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Abstract

Catheter ablation of persistent Atrial Fibrillation (AF) consists of a one-size-fits-all
treatment with limited success. This may be due to our inability to map AF electri-
cal dynamics on the atrial surface with the limited resolution and coverage provided
by sequential contact mapping catheters, preventing effective patient phenotyping
for personalised, targeted ablation. In this proof-of-concept study, we introduce
FIBMAP, a graph recurrent neural network model that reconstructs global AF
dynamics from sparse measurements. Trained and validated on 51 non-contact
whole atria recordings, FIBMAP reconstructs whole atria dynamics from 10%
surface coverage, achieving a 210% lower mean absolute error and a 300% higher
performance in recovering phase singularities compared to baseline methods. Clin-
ical utility of FIBMAP is demonstrated on real-world contact mapping recordings,
achieving reconstruction fidelity comparable to non-contact mapping. Integrating
FIBMAP into clinical practice could enable personalised AF care and improve
outcomes.

1 Introduction

Atrial Fibrillation (AF) is the most common cardiac arrhythmia, affecting 37.5 million people
worldwide with a lifetime risk of 1 in 3 [1,[2]. The arrhythmia is a major cause of stroke, heart failure
and death, with direct costs representing 2.4% of the United Kingdom’s £182 billion healthcare
budget [3]. Catheter ablation, which aims to restore normal rhythm through controlled destruction
of cardiac tissue, is a common treatment approach for AF [4]. However, success rates remain low,
particularly for persistent AF where five-year success rates are as low as 50% [3].

The major limitation underlying these poor outcomes is our inability to map AF effectively during
invasive electrophysiology procedures, that is, to reconstruct AF electrical dynamics across the atrial
surface. Sequential contact mapping, the clinical standard, involves placing a multipolar electrode
catheter in contact with the atrial surface (covering less than 10% of the surface per placement) to
record electrical signals as a function of time and position. While effective for organised arrhythmias,
stitching these non-continuous recordings into coherent maps fails in AF due to chaotic, beat-to-beat
variations in wavefront propagation [[6]. This limits clinical practice to a one-size-fits-all treatment
strategy for a highly heterogeneous disorder [7].

In this proof-of-concept study, we propose a novel solution termed imputation mapping that leverages
graph deep learning [8| [9] to reconstruct global AF dynamics from the sparse measurements obtained
during routine sequential contact mapping. Our solution, FIBMAP, as depicted in Figure[T] introduces
a graph recurrent neural network (GRNN) that learns shared representations of AF dynamics across
patients while incorporating patient-specific parameters that rapidly personalise the model within the
timeframe of the clinical procedure. To this end, our approach aims to bridge the gap between the
high-quality sparse measurements available clinically and the comprehensive mapping needed for
effective treatment guidance.
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Figure 1: Conceptual overview of FIBMAP.
2 Methods

2.1 Problem formulation and graph representation

We model the atrial surface of patient p as a graph with adjacency matrix A(®) € RVN*N _constructed
by discretising patient-specific atrial geometry into N nodes connected through surface triangulation
(see Figure , with adjacency remaining constant over time. Let zi € R denote the scalar electrical
signal at node i and time ¢, with X; € RY*! representing the stacked signals across all N nodes
and X;.r indicating the sequence over time interval [t,T]. Due to sequential contact mapping,

observations are sparse and characterised by a binary mask, Mﬁ” ) € {0,1}V>1 indicating valid

measurements. The complete graph sequence is represented as Qt(:pT) = <XEPT), MEZPT)7A(p)), a
formulation that enables us to leverage recent advances in spatiotemporal graph imputation methods

for our task (see Section [A]for a comprehensive review of related work).

Since clinical procedures measure only electrical signals while tissue properties influencing dynamics
remain unmeasured, we introduce trainable embedding parameters to capture these unknown factors:
node embeddings V(») € RN*4 to learn spatially-varying tissue properties (e.g., conductivity,
fibrosis) that influence dynamics [10], and patient embeddings g(”) € R" to capture global patient
characteristics that affect overall AF behaviour (e.g., covariates); where ¢ and r represent the node
and patient embedding dimensions, respectively.

2.2 Architecture of FIBMAP

FIBMAP employs a bidirectional (Bi)-GRNN, that combines shared parameters, denoted by ¢,
capturing universal AF dynamics with patient-specific embeddings, V and g, for personalisation.
The architecture operates within an encode-process-decode framework, given by

H? :EHC¢(Xt,Mt,V,g), (1)
Z;.7 = Bi-GRNN, (H) 1., A), 2
?t:T = Dec¢<zt:TaMt:TaV7g)7 (3)

where the notation (?) has been relaxed. The encoder integrates observed signals, masks, and
embeddings into unified node representations, which are then processed bi-directionally through
the GRNN. The decoder combines these representations with patient-specific parameters to produce

final spatiotemporal reconstructions ?t;T € RNX@*T Specifically, we predict Q quantiles of the
electrical signals to enable uncertainty quantification, and optimise the network through a quantile
regression loss function [11]. See Sections E] and @]for more details on the architecture and loss
function, respectively.

