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Abstract

Catheter ablation of persistent Atrial Fibrillation (AF) consists of a one-size-fits-all1

treatment with limited success. This may be due to our inability to map AF electri-2

cal dynamics on the atrial surface with the limited resolution and coverage provided3

by sequential contact mapping catheters, preventing effective patient phenotyping4

for personalised, targeted ablation. In this proof-of-concept study, we introduce5

FIBMAP, a graph recurrent neural network model that reconstructs global AF6

dynamics from sparse measurements. Trained and validated on 51 non-contact7

whole atria recordings, FIBMAP reconstructs whole atria dynamics from 10%8

surface coverage, achieving a 210% lower mean absolute error and a 300% higher9

performance in recovering phase singularities compared to baseline methods. Clin-10

ical utility of FIBMAP is demonstrated on real-world contact mapping recordings,11

achieving reconstruction fidelity comparable to non-contact mapping. Integrating12

FIBMAP into clinical practice could enable personalised AF care and improve13

outcomes.14

1 Introduction15

Atrial Fibrillation (AF) is the most common cardiac arrhythmia, affecting 37.5 million people16

worldwide with a lifetime risk of 1 in 3 [1, 2]. The arrhythmia is a major cause of stroke, heart failure17

and death, with direct costs representing 2.4% of the United Kingdom’s £182 billion healthcare18

budget [3]. Catheter ablation, which aims to restore normal rhythm through controlled destruction19

of cardiac tissue, is a common treatment approach for AF [4]. However, success rates remain low,20

particularly for persistent AF where five-year success rates are as low as 50% [5].21

The major limitation underlying these poor outcomes is our inability to map AF effectively during22

invasive electrophysiology procedures, that is, to reconstruct AF electrical dynamics across the atrial23

surface. Sequential contact mapping, the clinical standard, involves placing a multipolar electrode24

catheter in contact with the atrial surface (covering less than 10% of the surface per placement) to25

record electrical signals as a function of time and position. While effective for organised arrhythmias,26

stitching these non-continuous recordings into coherent maps fails in AF due to chaotic, beat-to-beat27

variations in wavefront propagation [6]. This limits clinical practice to a one-size-fits-all treatment28

strategy for a highly heterogeneous disorder [7].29

In this proof-of-concept study, we propose a novel solution termed imputation mapping that leverages30

graph deep learning [8, 9] to reconstruct global AF dynamics from the sparse measurements obtained31

during routine sequential contact mapping. Our solution, FIBMAP, as depicted in Figure 1, introduces32

a graph recurrent neural network (GRNN) that learns shared representations of AF dynamics across33

patients while incorporating patient-specific parameters that rapidly personalise the model within the34

timeframe of the clinical procedure. To this end, our approach aims to bridge the gap between the35

high-quality sparse measurements available clinically and the comprehensive mapping needed for36

effective treatment guidance.37
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Figure 1: Conceptual overview of FIBMAP.

2 Methods38

2.1 Problem formulation and graph representation39

We model the atrial surface of patient p as a graph with adjacency matrix A(p) ∈ RN×N , constructed40

by discretising patient-specific atrial geometry into N nodes connected through surface triangulation41

(see Figure 1), with adjacency remaining constant over time. Let xi
t ∈ R denote the scalar electrical42

signal at node i and time t, with Xt ∈ RN×1 representing the stacked signals across all N nodes43

and Xt:T indicating the sequence over time interval [t, T ]. Due to sequential contact mapping,44

observations are sparse and characterised by a binary mask, M(p)
t ∈ {0, 1}N×1, indicating valid45

measurements. The complete graph sequence is represented as G(p)
t:T = 〈X(p)

t:T ,M
(p)
t:T ,A

(p)〉, a46

formulation that enables us to leverage recent advances in spatiotemporal graph imputation methods47

for our task (see Section A for a comprehensive review of related work).48

Since clinical procedures measure only electrical signals while tissue properties influencing dynamics49

remain unmeasured, we introduce trainable embedding parameters to capture these unknown factors:50

node embeddings V(p) ∈ RN×q to learn spatially-varying tissue properties (e.g., conductivity,51

fibrosis) that influence dynamics [10], and patient embeddings g(p) ∈ Rr to capture global patient52

characteristics that affect overall AF behaviour (e.g., covariates); where q and r represent the node53

and patient embedding dimensions, respectively.54

2.2 Architecture of FIBMAP55

FIBMAP employs a bidirectional (Bi)-GRNN, that combines shared parameters, denoted by φ,56

capturing universal AF dynamics with patient-specific embeddings, V and g, for personalisation.57

The architecture operates within an encode-process-decode framework, given by58

H0
t = Encφ(Xt,Mt,V,g), (1)

Zt:T = Bi-GRNNφ(H
0
t:T ,A), (2)

Ŷt:T = Decφ(Zt:T ,Mt:T ,V,g), (3)

where the notation (p) has been relaxed. The encoder integrates observed signals, masks, and59

embeddings into unified node representations, which are then processed bi-directionally through60

the GRNN. The decoder combines these representations with patient-specific parameters to produce61

final spatiotemporal reconstructions Ŷt:T ∈ RN×Q×T . Specifically, we predict Q quantiles of the62

electrical signals to enable uncertainty quantification, and optimise the network through a quantile63

regression loss function [11]. See Sections B.1 and B.2 for more details on the architecture and loss64

function, respectively.65

2.3 Model training and deployment via fine-tuning66

The training strategy exploits the fundamental difference between model development and clinical67

deployment scenarios. During training, we assume dense/fully observed signals Xt:T and simulate68

sequential contact mapping with systematic data augmentation, varying catheter patch sizes (2.5-50%69

