMv2 is used to generate a
free-running coarse-scale dataset. This dataset is used as in-
put to the trained neural network which produces a corrected
dataset with the desired statistics. Hence, during testing, the
model is not assessed in its ability to mimic the reference
data snapshot-by-snapshot but by its ability to learn its un-
derlying statistics.

Revisiting the nudging procedure, parameter τ is chosen
so the nudged solution Xc satisfies two properties: (a) it
reduces the divergence of the nudged simulation from the
reference solution (i.e., ERA5) H

[
Xref

]
, i.e. allowing for a

generalizable mapping between the two datasets; (b) it re-
sembles the statistical properties of the coarse-scale free-
running simulation. The second property is important in the
context of machine learning to ensure that the learned map-
ping during training will be applicable while testing using
CLIM data. This implies that the attractor of the Nudged
simulation has the same shape as the attractor of CLIM.
However, no parameter τ can be found that explicitly sat-
isfies this condition. This is due to the arbitrariness of the

algebraic form of the nudging term. While an algebraic term
is easily implemented it yields a constant dissipation rate
across all wavenumbers which are in general not consistent
with the dynamics of the system. This leads to suppression
of extreme events and thus statistics with less heavy tails. A
remedy for this issue is shown in subsection ‘Spectral Cor-
rection of Nudged Dataset’, where the energy spectrum of
nudged simulations is brought closer to that of CLIM. One
other possible remedy is changing the form of the nudging
term via an appropriate energy balance argument.

Spectral Correction of Nudged Dataset

As described in the previous subsection, the nudged dataset
Xc,n is used during training to eliminate discrepancies due
to chaotic divergence between input data and ERA5 refer-
ence data. However, for the learned mapping to be com-
pletely transferable to the free-running Xc testing data, the
two datasets must have attractors that are as similar as pos-
sible. If not, these discrepancies will manifest themselves
to the target of this work, i.e. tails of statistics of various
quantities. This is a result of discrepancies in the energy
spectrum of the nudged solution with respect to the coarse-
scale solution. These energy spectra differences lead to dif-
ferent statistical steady-state behaviours of testing data Xc

and training data Xc,n, which inhibits the generalizability
of a model (Shalev-Shwartz and Ben-David 2014).

To remedy the energy spectra differences between the
testing input data Xc and training input data Xc,n, a non-
intrusive correction is proposed. The process is called ‘Re-
verse Spectral Nudging’ with its purpose being to match the
energy spectrum of the nudged solution to that of the coarse-
scale solution. This modification implies that the statistics
of the steady state of the two input datasets are very close
to one another and thus generalizability improves. Hence,
while traditional nudging schemes correct the coarse-scale
solution with data from the reference solution, the proposed
scheme further processes the nudged data by matching its
energy spectrum to that of the corresponding free running
coarse-scale flow. The corrected nudged data is termed as
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Figure 3: Neural network architecture of the non-instrusive model for a training on a particular sigma-level.

Xc,rsn and defined as

Xc,rsn (ϕ, θ, t; k) =
∑
m,n

Rm,n{X̂c(t)}m,ne
i(mϕ+nθ), ,

(4)

where {X̂c(t)}m,n are the spatial Fourier coefficients of
Xc,n, ϕ and θ corresponds to longitute and latitude respec-
tively, while parameter k denotes the number of the sigma-
level. We also have

Rk,l =

√
Ecoarse
k,l

Enudge
k,l

, (5)

and

Ek,l =
1

T

∫ T

0

Êk,l(t)dt =
1

T

∫ T

0

|{X̂c(t)}k,l|2dt, (6)

where T is the duration of the available data.