2.3 Model training and deployment via fine-tuning

The training strategy exploits the fundamental difference between model development and clinical
deployment scenarios. During training, we assume dense/fully observed signals X;.7 and simulate
sequential contact mapping with systematic data augmentation, varying catheter patch sizes (2.5-50%
atrial coverage), spatial overlap between successive patches (0-80%), and dwell times (0.2-4 seconds)
to reflect clinical variability (see Section[C.2]and Figure[2JA for more details). We assume a ground
truth is available for training, and use a whole atria reconstruction loss to learn how to accurately
map from sparse local observations to complete global dynamics. For clinical deployment where only
partial observations are available, we fine-tune only the patient-specific embedding parameters, V
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Figure 2: Qualitative results of FIBMAP imputation mapping. A) Phase map snapshots comparing FIBMAP and
MF reconstructions against ground truth AcQMap for two patients (rows). FIBMAP reconstructs missing signals
(grey regions) from 10% sparse observations using simulated sequential contact mapping (10% surface area,
1s dwell time, no overlap). B) Temporal signal reconstructions at individual nodes for both patients, showing
FIBMAP’s superior performance over MF in capturing complex AF dynamics.

and g, using an observed patch reconstruction loss, while keeping all other architectural parameters,
¢, fixed (see Figure [] for the reconstruction loss formulations and Sections [C.3| and [C.4] for more
training and fine-tuning details, respectively).

3 Results

3.1 Dataset and experimental setup

Our evaluation used recordings from 51 persistent AF patients captured with the AcQMap non-contact
mapping system. Each AcQMap recording samples ~3500 nodes across the atria at 3000 Hz for
5-20 seconds through inverse mapping of measurements from the atrial centre to the surface using
non-contact electrodes [[12,|13]]. While AcQMap is not used clinically due to high cost, procedural
complexity, and reduced spatial resolution inherent to inverse mapping [14} |15} 16], it offers realistic
human AF data essential for this proof-of-concept study—unlike computational simulations which
may inadequately represent human AF [[17,|18]]. The cohort (mean age 64411 years, 69% male) had
typical co-morbidities including hypertension (39%), heart failure (33%), and diabetes (10%); see
Section[C.I]and Table 2] for complete details. Signals were preprocessed as detailed in Section[C-1]
and sequential contact mapping was simulated from these whole-atria recordings as described in
Section[C.2] with patients stratified into train/val/test sets as described in Section[C.1]

3.2 Validation of FIBMAP using AcQMap non-contact data

FIBMAP performance on new patients was quantified using our fine-tuning procedure on the test
set. Testing involved simulating sequential contact mapping with a catheter surface area of 10%
of the atrium, a dwell time of 1 second, and no spatial overlap between successive patches (as
shown in Figure[ZJA). FIBMAP was fine-tuned as detailed in Section [C.4] with the observed patch
reconstruction loss monitored to perform early stopping. Fine-tuning took 3 hours 40 minutes total,
averaging 22 minutes per patient. Performance was then measured against normalised ground truth
signals using various metrics. FIBM AP outperformed baseline models in predicting whole atrium
signals (Table[I). Specifically, FIBMAP achieved an mean absolute error (MAE) of 0.0574 + 0.0005,
a 2.1x improvement compared to the best baseline imputation model, MF, which had an MAE
of 0.1205 £ 0.0012. In mean squared error (MSE) and mean absolute percentage error (MAPE),
FIBMAP scored 0.0069 = 0.0001 and 16.77 = 0.46, respectively, compared to MFs 0.0254 4 0.0005
and 32.56 & 0.56. Baseline models and performance metrics are detailed in Sections [C.6]and [C.3]
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Table 1: Reconstruction performance across transductive, inductive and patient fine-tuned (FT) models.

Model MAE | MSE | MRE | MAPE | PS F1 1
TRA. Mean 0.1734+0.0005 0.0507+0.0003 35.0840.10 47.734+0.33 0.022+0.009
MF 0.1205+0.0012  0.025440.0005 24.374+024 32.564056 0.103+0.043
RNN 0.1393+0.0001  0.0298+0.0000 28.1740.02 44.064+0.21 0.064+0.022
IND. | Bi-RNN 0.136840.0001  0.029040.0001 27.6640.03 42.8640.19 0.113+0.045
TTS-Transformer 0.1370+0.0001  0.0290+0.0001 27.7140.03 43.03+0.20 0.053+0.026
RNN + FT 0.1389+0.0002  0.0296+0.0001  28.0940.04 43.57+0.51 0.148+0.047
FT Bi-RNN + FT 0.1370+0.0000 0.0290+0.0001 27.704+0.02 42.9240.60 0.183+0.048
TTS-Transformer + FT | 0.136240.0001 0.0288+0.0001 27.534+0.03 41.91+052 0.25840.079
FIBMAP 0.0574+0.0005  0.0069+0.0001 11.59+0.11 16.77+046 0.780-+0.053
The clinical significance of these improvements becomes evi- ;
AcQMap FibMap

dent when examining the ability to predict phase singularities
(PSs)—points where the Hilbert phase (instantaneous phase angle
of electrical signals) is undefined—which represent the organising
centres of spiral waves that may drive AF and constitute potential
ablation targets [[19]. FIBMAP achieved an F1 of 0.780 &+ 0.053
for PS detection, representing a 3.0x improvement over the next
best method, the time-then-space (TTS)-Transformer + fine-tuning
(FT) at 0.258 £ 0.079. This improvement in detecting critical AF
features suggests that FIBM AP captures not merely signal amplitude
but the underlying spatiotemporal dynamics essential for clinical
interpretation. See Table ] for F1-scores across varying tolerance
thresholds for PS detection.
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3.3 Transferring FibMap to real-world contact mapping

