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ABSTRACT

Neural network filter pruning is one of the major methods in model compression
and acceleration. Despite the remarkable progress in the past several years, there
is an ongoing debate concerning the value of filter pruning – Some works in 2019
argue that filter pruning is of no value since they found training the pruned net-
work from scratch can achieve similar or even better performance than pruning
a pretrained model. This argument fundamentally challenges the value of many
filter pruning works. However, to date, the community has not formally responded
to such acute questioning. In this paper, we present extensive empirical analyses
to show the seeming contradiction is due to suboptimal learning rate schedule set-
tings. We introduce more strict comparison setups and show filter pruning still
has value within the same training epoch budgets. Apart from justifying the value
of filter pruning empirically, we further examine the reason behind it and dis-
cover that the poor trainability caused by pruning is largely responsible for the
sub-optimality of the learning rate schedule, thus calling for an urgent need to
recover trainability after pruning. This paper does not target new SOTA perfor-
mance of filter pruning. Instead, we focus on clarifying the existing mysteries in
filter pruning towards a better understanding.

1 INTRODUCTION

Pruning is a time-honored methodology to reduce parameters in a neural network without seriously
compromising its performance (Reed, 1993; Sze et al., 2017). The prevailing pipeline of pruning
comprises three steps: 1) pretraining: train a dense model; 2) pruning: prune the dense model
based on certain rules; 3) finetuning: retrain the pruned model to regain performance. Most existing
research focuses on the second step, seeking the best criterion to select unimportant weights so as to
incur as less performance degradation as possible. This 3-step pipeline has been practiced for more
than 30 years (Mozer & Smolensky, 1989; LeCun et al., 1990) and is still extensively adopted in
today’s pruning methods (Sze et al., 2017).

These said, several works (Crowley et al., 2018; Liu et al., 2019) questioned the necessity of in-
heriting weights from a pretrained model because they empirically found the small model trained
from scratch can match (or sometimes outperform) the counterpart pruned from the pre-trained large
model. This acutely challenges the past wisdom as well as our common belief about pruning. As far
as we know, there is no formal response to this critical conflict. A theoretical-level understanding of
this problem is even more elusive.

Meanwhile, the pruning community has been observing even more open questions. Specifically,
Renda et al. (2020); Le & Hua (2021) found that the learning rate (LR) in finetuning holds a critical
role in the final performance. A proper learning rate schedule (e.g., a larger initial LR 10−2 vs. 10−3

with step-decay schedule) can improve the top-1 accuracy of a pruned ResNet-34 model (He et al.,
2016) by more than 1% on ImageNet (Deng et al., 2009). This discovery calls for more attention
being paid to the finetuning step when comparing different pruning methods. Unfortunately, they did
not present more theoretical insights to explain its occurrence. This also remains an open question
in the community up to date.

In this paper, we will show these two open questions actually point to the same one. Specifically, we
rerun the experiments of (Crowley et al., 2018; Liu et al., 2019) and find simply using a larger fine-
tuning LR (10−2 vs. 10−3 and decay it) can significantly improve the final performance. Compared
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Table 1: Top-1 accuracy comparison of different implementations of the L1-norm pruning (Li et al.,
2017) on ImageNet. We adopt the torchvision models as unpruned models for fair comparison.
ResNet-34-A speedup: 1.18×. ResNet-34-B speedup: 1.32×. The results of (Li et al., 2017) and
(Liu et al., 2019) are directly cited from their papers. The best cases in our training from scratch and
pruning are randomly repeated for 3 times (± indicates stddev) to prevent random variation.

Implementation Unpruned (%) Pruned model Scratch (%) Pruned-Finetuned (%) Finetuning LR schedule

(Li et al., 2017) 73.23
ResNet-34-A (Not reported) 72.56 20 epochs, initial 10−3, fixed
ResNet-34-B (Not reported) 72.17 20 epochs, initial 10−3, fixed

(Liu et al., 2019) 73.31
ResNet-34-A 73.03 72.56 20 epochs, initial 10−3, fixed
ResNet-34-B 72.91 72.29 20 epochs, initial 10−3, fixed

Our rerun 73.31 ResNet-34-A 73.51±0.12

72.91 20 epochs, initial 10−3, fixed
72.94 90 epochs, initial 10−3, fixed
73.88 90 epochs, initial 10−3, decay

73.92±0.03 90 epochs, initial 10−2, decay

Our rerun 73.31 ResNet-34-B 73.16±0.12

72.50 20 epochs, initial 10−3, fixed
72.58 90 epochs, initial 10−3, fixed
73.61 90 epochs, initial 10−3, decay

73.62±0.04 90 epochs, initial 10−2, decay

to the improved pruning performance, training from scratch does not compete or surpass pruning
anymore (see Tab. 1 and Tab. 2 on ImageNet). Why does this happen? What is the theoretical reason
behind this change?

This paper is meant to present more precise answers to these questions. The key perspective shift
we take is that we consider the weights inherited from pruning as a kind of initialization for the
following finetuning. Then a natural question comes: Does pruning provide a “good” initialization
for the subsequent finetuning? We will show the study of this question help unveil the above two
open problems.

Specifically, we tap into the notion of dynamical isometry (Saxe et al., 2014) (which describes a
kind of nice property in neural networks that are easy to optimize) as a faithful analysis tool. We
carefully design an explanatory experiment using a linear MLP (multi-layer perceptron) network to
demonstrate how finetuning LR affects the final performance by affecting dynamical isometry. In
brief, we observe the finetuning process can recover dynamical isometry inherently; a larger LR can
help recover it faster (or better), hence the better final performance. The proposed explanation is
validated by our empirical results and resonates with many empirical observations.

Contributions. (1) We empirically demonstrate the questioning about the value of inheriting
weights in structured pruning in previous works is inaccurate and point out that the direct cause
is improperly using a small finetuning LR. Our finding justifies the value of inheriting weights in
structured pruning. (2) On top of the empirical finding, more importantly, we present a theoretical
explanation through examining the dynamical isometry of networks in pruning. This explanation is
empirically validated by our carefully designed control experiments. (3) Our investigation promotes
a perspective shift for pruning: looking at pruning as a kind of initialization for the subsequent
finetuning can help us better understand pruning.

2 RELATED WORK

Conventional pruning. Pruning aims to remove as many parameters as possible in a neural network
meanwhile maintaining its performance. There are many ways to categorize pruning methods. The
most popular two are grouping by pruning structure and methodology.

(1) In terms of pruning structure, pruning can be specified into unstructured pruning (Han et al.,
2015; 2016) and structured pruning (Wen et al., 2016; Li et al., 2017; He et al., 2017). For the former,
a single weight is the basic pruning element. Unstructured pruning can deliver a high compression
ratio; whereas, without regularization, the pruned locations usually spread randomly in the network,
which is hard to exploit for acceleration. On the opposite, structured pruning introduces certain
patterns in the pruned locations, which benefit subsequent acceleration while cannot achieve as much
compression. Choices between unstructured and structured pruning depend on specific application
needs. For structured pruning, there are still many sub-groups (Mao et al., 2017). In the literature,
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without specific mention, structured pruning means filter pruning or channel pruning. This paper
focuses on structured (filter) pruning because the “no value of inheriting weights” argument is
mainly discussed in this context (Liu et al., 2019).

