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Abstract

Training large models is both resource-intensive and time-consuming, making it
crucial to understand the quantitative relationship between model performance
and hyperparameters. In this paper, we derive an empirical law that predicts pre-
training loss for large language models for every intermediate training step across
various learning rate schedules, including constant, cosine, and step decay sched-
ules. Our proposed law takes a multi-power form, combining a power law based
on the sum of learning rates and additional power laws to account for a loss reduc-
tion effect as learning rate decays. We validate this law extensively on Llama-2
models of varying sizes and demonstrate that, after fitting on a few learning rate
schedules, it accurately predicts the loss curves for unseen schedules of different
shapes and horizons. Moreover, by minimizing the predicted final pretraining loss
across learning rate schedules, we are able to find a schedule that outperforms
the widely-used cosine learning rate schedule. Interestingly, this automatically
discovered schedule bears some resemblance to the recently proposed Warmup-
Stable-Decay (WSD) schedule (Hu et al., 2024) but achieves slightly faster con-
vergence. We believe these results could offer valuable insights for understanding
the dynamics of pretraining and for designing learning rate schedules to improve
efficiency.

1 Introduction

Language models can achieve strong performance if pretrained at a very large scale with an appropri-
ate configuration of hyperparameters, such as model width, model depth, number of training steps,
and learning rate. However, a full-scale grid search over these hyperparameters is often impossible
since one large-scale pretraining run can take weeks or even months.

To reduce the cost of hyperparameter tuning, researchers have proposed various scaling laws that
aim to predict the final pretraining loss or downstream performance at scale. These laws usually try
to capture an empirical relationship between the final performance and a few key hyperparameters,
and use a simple parameterized function to approximate this relationship. A notable example is the
Chinchilla scaling law (Hoffmann et al., 2022), which approximates the final pretraining loss as a
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Figure 1: Performance of various schedules, including our optimized LR schedule (Opt), on a 400M Llama-
2 (Touvron et al., 2023) model over 12B tokens. Zoom in/out facilitates the readers who are interested in
the local details. (a) Our optimal schedule comprises constant and decay stages post-warmup, aligning with
WSD (Hu et al., 2024). See Section 5 for details. (b) Our optimized schedule outperforms cosine LR and tuned
WSD variants (WSD uses exponential decay; WSDLD uses linear decay).

function of the model size N and the total number of training steps T (or alternatively, the number
of training tokens), L(N,T ) = L0+A ·T−α+B ·N−β . Based on a few experiments with varying
N and T , one can fit the parameters L0, A,B, α, β and use the formula to infer the optimal choice
of N and T given a fixed compute budget C = NT .

However, existing scaling laws fall short in providing guidance on the choice of Learning Rate (LR),
which is arguably the most critical hyperparameters in optimization. It is indeed very challenging
to incorporate the effect of LR into the scaling laws, as its impact on the training speed and stability
is intricate and not yet well understood in a quantitative manner. A qualitative understanding is
as follows: a large LR can reduce the training loss quickly, but in the long term, it may cause
overshooting and oscillation along sharp directions on the loss landscape. In contrast, a small LR
leads to a more stable training process, but at the cost of slowing down the convergence. Practitioners
often trade-off between these two extremes by starting training with a large LR and then gradually
reducing it over time, following a Learning Rate schedule (LR schedule) (Bengio, 2012). These LR
schedules sometimes include a warmup phase at the beginning, where the LR is gradually increased
from a small value to a large value over a few thousand steps, and only after this warmup phase
does the LR start to decay. The most commonly used LR schedule in language model pretraining
is the cosine schedule (Loshchilov & Hutter, 2017), which decays the LR following a cosine curve.
Other schedules include the cyclic (Smith, 2017), Noam (Vaswani, 2017), and Warmup-Stable-
Decay (WSD) schedules (Hu et al., 2024), but there is no consensus on which schedule is the best.

In this paper, we aim to obtain a quantitative understanding of the empirical relationship between
the LR schedule and the final training loss in language model pretraining. More specifically, we
study the following problem, which we call the schedule-aware loss curve prediction problem: Can
we use a simple formula to accurately predict the training loss curve L(t) (1 ≤ t ≤ T ) given a
LR schedule E := {η1, η2, . . . , ηT } for T steps of training? Following the standard practice in
pretraining, we assume that each training step is taking fresh samples from a data stream, thus there
is no generalization gap between the training and test loss. We focus on learning rate schedules
that decay the LR over time (ηt ≤ ηt−1) as these schedules are the most common in practice.2
Moreover, we assume that we have already picked a good initial LR ηmax that is nearly optimal for
short training runs without LR decay. Starting from this initial LR η1 = ηmax, we are interested in
predicting the loss curve as the LR decays over time.

Existing scaling laws are insufficient for this problem because they are usually overfitted to one pre-
determined LR schedule. For example, Hoffmann et al. (2022) fitted the parameters L0, A,B, α, β
in the Chinchilla scaling law L(N,T ) = L0 +A · T−α +B ·N−β for training runs that have gone
through the entire cosine LR schedule, which makes the law inapplicable to other LR schedules, or
even to the same LR schedule with early stopping. Finding a good scaling law for this problem also
requires a more sophisticated approach. In contrast to existing laws that make predictions based on
two or three hyperparameters, which are easy to visualize and analyze, here we need to predict the
loss curve based on the entire LR schedule, which is inherently high-dimensional. A more careful
experimental design is thus needed to speculate what a good approximation formula could be.

Our Contribution: Multi-Power Law. In this paper, we propose the following empirical law (1)
for schedule-aware loss curve prediction:

L(t) = L0 +A · S1(t)
−α − LD(t), where S1(t) :=

t∑
t=1

ητ . (1)

2If there is a LR warmup phase in the schedule, we focus on the decay phase right after the warmup phase.
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Figure 2: Loss Curves of 25M, 100M, and 400M models from up to down. (a) Fit on Training Set: Our
multi-power law is reducible to two-stage and Constant LR schedules, and captures Cosine LR decay effects.
(b) Prediction on Test Set: Our law generalizes to unseen schedules like WSDLD and WSD, and handles steep
decays in Two-Stage cases.

Here, L0 + A · S1(t) can be seen as a naı̈ve extension of the Chinchilla scaling law by replacing
the number of steps T with the sum of LRs and neglecting the dependence on the model size. This
alone can be seen as a crude approximation of the loss curve that linearizes the contribution of the
LR at each step, but it is agnostic to the shape of LR decay. The remaining term LD(t) serves as a
correction term that captures how decaying the LR to smaller values leads to a reduction in the loss:

LD(t) := B

t∑
k=2

(ηk−1 − ηk) ·G(η−γ
k Sk(t)), Sk(t) :=

t∑
τ=k

ητ , G(x) := 1− (Cx+ 1)−β . (2)

More specifically, LD(t) is the sum of the LR reduction ηk−1 − ηk at each step k multiplied by
a nonlinear factor. The factor gradually saturates to a constant as the training progresses, and the
speed of saturation follows a power law in a scaled sum of LRs η−γ

k Sk(t).

We call this law of L(t) the multi-power scaling law as it consists of multiple power-law forms.
See also Appendix F.3 for the practical version of our law that accounts for the warmup phase.
L0, A,B,C, α, β, γ are the parameters of the law and can be fitted by running very few pretraining
experiments with different LR schedules. We summarize our main contributions as follows:

1. We propose the multi-power law (1) for schedule-aware loss curve prediction, and empirically
validate that after fitting the parameters of the law on at most 3 pretraining runs, it can predict
the loss curve for unseen LR schedules with remarkable accuracy (see Figure 1). Unlike the
Chinchilla scaling law, which relies solely on the final loss of each training run to fit its param-
eters, our approach utilizes the entire loss curve of each training run to fit the parameters, thus
significantly reducing the number of training runs and compute resources needed for accurate
predictions (Figure 7). Extensive experiments are presented for various model architectures,
sizes, and training horizons (Section 4).

2. Our multi-power law is accurate enough to be used to search for better LR schedules. We show
that by minimizing the predicted final loss according to the law, we can obtain an optimized LR
schedule that outperforms the standard cosine schedule. Interestingly, the optimized schedule
has a similar shape as the recently proposed WSD schedule (Hu et al., 2024), but its shape is
optimized so well that it outperforms WSD with grid-searched hyperparameters (Section 5).

3. We use a novel “bottom-up” approach to empirically derive the multi-power law. Starting from
two-stage schedules, we conduct a series of ablation studies on LR schedules with increasing
complexity, which has helped us to gain strong insights into the empirical relationship between
the LR schedule and the loss curve (Section 2).