To demonstrate clinical utility, we applied FIBMAP to real-world HD
Grid recordings from three patients who also had corresponding Ac-
QMap data (collected non-simultaneously). Using a sliding window
cross-correlation framework to handle temporal misalignment (Fig-
ure[5]A; methods in Section[C.7)), we found that correlations between
AcQMap and FIBMAP reconstructions were consistently higher
when comparing the same patient (intra-patient, 99th percentiles:
0.19-0.22) than when comparing different patients (inter-patient:
0.16-0.17) or spatiotemporally shuffled controls (=0.02); see Figure

Figure 3: Snapshots of FibMap
reconstructions from real HD-
Grid recordings vs. AcQMap for
three patients i-iii.
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across window durations of 0.5-4.0 seconds, demonstrating patient-

specific pattern capture (Figure 5[C). As shown in Figure 3] FIBMAP successfully reconstructed
aspects of AF dynamics including wavefronts and rotational activity from HD Grid data covering
<10% of the atrial surface, revealing patterns invisible in the sparse original measurements.

4 Discussion and Conclusion

We introduce imputation mapping as a novel approach to reconstruct global AF dynamics from sparse
clinical measurements, with FIBMAP achieving a 2.1 x improvement in reconstruction MAE and
a 3.0x improvement in PS detection over baselines when validated on a non-contact ground truth.
The graph-based representation of the atrial surface proves crucial in modelling spatial dependencies
between electrical signals, while the architectural design capturing shared aspects of AF dynamics
across patients combined with personalised embedding components and rapid fine-tuning (22 minutes
per patient) makes it feasible to obtain high-quality reconstructions within the duration of the invasive
clinical procedure. While early results of imputation mapping on real-world HD Grid recordings
display promise through demonstrated patient-specific pattern capture, future work must validate
FIBMAP at higher spatial resolutions essential for informing targeted ablation strategies and develop
more scalable computational architectures to maintain real-time performance at these resolutions. By
bridging the gap between sparse clinical measurements and comprehensive dynamics reconstruction
needed for effective treatment guidance, imputation mapping could offer a pathway towards the
personalised AF treatment.
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A Background and related work

Building on graph signal processing methods [20, [21]], graph deep learning [9} 22] has generalised
successful deep learning architectures, such as convolutional neural networks, to the irregular graph
domain [23}[24]. Spatio-temporal graph neural networks (ST-GNNs) refer to the class of deep learning
architectures designed to analyse time-varying graph signals [25|[26]. ST-GNNs can be categorised
into time-then-space [27, 28] or time-and-space models [29} |30} 31]], which denote separate or joint
processing of the space and time dimensions, respectively. A notable example of a time-and-space
ST-GNN is the GRNN, which replaces the fully connected layers in a recurrent neural network (RNN)
with graph convolutions [29}|30]. ST-GNNSs have achieved state-of-the-art performance in tasks such
as forecasting 32} (33| 34]] and missing data imputation [31} 35].

ST-GNNss are inherently global models, sharing parameters across space and time. Global ST-GNNs
can be used for zero-shot transfer and inductive learning on unseen graphs, however, they might fail
to account for spatial variations in dynamics. Node embeddings have been recently introduced to
learn these local effects in ST-GNNSs [[10]. Whilst hybrid global-local models often outperform global
architectures, recent research has focussed on improving their performance in an inductive setting
using transfer learning [|10} 36].

Other imputation methods have been applied to time series, ranging from MF methods [37} 38]
and their counterparts with graph and temporal regularisation [39, 40]], to deep learning techniques
employing RNNs [41]], generative adversarial networks [42, |43]], transformers [44]], or most recently
denoising diffusion probabilistic models [45] 46, [47].

B FIiBMAP

B.1 Architecture

FIBMAP is instantiated as a Bi-GRNN, a non-linear state-space model designed to propagate informa-
tion from valid observations across space and time. Our solution is composed of two spatiotemporal
encoder blocks and a decoder. The spatiotemporal encoders operate in two different directions, pro-
cessing the sequence in both a forward (fiwd) and backward (bwd) direction, respectively. FIBMAP’s
architecture extends the framework proposed in [35] by introducing local (node) and global (pa-
tient) embedding parameters to address the AF mapping problem. These modifications enable
generalisation across patients and efficient transfer to new patients via fine-tuning.