(2) In terms of pruning methodology (i.e., how to select unimportant weights to prune), pruning falls
into two paradigms in general: importance-based and penalty-based. The former prunes weights
based on some established importance criteria, such as magnitude (for unstructured pruning) (Han
et al., 2015; 2016) or L1-norm (for filter pruning) (Li et al., 2017), saliency based on 2nd-order
gradients (e.g., Hessian or Fisher) (LeCun et al., 1990; Hassibi & Stork, 1993; Theis et al., 2018;
Wang et al., 2019a; Singh & Alistarh, 2020). The latter adds a penalty term to the objective function,
drives unimportant weights towards zero, then removes those with the smallest magnitude. Note,
the two groups are not starkly separated. Many methods take wisdom from both sides. For exam-
ple, (Ding et al., 2018; Wang et al., 2019b; 2021) select unimportant weights by magnitude (akin
to the first group) while also employing the regularization to penalize weights (akin to the second
group). There is no conclusion about which paradigm is better, yet empirically, the state-of-the-art
pruning methods are closer to the second paradigm, i.e., deciding weights via training instead of
some derived formulas. Although no theories have formally discussed the reason, we can take a
rough guess with the knowledge from this paper: Training can recover dynamical isometry, which
is beneficial to subsequent finetuning.

For more comprehensive literature, we refer interested readers to several surveys: an outdated
one (Reed, 1993), some recent surveys of pruning alone (Gale et al., 2019; Blalock et al., 2020)
or pruning as a sub-topic under the general umbrella of model compression and acceleration (Sze
et al., 2017; Cheng et al., 2018a;b; Deng et al., 2020).

Pruning at initialization (PaI). Recent years have seen several new pruning paradigms. The most
prominent one is pruning at initialization. Different from the conventional pruning, which prunes a
pretrained model, PaI methods prune a randomly initialized model. Existing PaI approaches mainly
include (Lee et al., 2019; 2020; Wang et al., 2020; Frankle et al., 2021; Ramanujan et al., 2020)
and the series of lottery ticket hypothesis (Frankle & Carbin, 2019; Frankle et al., 2020). Interested
readers may refer to (Wang et al., 2022) for a comprehensive summary about PaI.

This topic is relevant to this work mainly because one PaI paper (Lee et al., 2020) also examines
pruning using the tool of dynamical isometry. The similarity between our paper and theirs is that we
both employ dynamical isometry as a tool to examine the property of network pruning. However,
our paper is significantly different from theirs in many axes: (1) Basic setting. The most obvious
difference is that we focus on pruning a pretrained model while (Lee et al., 2020) focuses on pruning
at initialization (PaI). They are two different tracks in pruning (as such, PaI methods typically do not
compare with the methods of pruning pretrained models) and the latter was shown to consistently
underperform the former (Frankle et al., 2021; Wang et al., 2022). (2) Motivation. Despite the same
tool (mean JSV in Eq. (1)), (Lee et al., 2020) uses it to select unimportant weights to prune (i.e., for
a new pruning criterion), while we use it to analyze why finetuning LR has a significant impact on
final performance. The role of finetuning LR in pruning is not mentioned at all in their paper. (3)
Proposed technical method. (Lee et al., 2020) focuses on unstructured pruning, while we focuses
on structured pruning. This further leads to fundamental difference when designing the dynamical
isometry recovery (DIR) methods – In (Lee et al., 2020), their proposed method is to use iterative
optimization for approximated isometry (due to the irregular sparsity); while in our case, since the
pruned filers can be completely removed from the network, one of our DIR method (OrthP) has
closed-form solution and can achieve exact isometry.

2.1 EMPIRICAL STUDY: LARGER FINETUNING LR IS CRITICAL

As far as we know, mainly two papers question the value of inheriting weights from a pretrained
model: (Crowley et al., 2018; Liu et al., 2019). Both papers draw two similar conclusions. (1)
Inheriting weights from a pretrained model in pruning has no value, i.e., training from scratch the
small model can match (or outperform sometimes) the counterpart pruned from a big pretrained
model. (2) Given the fact of (1), what really matters in pruning may lie in the pruned architecture
instead of the inherited weight values. As such, both papers propose to view pruning as a form of
neural architecture search (Zoph & Le, 2017; Elsken et al., 2019). In this section, we first reexamine
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Table 2: Top-1 accuracy comparison between scratch training (“Scratch”) and L1-norm pruning (Li
et al., 2017) on ImageNet. “PR” means pruning ratio. †We adopt the official torchvision mod-
els as unpruned models. “Finetuned-1” and “Finetuned-2” refers to two finetuning LR schedules
(“Finetuned-1”: 90 epochs, initial 10−3, decay 30/60/75; “Finetuned-2”: 90 epochs, initial 10−2,
decay 45/68). Best results are in bold, second best underlined, each averaged by 3 random runs.

Network PR Params reduc. (%) FLOPs reduc. (%) Scratch (%) Pruned-Finetuned-1 (%) Pruned-Fintuned-2 (%)

ResNet-18

0 0 0 69.76† / /
0.1 9.56 9.58 70.15±0.02 70.43±0.02 70.48±0.10

0.3 28.32 28.18 68.90±0.10 69.29±0.07 69.54±0.09

0.5 47.03 46.20 67.03±0.01 67.36±0.03 67.71±0.05

0.7 65.99 64.93 64.21±0.10 63.72±0.03 64.45±0.04

0.9 84.75 83.52 56.70±0.17 53.49±0.10 55.89±0.11

0.95 89.51 88.03 51.83±0.14 44.46±0.15 49.99±0.10

ResNet-34

0 0 0 73.31† / /
0.1 9.84 9.92 73.53±0.10 73.86±0.05 74.04±0.05

0.3 29.15 29.26 72.50±0.17 73.11±0.06 73.31±0.08

0.5 48.41 48.12 71.27±0.03 71.71±0.06 71.85±0.07

0.7 67.95 67.63 68.69±0.10 68.90±0.08 69.33±0.04

0.9 87.26 86.97 62.08±0.12 60.34±0.03 62.26±0.06

0.95 92.16 91.69 57.21±0.15 52.83±0.11 56.69±0.23

VGG11 BN

0 0 0 70.37† / /
0.1 9.19 17.78 68.51±0.04 71.45±0.07 71.74±0.04

0.3 26.80 47.63 66.60±0.11 70.00±0.03 70.53±0.05

0.5 43.86 70.56 65.85±0.13 67.34±0.05 68.01±0.10

0.7 60.54 87.03 61.56±0.06 62.14±0.09 63.14±0.08

0.9 76.50 96.49 48.34±0.12 45.11±0.07 48.52±0.06

0.95 80.49 97.76 35.47±0.09 33.50±0.10 38.47±0.13

the empirical studies in (Crowley et al., 2018; Liu et al., 2019) to show that the “no value of inheriting
weights” argument is actually inaccurate owing to improper finetuning LR schedules.