atrial coverage), spatial overlap between successive patches (0-80%), and dwell times (0.2-4 seconds)70

to reflect clinical variability (see Section C.2 and Figure 2A for more details). We assume a ground71

truth is available for training, and use a whole atria reconstruction loss to learn how to accurately72

map from sparse local observations to complete global dynamics. For clinical deployment where only73

partial observations are available, we fine-tune only the patient-specific embedding parameters, V74
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Figure 2: Qualitative results of FIBMAP imputation mapping. A) Phase map snapshots comparing FIBMAP and
MF reconstructions against ground truth AcQMap for two patients (rows). FIBMAP reconstructs missing signals
(grey regions) from 10% sparse observations using simulated sequential contact mapping (10% surface area,
1s dwell time, no overlap). B) Temporal signal reconstructions at individual nodes for both patients, showing
FIBMAP’s superior performance over MF in capturing complex AF dynamics.

and g, using an observed patch reconstruction loss, while keeping all other architectural parameters,75

φ, fixed (see Figure 4 for the reconstruction loss formulations and Sections C.3 and C.4 for more76

training and fine-tuning details, respectively).77

3 Results78

3.1 Dataset and experimental setup79

Our evaluation used recordings from 51 persistent AF patients captured with the AcQMap non-contact80

mapping system. Each AcQMap recording samples ∼3500 nodes across the atria at 3000 Hz for81

5-20 seconds through inverse mapping of measurements from the atrial centre to the surface using82

non-contact electrodes [12, 13]. While AcQMap is not used clinically due to high cost, procedural83

complexity, and reduced spatial resolution inherent to inverse mapping [14, 15, 16], it offers realistic84

human AF data essential for this proof-of-concept study—unlike computational simulations which85

may inadequately represent human AF [17, 18]. The cohort (mean age 64±11 years, 69% male) had86

typical co-morbidities including hypertension (39%), heart failure (33%), and diabetes (10%); see87

Section C.1 and Table 2 for complete details. Signals were preprocessed as detailed in Section C.1,88

and sequential contact mapping was simulated from these whole-atria recordings as described in89

Section C.2, with patients stratified into train/val/test sets as described in Section C.1.90

3.2 Validation of FIBMAP using AcQMap non-contact data91

FIBMAP performance on new patients was quantified using our fine-tuning procedure on the test92

set. Testing involved simulating sequential contact mapping with a catheter surface area of 10%93

of the atrium, a dwell time of 1 second, and no spatial overlap between successive patches (as94

shown in Figure 2A). FIBMAP was fine-tuned as detailed in Section C.4, with the observed patch95

reconstruction loss monitored to perform early stopping. Fine-tuning took 3 hours 40 minutes total,96

averaging 22 minutes per patient. Performance was then measured against normalised ground truth97

signals using various metrics. FIBMAP outperformed baseline models in predicting whole atrium98

signals (Table 1). Specifically, FIBMAP achieved an mean absolute error (MAE) of 0.0574± 0.0005,99

a 2.1× improvement compared to the best baseline imputation model, MF, which had an MAE100

of 0.1205 ± 0.0012. In mean squared error (MSE) and mean absolute percentage error (MAPE),101

FIBMAP scored 0.0069± 0.0001 and 16.77± 0.46, respectively, compared to MFs 0.0254± 0.0005102

and 32.56± 0.56. Baseline models and performance metrics are detailed in Sections C.6 and C.5.103
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Table 1: Reconstruction performance across transductive, inductive and patient fine-tuned (FT) models.

Model MAE ↓ MSE ↓ MRE ↓ MAPE ↓ PS F1 ↑

TRA. Mean 0.1734±0.0005 0.0507±0.0003 35.08±0.10 47.73±0.33 0.022±0.009

MF 0.1205±0.0012 0.0254±0.0005 24.37±0.24 32.56±0.56 0.103±0.043

IND.
RNN 0.1393±0.0001 0.0298±0.0000 28.17±0.02 44.06±0.21 0.064±0.022

Bi-RNN 0.1368±0.0001 0.0290±0.0001 27.66±0.03 42.86±0.19 0.113±0.045

TTS-Transformer 0.1370±0.0001 0.0290±0.0001 27.71±0.03 43.03±0.20 0.053±0.026

FT

RNN + FT 0.1389±0.0002 0.0296±0.0001 28.09±0.04 43.57±0.51 0.148±0.047

Bi-RNN + FT 0.1370±0.0000 0.0290±0.0001 27.70±0.02 42.92±0.60 0.183±0.048

TTS-Transformer + FT 0.1362±0.0001 0.0288±0.0001 27.53±0.03 41.91±0.52 0.258±0.079

FIBMAP 0.0574±0.0005 0.0069±0.0001 11.59±0.11 16.77±0.46 0.780±0.053

Figure 3: Snapshots of FibMap
reconstructions from real HD-
Grid recordings vs. AcQMap for
three patients i-iii.