4. We present a theoretical analysis for quadratic loss functions and show that the multi-power
law can arise when the Hessian and noise covariance matrices have a power-law decay in their
eigenvalues (Section 3).

2 Empirical Derivation of the Multi-Power Law
In this section, we present our empirical derivation of the multi-power law for schedule-aware loss
curve prediction. In the first place, we reduce the problem to studying a loss reduction term led by
LR decay. Then we take a “bottom-up” approach to study this term for LR schedules with increasing
complexity, from two-stage, multi-stage, to general LR decay schedules. For the first two cases, we
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Figure 3: Example of Two-Stage cases: tB=11000, xB=3000, ηB = 9× 10−5, ηA = 3× 10−4, TA = 8000.
(a) A and B have the equal LR sums: xA = 900, tA = 8900. (b) Loss Reduction LD(TA +xB) = LA(tA)−
LB(tB). (c) Fitting Loss Reduction L̂D(TA + xB) with power form results in 0.13(1 − (1 + 0.21x)0.15);
Fitting with exponential form results in 0.0790(1− e−0.01x). The shape of loss reduction is closer to a power
form instead of exponential.

conduct extensive ablation studies on the behavior of the training loss and derive formulas that can
accurately predict the loss reduction term. This has finally inspired us to propose the multi-power
law for general cases as a natural unification and generalization of the formulas derived for the two
special cases. We will further validate our law with extensive experiments in Section 4.

Background: Learning Rate Schedule. An LR schedule is a sequence E := {η1, . . . , ηT } that
specifies the LR at each step of the training process. In the domain of language model pretraining,
the cosine LR schedule (Loshchilov & Hutter, 2017) is the most popular one, which can be expressed
as ηt = 1+α

2 ηmax +
1−α
2 ηmax cos(

πt
T ), where ηmax is the maximum LR and α is usually set to 0.1.

The Warmup-Stable-Decay (WSD) schedule (Hu et al., 2024) is a recently proposed LR schedule.
This schedule first goes through a warmup phase with W steps, then maintains at a stable LR ηmax

with Tstable steps, and finally decays in the form f(s− Tstable)ηmax during stage Tstable≤s≤Ttotal . Here
f(x) ∈ (0, 1) can be chosen as linear or exponential decay functions. The visualization of these two
LR schedules is in Figure 1(a).

Background: Warmup Phase. Many LR schedules, such as WSD, contain a warmup phase that
increases the LR gradually from 0 to the maximum LR ηmax over a few steps. Our discussion focuses
on the training after the warmup, where the LR is non-increasing in almost all LR schedules. The
steps are counted after the warmup phase, i.e., t = 1 is the first step after the warmup.

2.1 Our Approach: Learning Rate Sum Matching
Auxiliary Training Process. We first introduce an auxiliary training process to aid our analysis
of the loss curve of the actual training process with LR schedule E := {η1, . . . , ηT }. This auxiliary
training process is exactly the same as the actual training process for the first K steps, where K is
the largest number such that η1 = η2 = · · · = ηK . Then the auxiliary training process continues
training with a constant LR schedule, where the LR is set to η1 for all the remaining steps. We
denote the training loss at step t in this auxiliary process as Lconst(t).

Learning Rate Sum Matching. The multi-power law for approximating the loss curve L(t) of
the actual training process is based on the following decomposition. Define Z(t) as the step in the
auxiliary process that has the same sum of LRs as the actual training process at step t. Then,

L(t) = Lconst(Z(t))− (Lconst(Z(t))− L(t))︸ ︷︷ ︸
=: LD(t)

, where Z(t) :=
1

η1

t∑
τ=1

ητ . (3)

Here, we first use the training loss at step Z(t) in the auxiliary process, Lconst(Z(t)), as an approx-
imation for L(t), and then write the approximation error term as LD(t). We call LD(t) the Loss
reDuction term as it is a quantification of the reduction of loss due to learning rate decay.

The rationale behind this approach is that matching the LR sum between the two training processes
should result in similar training losses, and thus a more accurate approximation can be obtained by
further exploring the loss reduction term LD(t). See Appendix F.2 for more discussion.

Power-Law Ansatz for the Auxiliary Loss. Under constant LR schedules, it is easy to predict the
loss curve accurately. Taking inspiration from previous works (Hoffmann et al., 2022; Kaplan et al.,
2020), we choose to take a power-law form to approximate the training loss of the auxiliary process,
which works reasonably well in our experiments. That is,

Lconst(t) ≈ L̂const(t) := L0 + Ã · t−α, (4)

where L0, Ã, α are parameters. Replacing t with Z(t) := 1
η1

∑t
τ=1 ητ = 1

η1
S1(t) gives

L̂const(Z(t)) = L0 + Ãηα1 S
−α
1 (t), where S1(t) :=

∑t
τ=1 ητ . Finally, we reparameterize Ã as

4
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Ã := Aη−α
1 , where A is a parameter, and obtain the formula:

L̂const(Z(t)) = L0 +A · S−α
1 (t). (5)

See Figure 13 for an empirical validation of eq. (5) for various constant LR schedules.

Loss Reduction Term. It remains to understand the behavior of the loss reduction term LD(t),
which is inherently complex since it depends on each LR used in training. In the rest of the section,
we conduct a series of experiments to determine an accurate approximation form for LD(t).

2.2 Case 1: Two-stage Learning Rate Schedule
To understand the behavior of LD(t), we start with the simplest form of LR decay that consists of
two stages: In Stage 1, the LR remains constant at ηA for TA steps (η1 = η2 = · · · = ηTA

= ηA);
in Stage 2, the LR suddenly decreases to ηB and the rest of training continues with ηB for TB steps
(ηTA+1 = ηTA+2 = · · · = ηTA+TB

= ηB). We call this LR schedule a two-stage LR schedule. In
this case, the first TA steps of the auxiliary and actual training processes are the same, and the loss
reduction term LD(t) becomes non-zero only in Stage 2.

The Loss Reduction Term Follows a Power Law. In Figure 3, we plot the loss reduction term
LD(t) of a two-stage learning rate schedule with ηA = 3 × 10−4, TA = 8000, ηB = 9 × 10−5.
As the number of steps x := t − TA in Stage 2 increases, LD(TA + x) monotonically rises from 0
to around 0.09 and eventually saturates. This motivates us to approximate LD(TA + x) in the form
B̃ · (1 − U(ηBx)), where B̃ is a parameter and U(s) is a function that decreases from 1 to 0 as
s = ηBx increases from 0 to infinity. The reason we choose ηBx instead of x as the argument of U
will be clear when we generalize this to multi-stage schedules.

But at what rate should U(s) decrease? After trying different forms of U(s) to fit LD(TA + x), we
find that the power-law form U(s) = (C̃ · s + 1)−β for some C̃, β > 0 fits most properly, which
leads to the following power-law form for the loss reduction term:

LD(TA + x) ≈ L̂D(TA + x) := B̃(1− (C̃ · ηBx+ 1)−β). (6)

Figure 3(c) shows that this power law aligns well with the actual loss reduction term LD(TA + x).
In contrast, the exponential form U(s) = e−Bs (so LD(TA + x) ≈ A(1 − e−BηBx)) struggles to
match the slow and steadily increase of LD(TA + x) when x is large.

We further investigate how to estimate the parameters B̃, C̃, β in the power law. Our preliminary
experiments suggest that the power law fits the loss reduction term very well with a constant β that
is independent of ηA, ηB, TA, so we just set β = 0.4, which is a constant that works well. Then we
conduct experiments to understand how the best parameters B̃, C̃ to fit LD(t) depend on ηA, ηB, TA,
where we set default values ηA = 3 × 10−4, ηB = 3 × 10−5, TA = 8000 and change one variable
at a time. See Appendix G for experiment details.

B̃ is Linear to LR Reduction. Our first observation is that B̃ ∝ ηA − ηB. As shown in the
first row of Figure 4, B̃ linearly decreases with ηB and approximately increases linearly with ηA,
especially when ηA is not too large. Moreover, the slope of B̃ over ηA and ηB are approximately
opposite to each other. This motivates us to hypothesize that B̃ ∝ ηA− ηB and reparameterize B̃ as
B̃ = B(ηA − ηB), where B is a constant.

C̃ Follows a Power Law of ηB. Our second observation is that C̃ follows a power law. As shown
in the second row of Figure 4, we find that C̃ is very sensitive to ηB but much less dependent on ηA.