Reexamination of (Liu et al., 2019). Before presenting results, here are some important comparison
setting changes worth particular attention.

(1) In (Liu et al., 2019), they compare training from scratch with six pruning methods (five structured
pruning methods (Li et al., 2017; Luo et al., 2017; Liu et al., 2017; He et al., 2017; Huang & Wang,
2018) and one unstructured pruning method (Han et al., 2015)). Here, we only focus on the L1-norm
pruning (Li et al., 2017) on ImageNet. The main reason is that, L1-norm pruning is well-known a
very basic filter pruning method. If we can show it outperforms training from scratch already, it will
be no surprise to see other more advanced pruning methods also outperform training from scratch.
In this sense, L1-norm pruning is the most representative method here for our investigation.

(2) In (Liu et al., 2019), they have two variants for the number of epochs in scratch training, “Scratch-
E” and “Scratch-B”. For the former, different small models are trained for a fixed number of epochs;
for the latter, smaller models are trained for more epochs to maintain the same computation budget
(Scratch-B was shown to be better than Scratch-E in (Liu et al., 2019)). Also, they decay LR only
to 10−3 following the official PyTorch ImageNet example1. Here, we simply train all the networks
for the same number of epochs but ensure the epochs are abundant (120 epochs) and decay LR to
a very small amount (10−5). These two changes are to make sure the networks are trained to full
convergence. As we will show, one primary cause possibly leading (Liu et al., 2019) to an inaccurate
conclusion is exactly that the pruned networks are not fully converged (see Tab. 1).

With the LR schedule changes, we rerun the experiments using the released code of (Liu et al.,
2019). Results are presented in Tab. 1. In the implementations of (Liu et al., 2019), the finetuned
model is outperformed by the scratch training one, hence their “no value of inheriting weights”
argument. We also reproduce their settings (the two rows of “20 epochs, initial 10−3, fixed” in “Our
rerun”) for confirming their argument. However, the finetuning LR schedule “20 epochs, initial
10−3, fixed” is actually sub-optimal; the network is not fully converged. Using the proper ones (“90
epochs, initial 10−3, decay” or “90 epochs, initial 10−2, decay”), pruning outperforms training from
scratch for both ResNet-34-A and ResNet-34-B. We note the pruned models even outperform the

1https://github.com/pytorch/examples/tree/master/imagenet
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Table 3: Comparison between L1-norm pruning and training from scratch with ResNet34 on Im-
ageNet100 at Fair-setup-1 and Fair-setup-2. Each result is averaged by 3 random runs.
The learning rate schedule of scratch training is: Initial LR 0.1, decayed at epoch 30/60/90/105 by
multiplier 0.1, total: 120 epochs. “Prune30, Ft90, 1e-1” means the model is pruned at epoch 30 and
finetuned for another 90 epochs with initial finetune LR 1e-1. The other can be inferred likewise.

Method 0.1 0.3 0.5 0.7 0.9 0.95

Scratch 83.68±0.38 83.31±0.13 82.90±0.16 82.45±0.13 79.37±0.76 76.67±0.90

L1 (Fair-setup-2: Prune30, Ft90, 1e-2) 84.13±0.11 83.44±0.03 83.51±0.23 83.48±0.19 80.03±0.14 77.00±0.34

L1 (Fair-setup-1: Prune30, Ft90, 1e-1) 85.61±0.18 85.82±0.30 85.54±0.40 84.61±0.41 82.07±0.11 78.40±0.23

original models. This is probably because pruning reduces the network redundancy, thus curbing
overfitting. This phenomenon is also widely observed in past works (Han et al., 2016; Wen et al.,
2016; He et al., 2017) especially with small pruning ratios as the cases in Tab. 1.

Tab. 1 only presents two ResNet models and their speedups are actually quite small. To see if the
finetuning LR effect still holds across the full spectrum of pruning ratios and on other types of
networks, we vary the pruning ratios from 0.1 to 0.95 and include experiments on VGG11 BN (Si-
monyan & Zisserman, 2015).

Results are presented in Tab. 2. With a more proper finetune LR scheme (column “Pruned-Fintuned-
2” vs. “Pruned-Fintuned-1”), the performance can be improved significantly. A clear pattern is, the
larger the pruning ratio, the more of the improvement. Now, comparing the results of “Pruned-
Fintuned-2” to those of “Scratch”, we can see pruning outperforms scratch-training in most cases.
Exceptions appear on ResNet-34/18 under extreme pruning ratios (90% and 95%). Despite them,
we believe it is fair to say inheriting weights has value given the fact that 17/20 experiments
in Tabs. 1 and 2 show pruning is better than training from scratch, especially under the pruning
ratios of practical interest (i.e., non-extreme pruning ratios). Retrospectively, (Liu et al., 2019)
concluded oppositely because they re-implemented the L1-norm pruning method exactly following
the description in the original paper (Li et al., 2017): fixed LR 10−3, 20 epochs, which turns out
far from optimal as we know now.

Stricter comparison settings. In Tab. 1 and Tab. 2, although the two schemes (pruning-finetuning
vs. scratch) are trained to their full convergence (which is the most common comparison setup in the
pruning literature), they are not strictly fair if we consider the total epochs including pretraining and
finetuning – pruning-finetuning takes 90+90=180 epochs, while training from scratch only takes 120
epochs. It is of deep interest how the comparison would turn if we keep the total epochs exactly the
same. Here we present more results to address this. Two stricter comparison setups are introduced:

• Fair-setup-1: The total epochs are kept the same while the specific LR schedules are
allowed to be different.

• Fair-setup-2: The total epochs and LR schedules are both kept the same.

Clearly, Fair-setup-2 is even stricter than Fair-setup-1. Then at these two setups, we re-
conduct the experiments under different pruning ratios (0.1 to 0.95) on ImageNet100 (a randomly
drawn 100-class subset of ImageNet-1K to obtain results more quickly). The results are presented in
Tab. 3. Even at these stricter setups, L1-norm pruning still outperforms scratch training consistently.

Reexamination of (Crowley et al., 2018). Coincidentally, (Crowley et al., 2018) adopted a very
similar finetuning LR scheme to (Liu et al., 2019): They finetuned the pruned network with the
lowest LR (8 ∗ 10−4, close to 10−3 in (Liu et al., 2019)) during scratch training and also fixed. Like
the empirical study above, we reproduce the experiments of (Crowley et al., 2018) and rerun them
with a larger initial LR (10−2) and decay it during finetuning.

Detailed results are deferred to the Appendix (Tab. 8) due to the limited length here. We summarize
the observation here – Exactly the same as the case in (Liu et al., 2019), when the proper finetuning
LR is used, pruning actually outperforms the best scratch training scheme consistently.