Neural Network Architecture
In the current implementation, training is done on an level-
by-level basis, where level here denotes atmospheric sigma-
levels (Taylor et al. 2020). A schematic of the configura-
tion for training on a particular layer is shown in fig. 3.
The model receives as input the predictive variables X =
X(ϕ, θ, t; k), where ϕ is the longitudinal angle and θ the lat-
itudinal one. Snapshots of the entire horizontal discretiza-
tion of the layer are used. Afterwards, a custom ”split” layer
separates the input into non-overlapping subregions. These
subregions are periodically padded via a custom padding
process, tasked with respecting the spherical periodicity of
the domain. Then, each subregion is independently passed
through a series of convolutional layers. The purpose of this
process is to extract anisotropic local features in each subre-
gion.

Afterwards, the local information extracted from each
subregion is concatenated in a single vector via a custom
‘merge’ layer. The global information is now passed through

a linear fully-connected layer, that acts as a basis projec-
tion of the spatial data onto a reduced-order latent space.
The latent space data are then corrected by a long short-term
memory (LSTM) layer (Hochreiter and Schmidhuber 1997).
Subsequently they are projected back to physical space via
another linear fully-connected layer. Afterwards, global in-
formation is split into the same subregions of the input, and
distributed to a series of independent deconvolution layers
that upscale the data to the original resolution. Finally, a cus-
tom ‘merge’ layer gathers the information from each subre-
gion and produces the final corrected snapshot.

The motivation behind using LSTM neural networks lies
in their ability to incorporate (non-Markovian) memory ef-
fects into the reduced-order model. This ability stems from
Takens embedding theorem (Takens 1981). This theorem
states that given delayed embeddings of a limited number
of state variables, one can still obtain the attractor of the full
system for the observed variables. This approach is known
to be capable of improving predictions of reduced-order
models (Vlachas et al. 2018; Charalampopoulos and Sap-
sis 2022b; Wan et al. 2021). In addition to temporal non-
locality, the model is nonlocal in space. Note, that in terms
of the LSTM layer, this information comes in the form of
the latent space coefficients, which in general correspond
to global modes that correspond to rows of the fully con-
nected layer’s matrix. Under the assumption that both fully-
connected layers have linear activation functions, the model
can be mathematically depicted as a basis projection. Hence,
the fully connected layers act as projection schemes to (a)
compress input data to a latent space of low dimensionality,
and (b) project the LSTM prediction to physical space. The
used loss function is a standard mean-square error (MSE)
loss

L = α
∑
t

∑
ϕ

∑
θ

cos

(
2π

θ

360

)
∥X̂−Xref∥2, (7)

where α is a normalization coefficient. Each term in the sum
is multiplied by a cosine that is a function of the latitude
to showcase that the integration takes place over a sphere.
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Figure 4: (a) Zonally averaged predictions for U (left column) and biases with respect to ERA5 predictions (right column).
(b) Zonally averaged predictions for V (left column) and biases with respect to ERA5 predictions (right column). Results are
shown for near-surface data.

If that term is absent, the model would over-emphasize on
learning the corrections at the poles.

Application on E3SM Data
The numerical exploration of the proposed method begins
with some validation results. Specifically, nudged data not
used for training are used as input, with the purpose of
checking whether the produced output has good accuracy.
Training takes places over 1000 epochs and eq. (7) is used
as the loss function. Training took place over the time-period
2007-2011 using only Nudged data as input, not CLIM data.
Year 2012 was used for validation during training. In fig. 4,
results regarding zonally averaged predictions of zonal and
meridional velocities U and V respectively, are shown. The
left column of subfigure (a) displays the zonally averaged
predictions of zonal velocity U , for ERA5 reanalysis data,
Nudged data and neural network predictions. The right col-
umn displays the biases compared to ERA5 predictions for
CLIM, Nudged and the neural network predictions. Simi-
larly, the left column of subfigure (b) displays the zonally av-
eraged predictions for meridional velocity V , with the same
biases displayed. Results are shown for sigma-level 71, i.e.
the one closest to the surface of the earth. This level was
then one CLIM predictions differed the most with respect to
ERA5 reanalysis data. The results show that the neural net-
work clearly is able to learn a correction for both velocity
components.