The clinical significance of these improvements becomes evi-104

dent when examining the ability to predict phase singularities105

(PSs)—points where the Hilbert phase (instantaneous phase angle106

of electrical signals) is undefined—which represent the organising107

centres of spiral waves that may drive AF and constitute potential108

ablation targets [19]. FIBMAP achieved an F1 of 0.780 ± 0.053109

for PS detection, representing a 3.0× improvement over the next110

best method, the time-then-space (TTS)-Transformer + fine-tuning111

(FT) at 0.258 ± 0.079. This improvement in detecting critical AF112

features suggests that FIBMAP captures not merely signal amplitude113

but the underlying spatiotemporal dynamics essential for clinical114

interpretation. See Table 4 for F1-scores across varying tolerance115

thresholds for PS detection.116

3.3 Transferring FibMap to real-world contact mapping117

To demonstrate clinical utility, we applied FIBMAP to real-world HD118

Grid recordings from three patients who also had corresponding Ac-119

QMap data (collected non-simultaneously). Using a sliding window120

cross-correlation framework to handle temporal misalignment (Fig-121

ure 5A; methods in Section C.7), we found that correlations between122

AcQMap and FIBMAP reconstructions were consistently higher123

when comparing the same patient (intra-patient, 99th percentiles:124

0.19-0.22) than when comparing different patients (inter-patient:125

0.16-0.17) or spatiotemporally shuffled controls (≈0.02); see Figure126

5B. Bootstrap confidence intervals confirmed statistical significance127

across window durations of 0.5-4.0 seconds, demonstrating patient-128

specific pattern capture (Figure 5C). As shown in Figure 3, FIBMAP successfully reconstructed129

aspects of AF dynamics including wavefronts and rotational activity from HD Grid data covering130

<10% of the atrial surface, revealing patterns invisible in the sparse original measurements.131

4 Discussion and Conclusion132

We introduce imputation mapping as a novel approach to reconstruct global AF dynamics from sparse133

clinical measurements, with FIBMAP achieving a 2.1× improvement in reconstruction MAE and134

a 3.0× improvement in PS detection over baselines when validated on a non-contact ground truth.135

The graph-based representation of the atrial surface proves crucial in modelling spatial dependencies136

between electrical signals, while the architectural design capturing shared aspects of AF dynamics137

across patients combined with personalised embedding components and rapid fine-tuning (22 minutes138

per patient) makes it feasible to obtain high-quality reconstructions within the duration of the invasive139

clinical procedure. While early results of imputation mapping on real-world HD Grid recordings140

display promise through demonstrated patient-specific pattern capture, future work must validate141

FIBMAP at higher spatial resolutions essential for informing targeted ablation strategies and develop142

more scalable computational architectures to maintain real-time performance at these resolutions. By143

bridging the gap between sparse clinical measurements and comprehensive dynamics reconstruction144

needed for effective treatment guidance, imputation mapping could offer a pathway towards the145

personalised AF treatment.146
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A Background and related work283

Building on graph signal processing methods [20, 21], graph deep learning [9, 22] has generalised284

successful deep learning architectures, such as convolutional neural networks, to the irregular graph285

domain [23, 24]. Spatio-temporal graph neural networks (ST-GNNs) refer to the class of deep learning286

architectures designed to analyse time-varying graph signals [25, 26]. ST-GNNs can be categorised287

into time-then-space [27, 28] or time-and-space models [29, 30, 31], which denote separate or joint288

processing of the space and time dimensions, respectively. A notable example of a time-and-space289

ST-GNN is the GRNN, which replaces the fully connected layers in a recurrent neural network (RNN)290

with graph convolutions [29, 30]. ST-GNNs have achieved state-of-the-art performance in tasks such291

as forecasting [32, 33, 34] and missing data imputation [31, 35].292

ST-GNNs are inherently global models, sharing parameters across space and time. Global ST-GNNs293

can be used for zero-shot transfer and inductive learning on unseen graphs, however, they might fail294

to account for spatial variations in dynamics. Node embeddings have been recently introduced to295

learn these local effects in ST-GNNs [10]. Whilst hybrid global-local models often outperform global296

architectures, recent research has focussed on improving their performance in an inductive setting297

using transfer learning [10, 36].298

Other imputation methods have been applied to time series, ranging from MF methods [37, 38]299

and their counterparts with graph and temporal regularisation [39, 40], to deep learning techniques300

employing RNNs [41], generative adversarial networks [42, 43], transformers [44], or most recently301

denoising diffusion probabilistic models [45, 46, 47].302

B FIBMAP303

B.1 Architecture304

FIBMAP is instantiated as a Bi-GRNN, a non-linear state-space model designed to propagate informa-305

tion from valid observations across space and time. Our solution is composed of two spatiotemporal306

encoder blocks and a decoder. The spatiotemporal encoders operate in two different directions, pro-307

cessing the sequence in both a forward (fwd) and backward (bwd) direction, respectively. FIBMAP’s308

architecture extends the framework proposed in [35] by introducing local (node) and global (pa-309

tient) embedding parameters to address the AF mapping problem. These modifications enable310

generalisation across patients and efficient transfer to new patients via fine-tuning.311

To balance the trade-off between personalised reconstruction and generalisation across a spectrum of312

AF dynamics with a single model, FIBMAP is designed to perform personalised reconstruction by313

providing patient-specific parameters, V(p) and g(p), as additional input to the encoder and decoder314

components of the architecture. All other model parameters are shared across patients to learn the315

common aspects of the dynamics (such as the physics of the problem). We begin by defining the316

spatiotemporal encoder block of the architecture, before explaining the decoder.317
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B.1.1 The spatiotemporal encoder318

First, the observed data at time t is encoded as319

H0
t = MLPenc([X

(p)
t �M

(p)
t ‖M(p)

t ‖G(p)‖V(p)]), (4)

where the symbols � and ‖ denote the Hadamard product and concatenation operator, respectively,320

and G(p) ∈ RN×r is a matrix where copies of g(p) are stacked across nodes. The encoding321

step constructs a representation of the observed and missing values alongside the patient-specific322

parameters in a common embedding space, H0
t ∈ RN×d. Next, the embedded data is processed323

sequentially using a gated-GRNN, where the k-th layer is given by324

Zk
t = Hk

t−1, (5a)