Retrospective remarks. Simply put, results above show that the debate about the value of pruning
is largely attributed to sup-optimal finetuning settings. It is worthwhile to ponder at this point why
this simple reason was not spotted for years. In fact, the problem is not so straightforward to see,
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Table 4: Mean JSV of the first 10 epochs under different finetuning settings. Epoch 0 refers to the
model just pruned, before any finetuning. Pruning ratio is 0.9. Note, with OrthP, the mean JSV is 1
because OrthP can achieve exact isometry.

Epoch 0 1 2 3 4 5 6 7 8 9 10

LR=10−2, w/o OrthP 0.0004 0.6557 0.8946 1.0191 0.9826 1.0965 1.1253 1.2595 1.3298 1.2940 1.4238
LR=10−3, w/o OrthP 0.0004 0.0004 0.0006 0.0014 0.1103 0.2765 0.3501 0.4320 0.5167 0.7478 0.8501
LR=10−2, w/ OrthP 1.0000 1.2318 1.4144 1.4277 1.4017 1.4709 1.5171 1.5551 1.6082 1.6538 1.6648
LR=10−3, w/ OrthP 1.0000 1.5135 1.6630 1.7449 1.8250 1.8720 1.9193 1.9556 1.9943 2.0084 2.0409

Table 5: Test accuracy (%) of the first 10 epochs corresponding to Tab. 4 under different finetuning
settings. Epoch 0 refers to the model just pruned, before any finetuning. Pruning ratio is 0.9.

Epoch 0 1 2 3 4 5 6 7 8 9 10

LR=10−2, w/o OrthP 9.74 63.86 79.96 79.74 80.06 85.79 85.82 86.11 86.45 86.53 85.95
LR=10−3, w/o OrthP 9.74 9.74 9.74 12.09 21.74 27.95 33.55 35.92 49.19 65.50 69.90
LR=10−2, w/ OrthP 9.74 91.05 91.39 91.33 91.37 91.74 91.69 90.74 91.39 91.58 91.44
LR=10−3, w/ OrthP 9.74 90.81 91.59 91.77 91.85 92.04 92.12 92.22 92.12 92.33 92.25

because it has been broadly believed that inherited weights of a pruned model already pose it at
a location close to the final solution in the loss landscape, hence no need to finetune the model for
many epochs (typically much fewer than the number of epochs to train the model from scratch). This
is probably why (Li et al., 2017) finetuned the model for merely 20 epochs on ImageNet, far from
the best setting. The reality, however, turns out to be the opposite way: The pruned models actually
demand more finetuning epochs because pruning hurts the dynamical isometry, slowing down the
convergence. This gap between our presumption and the reality, not noticed by previous works,
finally leads to the debate about the value of pruning. Now, after discovering the role of dynamical
isometry in pruning, our paper clears much of the mystery. The value of pruning is also justified.

Up to now, the results above have shown that the “no value of inheriting weights” argument in
previous works is largely attributed to sup-optimal finetuning settings. A larger LR (e.g., 10−2) can
significantly improve the finetuning performance than a small one (e.g., 10−3). In fact, we are not the
only one to discover this. Previous works (Renda et al., 2020; Le & Hua, 2021) also reported similar
observation. Nevertheless, they do not link the phenomenon with the “value of inheriting weights”
argument and do not conduct systematical empirical studies as we do here. More importantly, neither
of them presented theoretical explanations about its occurrence – next, we are about to bridge this
gap. We present a faithful theoretical explanation through the lens of dynamical isometry.

3 INITIALIZATION IS THE KEY

3.1 PREREQUISITES: DYNAMICAL ISOMETRY

Dynamical isometry (DI) is studied under the topic of trainability of deep neural networks. It was
first brought up in (Saxe et al., 2014). Specifically, the dynamical isometry is defined as the singular
values of the Jacobian matrix being around 1 (Saxe et al., 2014). It is easy to see that the networks
with dynamical isometry is easy to train, because JSVs around 1 imply the gradient signals will
not be amplified or attenuated seriously during propagation, preventing the network from gradient
exploding or vanishing, which are well-known the main difficulties in deep network training (Glorot
& Bengio, 2010; Sutskever et al., 2013). For linear networks, dynamical isometry can be achieved
exactly by the orthogonal initialization proposed in (Saxe et al., 2014); while for neural networks
with non-linearity (like ReLU (Nair & Hinton, 2010)) and convolution, it can only be approximated
up to date (see Tab. 11 in Appendix).

Mean Jacobian singular values. Since dynamical isometry is measured by the Jacobian singular
values (JSV’s), we adopt the mean of Jacobian singular values (denoted by S̄) as a scalar metric
for analysis. Specifically, for a Jacobian J ∈ RC×Din (C stands for the output dimension, i.e., the
number of classes, Din for the input dimension), apply singular value decomposition (Trefethen &
Bau III, 1997) to it,

U,Σ, V = svd(J), S̄ =
1

K

K∑
i=1

Σii, (1)
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where Σ is the singular value matrix and K = min(C,Din).

Properly look at mean JSV. Notably, mean JSV equal to (or close to) 1 for dynamical isometry
is an ideal case. In practice, this barely holds (unless manually set). When analyzing practical
networks, we need to be exact about how close is the so-called “close to” 1. In Appendix A.4, we
provide an empirical study to answer this question, which can help us look at the mean JSV metric
at a proper scale. Readers are encouraged to take a look.
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Pruning ratio
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M
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MLP-7-Linear
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Figure 1: Mean JSV (Eq. (1)) of pruned networks
w.r.t. different pruning ratios on MNIST. Note,
with a larger pruning ratio, mean JSV is hurt more.

Pruning as poor initialization for trainabil-
ity. We investigate how the pruning affects S̄.
The results are shown in Fig. 1. As seen, the
mean JSV is consistently damaged by pruning;
and a larger pruning ratio, more decrease of the
mean JSV. This means, pruning actually servers
as a very poor initialization scheme for the sub-
sequent finetuning.

In stark contrast to the broad awareness
that initialization is rather critical to neu-
ral network training (Glorot & Bengio, 2010;
Sutskever et al., 2013; Mishkin & Matas, 2016;
Krähenbühl et al., 2016; He et al., 2015), the
initialization role of pruning has received negligible research attention, however. As far as we know,
no prior works have noted this issue when pruning a pretrained network or tried to recover the broken
dynamical isometry before finetuning.

Simply put, our goal next is to show it is this broken dynamical isometry that answers for the
performance gap between LR 10−2 and 10−3. To validate this explanation, we need a method to
fully recover dynamical isometry in filter pruning, as is introduced next.

3.2 DYNAMICAL ISOMETRY RECOVERY IN FILTER PRUNING

In (Saxe et al., 2014), they propose a weight orthogonalization scheme to achieve dynamical isom-
etry for neural network initialization, namely, the initial weights are randomly sampled. Different
from their case, here the initial weights are inherited from a pretrained model by pruning. Therefore,
we need to adapt it to our application.