5
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still follows the power form. The multi-stage loss curve refers to Figure 12. Right: The parameter patterns in
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We hypothesize that C̃ follows a power law C̃ ∝ η−γ
B , and reparameterize C̃ as C̃ = Cη−γ

B , where
C > 0 and γ > 0 are constants.

LR Reduction Term Depends Less on TA. We also find that B̃ and C̃ are less sensitive to TA. As
shown in the last column in Figure 4, B̃ and C̃ are relatively stable as TA varies. This suggests that
the loss reduction induced by a single LR decay is approximately independent from the time that LR
decays. This insight will be revisited when we generalize the two-stage case to multi-stage cases.

Final Approximation Form. Putting all these together, we have the final approximation form for
the loss reduction term in the two-stage schedule:

LD(T1 + x) ≈ L̂D(T1 + x) := B(ηA − ηB)(1− (Cη1−γ
B x+ 1)−β). (7)

2.3 Case 2: Multi-Stage Leaning Rate Schedule
We go one step further from two-stage step decay schedule to multi-stage step decay schedules.
This class of schedules consists of multiple stages, where the LR decays when a new stage starts but
remains constant within each stage. Now, we consider an n-stage LR schedule E = {η1, . . . , ηT },
where the i-th stage lasts from step t = Ti−1 + 1 to t = Ti and uses the LR ηt = η(i) (0 = T0 <
T1 < · · · < Tn−1 < Tn = T , η(1) ≥ η(2) ≥ · · · ≥ η(n)). See Figure 12 for an example.

Multi-Stage Loss Reduction. To draw insights into the behavior of LD(t) in the multi-stage case,
we use the following strategy. Recall that LD(t) is the difference in training losses between the
auxiliary and actual training processes at equal LR sums. In addition to these processes, we construct
some intermediate processes: for 1 ≤ i ≤ n, we define the i-th process to be the same as the actual
training process in stages 1 to i but continue to use the learning rate η(i) for all stages after i. The
first and last processes are the auxiliary and actual training processes themselves.

We again use the trick of LR sum matching: we find the steps of these n processes that have the same
LR sum, and then conduct experiments to analyze the loss difference between adjacent processes.
Let Li(t) be the training loss of the i-th process at step t. For 1 ≤ i ≤ j ≤ n and t ≥ Tj−1, we
define Zi,j(t) as the step number in the i-th process that has the same LR sum as the j-th process at
step t, i.e., Zi,i(t) := t and Zi,j(t) := Ti +

1
η(i)

∑t
τ=Ti+1 ητ for i < j. Then we have

LD(t) =

i∑
k=2

LDk(Zk,n(t)), where LDk(t) := Lk−1(Zk−1,k(t))− Lk(t). (8)

Here, LDk(t) is the difference between the (k − 1)-th and k-th processes at equal LR sums. These
two processes are the same for the first k − 1 stages and diverge only at the beginning of the k-
th stage: the former continues to use η(k−1) but the latter switches to η(k). This is similar to the
two-stage case, except that the first k − 1 stages may not use the same LR.

Interestingly, the power law behavior of the loss reduction term observed in the two-stage case also
approximately holds for LDk(t). As the training enters a new stage i+1, a new loss reduction term
LDi( · ) is introduced in (8). We observe that LDi(Ti + x) follows a similar power law behavior as
in the two-stage case when x increases. As shown in Figure 5, each LDi(Ti+x) can be individually
approximated by a power law B̃(1− (C̃ · η(i)x+ 1)−β), and B̃ ∝ (η(i−1) − η(i)), C̃ ∝ (η(i))−γ .

Final Approximation Form. Inspired by the above observation and our approximation (7) for the
two-stage case, we propose to approximate LDk(t) with a power law:

LDk(Tk−1 + x) ≈ L̂Dk(Tk−1 + x) := B(η(k−1) − η(k))(1− (C(η(k))1−γx+ 1)−β). (9)

6



Plugging this approximation into (8), we can approximate the loss reduction term LD(t) at step
Ti−1 < t ≤ Ti of the actual training process as LD(t) ≈ L̂D(t) :=

∑i
k=2 L̂Dk(Zk,n(t)), then

LD(t) ≈ L̂D(t) =

i∑
k=2

B(η(k−1) − η(k))(1− (C(η(k))1−γ(Zk,n(t)− Tk) + 1)−β).

By definition of Zk(t), we have Zk,n(t) − Tk = Sk(t)
η(k) , where Sk(t) :=

∑t
τ=Tk+1 ητ is the sum of

LRs from the beginning of Stage k + 1 to step t. We can further simplify the above formula as

LD(t) ≈ L̂D(t) =

i∑
k=2

B(η(k−1) − η(k))(1− (C(η(k))−γSk(t) + 1)−β). (10)

2.4 General Case

Ansatz for the Loss Reduction Term. A general learning rate schedule E := {η1, . . . , ηT } could
be viewed as a T -stage schedule, where the i-th stage uses learning rate ηi for li = 1 step. This
motivates us to make the ansatz that the formula for the loss reduction term LD(t) in multi-stage
schedules (10) can continue to hold even when every stage only lasts for one step.

LD(t) ≈ L̂D(t) =

t∑
k=2

B(ηk−1 − ηk)(1− (Cη−γ
k Sk(t) + 1)−β), (11)

where Sk(t) :=
∑t

τ=k ητ is the sum of LRs from step k to step t, and B,C, γ, β are parameters.

Multi-Power Law. Following the approach of learning rate sum matching in Section 2.1, we first
decompose L(t) as Lconst(Z(t))−LD(t) (see (3)). Then we combine the above ansatz for the Loss
reduction term with the power-law ansatz for the auxiliary loss, leading to our multi-power law:

L(t) ≈ L0 +A · S−α
1 (t)−

t∑
k=2

B(ηk−1 − ηk)(1− (Cη−γ
k Sk(t) + 1)−β).

See also Appendix F.3 for the practical version of our law that accounts for the warmup phase by
slightly changing the A ·S−α

1 (t) term. See Appendix B.1 for the discussion about the simplification
of the multi-power law.

3 How Might the Multi-Power Law Arise?
In this section, we aim to understand how the multi-power law might arise from the optimization.
However, it is generally hard to prove convergence bounds for deep learning under realistic as-
sumptions. For this reason, most previous theoretical works trying to establish a scaling law have
mostly focused on linear models or even simpler cases (see Appendix D for a literature review), and
capturing the effect of learning rate schedules in theory can be even more challenging.

Here, we present a preliminary theoretical analysis for a solvable model: when optimizing quadratic
loss functions, if the Hessian and noise covariance exhibit a power-law decay in their eigenvalues,
then our multi-power law can be proved to emerge.

3.1 Setup
We consider a quadratic loss L(θ) = 1

2θ
⊤Hθ, where θ ∈ Rd. Linear regression can be viewed

as a special case if we shift the minimizer to the origin. We use Φ(θ0, E) be the distribution of the
T -th iteration θT of gradient descent, defined by the recursion θt = θt−1 − ηtgt (t ≥ 1), where
E := {η1, . . . , ηT } is the LR schedule, gt is the stochastic gradient at step t, following a normal
distribution N (Hθ,Σ) with Σ ∈ Rd×d being the covariance matrix.
From spectra to scaling law for the loss. We now aim to analyze the scaling behavior of the loss
for the quadratic loss function defined above during training. This behavior is typically determined
by the eigenvalue spectrum of the Hessian and the spectrum of the diagonal elements of the noise
covariance matrix Σ in the gradient noise. Specifically, if we make certain assumptions about the
Hessian matrix H and the noise covariance matrix Σ, similar to the previous works (Canatar et al.,
2021; Spigler et al., 2020; Maloney et al., 2022; Cui et al., 2021; Brandfonbrener et al., 2024), we
can show that the loss follows a multi-power law.
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Assumption 1. Let λi be the ith eigenvalue of H , and Σii be the element of Σ in the ith column
and ith row. λi

i.i.d.∼ p(λ) ∝ λα, Σii
i.i.d.∼ q(Σ) for all i ∈ {1, 2, . . . , d}, where α > −1 and

λ ∈ [0, D]. Also, given some ρ ∈ R and µ ∈ R+, we have that

Eq[Σ|λ] ∝ µλρ exp(−Gλ), Eq[Σ] = µ,

where D,G are positive constants independent of LR schedule E.