Rk
t = σ(MPk

r ([Z
k
t ‖Hk

t−1], E)), (5b)

Uk
t = σ(MPk

u([Z
k
t ‖Hk

t−1], E)), (5c)

Ck
t = tanh(MPk

c ([Z
k
t ‖Rk

t �Hk
t−1], E)), (5d)

Hk
t = Uk

t �Hk
t−1 + (1−Uk

t )�Ck
t . (5e)

MPk
r (·), MPk

u(·) and MPk
c (·) denote the message passing neural network (MPNN) layers for the reset,325

update, and candidate gates, respectively, and the activation functions σ(·) and tanh(·) denote the326

sigmoid and hyperbolic tangents. The hidden state of the gated-GRNN at each layer k is initialised as327

a linear function of the node embeddings328

Hk
t=0 = V(p)Wk

init + bk
init, (6)

where Wk
init ∈ Rq×d and bk

init ∈ Rd, which takes the different characteristics of each time series into329

account when initialising the state, thus reducing the need to rely on a long observation history [48].330

Message passing layers The MPNN layers for each gate in the GRNN, denoted as MP, compute331

the hidden state of the i-th node as332

hk+1
t,i = γk

hk
t,i,

∑
j∈N (i)

ρk(ok
i ,o

k
j , eij)

 , (7)

where ok
i ∈ R2d represents the input of the gate at layer k, N (i) denotes the set of nodes connected333

to i, ρk(·) is a message function, γk(·) is an update function, and the summation serves as a334

permutation invariant aggregation over neighbouring nodes. Specifically, the message function ρk(·)335

is implemented as336

mk
ij = MLPk

msg([o
k
i ‖ok

j ]), (8a)

αk
ij = σ(Wk

msg−αm
k
ij), (8b)

mk
ij = αk

ijm
k
ij , (8c)

where the messages along non-zero edges eij are weighted according to an inferred scalar value αk
ij ,337

which resides on the interval [0, 1]. The scalar value αk
ij allows for anisotropic message passing,338

which assists in learning latent edge attributes such as the coupling strength between nodes. Messages339

are then aggregated at node i using the summation, mk
i =

∑
j∈N (i) m

k
ij . Finally, the update function340

γk(·) is implemented with a residual skip connection as341

uk
i = MLPk

update([h
k
i ‖mk

i ]), (9a)

hk+1
t,i = uk

i +Wk
skipo

k
i , (9b)

where Wskip ∈ Rd×2d and hk+1
i ∈ Rd. Note that the parameters of the MPNN layers, MP, are342

defined separately for each gate and layer. This message-passing mechanism loosely resembles the343

gated graph convolution introduced in [49].344
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Iterative imputations To learn effective state space representations while processing the data345

sequentially, missing values must be accounted for. To do this, first and second-stage imputations as346

in [35] are performed iteratively within the spatiotemporal encoder block. The first stage imputation347

performs one-step-ahead prediction via a linear readout as348

X̂
(1)
t+1 = HK

t Wstage-1 + bstage-1, (10)

which is used in place for the missing values. The second stage imputation acts as a type of349

regularisation, estimating the value at node i using the previous hidden states, as well as the masks350

and first-stage imputations at the neighbouring nodes. The second stage imputation involves first351

computing an intermediate representation of each node, given by352

st+1,i = γstage-2

hK
t,i,

∑
j∈N (i)

ρstage-2([x̂
(1)
t+1,j‖h

K
t,j‖mt+1,j ], eij)

 , (11)

where st+1,i ∈ Rd and the message passing is implemented using a diffusion graph convolution [50].353

Next, a linear readout layer performs the second stage imputation as354

X̂
(2)
t+1 = [St+1‖HK

t ]Wstage-2 + bstage-2, (12)

which is used again in place of the missing values in Xt+1.355

The process detailed so far in the spatiotemporal encoding block is repeated for Xt+1, to learn356

representations St+2 and HK
t+1, and so forth, until a set of representations St:t+W and HK

t:t+W , and357

imputations X̂(1)
t:t+W and X̂

(2)
t:t+W are calculated for the whole window length W . To summarise the358

spatiotemporal encoding block detailed in this section, we use the following shorthand notation359

〈St:t+W ,HK
t:t+W , X̂

(1)
t:t+W , X̂

(2)
t:t+W 〉 = ST-Encoder(X(p)

t:t+W ,M
(p)
t:t+W ,g(p),V(p)). (13)

B.1.2 The decoder360

The sequences are encoded in both the forward and backward directions, to form361

〈Sfwd,H
K
fwd, X̂

(1)
fwd, X̂

(2)
fwd〉 = ST-Encoder(X(p)

t:t+W ,M
(p)
t:t+W ,g(p),V(p)), (14)

and362

〈Sbwd,H
K
bwd, X̂

(1)
bwd, X̂

(2)
bwd〉 = ST-Encoder(X(p)

t+W :t,M
(p)
t+W :t,g

(p),V(p)), (15)
respectively, where t +W : t denotes the time reversed/backward sequence. The next stage is to363

decode the hidden state representations from the encodings in both directions, to perform a final364

imputation at time t′. This is done with the following function365

Ŷt′ = MLPdec([Sfwd≤t′‖HK
fwd≤t′‖Sbwd≥t′‖HK

bwd≥t′‖M
p
t′‖V

(p)‖g(p)]), (16)

where the notation fwd ≤ t′ refers to an index of the hidden states at time t′ (which includes366

information from times ≤ t′) and similarly, bwd ≥ t′ refers to index at time t′ (which includes367

information from times ≥ t′). The decoder takes a form similar to that in [35] except patient-specific368

parameters are also provided to facilitate personalisation. We denote the final imputed values for the369

entire window length as Ŷt:t+W .370

B.2 Optimisation371

To quantify the uncertainty of the reconstructed dynamics, FIBMAP is formulated as a quantile372

regression [11]. In general, a quantile regression aims to estimate the conditional quantile function,373