For a FC layer parameterized by a matrix W0 ∈ RJ×K (for a Conv layer parameterized by a 4-d
tensor of shape RN×C×H×W , it can be reshaped to a matrix of shape RN×CHW ), it reduces to
matrix W of size RJ1×M1 (J1 ≤ J,K1 ≤ K) after structured pruning. Then, we apply the weight
orthogonalization technique (Mezzadri, 2006) based on QR decomposition (Trefethen & Bau III,
1997) to W ,

Q,R = qrd(W ),

W ∗ = Q⊙ sign(diag(R)),
(2)

where qrd(·) means QR decomposition; Q is an orthogonal matrix of the same size as W (RJ1×K1 );
R is an an upper triangular matrix of size RK1×K1 ; sign(·) is the sign function which returns the
positive or negative sign of its argument; ⊙ represents the Hadamard (element-wise) product aligned
to the last axis (since Q and sign(diag(R)) share the same dimension at the last axis).

As an orthogonalized version of W , W ∗ recovers the dynamical isometry damaged by pruning.
Therefore, we propose to employ W ∗ instead of the original W as the initialization weights for later
finetuning. We dub this weight orthogonalization method for pruned models as OrthP. With this
method, we can fully recover broken dynamical isometry and continue our analysis as follows.

3.3 ANALYSIS WITH MLP-7-LINEAR ON MNIST

Evaluated network. The network for analysis is a 7-layer linear MLP. We are aware that this
toy network has little practical meaning, but it is very appropriate here for two reasons. First, as
mentioned above, in our analysis we need a method to recover DI exactly. Up to date, this can
only be achieved on linear networks (see Tab. 11). Second, the linear MLP network is free from
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the intervention of modern CNN features (e.g., BN (Ioffe & Szegedy, 2015), residual (He et al.,
2016)). By our observation, these features will make the problem complex and prevent us from
seeing consistent results at the early analysis stage.

LR schedule setup. When we set different LR schedules with different initial LRs, we will (1) keep
the total number of epochs the same, (2) keep the last LR the same, (3) intentionally use prolonged
training epochs (like 90 or even 900 epochs on MNIST dataset. Typically, it only needs 30 epochs to
reach convergence on MNIST). All of these are to ensure the networks are fully converged, helping
us render a faithful conclusion. Step decay LR schedule is employed given its broad use.

Proposed explanation and its deducted hypotheses. We list the first 10-epoch mean JSV and test
accuracy of pruning MLP-7-Linear (at pruning ratio 0.9) under different finetuning setups in Tab. 4
and Tab. 5, respectively. The following observations are worth our attention.

(1) In Tab. 4, one important fact is that, the mean JSV can recover itself without any extra help
during finetuning, regardless of different setups.

(2) In Tab. 4, without OrthP, the mean JSV of LR 10−2 arises much faster than that of LR 10−3.
By our analysis in the Appendix A.4), a larger mean JSV implies better dynamical isometry, which
further implies easier optimization. Easier optimization finally leads to the better test accuracy of
LR 10−2 against 10−3 when the training epoch is insufficient, as shown in Tab. 5.

(3) In Tab. 4, with OrthP, the broken dynamical isometry is exactly recovered (note at epoch 0, the
mean JSV is 1). Then the accuracy advantage of LR 10−2 over 10−3 is not significant anymore,
e.g., in Tab. 5, at epoch 10, LR 10−2 is better than LR 10−3 by 16.05% without OrthP; while it is
not better (actually worse) than LR 10−3 with OrthP.

(4) Particularly note how the mean JSV trend in Tab. 4 correlates well with the test accuracy trend in
Tab. 5. This resonates with the possibility that it is dynamical isometry that answers for the accuracy
gap fundamentally.

These observations inspire us to the following plausible explanation about why a larger finetuning
LR can improve performance significantly:

A larger finetuning LR helps the network update faster, thus the dynamical isometry recovers faster
(and possibly better), which further leads to faster (and possibly better) optimization. Meanwhile,
better optimization usually implies better generalization as we observe in practice, thus the larger
finetuning LR eventually leads to the better test accuracy as we see, especially when the finetuning
epochs are limited.

That is, a larger finetuning LR shows performance advantage only if dynamical isometry is broken
by pruning first. If dynamical isometry is fully recovered before finetuning, a larger LR should not
pose performance advantage anymore. The validation of this explanation can be specified into the
following 4 deducted hypotheses:

Hypothesis 1. Given a small number of epochs, mean JSV cannot be fully recovered by training,
then the larger LR should show a significant advantage over the smaller LR.

Hypothesis 2. With sufficient training epochs, mean JSV can be fully recovered by training. Then
the larger LR should have less advantage over the smaller LR.

Hypothesis 3. If we employ OrthP to exactly recover the mean JSV, given the small number of
epochs again, the larger LR should have much less advantage now.

Hypothesis 4. If we combine abundant epochs with OrthP, mean JSV will be recovered even more,
then the performance gap between the larger LR and the smaller one should be even smaller.

Corresponding to these 4 hypotheses, the 8 finetuning LR settings are summarized in Tab. 6. The
unpruned MLP model is trained with LR schedule “90 epochs, initial 10−2, decay 30/60”. For filter
pruning, we employ L1-norm pruning (Li et al., 2017) throughout this paper. Specifically, it sorts
the neurons (or filters) by their L1 norms in ascending order and prunes those with the least norms
by a predefined pruning ratio r.

The final accuracy results are shown in Tab. 7. We first analyze the results of pruning ratio 0.8 in
Tab. 7. As seen, when finetuned for 90 epochs, LR 10−2 shows an advantage over LR 10−3 by
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Table 6: Summary of finetuning LR setups corresponding to the 4 proposed hypotheses in Sec. 3.3.
Initial LR 10−2 Initial LR 10−3

For Hypothesis 1 90 epochs, Initial 10−2, decay 30/60 90 epochs, Initial 10−3, decay 45
For Hypothesis 2 900 epochs, Initial 10−2, decay 300/600 900 epochs, Initial 10−3, decay 450
For Hypothesis 3 OrthP, 90 epochs, Initial 10−2, decay 30/60 OrthP, 90 epochs, Initial 10−3, decay 45
For Hypothesis 4 OrthP, 900 epochs, Initial 10−2, decay 300/600 OrthP, 900 epochs, Initial 10−3, decay 450

Table 7: Test accuracies (%) of the 4 hypotheses in Tab. 6 with MLP-7-Linear network on MNIST.
Accuracy of unpruned model: 92.77%. Each setting is randomly run 5 times, mean accuracy and
stddev reported. “Acc. gain” refers to the mean accuracy improvement of LR 10−2 over 10−3.
Hyper-parameters: batch size 100, SGD optimizer, weight decay 0.0001, LR schedule: initial LR
0.01, decayed by factor 0.1 at 1/3 and 2/3 total epochs.