To balance the trade-off between personalised reconstruction and generalisation across a spectrum of
AF dynamics with a single model, FIBMAP is designed to perform personalised reconstruction by
providing patient-specific parameters, V() and g(?), as additional input to the encoder and decoder
components of the architecture. All other model parameters are shared across patients to learn the
common aspects of the dynamics (such as the physics of the problem). We begin by defining the
spatiotemporal encoder block of the architecture, before explaining the decoder.
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B.1.1 The spatiotemporal encoder

First, the observed data at time ¢ is encoded as
HY = MLPero([X (" © M{” [ M{P|G®) | V), @)

where the symbols ® and || denote the Hadamard product and concatenation operator, respectively,
and G(®) ¢ RN*" is a matrix where copies of g(P) are stacked across nodes. The encoding
step constructs a representation of the observed and missing values alongside the patient-specific
parameters in a common embedding space, H? € RV x4, Next, the embedded data is processed
sequentially using a gated-GRNN, where the k-th layer is given by

Zy =Hy ,, (5a)
Rf = o(MP}([ZF[|Hf_,], €)), (5b)
U} = o(MP;([Z7||HE_,],£)), (5¢)
C} = tanh(MP{([Z|Rf © HY ], €)), (5d)
Hf =U; oH/ |, + (1-U}) o Cy. (Se)

MP¥ (-), MP¥ (-) and MP*(-) denote the message passing neural network (MPNN) layers for the reset,
update, and candidate gates, respectively, and the activation functions o(-) and tanh(-) denote the
sigmoid and hyperbolic tangents. The hidden state of the gated-GRNN at each layer k is initialised as
a linear function of the node embeddings

Hi, = VW, + bl ©)

init

where Wk, € R7¢? and bl € R?, which takes the different characteristics of each time series into

account when initialising the state, thus reducing the need to rely on a long observation history [48]].

Message passing layers The MPNN layers for each gate in the GRNN, denoted as MP, compute
the hidden state of the i-th node as

hy Tt =% (hf, Y pFof ofey) |, )

JEN ()

where of € R?? represents the input of the gate at layer k, N(i) denotes the set of nodes connected
to i, p¥(-) is a message function, *(-) is an update function, and the summation serves as a
permutation invariant aggregation over neighbouring nodes. Specifically, the message function p*(-)
is implemented as

mfj = MLPﬁsg([ofHOﬂ)a (8a)
afﬂ = U(Wr]flsgfam?j)v (8b)
my; = omj, (8¢)

k
ij°
which resides on the interval [0, 1]. The scalar value afj allows for anisotropic message passing,
which assists in learning latent edge attributes such as the coupling strength between nodes. Messages

are then aggregated at node i using the summation, m¥ = Y JENG) mfj. Finally, the update function

where the messages along non-zero edges e;; are weighted according to an inferred scalar value o

7" (-) is implemented with a residual skip connection as

u? = MLprdate([h?”mﬂ)v (93)
hit! = uf + Wi of, (9b)

where W, € R¥24 and ™' € R? Note that the parameters of the MPNN layers, MP, are
defined separately for each gate and layer. This message-passing mechanism loosely resembles the
gated graph convolution introduced in [49].
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Iterative imputations To learn effective state space representations while processing the data
sequentially, missing values must be accounted for. To do this, first and second-stage imputations as
in [35]] are performed iteratively within the spatiotemporal encoder block. The first stage imputation
performs one-step-ahead prediction via a linear readout as

ﬁgi_)l = wastage—l + bstage—h (10)

which is used in place for the missing values. The second stage imputation acts as a type of
regularisation, estimating the value at node ¢ using the previous hidden states, as well as the masks
and first-stage imputations at the neighbouring nodes. The second stage imputation involves first
computing an intermediate representation of each node, given by

K (1 K
St41,i = Vstage-2 ht,iv Z pstage—2([xi(5+)17j||ht}j||mt+1,j]a eij) ; (11)
FEN(3)
where sy 11 ; € R? and the message passing is implemented using a diffusion graph convolution [50].
Next, a linear readout layer performs the second stage imputation as

X2 = (Sl H T Waager + byage, (12)
which is used again in place of the missing values in X, 1.

The process detailed so far in the spatiotemporal encoding block is repeated for X, , to learn
representations Sy o and Hﬁp and so forth, until a set of representations Sy.; 4y and Hft 4w and

imputations )A(E:lt) Lw and ngt)JrW are calculated for the whole window length 1. To summarise the
spatiotemporal encoding block detailed in this section, we use the following shorthand notation

(Stew Hiy Xg:lt)JrW7 Xg?t)+W> = ST—Encoder(XiﬁLW, Mfﬁﬁf)JrW7 g, v, (13)
B.1.2 The decoder
The sequences are encoded in both the forward and backward directions, to form
(Stwas Hgq, Xt(\i/?i’ ﬁgx?ﬁ = ST‘EHCOder(Xg)JFWv Mz(f:pt)—&-W7 g, vw), (14)
and (1) 2@ ) )
(Sbwa, Hixa, X Xpun) = ST-Encoder(X,7,, M, g®), V), (15)
respectively, where ¢ + T : ¢ denotes the time reversed/backward sequence. The next stage is to

decode the hidden state representations from the encodings in both directions, to perform a final
imputation at time ¢’. This is done with the following function

Yo = MLPuec([Stwase [ Hiacr |Sowaz [ Hias o [ME [V g)]), (16)

where the notation fwd < ¢’ refers to an index of the hidden states at time ¢’ (which includes
information from times < ') and similarly, bwd > t’ refers to index at time ¢’ (which includes
information from times > ¢’). The decoder takes a form similar to that in [35]] except patient-specific
parameters are also provided to facilitate personalisation. We denote the final imputed values for the

entire window length as Y., .