3.2 Loss Formula
Based on the setup and assumption, we could derive the loss formula achieved by Stochastic Gradi-
ent Descent with iteration t steps.
Theorem 1. Under Assumption 1, given θT ∼ Φ(θ0, E), we have the following estimate of E[L(θt)]
for any 0 ≤ t ≤ T :

M̃t(θ0, E) :=L0 +AS1(t)
−α−2 −Rηmax(S1(t) +

1

C
)−α−ρ−1

−B

T∑
k=2

(ηk−1 − ηk)
(
1− (C Sk(t) + 1)−α−ρ−1

)
,

where L0 = d
4ηmaxµ, and A,B,C,R are positive constants independent of LR schedule E and

Si(t) :=
∑t

k=i ηk. The estimation error is bounded as

|E[L(θt)]− M̃t(θ0, E)| = O(S1(t)
−α−3 + η2max).

Compared with law (1), the above derivation contains an additional term that Rηmax(S1(t) +
1
C )−α−ρ−1. The next corollary from Theorem 1 states that this term can be negligible under quite
a mild condition so that, in our theoretical setting, we can completely match the multi-power law
derived empirically. To align the parameterization in the empirical derivation, we reparameterize
that α = α+ 2, and β = α+ ρ+ 1 in the next corollary.
Corollary 1. If S1(t) >

1
ηmax

, with the same setting in Theorem 1, we have the following estimate
of E[L(θt)] for any 0 ≤ t ≤ T :

M̃t(θ0, E) :=L0 +AS1(t)
−α︸ ︷︷ ︸

constant LR term

−B

T∑
k=2

(ηk−1 − ηk)
(
1− (C Sk(t) + 1)−β

)
︸ ︷︷ ︸

loss reduction term

The estimation error is bounded as

|E[L(θt)]− M̃t(θ0, E)| = O(S1(t)
−α−1 + η2max).

The detailed proof of Theorem 3 and Corollary 1 can be found in Appendix L. Beyond this quadratic
case, to get a more systematic theory, which is also more realistic, we should take inspiration from
data and the loss landscape side. Recent work proposes a river-valley loss landscape perspective
based on sharpness analysis, to understand the advantage of the WSD schedules (Wen et al., 2024).

4 Empirical Validation of the Multi-Power Law
The multi-power law (MPL) comes from our speculations from our experiments with special types of
LR schedules. Now we present extensive experiments to validate the law for common LR schedules
used in practice. Our experiments demonstrate that MPL requires only two or three learning rate
(LR) schedules and their corresponding loss curves in the training set to fit the law. The fitted MPL
can then predict loss curves for test schedules with different shapes and extended horizons. Details
of the experimental setup, fitting approaches, and configurations are provided in Appendix H.

4.1 Results

Generalization to Unseen LR Schedules. The MPL can accurately predict loss curves for LR
schedules outside the training set. As illustrated in Figure 2, despite the absence of WSD LR sched-
ules in the training set and the variety of decay functions, MPL successfully predicts their loss curves
with high accuracy. Furthermore, MPL can generalize to two-stage schedules with different ηB val-
ues from the training set, effectively extrapolating for both continuous and discontinuous cases.
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Figure 6: The examples of long-horizon non-monotonic schedules. The one-power line represents
the auxiliary process curve. Left: The cyclic schedule with 72,000 steps, where each half-cycle
spans 8,000 steps, and the first decay begins after 16,000 steps. Right: The random-polyline sched-
ule, consisting of piecewise linear interpolation between randomly selected intermediate learning
rates in the range of 3× 10−5 to 3× 10−4, with LR milestones occurring at intervals of 8,000 steps.
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Linear Schedule

Figure 7: Left: Predictions for target loss at 128,000-step for cosine schedule using MPL and CDSL
fitting. The CDSL uses the final losses of six cosine losses from 14960 steps to 72000 steps, marked
as Loss Ends(C). The MPL uses 24000-step constant and cosine curves, marked as Loss Curves(M).
Right: Comparison of MPL and CDSL fits on the open-source 7B OLMo curve generated with a
linear schedule.

Generalization to Longer Horizons. MPL demonstrates the ability to extrapolate loss curves for
horizons exceeding three times the training set length. In our runs, the training set contains approxi-
mately 22,000 post-warmup steps, while the test set includes curves with up to 70,000 post-warmup
steps. These results validate MPL’s capability to generalize to longer horizons. Notably, the data-
to-model ratio for a 25M-parameter model trained over 72,000 steps (36B tokens) is comparable to
Llama2 pretraining (70B model, 2T tokens), consistent with trends favoring higher data volumes for
fixed model sizes (Dubey et al., 2024).

Generalization to Non-Monotonic Schedules. MPL extends effectively to complex non-
monotonic schedules, although derived for monotonic decay schedules. The test set includes chal-
lenging cases such as cyclic schedules and the random-polyline schedule, where LR values are
randomly selected at every 8,000 steps and connected by a polyline. These experiments, conducted
on a 25M-parameter model over 72,000 steps, also represent a demanding long-horizon scenario. As
shown in Figure 6, MPL accurately predicts these long-horizon non-monotonic schedules, demon-
strating its robustness and adaptability.

4.2 Comparison with Baselines

Comparison with Chinchilla Law. While Chinchilla-style data scaling laws, which we abbrevi-
ate as CDSLs, are widely utilized (Muennighoff et al., 2023; Hoffmann et al., 2022), MPL offers
several distinct advantages: (1) MPL incorporates LR dependency, unlike CDSLs, and (2) MPL
predicts the entire loss curve, whereas CDSLs are restricted to final loss predictions. Based on these
advantages, the MPL shows higher sample efficiency than the CDSLs. Moreover, we find that two
curves of different schedules are enough to fit the MPL with generalizability, as details are discussed
in Appendix B.3. As shown in Figure 7, MPL achieves 1/4 error in final loss prediction with 1/4
compute budget compared to CDSL. MPL also shows advantages in the fitting of open-source 7B
OLMo (Groeneveld et al., 2024) in Figure 7.

Comparison with Momentum Law. The MPL shows higher accuracy and can apply to the dis-
continuous schedules compared to the recent Momentum Law (Tissue et al., 2024). The Momentum
Law (MTL) (Tissue et al., 2024) incorporates LR annealing effects by modeling loss reduction
based on the momentum of LR decay. However, MTL indicates an exponential loss reduction in
two-stage LR schedules, which contradicts our observations (see Figure 3). Additionally, as shown
in Figure 20, MPL outperforms MTL in predicting loss reduction for WSD schedules with linear LR
decay. In the highlighted regions, MPL achieves high accuracy in the decay stage, whereas MTL
exhibits substantial error. A summary of prediction results across test sets is provided in Table 1,

9



Table 1: Model performance comparison. R2, MAE, RMSE, PredE, and WorstE are the coefficient
of determination, Mean Absolute Error, Root Mean Square Error, Prediction Error, and Worst-case
Error, respectively.

Model Size Method R2 ↑ MAE ↓ RMSE ↓ PredE ↓ WorstE ↓

25M Momentum Law 0.9904 0.0047 0.0060 0.0014 0.0047
Multi-power Law (Ours) 0.9975 0.0039 0.0046 0.0012 0.0040

100M Momentum Law 0.9959 0.0068 0.0095 0.0022 0.0094
Multi-power Law (Ours) 0.9982 0.0038 0.0051 0.0013 0.0058

400M Momentum Law 0.9962 0.0071 0.0094 0.0025 0.0100
Multi-power Law (Ours) 0.9971 0.0053 0.0070 0.0019 0.0070

where MPL consistently outperforms MTL in both average and worst-case scenarios. The details of
the MTL and its relation to the MPL can be found in Appendix B.1.

5 The Multi-power Law Induces Better LR Schedules
Due to the high cost of each pretraining run and the curse of dimensionality for LR schedules, it
is generally very impossible to tune the LR for every training step. However, in this section, we
show that by using the predicted final loss from the MPL, we can optimize the entire LR schedule
to significantly reduce the final loss and beat the cosine schedule.