Finetuning setting Pruning ratio 80% Pruning ratio 90%

LR 10−3 LR 10−2 Acc. gain LR 10−3 LR 10−2 Acc. gain

90 epochs 90.54±0.02 91.36±0.02 0.82 87.59±0.01 87.81±0.03 0.22
900 epochs 92.54±0.03 91.64±0.41 −0.90 90.44±0.01 87.83±0.04 −2.61
OrthP, 90 epochs 92.77±0.03 92.79±0.03 0.02 92.72±0.03 92.77±0.04 0.05
OrthP, 900 epochs 92.84±0.03 92.81±0.04 −0.03 92.86±0.03 92.79±0.03 −0.07

0.82% accuracy. It is tempting to draw a conclusion based on this comparison that LR 10−2 is much
better than LR 10−3. However, this is not the whole story:

• With 900 epochs, LR 10−2 is greatly surpassed by LR 10−3 (91.64 vs. 92.54). The reason
by our proposed explanation is that, with abundant epochs, the dynamical isometry can be
recovered more completely, hence LR 10−2 does not show advantages anymore over 10−3.

• When OrthP applied, LR 10−2 does not show significant advantages either, similar to the
effect of increasing the number of training epochs. This is because that finetuning shares
the same role of recovering dynamical isometry with OrthP. Just OrthP is more effective
since it is analytically targeting exact isometry.

• When the best setting used (OrthP + 900 epochs), LR 10−3 is slightly better than 10−2.
Comparing “OrthP, 900 epochs” with “OrthP, 90 epochs”, the gains are only marginal.
This is because the dynamical isometry has already been fully recovered by OrthP, thus
more training epochs do not show much value anymore.

A different pruning ratio 0.9 is also explored. Its results are in line with those of pruning ratio 0.8
as shown in Tab. 7. In short, these empirical observations are fully in line with our expectations,
justifying the validity of the proposed explanation.

Explaining LR effect on ImageNet. In Tab. 2, there is an apparent trend that the larger pruning
ratio, the more performance advantage of LR 10−2 over 10−3. Using our explanation, this phe-
nomenon can also be explained now – When the pruning ratio is greater, more dynamical isometry
is damaged. LR 10−2 can find more use in these cases since it is faster/better to recover dynamical
isometry, hence the more pronounced advantage.

4 CONCLUSION

In this work, we present extensive pieces of empirical evidence to show the “no value of inheriting
weights” argument in prior works is inaccurate because of improper finetuning LR schedules. We
further tap into dynamical isometry to explain why the finetuning LR has such a great impact on
the final performance, through carefully designed control experiments with 4 hypotheses. We pro-
mote looking at pruning as a kind of initialization, which is a favorable perspective that can make
seemingly inconsistent and random results become predictable and coherent.

Our investigation of trainability (dynamical isometry) in structured pruning justifies the value of
inheriting weights, in line with the past research wisdom and our common beliefs. It also helps us
towards a better understanding of pruning and possibly can inspire more advanced pruning algo-
rithms as dynamical isometry recovery has been shown a worthy direction in the paper. In addition,
the awareness of dynamical isometry in structured pruning can help us render a more faithful con-
clusion when comparing different pruning methods (e.g., pay more attention to finetuning).
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A APPENDIX

A.1 RESULTS OF REEXAMINATION OF CROWLEY ET AL. (2018)

Table 8: Test accuracy comparison between 2 pruning schemes and 4 scratch training schemes
in (Crowley et al., 2018). Network: WRN-40-2 (unpruned accuracy: 95.08%, params: 2.24M).
Dataset: CIFAR-10. Results above the dashline are directly cited from (Crowley et al., 2018);
results below the dashline are from our reproducing (with the official code of (Crowley et al., 2018)
at https://github.com/BayesWatch/pytorch-prunes for fair comparison). “Rerun” means we rerun the
code of (Crowley et al., 2018) as it is. “LR 10−2” means we redo the finetuing for the pruned models
in “Rerun” using our finetuning LR schedule (120 epochs, initial 10−2, decay 60/90). Finetuning
is randomly repeated for 3 times, mean (stddev) accuracies reported. The main point here is that
(Crowley et al., 2018) draws the conclusion that scratch training is better than pruning because of an
improper finetuning LR scheme. With the proper finetuning LR scheme, pruning is actually better
than scratch training.

Method Scratch? 500K params budget 1M params budget 1.5M params budget
Params (M) Acc. (%) Params (M) Acc. (%) Params (M) Acc. (%)

L1-norm pruning (Li et al., 2017) ✗ 0.51 90.86 1.02 92.61 1.52 93.63
Fisher pruning (Theis et al., 2018) ✗ 0.52 92.59 1.02 93.51 1.52 94.51
Varying Depth ✓ 0.69 93.56 1.08 94.54 1.47 94.64
Varying Width ✓ 0.50 93.45 0.98 94.30 1.48 94.66
Varying Bottleneck ✓ 0.50 93.69 1.00 94.40 1.49 94.79
Fisher Scratch ✓ 0.52 93.72 1.02 94.65 1.52 94.86
L1-norm pruning (Li et al., 2017) (Rerun) ✗ 0.50 91.23 1.00 92.80 1.51 93.52
L1-norm pruning (Li et al., 2017) (LR 10−2) ✗ 0.50 93.88 (0.10) 1.00 94.49 (0.10) 1.51 94.92 (0.16)
Fisher pruning (Theis et al., 2018) (Rerun) ✗ 0.52 92.17 0.98 93.57 1.48 94.67
Fisher pruning (Theis et al., 2018) (LR 10−2) ✗ 0.52 94.27 (0.09) 0.98 94.80 (0.02) 1.48 95.10 (0.13)
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Table 9: Training setting summary in finetuning. For the SGD solver, in the parentheses are the
momentum and weight decay.

Dataset MNIST CIFAR10 ImageNet
Solver SGD (0.9, 1e-4) SGD (0.9, 5e-4) SGD (0.9, 1e-4)

LR schedule (Initial 1e-2) Multi-step (decay 30/60) Multi-step (decay 60/90) Multi-step (decay 30/60/75)
LR schedule (Initial 1e-3) Multi-step (decay 45) Multi-step (decay 80) Multi-step (decay 45/68)

Total epoch 90 120 90
Batch size 100 128 256

Data augmentation None Random crop and horizontal flip Random crop and horizontal flip

A.2 TRAINING SETTING SUMMARY

There are three datasets in our experiments in the paper: MNIST, CIFAR10, and ImageNet. Apart
from some key settings stated in the paper, a more detailed training setting summary is shown as
Tab. 9. We use 8 NVIDIA V100 GPUs for all our experiments.

A typical finetuning LR schedule looks like this in our paper: “90 epochs, initial 10−2, decay 30/60”.
Its meaning is: the total number of training epochs is 90; initial LR is 10−2; at epoch 30 and 60, LR
is multiplied by a default factor 0.1. The others can be inferred likewise.