B.2 Optimisation

To quantify the uncertainty of the reconstructed dynamics, FIBMAP is formulated as a quantile
regression [[11]]. In general, a quantile regression aims to estimate the conditional quantile function,
Qy (7|B), which represents the 7-th quantile of the response variable, Y, given the predictor variables,
B. This is given by Qy (7|B) = inf{y € R|P(Y < y|B) > 7}, where P(Y < y|B) is the
conditional cumulative distribution function of the response variable, Y, given the predictors B, and
inf represents the infimum of the set.

In this work, conditional quantile functions for 7 € C, where C = {7y, 72, ..., Tic| }, are predicted for
each of the imputed values. This is done by computing the following masked quantile/pinball loss

function T N
+ — A~
o 3 N D et Daiey MLt i(Feis Ye i)
( t:t+T t:t+T t:t+T) - t+T N _ 9
het Dim1 Mot

7)
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Table 2: Patient demographics and clinical characteristics. Values are mean £ SD or n (%). The asterisk
denotes the presence of missing values; the number missing is shown as n*.

Total (N = 51)

Demographics

Mean age (years) 64 £ 11

Male sex 35 (69%)

Mean BMI 29+5
Comorbidities

Hypertension 20 (39%)

Diabetes mellitus 5 (10%)

Heart failure 17 (33%)
CHA,DS;-VASc score >2 14 (27%)
Medications

Beta-blockers 33" (87%, n* = 13)
Amiodarone 11" 29%, n* = 13)
Anticoagulants 38" (100%, n* = 13)
Statins 16" (42%, n* = 13)

where Yoo € RVXIC1 Y, € R¥NX! and M, € {0,1}V*1, represent the predicted values, target
values, and the evaluation mask, respectively, at time ¢. The function £; ; computes the average
pinball loss computed at time ¢ and node ¢, which is given by

Il
Loi(eiyei) = mZym Yelel) (e = Hyei — Juild < 0}), (18)

where c refers to the channel of §; ; (prediction vector at time ¢ and node ¢) which contains the
prediction of the c-th conditional quantile, Q,(7.|...) at time ¢ and node ¢, and 1{y; ; — ¥+ .[c] < 0}
represents the indicator function, which is equal to 1 if y, ; — ¥4 i[c] < 0, else it is equal to 0. In
practice, we modify the decoder to predict a value for each quantile (rather than a single value) and
compute the average pinball loss from each predicted quantile value as in (T8).

For FIBMAP, the following loss function is minimised

Lo = LY 47, Xestars Mestir) (19)

+ LGN Keeyr, Meeyr) + LXENT, Xewyr, Miayr) (20)

+ £<X§1t+";fd, X4, Mpir) + LX) X, Mt i7), 1)

where L is given in (17) and each component of the loss is spe(:1ﬁc to a different imputation stage
and processing direction. The specification of the evaluation mask, M, differs depending on training

and fine-tuning as detailed in the next sections.

C Data and implementation details

C.1 Dataset

Our dataset comprises recordings from 51 patients with persistent AF, obtained using the AcQMap
system. The system uses non-contact electrodes to sense intra-cavitary electrograms, from which
dipole density measurements (charge density in Coulombs/cm) are inversely derived across the entire
atria [[12} |13]]. Each recording samples approximately 3500 nodes at 3000 Hz for 5-20 seconds. All
recordings were obtained prior to ablation at two United Kingdom centres between 2016 and 2023.
The patient cohort (mean age 64 £ 11 years, 69% male) had standard cardiovascular risk factors and
were on guideline-directed medical therapy (see for more details).

For pre-processing, these signals are first resampled spatially to a resolution consisting of 500 nodes.
This is done by k-means clustering of the 3D node coordinates into £ = 500 non-overlapping clusters,
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where signals are resampled using the mean average signal within each cluster for each time point.
Temporal resampling to 70 Hz is conducted through a combination of low pass filtering and down
sampling. Low-pass filtering is applied to each time series at 70 Hz to prevent aliasing, and then
the filtered signal is downsampled by reducing the sampling rate proportionally. Finally, the time
series are normalised across space and time by applying min-max normalisation, where the minimum
and maximum values are determined across all nodes and times, ensuring that the amplitude of the
resampled signals is scaled consistently between 0 and 1.

The dataset was stratified to ensure a spectrum of AF dynamics within training (70%), validation
(10%), and test (20%) sets. The Shannon entropy was first computed for the resampled time series
at each node to do this. The cumulative distribution function (CDF) of Shannon entropy across
the atrium was then created for each patient, serving as a measure to compare the similarity of
the spatiotemporal dynamics between patients. The similarity between patients was assessed by
computing KolmogorovSmirnov (KS) distance between CDFs for each pair of patients, where a
smaller KS distance represents more similar entropy distributions/spatiotemporal dynamics. From
this, groups of similar patients were identified by clustering a Laplacian eigenmap [51[] using k-means,
where the number of clusters was determined using the elbow method. This involved forming a
weighted adjacency matrix by applying a radial basis function kernel to the reciprocal of the KS
distances and thresholding. Finally, the training, validation, and test sets were formed by performing
stratified sampling across these clusters, maintaining a consistent spectrum of AF dynamics within
each set.