5.1 Method

Given that the Multi-Power Law (MPL) provides an accurate estimation of the loss, the final loss
prediction by MPL can serve as a surrogate for evaluating schedules. Consider the learning rate (LR)
as a T -dimensional vector η = (η1, . . . , ηT ) and the final loss L(η) under given hyperparameters.
The goal is to identify the optimal LR schedule η∗ = argmaxη L(η). We parameterize the final
loss prediction as LΘ(η) using MPL with parameters Θ = {L0, A,B,C, α, β, γ}. The parameters
Θ̂ can be estimated as described in Section 4. Using LΘ̂(η) as a surrogate for L(η), we approximate
η∗ by solving:

η̂ = min
η
LΘ̂(η) s.t. 0 ≤ ηi+1 ≤ ηi, ∀ 1 ≤ i ≤ T − 1. (12)

This process induces an “optimal” schedule η̂ derived from MPL with parameter Θ̂. We set the
initial learning rate η0 to 3 × 10−4 and assume ηi is monotonically non-increasing based on prior
knowledge. The high-dimensional vector η is optimized using the Adam optimizer. Additional
details are provided in Appendix I.

5.2 Results
Induced LR Schedule Exhibits Stable-Decay Behavior. The induced learning rate schedule fol-
lows a Warmup-Stable-Decay (WSD) pattern, comprising two main stages after the warmup phase.
It maintains a peak LR for an extended period, followed by a rapid decay to a near-zero LR, as
shown in Figure 1 and Figure 17.
Induced LR Schedule Outperforms Cosine Schedule. Figures 1 and 17 compare the induced
schedules with the cosine and WSD schedules across models ranging from 25M to 400M. Figure 18
extends this comparison to longer training horizons. The induced schedules consistently outperform
the cosine schedule, achieving a margin over 0.02. Notably, no WSD-like schedule is present in the
training set, predicting such loss curves an extrapolation by MPL.
Characteristics of the Induced Schedules. The induced schedules provide insights into hyper-
parameter tuning for WSD schedules. Observations from Figures 1 and 17 highlight the following:
(1) Our findings suggest that a lower ending LR—typically below 1/20 of the peak LR—is more ef-
fective in most scenarios, compared to 1/10 in prior research (Hoffmann et al., 2022; Kaplan et al.,
2020). Further details are provided in Appendix I. (2) f(x) = (1 − x)−α, where α ≈ 1.5, well
captures relationship between normalized steps t̃ and normalized LRs η̃avg in our experiments. This
simplified version, referred to as WSD with Sqrt-Cube Decay (WSDSC), is effective across various
model sizes and types, as shown in Figures 8 and 21. See Appendix B.2. (3) The induced schedules
align closely with the optimal decay steps identified via grid search, as illustrated in Figure 1. See
Appendix I.

6 Conclusions and Future Directions
In this paper, we introduce the multi-power law for scheduler-aware loss curve prediction, which
can accurately predict loss curves and inspire optimal scheduler derivation. Our findings enhance
the understanding of training dynamics in large language models, potentially improving training
efficiency. In future work, we will consider refining the law, exploring its underlying mechanisms,
and studying the LR relationship with unfixed maximum LR.
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Figure 8: Left: Long horizon prediction for the cosine and constant schedules. From up to down,
the model sizes range from 25M to 1B. Right: The comparison on 1B models between the opti-
mized schedule (Opt), cosine schedule (Cosine), and the simplified optimized schedule (WSDSC,
see Section 5.2), a WSD schedule with sqrt-cube decay.
Table 2: Downstream performance comparison for Cosine and induced schedules. Percentage
changes (↑ or ↓) indicate relative improvements or regressions compared to the Cosine schedule.

Downstream Dataset LAMBADA HellaSwag PIQA ARC-E
Cosine Schedule 46.54 37.12 65.13 43.56
Induced Schedule 48.71 (↑ 2.17%) 37.74 (↑ 0.62%) 65.07 (↓ 0.06%) 44.09 (↑ 0.53%)

A Discussion

In this section, we conduct experiments over hyper-parameters to check the applicability range of the
multi-power law (MPL). The hyperparameters include the model types, model sizes, peak learning
rates, and random seeds. In addition to empirical results, we can theoretically derive a multi-power
law under a case with a quadratic loss function, providing insight into the nature of the MPL.
Model Types. We validate the MPL on GPT-2 (Radford et al., 2019) and OLMo (Groeneveld
et al., 2024) models to evaluate the generalizability of the MPL across model architectures. In the
preceding experiments, we used the Llama2 (Touvron et al., 2023). For experiments on GPT-2, the
validation process followed the procedure fit with curves of cosine and constant schedules, described
in Section 4. For the 7B OLMo model, we fit the MPL on the open-source training curve, which
employs a linear decay schedule, as shown on the right of Figure 7. Our results show that the MPL
presents a high prediction accuracy across different model types for both self-run and open-source
experiments. Details see Appendix J.
Model Size. We extended the MPL and its induced schedule to a larger scale by training a 1B-
parameter model on 144B data tokens. The MPL was fitted over 24,000 steps and successfully
predicted loss curves up to 72,000 steps, as shown in Figure 8. We tested the performance of the
induced 72,000-step schedule and its simplified version (see Section 5.2) against the widely used co-
sine schedule. The induced schedule outperformed the cosine schedule, while the simplified version
achieved results between the induced and cosine schedules. To further validate the effectiveness of
the induced schedules, we compared downstream task performance for models trained using the co-
sine and induced schedules. As shown in Table 2, the induced schedule led to overall improvements
in downstream tasks. Details see Appendix J.
Peak Learning Rate Ablation. We evaluated the applicability of the MPL across different peak
learning rates. In previous experiments, the peak learning rate was fixed at 3 × 10−4. However, as
shown in Figure 4, the empirical behavior of two-stage learning rate schedules deviates when the
peak learning rate increases. To investigate this, we conducted experiments with peak learning rates
of 4× 10−4 and 6× 10−4. The MPL achieved an average R2 value of 0.9965 for the 4× 10−4 case
and 0.9940 for the 6×10−4 case, demonstrating consistently high accuracy. Details see Appendix J.

Batch Size Ablation. We conduct ablation experiments on sequence batch sizes of 64 and 256
over 25M models, apart from 128 in previous experiments. The MPL presents a consistent accuracy
with R2 higher than 0.9970. See Appendix J.
Random Seed. We performed an ablation study to examine the impact of random seed variability
on curves. We trained a 25M-parameter model for 24,000 steps using the cosine schedules with
three random seeds. As shown in Figure 20, the standard deviation of the resulting loss values was
approximately less than 0.001, establishing a lower bound for prediction errors. It highlights the
prediction accuracy of the MPL discussed in Section 4.
Theoretical Results. We also present a theoretical analysis for quadratic loss functions optimizing
Gradient Descent (GD) with noise. We can prove that the multi-power law arises when the Hessian
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Figure 9: Linear regression between loss reduction and LR reduction over different schedules. The
total step number is 24000 and the model size is 25M. WSD-Cosine denotes the WSD schedule
with cosine decay function. The decay steps for the WSD schedule and variants are 4000. Left:
the learning rate schedules and corresponding loss curves. Right: the loss reductions over LR
reductions for different schedules, as well as their linear regression. The mean R2 value is 0.9980.

and noise covariance matrices follow a power-law distribution in their eigenvalues. See Appendix 3
for more explicit derivation.

B Simplification of Formula, Usage and Fitting.

B.1 Simplification of Formula

We simplify the full multi-power law (MPL; see Equation (1)) at various levels, trading computa-
tional complexity for reduced accuracy. Table 3 summarizes the fitting performance of simplified
versions and variants of the MPL. The fitting experiments are conducted over 25M models.

Table 3: Summary of fitting results for simplified laws. Each row corresponds to a specific law, re-
porting metrics including R2, MAE, RMSE, PredE, and WorstE. Higher R2 values and lower MAE,
RMSE, PredE, and WorstE indicate better fitting performance. See Table 1 for metric definitions.

Formula Differences from MPL R2 ↑ MAE↓ RMSE↓ PredE↓ WorstE↓
OPL LD(t) = 0 (B = 0) 0.8309 0.0378 0.0412 0.0111 0.0241

LLDL G(x) = 1 0.9797 0.0077 0.0101 0.0023 0.0108
No-γ γ = 0 0.9961 0.0046 0.0053 0.0014 0.0041
SPL x = t− k 0.9921 0.0066 0.0075 0.0020 0.0069
MEL G(x) = 1− e−Cx, γ = 0 0.9934 0.0044 0.0057 0.0013 0.0047
MTL G(x) = 1− e−Cx, x = t− k 0.9904 0.0047 0.0060 0.0014 0.0047
MPL (Ours) 0.9975 0.0039 0.0046 0.0012 0.0040

No Loss Reduction. The necessity of the loss reduction term LD(t) can be assessed by fitting a
one-power law (OPL), a simplified MPL where LD(t) = 0 or equivalently B = 0:

LOPL(t) = L0 +A · S1(t)
−α, S1(t) :=

t∑
τ=1

ητ . (13)

This formulation approximates the loss curve by linearizing the cumulative learning rate (LR) ef-
fects. The fitted results (first row of Table 3) exhibit significant degradation compared to the full
MPL, demonstrating the critical role of LD(t).
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Linear Approximation of Loss Reduction. The loss reduction term LD(t) (defined in Equa-
tion (2)) can be simplified by treating the scaling function G(x) as a constant:

LD(t) ≈
t∑

k=2

B(ηk−1 − ηk) = B(η1 − ηt).