A.3 WHY OUR REPRODUCED RESULTS ARE BETTER THAN THOSE REPORTED IN (LIU ET AL.,
2019)

In Tab. 1, we present the results of ResNet34 on ImageNet, pruned by the L1-norm pruning
method (Li et al., 2017). Readers may be curious that why our scratch-training results are much
higher than those of Rethinking (Liu et al., 2019) (by 0.4-0.6%). This has a historical reason. (Liu
et al., 2019)2 refers to the official PyTorch ImageNet example3, where the LR is only decayed twice
(from 1e-1 to 1e-2, then to 1e-3). However, by our empirical observation, 1e-3 is still not the lowest
LR that the network converges. If the LR is decayed another time (to 1e-4), the top-1 accuracy
can still bump by round 0.5-0.8% point, which is a significant improvement for ImageNet thus not
negligible. Therefore, we choose to decay the LR further to 1e-4 and finally to 1e-5 to ensure the
network is fully converged. This reiterates the comparison rule of our paper: comparing different
methods in their best shape. Comparing scratch training to L1-norm pruning before the finetuned
network finally converges may appear fair (given the same number of epochs) but is of less practical
meaning and may hide the true picture.

A.4 HOW TO properly LOOK AT THE MEAN JSV METRIC FOR DYNAMICAL ISOMETRY

In the main paper, we use mean JSV as the metric to measure dynamical isometry, for the following
3 specific reasons: (1) It was used by Lee et al. (2020), which analyzes the dynamical isometry
for randomly initialized network. Given its success there, it is very natural for us to also employ
this metric for analyzing pretrained networks here. (2) We currently do not have a better alternative,
either. (3) In practice, we find mean JSV is informative (e.g., in Tab. 7, the mean JSV trend is
well-correlated with the test accuracy trend), provided we see it properly.

This section is meant to provide more background regarding how to look at the mean JSV for dy-
namical isometry properly. It is not a new invention of our paper but a general practical guideline
about the relationship between mean JSV and dynamical isometry in order to help readers better
understand our paper.

DI (dynamical isometry) is defined by mean JSV close to 1 in Saxe et al. (2014). Rigorously, in Saxe
et al. (2014), DI describes the distribution of all JSVs. Mean JSV is only an average sketch of the
distribution. Nevertheless, this average approximation is accurate enough for analysis. In other
words, if a network has mean JSV close to 1, we can say this network has dynamical isometry.

Then, a non-trivial technical question is: When we deal with practical DNNs in the real world,
how close is the so-called “close to 1”? To our best knowledge, there is no outstanding theory to

2https://github.com/Eric-mingjie/rethinking-network-pruning/tree/master/imagenet/l1-norm-pruning
3https://github.com/pytorch/examples/tree/master/imagenet
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quantify this, so we resort to empirical analysis, specifically on the MLP-7-Linear network used in
the main paper.

Table 10: Mean JSV and test accuracies (%) of MLP-7-Linear on MNIST under different pruning
ratios. Each result is randomly run for 3 times. We report the mean accuracy and (std). “ft.” is short
for finetuning.

Pruning ratio 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

mean JSV 2.4987 1.7132 0.9993 0.5325 0.2711 0.1180 0.0452 0.0151 0.0040 0.0004
Acc. before ft. 92.77 91.35 78.88 62.21 32.14 11.47 9.74 9.74 9.74 9.74
Acc. after ft. / 92.82 (0.05) 92.80 (0.04) 92.80 (0.01) 92.77 (0.01) 92.77 (0.02) 92.77 (0.00) 92.78 (0.02) 91.37 (0.03) 87.82 (0.03)

As seen, there is a clear trend in Tab. 10: larger pruning ratio, smaller mean JSV, and lower test
accuracy (either before or after finetuning).

Particularly note the mean JSV range where the pruned network can be finetuned back to the original
accuracy (92.77%), which is >= 0.0151. This means, for networks with mean JSV greater than
0.0151, in spite that their immediate accuracies (without finetuning) can be distinct (e.g., 91.35% at
PR 0.1 vs. 9.74% at PR 0.7), intrinsically, they are equivalently potential after finetuning.

DI theory suggests that mean JSV equal to 1 is the best case. Then we would ask, how about mean
JSV equal to 2? 1.5? 0.8? Are they really worse than the ideal value 1? Tab. 10 above shows
not necessarily, because a network with mean JSV 0.2711 can reach comparable accuracy to the
network with mean JSV 1. Only when the mean JSV is smaller than some threshold (in this case,
0.0151), it leads to an irrecoverable damage to the network optimization, which eventually results
in lower generalization ability (i.e., test accuracy).

By this “trainable with equivalent potential” rule, if a mean JSV lies in the range of >= 0.0151,
we can regard it as “close to 1” because they can do just as well as 1.

Here, we only mention the lower bound, how about the upper bound? Can mean JSV 10, 000 also
be regarded as “close to 1”? This is a good question worth further dedicated investigation. Yet, for
now, we do not need to worry much about it, because in practice, a normally trained network rarely
presents a very large mean JSV by our empirical observation, but is quite likely to have a very small
mean JSV (0.0004 at pruning ratio 0.9 in Tab. 10 is a concrete example).

Other metrics for dynamical isometry? Given dynamical isometry is defined as mean JSV
equal to 1, a seemingly plausible metric for dynamical isometry is the mean deviation-from-unity:
1
K

∑K
i=1(Σii − 1)2, where Σ is thee singular value matrix. We need to point out that this metric is

not a good option in fact.

Here is a simple example to see. Consider we have two initialization schemes for a neural network,
A: mean JSV = 0 (this can be done by removing one internal layer; since the network is disconnected,
its mean JSV is definitely 0), B: mean JSV = 3 (this can be done by re-scaling the weights in each
layer by 31/7 after using the orthogonal initialization, for the MLP-7-Linear network). Then the
former has mean deviation-from-unity of 1, the latter has mean deviation-from-unity of 4. By the
metric, the former should be better, but clearly it is not since the network is not trainable at all while
the latter is trainable – we empirically confirmed this with PyTorch on the MLP-7-Linear network.
This is why we think the metric may not be better than mean JSV.

A.5 MORE RESULTS

Effect of different LR schedules. In the main paper, we mention the finetuning LR effect (i.e.,
a larger initial finetuning LR makes the final performance better) also appear using a different LR
schedule, rather than the common step decay LR schedule. Here is the example.

We consider Cosine Annealing LR schedule Loshchilov & Hutter (2017) here, referring to the official
PyTorch Cosine LR implementation4. When we switch from Step LR schedule to Cosine, the initial
LR and minimum LR are kept the same (namely, the start point and end point of LR are the same;
the only difference is the scheduling in between). The scratch model is trained for 200 epochs, initial

4https://pytorch.org/docs/stable/generated/torch.optim.lr scheduler.CosineAnnealingLR.html
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Table 11: JSVs (Jacobian singular values) of orthogonal initialization (Saxe et al., 2014) on differ-
ent types of neural networks on MNIST dataset. Note, only the linear MLP network can achieve
dynamical isometry exactly (i.e., all the JSVs equal to 1).