C.2 Simulating sequential contact mapping

A sequential contact mapping strategy is simulated from the non-contact recordings as a self-avoiding
walk of the multipolar catheter (represented as a patch of observations) on the atrial surface; whereby
the catheter surface area, dwell time, and spatial overlap, could be controlled. The self-avoiding
walk is defined by first providing the catheter surface area as a fraction of the total area, where its
reciprocal (1/area) is rounded up to the nearest integer to give the number of patches required to
sample the whole atrium. Then, the atrium is split into disjoint patches by k-means clustering the
3D node coordinates, with k£ equal to the number of patches. Spatial overlap between patches is
simulated by adding additional clusters between adjacent patches and sharing node sets in proportion
to the overlap required. A self-avoiding random walk ensures the path does not revisit the same
region twice. This is simulated by sampling a patch randomly, then sampling the remaining patches
without replacement with a probability proportional to the distance between the current and remaining
patches. The resulting sequence of patches is converted to an observation mask, M, by assigning
a unity value if nodes are within the observed patch, zero otherwise, and repeating these values
such that each patch is observed for a duration equal to the specified dwell time. Except during the
sensitivity analysis, the sequence of patches is repeated until the length of the available recording is
met.

C.3 Training FIBMAP

The training procedure of FIBM AP leverages the whole atria ground truth signals of each patient to
learn a robust function for reconstructing whole atrium dynamics from data collected in a sequential
contact mapping fashion. To do this, a self-supervised approach is employed, wherein self-avoiding
walks of the multipolar catheter are sampled at random to form the observation mask, M, and
observed input data, X, of each training sample, alongside a range of catheter surface areas (2.5 50%
of the atrium), dwell times (0.2 - 4 seconds) and spatial overlaps (0 3 additional clusters between
adjacent patches). At each training iteration, batches of size B are formed by collating samples from

different patients, whereby B inputs XEiLW, Mii)JFW, A®) V@) g®) are collated for a temporal

input window size, W, sampled from the original time series following a sliding window approach
with unit stride.

Imputation is performed within the temporal window and a whole atria reconstruction loss is used to
optimise FIBMAP during training, whereby (1) is optimised using an evaluation mask, My..+w,
with all nodes and times in the input window equal to unity (see [Figure 4)). This approach ensures a
robust function for reconstructing whole atria maps that generalise across the distribution of multipolar
catheter paths and parameters of sequential contact mapping such as dwell time.

11
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Figure 4: Definition of the observation and evaluation masks in FIBMAP training and fine-tuning. During
training, FIBMAP is optimised to perform whole atria mapping using a whole atria evaluation mask to compute
the loss function. During fine-tuning, only the patient-specific parameters of FIBMAP are optimised using an
observed patch reconstruction loss.

A hyperparameter search is conducted for the parameters shown in by first splitting the
time series of each patient sequentially, with the first 85% of time steps being used for training, the
second 5% for validation, and the final 10% for testing. For the validation and test sequences, a fixed
self-avoiding walk of the multipolar catheter is used with a surface area of 10%, a dwell time of 1
second, and no spatial overlap. Each configuration in the hyperparameter search is conducted for
100 epochs, whereby the MAE across the remaining atria for the validation sequence is monitored
with early stopping. All experiments were performed on a NVIDIA RTX A5000 graphics processing
unit. The best-performing set of hyperparameters are chosen by computing the MAE loss across
the remaining atria for the test sequence and selecting the minimum loss. The best-performing
configuration for training FIBMAP was found to be B = 16, W = 40, d = 64, ¢ = 64, r = 16,
K =1, and 1024 hidden layer neurons. This configuration was retrained for 500 epochs, where a
learning rate of 0.0009 and a cosine scheduler were used. Training took a total of 31 hours. The result
is a pre-trained FibMap model, which performs accurate and robust whole atria reconstruction from
partial observations across a spectrum of dynamics found in patients and variations in multipolar

mapping.

C.4 Fine-tuning FIBMAP

In clinical practice, only the patches of multipolar catheter measurements are available from sequential
contact mapping. The rest of the atrium remains unobserved. To make FIBMAP a feasible clinical
solution for imputation mapping, a fine-tuning procedure is introduced to enable accurate whole
atria reconstruction on new and unseen patients when only partial observations of the dynamics are
available.

Our fine-tuning procedure preserves essential knowledge for whole atria reconstruction acquired
during training by fixing the parameters of the pre-trained FIBM AP model, while quickly personalising
the model to new patients by optimising only the node and patient embedding parameters using an
observed patch reconstruction loss (see for an illustration of the observation and evaluation
masks used during fine-tuning, which are defined to be equal). The observed patch reconstruction
loss is defined using this evaluation mask in (21)). This restricts the optimisation during fine-tuning to
only the patches of multipolar catheter measurements.

Our fine-tuning procedure was configured on the validation set, which also has ground truth whole
atria signals available for patients. Validation of the fine-tuning procedures aims to evaluate the
relationship between the observed patch and whole atria reconstruction losses. Again, the time series
of each patient was split sequentially, with the first 85% of time steps being used for training, the
second 5% for validation, and the final 10% for testing.