QY (τ |B), which represents the τ -th quantile of the response variable, Y , given the predictor variables,374

B. This is given by QY (τ |B) = inf{y ∈ R|P (Y ≤ y|B) ≥ τ}, where P (Y ≤ y|B) is the375

conditional cumulative distribution function of the response variable, Y , given the predictors B, and376

inf represents the infimum of the set.377

In this work, conditional quantile functions for τ ∈ C, where C = {τ1, τ2, . . . , τ|C|}, are predicted for378

each of the imputed values. This is done by computing the following masked quantile/pinball loss379

function380

L(Ŷt:t+T , Ỹt:t+T , M̄t:t+T ) =

∑t+T
h=t

∑N
i=1 m̄t,iLt,i(ŷt,i, yt,i)∑t+T
h=t

∑N
i=1 m̄t,i

, (17)
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Table 2: Patient demographics and clinical characteristics. Values are mean ± SD or n (%). The asterisk
denotes the presence of missing values; the number missing is shown as n∗.

Total (N = 51)

Demographics

Mean age (years) 64 ± 11
Male sex 35 (69%)
Mean BMI 29 ± 5

Comorbidities

Hypertension 20 (39%)
Diabetes mellitus 5 (10%)
Heart failure 17 (33%)
CHA2DS2-VASc score >2 14 (27%)

Medications

Beta-blockers 33∗ (87%, n∗ = 13)
Amiodarone 11∗ (29%, n∗ = 13)
Anticoagulants 38∗ (100%, n∗ = 13)
Statins 16∗ (42%, n∗ = 13)

where Ŷt:t+T ∈ RN×|C|, Yt ∈ RN×1, and M̄t ∈ {0, 1}N×1, represent the predicted values, target381

values, and the evaluation mask, respectively, at time t. The function Lt,i computes the average382

pinball loss computed at time t and node i, which is given by383

Lt,i(ŷt,i, yt,i) =
1

|C|

|C|∑
c=1

(yt,i − ŷt,i[c])(τc − 1{yt,i − ŷt,i[c] < 0}), (18)

where c refers to the channel of ŷt,i (prediction vector at time t and node i) which contains the384

prediction of the c-th conditional quantile, Qy(τc| . . .) at time t and node i, and 1{yt,i − ŷt,i[c] < 0}385

represents the indicator function, which is equal to 1 if yt,i − ŷt,i[c] < 0, else it is equal to 0. In386

practice, we modify the decoder to predict a value for each quantile (rather than a single value) and387

compute the average pinball loss from each predicted quantile value as in (18).388

For FIBMAP, the following loss function is minimised389

Lloss = L(Ŷt:t+T ,Xt:t+T , M̄t:t+T ) (19)

+ L(X̂(1),fwd
t:t+T ,Xt:t+T , M̄t:t+T ) + L(X̂(2),fwd

t:t+T ,Xt:t+T , M̄t:t+T ) (20)

+ L(X̂(1),bwd
t:t+T ,Xt:t+T , M̄t:t+T ) + L(X̂(1),bwd

t:t+T ,Xt:t+T , M̄t:t+T ), (21)
where L is given in (17) and each component of the loss is specific to a different imputation stage390

and processing direction. The specification of the evaluation mask, M̄, differs depending on training391

and fine-tuning as detailed in the next sections.392

C Data and implementation details393

C.1 Dataset394

Our dataset comprises recordings from 51 patients with persistent AF, obtained using the AcQMap395

system. The system uses non-contact electrodes to sense intra-cavitary electrograms, from which396

dipole density measurements (charge density in Coulombs/cm) are inversely derived across the entire397

atria [12, 13]. Each recording samples approximately 3500 nodes at 3000 Hz for 5-20 seconds. All398

recordings were obtained prior to ablation at two United Kingdom centres between 2016 and 2023.399

The patient cohort (mean age 64 ± 11 years, 69% male) had standard cardiovascular risk factors and400

were on guideline-directed medical therapy (see Table 2 for more details).401

For pre-processing, these signals are first resampled spatially to a resolution consisting of 500 nodes.402

This is done by k-means clustering of the 3D node coordinates into k = 500 non-overlapping clusters,403
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where signals are resampled using the mean average signal within each cluster for each time point.404

Temporal resampling to 70 Hz is conducted through a combination of low pass filtering and down405

sampling. Low-pass filtering is applied to each time series at 70 Hz to prevent aliasing, and then406

the filtered signal is downsampled by reducing the sampling rate proportionally. Finally, the time407

series are normalised across space and time by applying min-max normalisation, where the minimum408

and maximum values are determined across all nodes and times, ensuring that the amplitude of the409

resampled signals is scaled consistently between 0 and 1.410

The dataset was stratified to ensure a spectrum of AF dynamics within training (70%), validation411