Now, the model is tested on unseen free-running and
coarse-scale climate models. This dataset (CLIM) is not
nudged and thus does not include any ERA5 information.
Since the free-running dataset diverges from ERA5 in terms
of phases, specific extreme events cannot be studied, as they
are absent from CLIM. Hence, long-time statistics are stud-
ied now.

In fig. 5, the predicted probability density functions

(pdf) are shown for the four different predictive variables,
(U, V, T,Q). Solid black lines correspond to ERA5 data,
dashed black lines correspond to CLIM and green lines cor-
respond to Nudged data. Red lines correspond to neural net-
work predictions using Nudged data as input (i.e. training
data). Blue lines correspond to neural network predictions
using CLIM data as input (i.e. testing data). Results are
shown for sigma-level closest to the earth’s surface. Data
are averaged over the time-period 2007-2017. The predic-
tions of the neural network that was trained with Nudged
data, significantly improve the prediction of the tails. This
can be seen both for the pdfs of the well-predicted quantities
(U, V ) by CLIM as well as for (T,Q), two quantities whose
tails are not well predicted by CLIM. Furthermore, the dif-
ference in the predicted pdf when using the training data and
free-running data is insignificant, showcasing the ability of
the model to generalize beyond training data. This is a re-
sult of the pdf of the implemented spectral corrections to the
Nudged data, making them display very similar statistics to
that of the free running coarse data. This property allows for
smoother transfer learning between data sets.

We now move to predict statistics for a derived inte-
gral quantity, in particular, mean integrated vapor transport
(IVT) over the period 2007-2017. Since IVT is strongly
anisotropic, extracting local features, and especially atmo-
spheric rivers, is vital. Therefore the local convolutions de-
rived from each subregion are important for its correction
estimation. 25 subregions are used in this numerical test,
using different convolutions on each one (i.e. extract lo-
cal features). In fig. 6, the first row corresponds to ERA5
predictions. The other rows correspond to biases with re-
spect to ERA5. As expected, the neural network exhibits
very small biases when Nudged data are used as input. Re-
sults for the nudged simulation are not shown for page limit
reasons. However, the model significantly decreases biases



even when CLIM data are used as input. In addition, it is
able to decrease the root mean-squared error (RMSE) below
that of the Nudged dataset (which was measured at 0.088),
a simulation that exploits ERA5 information at every time-
step.

The final numerical result involves the statistics of trop-
ical cyclones for the time-period 2007-2017. For tracking
tropical cyclones, the software package TempestExtreme is
used (Ullrich and Zarzycki 2017; Ullrich et al. 2021). The
following steps are used to track cyclones: (i) Find local
minima of sea-level pressure (SLP). (ii) Eliminate smaller
minima within 2 great-circle distance (gcd) degrees. (iii)
Check that SLP raises by 200 [Pa] within 8 gcd. (iv) Check
that temperature at 400 [mbar] drops by 0.4 [K] within 8
gcd. (v) Check that velocity is higher than 10 [m/sec] for 8
snapshots. (vi) Check that geopotential height is larger than
100 for at least 8 snapshots. (vii) Check that phenomenon
lasts at least 54 hours, with a max gap of 24 hours.

During training, the neural network will track dissipated
cyclonic structures in the Nudged simulations, that corre-
spond to tropical cyclones in ERA5. It will then amplify
them allowing them to be recognized as tropical cyclones.
As a result, if the cyclonic structures present in CLIM are
more dissipated than in Nudged, the learned mapping will
not be transferable. To overcome this issue, we post process
the SLP values of Nudged data. To that end the following
conditional means are computed

c(ϕ, θ) =
1

TC(ϕ, θ)

Nt∑
t=1

δSLP (t, ϕ, θ), (8)

where TC is the tropical cyclone density over the globe.
Then, the following spatially dependent coefficient is com-
puted

R(ϕ, θ) =
cc(ϕ, θ)

cc,n(ϕ, θ)
. (9)

Finally, the SLP Nudged data are corrected as follows

SLP c,rnsn =

{
R(ϕ, θ)SLP c,n + P0, SLP < P0

SLP c,n, SLP ≥ P0
. (10)