A random hyperparameter search was conducted across learning rates [0.0005, 0.005] and batch
sizes [16, 32, 64, 128]. Each learning rate in the hyperparameter search was conducted for 100
epochs, whereby the MAE across the remaining atria for the validation sequence was monitored with
early stopping. For the validation and test sequences, a fixed self-avoiding walk of the multipolar
catheter was used with a surface area of 10%, a dwell time of 1 second, and no spatial overlap. The
best-performing set of hyperparameters was chosen by computing the MAE across the remaining
atria for the test sequence and selecting the minimum loss. The best-performing configuration for
fine-tuning FIBM AP was found to have a learning rate of 0.005 and a batch size of 16.
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Table 3: Hyperparameter values tested during FIBMAP training.

Hyperparameter Range tested

Batch size, B [16, 32, 64]

Input window length, W [20, 30, 40, 50]
Hidden size, d [64, 128, 256]

Node embedding size, ¢ [16, 32, 64]

Patient embedding size, r [16, 32, 64]

Layers, K [1,2,3]

Hidden layer neurons in MLPenc, MLPgec [128, 256, 512, 1024]

Finally, the performance of FIBMAP imputation mapping on new and unseen patients, through our
fine-tuning setup, was quantified on the test set patients. A sequential time series split was not used
during testing, instead, all observed measurements were used. FIBMAP was fine-tuned for 100
epochs using the configuration found in validation, and the observed patch reconstruction loss was
monitored to perform early stopping. The performance metrics, detailed next, were computed across
the remaining atria to assess test set performance.

C.5 Performance metrics

Quantitative assessment of the reconstructed imputation maps was performed using several metrics:
MAE, mean relative error (MRE) and MAPE. These metrics evaluate the fidelity of the reconstructed

whole atria maps, Y, against the ground truth, X, for the mask, M, which represents the logical
binary complement of the observation mask, M. The averaged performance metrics were computed
via (I7), where £, ; was computed using each of our evaluation metrics. Metrics were computed
for each model trained or fine-tuned across 5 different seeds (changing both the self-avoiding walk
and model parameter initialisations). The average and standard deviation across these seeds were
reported for each metric.

Additionally, the PS F1-score was used to evaluate the accuracy of tracking PSs in the reconstructed
phase maps compared to the ground truth. PSs represent points where the Hilbert phase is undefined
and mark the organising centres of spiral waves that may drive AF, making their accurate detection
clinically relevant for ablation guidance.

Manual annotation For each patient in the test set and each imputation model, PSs were manually
labelled by two independent trained observers using a custom graphical user interface. Manual
annotation was chosen over automated detection methods due to the poor performance of existing
automated algorithms [52] at the reduced spatial and temporal resolutions used in this proof-of-
concept study (500 nodes, 70 Hz). Automated methods typically require higher resolution data to
reliably identify PS locations, making manual expert annotation the gold standard for evaluation at
these scales.

Given the labour-intensive nature of manual annotation, only the central 70 frames (1 second) of each
reconstructed phase map were annotated for each patient and model combination. Since annotating
PSs for each model seed across multiple random initializations was computationally infeasible, the
mean and standard deviation of F1-scores were computed from 1000 bootstrap samples.

Detection thresholds PS detection was evaluated at four clinically relevant precision levels with
varying spatial and temporal tolerances: High Precision (=0.5cm, 0.1s), Moderate Precision (/21.0cm,
0.2s), Standard Precision (/~1.5cm, 0.3s), and Lenient Precision (=~2.0cm, 0.4s). A PS was considered
correctly detected if its location in the reconstructed map fell within the specified spatial tolerance
(measured in graph hops) and temporal tolerance compared to its location in the ground truth map.
Results across all thresholds are shown in Table[d] with FIBMAP achieving superior performance at
all precision levels.

Inter-observer agreement and validation Inter-observer agreement was quantified to validate
the reliability of manual annotations, achieving an Fl-score of 0.827 £ 0.243 and Cohen’s x of
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Table 4: PS detection Fl-scores at clinically relevant thresholds.

High Precision ~ Moderate Precision ~ Standard Precision  Lenient Precision

Method (~0.5cm, 0.1s)  (~1.0cm, 0.25) (~1.5cm,03s)  (~2.0cm, 0.4s)
Transductive

Mean 0.0094-0.006 0.02240.009 0.038+0.010 0.04740.010
MF 0.04940.025 0.10340.043 0.149+0.060 0.2064-0.099
Inductive

RNN 0.05340.022 0.06440.022 0.070+0.025 0.0804-0.027
Bi-RNN 0.082-+£0.032 0.113+£0.045 0.132+0.047 0.150£0.047
TTS-Transformer 0.04440.022 0.05340.026 0.060+0.025 0.07540.024
Fine-tuned

RNN + FT 0.1084-0.040 0.1484-0.047 0.18240.055 0.2054-0.061
Bi-RNN + FT 0.13340.044 0.18340.048 0.229+40.054 0.26340.065
TTS-Transformer + FT 0.19340.074 0.2584-0.079 0.31040.098 0.3484-0.105
FIBMAP 0.55540.066 0.780+0.053 0.903+0.036 0.964+0.021

Table 5: Inter-observer agreement and comparison with automated detection for PS detection.

Validation Metric F1-Score Cohen’s k

Inter-Observer Agreement  0.827+0243  0.885+0.187
Automated vs Observer 1 0.238+0.130  0.352+0.148
Automated vs Observer 2 0.292+0.151  0.392+0.132

Values represent mean = standard deviation aCrOSS patients.