Despite its simplicity, we observe a near-linear relationship between LD(t) and the LR reduction
(η1 − ηt), regardless of the LR schedule type, as shown in Figure 9. This motivates the Linear Loss
reDuction Law (LLDL):

LLLDL(t) = L0 +A · S1(t)
−α +B(η1 − ηt). (14)

As shown in Table 3, LLDL achieves significantly better accuracy than OPL, although it underper-
forms the full MPL. However, this formulation is unsuitable for optimizing schedules, as its results
collapse to trivial solutions.

Loss Reduction Without γ. Next, we simplify G(x) by setting γ = 0, yielding the No-γ Law:

LNo−γ = L0 +A · S1(t)
−α +B

t∑
k=2

(ηk−1 − ηk) ·G(Sk(t)). (15)

Results (third row of Table 3) indicate a slight performance drop, confirming that γ enhances fitting
accuracy with minimal additional computational cost. Thus, we retain γ in the final MPL.

Step-Based Approximation. An alternative is to replace G(η−γ
k Sk(t)) with a step-based formu-

lation, G(t− k). This yields the Step Power Law (SPL):

LSPL = L0 +A · S1(t)
−α +B

t∑
k=2

(ηk−1 − ηk) ·G(t− k). (16)

While simpler, this approximation reduces prediction accuracy and contradicts empirical results, as
it implies loss reduction even when LR reaches zero.

Exponential Approximation. Substituting G(x) with an exponential function G(x) = 1− e−Cx

gives the Multi-exponential Law (MEL):

LMEL = L0 +A · S1(t)
−α +B

t∑
k=2

(ηk−1 − ηk) ·G(Sk(t)). (17)

Results (fifth row of Table 3) show a performance drop compared to the power-based MPL, consis-
tent with observations in Section 2.

Relation to Momentum Law. The concurrently proposed Momentum Law (MTL) is in the form
of

LMTL(t) = L0 +A · S1(t)
−α +B · S2, where S1 =

t∑
i=1

ηi, S2 =

t∑
i=2

i∑
k=2

(ηk−1 − ηk)λ
i−k.

λ < 1 is a hyper-parameter of MTL. It is indeed a variant of MPL since

S2 =

t∑
i=2

i∑
k=2

(ηk−1 − ηk)λ
i−k =

t∑
k=2

(ηk−1 − ηk)

t∑
i=k

λi−k =

t∑
k=2

(ηk−1 − ηk)

(
1− λt−k+1

1− λ

)
.

Thus, the Momentum Law (MTL) is a variant of MPL with an exponential step-based approxima-
tion:

LMTL(t) = L0 +A · S1(t)
−α +B′ ·G(t− k + 1), G(x) = 1− e−C′x.

Here, B′ = B
1−λ , C

′ = − log λ. While MTL incorporates step-based decay, its performance (last
second row of Table 3) lags behind MEL, highlighting the limitations of step-based approximations.
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Figure 10: Approximation of decay functions.

B.2 Approximation of Decay Function

To facilitate the use of the optimized LR schedules and find out their decaying trends, we try to ap-
proximate the decay function of the WSD-like optimized schedules. Given the optimized schedules
S = {t, η}N,T , where N and T denote model sizes and training steps, we compute the normalized
LRs and steps as follows:

η̃ =
η

ηmax
, t̃ =

t− tmin

tmax − tmin
.

Then we average across N and T as shown in the left of Figure 10, computing an averaged LR
schedule η̃avg. Then we utilize a symbolic regression approach to search for the approximate func-
tion form of the decay function. We get that f(x) = (1− x)−α best capture the relation between t̃
and η̃avg. In our experiments, α = 3

2 fits well and we show the average schedule against different
candidates function form in the right of Figure 10. We use the WSD with the decay function f to
train a 25M model with 24000 steps and 4000 decay steps. The result with a final loss of 3.274
slightly outperforms the WSD with exponential function (Hu et al., 2024) with a final loss of 3.276,
but can not match the directly optimized schedule, which reaches below 3.269.

B.3 The Selection of Training Set

We conduct ablation experiments over the loss curves in the training sets, including two-stage, co-
sine, and constant LR schedules. We remove one of them and keep the other two as training sets.
Then we fit over these subsets of the full training sets in the same approach with the multi-power
law. The runs are over 25M models. The resulting coefficients are shown in Table 4 and the resulting
test metrics are shown in Table 5. The test metrics are measured over the full test sets, including
different schedule types and horizons. There are some observations as follows:

• As shown in Table 4, the coefficients of different fittings are consistent overall, while there
are a few parameters that vary, like C. We conjecture there are some correlations between
C and other parameters like γ. A refined form of multi-power law would be expected in
future work.

• As shown in Table 5, the multi-power law shows its robustness over the training sets, with
comparable performances between the full-set fitting and the subset-fitting results.

C Sanity Check on Derivation and Optimization

Sanity Check on Two(Multi)-Stage LR Schedule. We provide an empirical sanity check of our
multi-power law in the case of the two-stage and multi-stage LR schedules.

From the perspective of coefficients of the multi-power law, in 25M experiments, we have the final
fitted coefficients as follows: A = 0.507, B = 446.4, C = 2.070, α = 0.531, β = 0.406,
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Items A B C α β γ L0

Full 0.507 446.4 2.070 0.531 0.406 0.522 3.1
Cosine + 2-stage 0.5272 455.0 6.276 0.5032 0.3622 0.4172 3.147

Constant + 2-stage 0.5279 457.0 7.569 0.5067 0.3613 0.4002 3.149
Constant + Cosine 0.5292 477.4 0.854 0.5041 0.3189 0.6256 3.146

Table 4: Parameters for Different Fittings. “Full” denotes the fitting with the full training set, all
three loss curves.

Model R2 ↑ MAE ↓ RMSE ↓ PredE ↓ WorstE ↓
Full 0.9975 0.0039 0.0046 0.0012 0.0040

Cosine + 2-stage 0.9971 0.0040 0.0046 0.0012 0.0048
Constant + 2-stage 0.9976 0.0037 0.0045 0.0011 0.0039
Constant + Cosine 0.9993 0.0020 0.0031 0.0006 0.0060

Table 5: Performance Metrics for Different Fittings.

γ = 0.522, L0 = 3.1. It is noteworthy that the scales of the coefficients align with the experiments
of two-stage and multi-stage cases, shown in Figure 4 and Figure 5.

From the perspective of experimental validation, the multi-power law should be applicable to two-
stage cases and multi-stage cases. On the one side, the training set contains a two-stage LR schedule
with ηB = 9 × 10−5, so our law could overfit the two-stage LR schedule loss along with other
schedule losses. On the other side, we test the fitted law onto the two-stage learning rate schedules
with ηB at 3 × 10−5 and 1.8 × 10−4. As shown in Figure 2, the multi-power law can be extended
to more extreme two-stage LR schedule cases. Moreover, the prediction of fitted law over the multi-
stage schedules is presented in the right of Figure 11.

In this regard, the multi-power law could capture both the continuous and discontinuous LR sched-
ule, which might shed light on the training dynamics of large language models.

Sanity Check for Optimized LR Schedule. In Figure 1, we present the optimized LR schedule
based on the multi-power law. As a sanity check, we utilize the multi-power law to predict the loss
curve based on the optimized LR schedule. We compare the predicted curve with the actual training
curve in Figure 11. Overall, the prediction of multi-power law over the optimized LR schedules
aligns with the ground truths. In this way, we could validate that the optimized LR schedules lie in
the regime where the multi-power law holds. We verify that under the discussion above scenarios,
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Figure 11: Left: The prediction of optimized LR schedule. The average maximum error ratio of
loss curves is around 0.007. Right: The multi-power Law can predict the training curves with
Multi-Stage LR schedules for 25M models. The multi-power law can be applied consistently over
different stages of the schedule. The schedule consists of 19 stages. Each stage, except the initial
one, consists of 400 steps. The LR reductions between adjacent stages are 1.5 × 10−5, so in total,
the learning rate decreases from 3× 10−4 to 3× 10−5.
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the performance improvement obtained through optimization is not overwhelmed by the noise errors
introduced.