(10%), and test (20%) sets. The Shannon entropy was first computed for the resampled time series412

at each node to do this. The cumulative distribution function (CDF) of Shannon entropy across413

the atrium was then created for each patient, serving as a measure to compare the similarity of414

the spatiotemporal dynamics between patients. The similarity between patients was assessed by415

computing KolmogorovSmirnov (KS) distance between CDFs for each pair of patients, where a416

smaller KS distance represents more similar entropy distributions/spatiotemporal dynamics. From417

this, groups of similar patients were identified by clustering a Laplacian eigenmap [51] using k-means,418

where the number of clusters was determined using the elbow method. This involved forming a419

weighted adjacency matrix by applying a radial basis function kernel to the reciprocal of the KS420

distances and thresholding. Finally, the training, validation, and test sets were formed by performing421

stratified sampling across these clusters, maintaining a consistent spectrum of AF dynamics within422

each set.423

C.2 Simulating sequential contact mapping424

A sequential contact mapping strategy is simulated from the non-contact recordings as a self-avoiding425

walk of the multipolar catheter (represented as a patch of observations) on the atrial surface; whereby426

the catheter surface area, dwell time, and spatial overlap, could be controlled. The self-avoiding427

walk is defined by first providing the catheter surface area as a fraction of the total area, where its428

reciprocal (1/area) is rounded up to the nearest integer to give the number of patches required to429

sample the whole atrium. Then, the atrium is split into disjoint patches by k-means clustering the430

3D node coordinates, with k equal to the number of patches. Spatial overlap between patches is431

simulated by adding additional clusters between adjacent patches and sharing node sets in proportion432

to the overlap required. A self-avoiding random walk ensures the path does not revisit the same433

region twice. This is simulated by sampling a patch randomly, then sampling the remaining patches434

without replacement with a probability proportional to the distance between the current and remaining435

patches. The resulting sequence of patches is converted to an observation mask, M, by assigning436

a unity value if nodes are within the observed patch, zero otherwise, and repeating these values437

such that each patch is observed for a duration equal to the specified dwell time. Except during the438

sensitivity analysis, the sequence of patches is repeated until the length of the available recording is439

met.440

C.3 Training FIBMAP441

The training procedure of FIBMAP leverages the whole atria ground truth signals of each patient to442

learn a robust function for reconstructing whole atrium dynamics from data collected in a sequential443

contact mapping fashion. To do this, a self-supervised approach is employed, wherein self-avoiding444

walks of the multipolar catheter are sampled at random to form the observation mask, M, and445

observed input data, X, of each training sample, alongside a range of catheter surface areas (2.5 50%446

of the atrium), dwell times (0.2 - 4 seconds) and spatial overlaps (0 3 additional clusters between447

adjacent patches). At each training iteration, batches of size B are formed by collating samples from448

different patients, whereby B inputs X(p)
t:t+W ,M

(p)
t:t+W ,A(p),V(p),g(p) are collated for a temporal449

input window size, W , sampled from the original time series following a sliding window approach450

with unit stride.451

Imputation is performed within the temporal window and a whole atria reconstruction loss is used to452

optimise FIBMAP during training, whereby (21) is optimised using an evaluation mask, M̄t:t+W ,453

with all nodes and times in the input window equal to unity (see Figure 4). This approach ensures a454

robust function for reconstructing whole atria maps that generalise across the distribution of multipolar455

catheter paths and parameters of sequential contact mapping such as dwell time.456
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Figure 4: Definition of the observation and evaluation masks in FIBMAP training and fine-tuning. During
training, FIBMAP is optimised to perform whole atria mapping using a whole atria evaluation mask to compute
the loss function. During fine-tuning, only the patient-specific parameters of FIBMAP are optimised using an
observed patch reconstruction loss.

A hyperparameter search is conducted for the parameters shown in Table 3, by first splitting the457

time series of each patient sequentially, with the first 85% of time steps being used for training, the458

second 5% for validation, and the final 10% for testing. For the validation and test sequences, a fixed459

self-avoiding walk of the multipolar catheter is used with a surface area of 10%, a dwell time of 1460

second, and no spatial overlap. Each configuration in the hyperparameter search is conducted for461

100 epochs, whereby the MAE across the remaining atria for the validation sequence is monitored462

with early stopping. All experiments were performed on a NVIDIA RTX A5000 graphics processing463

unit. The best-performing set of hyperparameters are chosen by computing the MAE loss across464

the remaining atria for the test sequence and selecting the minimum loss. The best-performing465

configuration for training FIBMAP was found to be B = 16, W = 40, d = 64, q = 64, r = 16,466

K = 1, and 1024 hidden layer neurons. This configuration was retrained for 500 epochs, where a467

learning rate of 0.0009 and a cosine scheduler were used. Training took a total of 31 hours. The result468

is a pre-trained FibMap model, which performs accurate and robust whole atria reconstruction from469

partial observations across a spectrum of dynamics found in patients and variations in multipolar470

mapping.471

C.4 Fine-tuning FIBMAP472

In clinical practice, only the patches of multipolar catheter measurements are available from sequential473

contact mapping. The rest of the atrium remains unobserved. To make FIBMAP a feasible clinical474

solution for imputation mapping, a fine-tuning procedure is introduced to enable accurate whole475

atria reconstruction on new and unseen patients when only partial observations of the dynamics are476

available.477

Our fine-tuning procedure preserves essential knowledge for whole atria reconstruction acquired478

during training by fixing the parameters of the pre-trained FIBMAP model, while quickly personalising479

the model to new patients by optimising only the node and patient embedding parameters using an480

observed patch reconstruction loss (see Figure 4 for an illustration of the observation and evaluation481

masks used during fine-tuning, which are defined to be equal). The observed patch reconstruction482

loss is defined using this evaluation mask in (21). This restricts the optimisation during fine-tuning to483

only the patches of multipolar catheter measurements.484

Our fine-tuning procedure was configured on the validation set, which also has ground truth whole485

atria signals available for patients. Validation of the fine-tuning procedures aims to evaluate the486

relationship between the observed patch and whole atria reconstruction losses. Again, the time series487

of each patient was split sequentially, with the first 85% of time steps being used for training, the488

second 5% for validation, and the final 10% for testing.489

A random hyperparameter search was conducted across learning rates [0.0005, 0.005] and batch490

sizes [16, 32, 64, 128]. Each learning rate in the hyperparameter search was conducted for 100491

epochs, whereby the MAE across the remaining atria for the validation sequence was monitored with492

early stopping. For the validation and test sequences, a fixed self-avoiding walk of the multipolar493

catheter was used with a surface area of 10%, a dwell time of 1 second, and no spatial overlap. The494

best-performing set of hyperparameters was chosen by computing the MAE across the remaining495

atria for the test sequence and selecting the minimum loss. The best-performing configuration for496

fine-tuning FIBMAP was found to have a learning rate of 0.005 and a batch size of 16.497
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Table 3: Hyperparameter values tested during FIBMAP training.