0.885 + 0.187 across patients (Table[5), indicating excellent agreement beyond chance at the High
Precision tolerance level (=0.5cm, 0.1s). To further validate the superiority of manual annotation, we
compared automated detection performance using the 3D topological charge algorithm [52] against
both observers, finding substantially lower agreement (F1-scores of 0.238 and 0.292 respectively),
confirming that manual expert annotation provides more reliable ground truth labels for PS detection
evaluation at these resolutions.

C.6 Baseline models
We introduce additional baseline models for the imputation mapping task:

1. Mean, which performs imputation using the node-level average;

2. MF with rank = 10;

3. Univariate RNN, which performs imputation based solely on the node-level signals;
4. Univariate Bi-RNN.
5

. TTS-Transformer, which applies temporal self-attention followed by spatial self-attention
using 8-head multi-head attention mechanisms [53]].

Mean and MF baseline models are employed solely on the test set due to their transductive nature.
The RNN, Bi-RNN, and TTS-Transformer models were initially trained using MAE loss function
and followed identical hyperparameter settings and training-test protocols as FIBMAP.

To evaluate patient-specific adaptation, we implemented fine-tuned (FT) variants (RNN + FT, Bi-
RNN + FT, TTS-Transformer + FT) where pre-trained models are fine-tuned for 50 epochs on
each patient using a learning rate of 0.001. We employed the same observed patch reconstruction
loss for fine-tuning as used in FIBMAP. Selected layers were fine-tuned: only input-to-hidden
weights/biases and readout layers for RNN models; and input encoder, readout, and normalisation
layers for TTS-Transformer. This preserves learned representations while enabling patient-specific
adaptation.
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C.7 Imputation mapping from EnSite Precision HD Grid recordings

From our test cohort, three AF patients had both EnSite Precision HD Grid and AcQMap recordings
collected non-contemporaneously before ablation. For these patients, AcQMap recordings were 20
seconds in duration, while EnSite Precision HD Grid recordings were significantly longer (14, 19,
and 20 minutes). EnSite Precision HD Grid data consists of sequential contact mapping recordings
from 16 electrodes arranged in a grid array, along with the roving 3D coordinates of each electrode
within the atrium.

To ensure compatibility with FIBMAP, the EnSite Precision HD Grid recordings were pre-processed.
Sparse electrogram recordings were first mapped to a uniform discretisation of the atrial surface using
a nearest-neighbour approach with a 3 mm radius to interpolate the signals between electrodes. An
observation mask identified active recording periods, after which signals were normalised using the
maximum peak-to-peak voltage. The data was then resampled spatially to a resolution of 500 nodes
using k-means clustering and resampled temporally to 70 Hz using a combination of low-pass filtering
and downsampling. A final min-max normalisation ensured all signals fell within 0 and 1. From
these processed measurements, imputation maps were generated using our fine-tuning procedure,
whereby the observed patch reconstruction loss was monitored to perform early stopping.

We developed a sliding window cross-correlation framework to compare FIBM AP reconstructions
against AcQMap ‘ground truth’ recordings. While temporal alignment was not possible between the
non-contemporaneous recordings, spatial alignment was achieved between AcQMap and imputation
map by centring the vertices of the geometries around the origin, applying rigid registration using
the iterative closest point algorithm [54], and projecting data between geometries using a k = 5
nearest-neighbours regression. Using sliding window lengths from 0.5 to 4.0 seconds and a constant
stride of 0.1 seconds, we computed the Pearson correlations between Hilbert phases of processed
signals across all nodes and times within window pairs. This generated a cross-correlation matrix
characterising the spatiotemporal similarity between recordings, which were flattened and plotted as
distributions for analysis.

To validate that FIBMAP captured patient-specific dynamics, we performed three types of correlations:
intra-patient comparisons between AcQMap and FIBMAP from the same patient; inter-patient
comparisons between AcQMap and FIBMAP from different patients; and random baseline intra-
patient comparisons between AcQMap and a spatiotemporally shuffled imputation map. For each
patient, the 99th percentile of the intra, inter and shuffled distributions were plotted and statistical
significance was assessed by computing the confidence intervals via bootstrapping (n = 1000 rounds
of 10000 resamples).
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Figure 5: Validation of FIBMAP imputation maps from EnSite Precision HD Grid Mapping against non-
simultaneous ground truth AcQMap recordings. A) Sliding window cross-correlation analysis between AcQMap
and FIBMAP phase signals, enabling comparison between non-simultaneous recordings by measuring the
similarity between AF patterns across different time windows. The correlation matrix below shows pairwise
comparisons between all possible window combinations. For three patients (indexed i-iii), B) shows the kernel
density estimates of pairwise cross-correlations computed between AcQMap and FIBMAP maps from the
same patient (intra), different patients (inter), and spatiotemporally shuffled maps (random baseline), using
0.5-second sliding windows. Vertical dashed lines indicate the 99th percentile, with consistently higher values for
intra-patient (0.19-0.22) versus inter-patient (0.16-0.17) correlations and shuffled baseline (0.02), demonstrating
patient-specific pattern capture. C) Temporal robustness analysis showing the 99th percentile of cross-correlations
against sliding window duration. Non-overlapping confidence intervals (computed via bootstrap sampling)
between intra-patient and other distributions confirm that FIBM AP can capture patient-specific dynamics across
different temporal scales.
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