D Related Work

Optimal Learning Rate Schedule. Designing an effective learning rate schedule for deep learn-
ing has been a prominent research focus. Smith (2017) proposed a cyclical learning rate sched-
ule. Loshchilov & Hutter (2017), inspired by warm restarts, introduced the cosine learning rate
schedule, demonstrating its superiority across multiple experimental settings. From a theoretical
perspective, Li & Arora (2019) introduced an exponential decay learning rate schedule based on the
equivalence of weight decay. Xu et al. (2019) utilized reinforcement learning algorithms to learn a
learning rate schedule adaptively. Pan et al. (2021) proposed an eigenvalue-dependent step sched-
ule by incorporating the eigenvalue distribution of the objective function’s Hessian matrix into the
design of the learning rate scheduler. Geiping & Goldstein (2023) experimentally compared the
performance differences of various learning rate schedules, concluding that quick annealing of the
schedule aids in performance improvement. Recently, Hu et al. (2024) introduced a three-phase
learning rate schedule with warm-up, stable, and decay phases, showcasing its superior performance
across multiple datasets.

However, some of these papers focus on heuristically designing high-performance learning rate
schedules without a comprehensible, principled approach to optimize the schedule. Some of the oth-
ers try to optimize schedules within a function subspace. The effectiveness of the resulting function
may be restricted by the subspace. Our paper seeks to open the door to a principled and comprehen-
sible path of the optimal learning rate schedule design.

Scaling Laws. Scaling laws have arguably been the driving force behind the development of large
language models. Initially proposed by Kaplan et al. (2020) and further developed by Hoffmann
et al. (2022), Kadra et al. (2023), Aghajanyan et al. (2023) and Muennighoff et al. (2023), among
others, most scaling laws adopt a power law form. However, due to the lack of dependence on the
learning rate, these laws typically predict only the final loss of a training process, lacking guidance
for the full training curve. This is because only the final loss bears a full LR decay while the LR
decays at the intermediate steps are not sufficient. Typically, they need more than 10 training curves
to obtain the scaling law of the final losses for one particular schedule type, the Cosine schedule
practically (Hoffmann et al., 2022; Muennighoff et al., 2023). As a comparison, we could fit the
LR-dependent multi-power law applicable across different LR schedule types within only 2-3 loss
curves.

Several explanations for the power law form of scaling laws have been proposed, ranging from the
perspective of data manifolds (Sharma & Kaplan, 2020) to the power law distribution of eigenvalues
in the loss landscape (Lin et al., 2024). While our paper does not delve into the discussion about the
model dimension scaling, we discuss the scaling along the data dimension along with the LR dimen-
sion. We believe it offers new perspectives and a novel starting point for theoretical investigations.

Hyperparameters Optimization. Hyperparameter optimization (HO) has long been a focal point
of research within the machine learning community. For learning rate schedules (LR schedule),
early works primarily employed Bayesian optimization-based approaches (Hutter et al., 2011; Snoek
et al., 2012; Bergstra et al., 2013) or bandit-based solutions (Li et al., 2018) to tune hyperparameters.
However, these works typically parameterized LR schedule as a learnable constant or a family of
functions with learnable parameters, without fully exploring the potential of LR schedule. While
this form of parameterization offers theoretical and experimental convenience, it often lacks inter-
pretability. Furthermore, methods proposed in Teng et al. (2021); Jin et al. (2021) aim to adjust
LR schedule during training automatically, but these approaches cannot identify the optimal LR
schedule before training begins, and they fail to fully generalize across different datasets, underuti-
lizing the scaling law information followed by the model. In contrast, Klein et al. (2022) selects
hyperparameters based on differences in learning curves for various hyperparameters, while Kadra
et al. (2024) recognizes the power law phenomenon and develops HP methods based on power law.
However, we propose a more robust scaling law than the power law specifically for the LR schedule
dimension and present a comprehensive framework for optimizing LR schedule.

Theory in Scaling Law. Although there are numerous experimental studies on scaling laws,
our understanding of the theoretical explanation and origins of scaling laws remains very limited.
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Sharma & Kaplan (2020) demonstrated that the exponent of the power law is related to the intrinsic
dimension of the data in a specific regression task. Hutter (2021) examined a binary classifica-
tion toy problem, deriving a scaling law with respect to data dimensionality for this problem. Jain
et al. (2024) investigated scaling laws in the context of data selection. Bahri et al. (2024) assumed
a power-law spectrum on the covariates, obtaining a scaling law with respect to data and model
dimensions in the setting of least squares loss. Bordelon et al. (2024) considered scaling laws in
regression problems under gradient flow. Atanasov et al. (2024) and Lin et al. (2024) discussed the
formation of scaling laws in high-dimensional linear regression problems. Notably, our theoretical
analysis is the first to provide a loss prediction throughout the training process from the perspective
of the learning rate schedule, formally resembling the multi-power law observed in our experiments.

E Limitations

Our study presents several limitations that warrant acknowledgment. Primarily, our investigation
into the influence of hyperparameters on the loss curve is confined to the learning rate. Additionally,
in our examination of the learning rate, we constrain the maximum learning rate to a predetermined
value, owing to the complex relationship between the maximum learning rate and the loss. More-
over, we note the prediction bias in some extreme cases, as mentioned in Appendix A, requiring a
more sophisticated formula to alleviate the error accumulation. We also note the parameter redun-
dancy issue shown in Appendix B.3. Furthermore, our current work does not provide deep insights
into the underlying mechanisms deriving this multi-power law. Without a more comprehensive the-
oretical analysis, our proposed law may be incomplete or merely match the surface form of the
observed phenomena.

Nevertheless, despite these limitations, we contend that our contributions, including the schedule-
aware loss curve prediction and optimized LR schedule, offer valuable insights into the dependency
of loss-decaying on the LR schedules and the trade-off in schedule optimization. These advance-
ments pave the way for a more nuanced understanding of training dynamics and potentially more
efficient training strategies for large language models.

F Discussions of Multi-Power Law Derivation (Section 2)

F.1 Chinchilla Data Scaling Laws for the Final Loss Prediction.

Considering a fixed hyper-parameter setting, including the batch size, learning rate schedule, model
type, previous work Muennighoff et al. (2023); Hoffmann et al. (2022) mainly follows the Chichilla
Scaling Laws to extrapolate model size N and data quantity D: L(N,D) = L0 + A ·D−α + B ·
N−β . According to the form of law, the data scaling is roughly independent of the model scaling.
Thus, we could focus on the data scaling and refer to L(T ) = L0 + A · T−α as the Chinchilla
Data Scaling Laws (CDSLs), where T denotes the training steps given the fixed batch size. The
Chinchilla law is exclusively applicable to the final training loss because the Chinchilla law is LR-
independent and the mid-training parts of loss curves commonly bear insufficient learning rate decay
compared to the final loss (Hoffmann et al., 2022). As shown on the left of Figure 7, to extrapolate
the final loss, we first need to generate several (typically more than 10 (Hoffmann et al., 2022;
Dubey et al., 2024)) loss curves given a specific schedule (typically the Cosine schedule). Then we
could fit CDSL over the final losses. Noticeably, the validation loss decreasing by 0.001 matters
in the LLM scenario, because slight progress in loss may require intense computation practically,
especially on a large scale. Moreover, the validation loss probably correlates with the emergent
ability in downstream tasks. A little difference in the loss scale may indicate a steep deviation in the
downstream performance (Du et al., 2024).

F.2 Motivation: Continuous Approximations of the Training Dynamics.

The rationale behind this approach is that matching the learning rate sum between the two training
processes should result in similar training losses, and thus a more accurate approximation can be
obtained by further exploring the loss reduction term LD(t). To see this, we take SGD as an example.
In theory, if the learning rates used in training η1, . . . , ηT are small, then SGD is known to be a first-
order approximation of its continuous counterpart (Li et al., 2017; Cheng et al., 2020; Elkabetz
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Figure 12: Left: Multi-stage schedule and interpolated LR schedules between the multi-stage LR
schedule and the auxiliary schedule. There are 9 stages in our case, and the length of each stage,
except the first one, is 90. The step points with the equal LR sum as the final step are marked
in black and linked with the dash-point line. The learning rates before 8000 steps are constant at
3 × 10−4. Right: Corresponding training curves for the actual multi-stage training curve, the
auxiliary schedule as well as their interpolation.
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Figure 13: Loss curves trained with constant LR schedules. Left: The learning rates of schedules
range from 3.0 × 10−4 to 3.6 × 10−3. The total step number is 14400. The loss curves are all fit
with Equation (5). The mean MSE is 1.55 × 10−5 and the mean coefficient of determination (R2)
is 0.9976. Right: Model sizes include 25M, 100M, and 400M. The total step number is 72000 and
LR is 3.0× 10−4. The mean MSE is 8.04× 10−5 and the mean R2 is 0.9947.