Hyperparameter Range tested

Batch size, B [16, 32, 64]

Input window length, W [20, 30, 40, 50]

Hidden size, d [64, 128, 256]

Node embedding size, q [16, 32, 64]

Patient embedding size, r [16, 32, 64]

Layers, K [1, 2, 3]

Hidden layer neurons in MLPenc, MLPdec [128, 256, 512, 1024]

Finally, the performance of FIBMAP imputation mapping on new and unseen patients, through our498

fine-tuning setup, was quantified on the test set patients. A sequential time series split was not used499

during testing, instead, all observed measurements were used. FIBMAP was fine-tuned for 100500

epochs using the configuration found in validation, and the observed patch reconstruction loss was501

monitored to perform early stopping. The performance metrics, detailed next, were computed across502

the remaining atria to assess test set performance.503

C.5 Performance metrics504

Quantitative assessment of the reconstructed imputation maps was performed using several metrics:505

MAE, mean relative error (MRE) and MAPE. These metrics evaluate the fidelity of the reconstructed506

whole atria maps, Ŷ, against the ground truth, X, for the mask, M̄, which represents the logical507

binary complement of the observation mask, M. The averaged performance metrics were computed508

via (17), where Lt,i was computed using each of our evaluation metrics. Metrics were computed509

for each model trained or fine-tuned across 5 different seeds (changing both the self-avoiding walk510

and model parameter initialisations). The average and standard deviation across these seeds were511

reported for each metric.512

Additionally, the PS F1-score was used to evaluate the accuracy of tracking PSs in the reconstructed513

phase maps compared to the ground truth. PSs represent points where the Hilbert phase is undefined514

and mark the organising centres of spiral waves that may drive AF, making their accurate detection515

clinically relevant for ablation guidance.516

Manual annotation For each patient in the test set and each imputation model, PSs were manually517

labelled by two independent trained observers using a custom graphical user interface. Manual518

annotation was chosen over automated detection methods due to the poor performance of existing519

automated algorithms [52] at the reduced spatial and temporal resolutions used in this proof-of-520

concept study (500 nodes, 70 Hz). Automated methods typically require higher resolution data to521

reliably identify PS locations, making manual expert annotation the gold standard for evaluation at522

these scales.523

Given the labour-intensive nature of manual annotation, only the central 70 frames (1 second) of each524

reconstructed phase map were annotated for each patient and model combination. Since annotating525

PSs for each model seed across multiple random initializations was computationally infeasible, the526

mean and standard deviation of F1-scores were computed from 1000 bootstrap samples.527

Detection thresholds PS detection was evaluated at four clinically relevant precision levels with528

varying spatial and temporal tolerances: High Precision (≈0.5cm, 0.1s), Moderate Precision (≈1.0cm,529

0.2s), Standard Precision (≈1.5cm, 0.3s), and Lenient Precision (≈2.0cm, 0.4s). A PS was considered530

correctly detected if its location in the reconstructed map fell within the specified spatial tolerance531

(measured in graph hops) and temporal tolerance compared to its location in the ground truth map.532

Results across all thresholds are shown in Table 4, with FIBMAP achieving superior performance at533

all precision levels.534

Inter-observer agreement and validation Inter-observer agreement was quantified to validate535

the reliability of manual annotations, achieving an F1-score of 0.827 ± 0.243 and Cohen’s κ of536
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Table 4: PS detection F1-scores at clinically relevant thresholds.

Method High Precision
(≈0.5cm, 0.1s)

Moderate Precision
(≈1.0cm, 0.2s)

Standard Precision
(≈1.5cm, 0.3s)

Lenient Precision
(≈2.0cm, 0.4s)

Transductive
Mean 0.009±0.006 0.022±0.009 0.038±0.010 0.047±0.010
MF 0.049±0.025 0.103±0.043 0.149±0.060 0.206±0.099

Inductive
RNN 0.053±0.022 0.064±0.022 0.070±0.025 0.080±0.027
Bi-RNN 0.082±0.032 0.113±0.045 0.132±0.047 0.150±0.047
TTS-Transformer 0.044±0.022 0.053±0.026 0.060±0.025 0.075±0.024

Fine-tuned
RNN + FT 0.108±0.040 0.148±0.047 0.182±0.055 0.205±0.061
Bi-RNN + FT 0.133±0.044 0.183±0.048 0.229±0.054 0.263±0.065
TTS-Transformer + FT 0.193±0.074 0.258±0.079 0.310±0.098 0.348±0.105
FIBMAP 0.555±0.066 0.780±0.053 0.903±0.036 0.964±0.021

Table 5: Inter-observer agreement and comparison with automated detection for PS detection.

Validation Metric F1-Score Cohen’s κ

Inter-Observer Agreement 0.827±0.243 0.885±0.187

Automated vs Observer 1 0.238±0.130 0.352±0.148

Automated vs Observer 2 0.292±0.151 0.392±0.132

Values represent mean ± standard deviation across patients.