Network Mean JSV Max JSV Min JSV

MLP-7-Linear 1.0000±0.0000 1.0000 1.0000
MLP-7-ReLU 1.2268±0.5519 3.2772 0.2282
LeNet-5-Linear 0.9983±0.0842 1.2330 0.7896
LeNet-5-ReLU 1.8331±0.5731 3.6007 0.6151

LR 0.1, stp decay at epoch 100 and 150 by multiplier 1
10 (referring to the original ResNet CIFAR10

training recipe in the ResNet paper He et al. (2016)). For finetuning of pruning methods (L1 Li
et al. (2017) and GReg-1 Wang et al. (2021) methods are considered here as they are representative
works of importance-based pruning and regularization-based pruning, the two major paradigms of
filter pruning), the initial LR is 0.01 or 0.001, the minimum LR 0.0001, total epochs 120.

Table 12: Effect of LR schedule of ResNet56 on CIFAR10. Baseline accuracy 93.78%, Params:
0.85M, FLOPs: 0.25G. The best in each column is highlighted in red, second best in blue. For each
sub-block (separated by the horizontal dashline), the relatively better one is highlighted in bold.

Pruning ratio 0.3 0.5 0.7 0.9
Sparsity/Speedup 31.14%/1.45× 49.82%/1.99× 70.57%/3.59× 90.39%/11.41×
Scratch (Step LR) 93.16±0.16 92.78±0.23 92.11±0.12 88.36±0.20

Scratch (Cosine LR) 93.84±0.06 93.20±0.31 92.15±0.21 88.17±0.43

L1 Li et al. (2017) (Step LR 0.001) 93.43±0.06 93.12±0.10 91.77±0.11 87.57±0.09

L1 Li et al. (2017) (Step LR 0.01) 93.79±0.06 93.51±0.07 92.26±0.17 86.75±0.31

L1 Li et al. (2017) (Cosine LR 0.001) 93.48±0.04 93.11±0.09 91.65±0.11 87.17±0.14

L1 Li et al. (2017) (Cosine LR 0.01) 93.82±0.07 93.74±0.06 92.27±0.00 86.90±0.20

GReg-1 Wang et al. (2021) (Step LR 0.01) 94.00±0.10 93.36±0.03 92.43±0.06 89.59±0.03

Table 13: Effect of LR schedule of VGG19 on CIFAR100. Baseline accuracy: 74.02%, Params:
20.08M, FLOPs: 0.80G. The best in each column is highlighted in red, second best in blue. For
each sub-block (separated by the horizontal dashline), the relatively better one is highlighted in
bold.

Pruning ratio 0.3 0.5 0.7 0.9
Sparsity/Speedup 19.24%/1.23× 51.01%/1.97× 74.87%/3.60× 90.98%/8.84×
Scratch (Step LR) 72.84±0.25 71.88±0.14 70.79±0.08 66.52±0.37

Scratch (Cosine LR) 73.54±0.22 71.87±0.09 70.10±0.24 65.92±0.10

L1 Li et al. (2017) (Step LR 0.001) 73.67±0.05 72.04±0.12 70.21±0.02 64.72±0.17

L1 Li et al. (2017) (Step LR 0.01) 74.01±0.18 73.01±0.22 71.49±0.14 66.05±0.04

L1 Li et al. (2017) (Cosine LR 0.001) 73.69±0.08 72.10±0.08 69.96±0.09 63.93±0.15

L1 Li et al. (2017) (Cosine LR 0.01) 74.39±0.07 73.51±0.18 71.78±0.21 65.70±0.11

GReg-1 Wang et al. (2021) (Step LR 0.01) 74.03±0.11 73.21±0.08 71.64±0.08 67.75±0.16

The results of ResNet56 (on CIFAR10) and VGG19 (on CIFAR100) are presented in Tab. 12 and
Tab. 13. The following observations are worth our attention:

(1) The advantage of initial LR 0.01 over 0.001 does not only appear with the Step LR schedule,
but also appears with the Cosine LR schedule. This implies the finetuning LR effect is generic, not
limited to one particular LR schedule, which further highlights the importance of the topic we have
been studying in the paper.

(2) Comparing the best scratch result to the best pruning result at each sparsity, there is no case that
scratch training outperforms pruning. In most cases, scratch training is not even the second best
(highlighted in blue).
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A.6 THE CONNECTION BETWEEN DYNAMICAL ISOMETRY AND GENERALIZATION

Dynamical isometry is an indicator for trainability. Rigorously, trainability only implies a easy
optimization process (namely, closely related to the optimization speed, not necessarily implying
anything about optimization quality). How is it related to generalization?

The reason that a better trainability typically implies a better generalization in practice is that the
network has multiple local minima. Converging to the good local minima takes many epochs of
training. When the number of training epochs is limited (in practice we cannot train the network for
infinite epochs), the networks with a worse trainability will “lag behind” compared to those with a
good trainability, which finally pose as a worse test accuracy when the training is finished. Note
here, by “pose”, we mean they are not necessarily worse if unlimited training epochs are given.
Just allowing that long time for the network to explore a better local minimum is not practically
meaningful. All the comparison in this work is still based on the practical application scenario, i.e.,
the network is trained for a fair number of epochs. Exploring the extreme cases (e.g., given a very
long training) is not the interest of this paper (and most past pruning papers, either).

To understand the stance of this paper, here is a quick example. Consider a network which normally
takes K epochs to convergence. Now, pruning is shown better than scratch training with K (or fairly
more epochs, e.g., 2∗K) epochs. Meanwhile, allowing the training time to be longer, such as 10∗K,
scratch training can match pruning. In this case, we still consider pruning has value because at least
it saves the total training epochs even if it does not show a final performance advantage.

A.7 LIMITATIONS AND POTENTIAL NEGATIVE SOCIETAL IMPACTS

Limitations. Essentially, this paper is an empirical work with connections to theoretical explana-
tions (such the dynamical isometry part). We draw our conclusions based on the experiments we
have. It is well-known that deep learning typically has heavy hyper-parameters. We are not 100%
sure they are set most correctly, especially in the sparse case. This uncertainty passes on to our
conclusion inevitably.

Yet, we are doing our best following the common practices in the area and repeat multiple exper-
iments to exclude the influence of irrelevant statistical variations. Based on the empirical proofs
we have, the proposed explanation is self-consistent and can translate across different networks /
datasets. This said, a more rigorous understanding (in terms of mathematical proofs) is still desired.

Potential Negative Societal Impacts. Simply put, this work proposes theories and algorithms that
can boost the efficiency of a network by network pruning, that is, make it smaller, faster, and pos-
sibly consume less energy in practical applications. We focus on the classification task, which is
generally the foundation of the many up-stream computer vision tasks like detection and segmen-
tation. Therefore, this work potentially has a broad application especially in the computer vision
areas.

The algorithm itself has few negative societal issues, but when it makes many AI-driven technologies
applicable in practice, the impact really depends on how humans put them into use in practice. This
actually falls into the general ethical discussion on whether AI is good or not. Beyond this scope,
this work does not have specific negative societal impacts brought by its potential application, to our
best knowledge.
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