Results are shown in fig. 7. In terms of total number of trop-
ical cyclones predicted, the neural network corrections are
much better than the ones predicted by the Nudged dataset
and CLIM. Nudged data predict 317 tropical cyclones, while
CLIM predicts 305. On the other hand, the neural net-
work corrections predict 411 tropical cyclones when using
Nudged data and 404 tropical cyclones when using CLIM
data. These predictions are much closer to the 488 cyclones
predicted from ERA5 data. By focusing on the predictions
when using CLIM as input, we notice that barely any new
cyclones are predicted in the Atlantic. Looking further into
this issue it is our belief that this is a problem of CLIM,
where it does not generate enough vorticity over the Atlantic
for tropical cyclones to form.

Limitations
While the proposed methodology was demonstrated to be
effective for the prediction of a multitude of climate met-
rics, some limitations of the current setup should be stated.

First, the approach works well under the assumption that
the climate is in a statically steady steady, for which a map-
ping can be learned through the proposed training scheme.
Hence, testing the model in simulations where the climate
undergoes a transitory phase may hinder its performance,
unless similar time intervals are included during training.
This is particularly true if the transition is not captured at
all by the coarse-scale model. Furthermore, the requirement
for reference data (in this case ERA5 reanalysis data), makes
the effectiveness of the model unknown under future climate
scenarios with drastically different forcings. For such runs
to be included in training, high-fidelity simulations would
have to be used as reference and nudged towards them. This
limitation however is true for online data-driven correction
schemes as well since most such models lack concrete error
bounds for out-of-sample predictions. Finally, for the appli-
cation of the scheme to dynamical systems broadly, there
is no guarantee that a nudged simulation exists that follows
the reference data closely while maintaining the statistics of
the coarse simulation. In fact, this is not the case for climate
models. However, small discrepancies can be amended via
the proposed extra step of the spectral corrections. It should
be noted yet, that there is no guarantee the process will work
in a case where the deviations from these assumptions are
significant.

Conclusions
We have formulated and assessed a data-informed hybrid
scheme for accurately computing the statistics of climate
models. The method employs a nudged solver during train-
ing with appropriate spectral corrections to the produced
dataset. During testing, the model is assessed on free-
running coarse-scale climate models. The approach was ap-
plied to realistic atmospheric climate data. Free-running
EAMv2 simulations were used as baseline while ERA5 re-
analysis data were employed as reference truth. First, the
ability of the model to predict global statistics of horizon-
tal velocities (U, V ), temperature T and specific humidity Q
was assessed. In all cases, the data-informed approach pro-
duced results in good agreement with reference ERA5 pre-
dictions. Furthermore, the model was tasked with predicting
mean IVT over the period 2007-2017, a highly anisotropic
quantity. Results are again in good agreement with ERA5,
with the corrected dataset having a smaller mean-square er-
ror than a nudged dataset. Finally, the model was used to
predict statistics of tropical cyclones throughout the globe.
The model’s ability to correct the number of predicted cy-
clones over the Pacific was demonstrated.
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Figure 5: Predicted pdfs for (a) horizontal velocity components U and V ; (b) temperature T and specific humidity Q. Solid
black lines correspond to ERA5 data, dashed black lines correspond to CLIM and green lines correspond to Nudged data. Red
lines correspond to neural network predictions using Nudged data as input (i.e. training data). Blue lines correspond to neural
network predictions using CLIM data as input (i.e. testing data). Results are shown for near-surface data.

Figure 6: IVT predictions averaged over the period 2007-2017. Mean IVT predictions are shown in the top row for ERA5
data. Biases from ERA5 predictions are shown for, the CLIM free-running dataset, together with corrected results via our non-
intrusive approach. A 25-subregion partition was used for these results.



Figure 7: Tropical cyclone counts over the period 2007-2017. Results are derived using ERA5 datasets, CLIM free-running
datasets and CLIM datasets corrected via our non-intrusive LSTM approach. Cyclones are tracked via the TempestExtremes
software.
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