0.885± 0.187 across patients (Table 5), indicating excellent agreement beyond chance at the High537

Precision tolerance level (≈0.5cm, 0.1s). To further validate the superiority of manual annotation, we538

compared automated detection performance using the 3D topological charge algorithm [52] against539

both observers, finding substantially lower agreement (F1-scores of 0.238 and 0.292 respectively),540

confirming that manual expert annotation provides more reliable ground truth labels for PS detection541

evaluation at these resolutions.542

C.6 Baseline models543

We introduce additional baseline models for the imputation mapping task:544

1. Mean, which performs imputation using the node-level average;545

2. MF with rank = 10;546

3. Univariate RNN, which performs imputation based solely on the node-level signals;547

4. Univariate Bi-RNN.548

5. TTS-Transformer, which applies temporal self-attention followed by spatial self-attention549

using 8-head multi-head attention mechanisms [53].550

Mean and MF baseline models are employed solely on the test set due to their transductive nature.551

The RNN, Bi-RNN, and TTS-Transformer models were initially trained using MAE loss function552

and followed identical hyperparameter settings and training-test protocols as FIBMAP.553

To evaluate patient-specific adaptation, we implemented fine-tuned (FT) variants (RNN + FT, Bi-554

RNN + FT, TTS-Transformer + FT) where pre-trained models are fine-tuned for 50 epochs on555

each patient using a learning rate of 0.001. We employed the same observed patch reconstruction556

loss for fine-tuning as used in FIBMAP. Selected layers were fine-tuned: only input-to-hidden557

weights/biases and readout layers for RNN models; and input encoder, readout, and normalisation558

layers for TTS-Transformer. This preserves learned representations while enabling patient-specific559

adaptation.560
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C.7 Imputation mapping from EnSite Precision HD Grid recordings561

From our test cohort, three AF patients had both EnSite Precision HD Grid and AcQMap recordings562

collected non-contemporaneously before ablation. For these patients, AcQMap recordings were 20563

seconds in duration, while EnSite Precision HD Grid recordings were significantly longer (14, 19,564

and 20 minutes). EnSite Precision HD Grid data consists of sequential contact mapping recordings565

from 16 electrodes arranged in a grid array, along with the roving 3D coordinates of each electrode566

within the atrium.567

To ensure compatibility with FIBMAP, the EnSite Precision HD Grid recordings were pre-processed.568

Sparse electrogram recordings were first mapped to a uniform discretisation of the atrial surface using569

a nearest-neighbour approach with a 3 mm radius to interpolate the signals between electrodes. An570

observation mask identified active recording periods, after which signals were normalised using the571

maximum peak-to-peak voltage. The data was then resampled spatially to a resolution of 500 nodes572

using k-means clustering and resampled temporally to 70 Hz using a combination of low-pass filtering573

and downsampling. A final min-max normalisation ensured all signals fell within 0 and 1. From574

these processed measurements, imputation maps were generated using our fine-tuning procedure,575

whereby the observed patch reconstruction loss was monitored to perform early stopping.576

We developed a sliding window cross-correlation framework to compare FIBMAP reconstructions577

against AcQMap ‘ground truth’ recordings. While temporal alignment was not possible between the578

non-contemporaneous recordings, spatial alignment was achieved between AcQMap and imputation579

map by centring the vertices of the geometries around the origin, applying rigid registration using580

the iterative closest point algorithm [54], and projecting data between geometries using a k = 5581

nearest-neighbours regression. Using sliding window lengths from 0.5 to 4.0 seconds and a constant582

stride of 0.1 seconds, we computed the Pearson correlations between Hilbert phases of processed583

signals across all nodes and times within window pairs. This generated a cross-correlation matrix584

characterising the spatiotemporal similarity between recordings, which were flattened and plotted as585

distributions for analysis.586

To validate that FIBMAP captured patient-specific dynamics, we performed three types of correlations:587

intra-patient comparisons between AcQMap and FIBMAP from the same patient; inter-patient588

comparisons between AcQMap and FIBMAP from different patients; and random baseline intra-589

patient comparisons between AcQMap and a spatiotemporally shuffled imputation map. For each590

patient, the 99th percentile of the intra, inter and shuffled distributions were plotted and statistical591

significance was assessed by computing the confidence intervals via bootstrapping (n = 1000 rounds592

of 10000 resamples).593
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Figure 5: Validation of FIBMAP imputation maps from EnSite Precision HD Grid Mapping against non-
simultaneous ground truth AcQMap recordings. A) Sliding window cross-correlation analysis between AcQMap
and FIBMAP phase signals, enabling comparison between non-simultaneous recordings by measuring the
similarity between AF patterns across different time windows. The correlation matrix below shows pairwise
comparisons between all possible window combinations. For three patients (indexed i-iii), B) shows the kernel
density estimates of pairwise cross-correlations computed between AcQMap and FIBMAP maps from the
same patient (intra), different patients (inter), and spatiotemporally shuffled maps (random baseline), using
0.5-second sliding windows. Vertical dashed lines indicate the 99th percentile, with consistently higher values for
intra-patient (0.19-0.22) versus inter-patient (0.16-0.17) correlations and shuffled baseline (0.02), demonstrating
patient-specific pattern capture. C) Temporal robustness analysis showing the 99th percentile of cross-correlations
against sliding window duration. Non-overlapping confidence intervals (computed via bootstrap sampling)
between intra-patient and other distributions confirm that FIBMAP can capture patient-specific dynamics across
different temporal scales.
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