& Cohen, 2021), gradient flow, which evolves the parameters θ(τ) according to the differential
equation, dθ(τ)

dτ = −∇L(θ(τ)), where ∇L(θ) stands for the gradient of the loss function at θ, and
τ is a continuous time variable. In this continuous approximation, the step t of SGD corresponds to
the evolution of θ(τ) for a small continuous time interval of length ηt. When the LRs are extremely
small, the parameter after t steps of SGD should be close to θ(τ) with τ =

∑t
k=1 ηk. This motivates

us to match the learning rate sum
∑t

k=1 ηk between the two training processes to approximate the
loss curve. This argument can be extended to other optimization algorithms, such as Adam (Ma
et al., 2022). However, these continuous approximations can be loose for realistic LR schedules,
thus necessitating a more detailed analysis of the loss reduction term LD(t).
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F.3 Incorporating the Warmup Stage.

In practice, many learning rate schedules include a warmup stage where the learning rate gradually
increases from zero to a peak value. To incorporate the effect of this stage, we can change the
definition of auxiliary process to include the same warmup stage before using the constant learning
rate. Then similar to the argument in Section 2.1, letting W be the sum of learning rates in the
warmup stage, we can change the auxiliary loss formula to L̂const(Z(t)) = L0+A ·(W+S1(t))

−α.
Our multi-power law then becomes

L(T ) ≈ L0 +A · (W + S1(t))
−α −

t∑
k=2

B(ηk−1 − ηk)(1− (Cη−γ
k Sk(t) + 1)−β). (18)

This is the actual law we use in experiments since practical schedules often include a warmup stage.

G Two-Stage Experiments (Section 2.2)

In this section, we show the details of the investigation of the variation of coefficients of the power
law of two-stage LR schedules.

Experiment Setting and Law Fitting. The default setting is ηA = 3 × 10−4, ηB = 3 × 10−5,
TA = 8000. In the ablation experiment, ηA ranges from 5 × 10−5 to 1 × 10−3, ηB ranges from
4 × 10−5 to 2.9 × 10−4, and TA ranges from 4000 to 28000. The second stage lengths range
from 1000 to over 6000. We follow Hoffmann et al. (2022) to utilize Huber loss as the objection
function (Huber, 1992),

min
Θ

∑
x

Huberδ(log L̂DΘ(TA + x)− log LD(TA + x)),

where Θ = {B̃, C̃, β}, and we set δ = 1× 10−2. For each experiment, we use the Adam optimizer
with a learning rate at 1 × 10−4, and total steps of 20000. Here we do not conform to the L-BFGS
algorithm due to the function form of U(s). The parameters are initialized based on the estimation
of asymptotic values of loss reduction and the slopes at the beginning of the second stage.

Fixed β Results. We propose a function form in Equation (6) to fit the loss reduction curve. The
form guarantees the loss reduction zero when there is no LR reduction and fits with a power law.
To explore the coefficient relation with the learning rate, we first investigate the coefficients fit in
the ablation experiments. For the sake of further derivation and based on the fitted coefficients in
the experiments, we fix the exponent β as LR-independent parameter 0.4. Then we re-fit the loss
curves given β = 0.4 to validate the power form holds and further investigate the dependency of
different parameters on the ηA, ηB, and TA. The relation pattern is presented in Figure 4. Part of
the two-stage schedules experiments are shown in Figure 14, including the ablations over the first
stage as well as the second stage learning rates. Although β is fixed, the error margin is feasible for
further derivation.
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Figure 14: Left: Varying ηA, the loss reductions over steps x of two-stage LR schedules; Right:
Varying ηB, the loss reductions over steps x of two-stage LR schedules.
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H Details of Validation Experiments (Section 4)

Training Set, Test Set, and Model Training Settings. The validation experiments are framed as
a machine learning task, where the loss curves in the training set are used to fit the multi-power law,
which is then evaluated on the test set to report prediction accuracy.

The default training set consists of three loss curves: one trained with a cosine learning rate schedule,
one with a constant learning rate schedule, and one with a two-stage learning rate schedule. The
default test set includes unseen learning rate schedule types, loss curves over longer horizons, and
more extreme two-stage learning rate schedules. Detailed descriptions of the training and test sets
are provided in Table 6. Unless otherwise specified, the ending learning rate is set to 1/10 of the
peak learning rate (3×10−5 by default). The warmup phase spans 2,160 steps, but as the focus is on
the post-warmup phase, only the post-warmup sections are used for fitting (Hu et al., 2024; Tissue
et al., 2024).

The loss curves used in these experiments are generated from training the Llama2 model. The batch
size is fixed at 128, and the sequence length is set to 4,096 across all configurations, resulting in
0.5M tokens per step. To simplify, data volume is described in terms of steps, where 10,000 steps
consume 5B tokens. Validation loss is used as the default performance measure. Detailed model
training hyperparameters are listed in Table 7, and a summary of the model series parameters used
in the experiments is presented in Table 8.

Set Schedule Type Total Lengths ηB/ηA

Training
Constant 24000
Cosine 24000

Two-stage 16000 0.3

Test

WSD 24000
WSDLD 24000

Two-stage 16000 0.1
Two-stage 16000 0.6
Constant 72000
Cosine 72000

Table 6: Summary of training and test sets.

Default Hyperparameter Value
Sequence Batch Size 128
Sequence Length 4096
Optimizer Type AdamW
Beta1 0.9
Beta2 0.95
Epsilon 1× 10−8

Weight Decay 0.1
Gradient Clipping 1.0
Peak Learning Rate 3× 10−4

Final Learning Rate 3× 10−5

Warmup Steps 2160
Table 7: Hyperparameters related to model training.

Fit the Multi-power Law. Similar to the two-stage fitting, we utilize the Huber loss as the objec-
tive function (Huber, 1992),

min
Θ

∑
t

Huberδ(logLΘ(t)− logLgt(t)), (19)

where Θ = {A,B,C, α, β, γ, L0}, δ = 1× 10−3 and Lgt(t) denotes the ground truth of validation
losses. We adopt the Adam optimizer, with a learning rate at 5× 10−3 for the index parameters that
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Figure 15: Details of fitting and prediction. The subfigures illustrate loss curve fitting (training
set) and prediction (test set) for various configurations. (X,Y ) indicates the subfigure at row X ,
column Y . The columns in the accompanying table describe: F/P for Fitting (F) or Prediction (P),
Model Size (M), Step Length (S), and Learning Rate Schedule (LRS). Details of each subfigure
are provided below:

(X,Y ) F/P Model Size (M) Step Length (S) LR Schedule (LRS)

(1, 1) F 25M 24,000 Cosine
(1, 2) F 400M 16,000 2-stage (3× 10−4 → 9× 10−5)
(2, 1) P 25M 16,000 2-stage (3× 10−4 → 1.8× 10−4)
(2, 2) P 400M 72,000 Cosine
(3, 1) P 100M 24,000 WSD
(3, 2) P 100M 72,000 Constant
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Codename Embedding Dimension #Heads #Layers #Non-embeddings #Params

25M 640 5 5 25 89
100M 1024 8 8 101 205
400M 1536 12 12 340 493

1B 2048 36 16 822 1026

Table 8: The model series used in all the experiments. Hoffmann et al. (2022) utilizes the number
of non-embedding parameters (#Non-embeddings) to count model sizes, while Kaplan et al. (2020)
counts the total number of parameters (#Params). The unit of the Parameter is M in this table.

are α, β, and γ in our law, and 5× 10−2 for the coefficient or constant parameters, that are A, B, C
and L0 in our law. We also take a learning rate at 1 × 10−5 and 1 × 10−6 with initialization as the
previous fitting parameters. We select the result with lower training loss from the first optimization
result and the second one. Each optimization takes over 5 × 104 steps. For 400M results, we find
that A = 0.658, B = 614.3, C = 0.164, α = 0.421, β = 0.883, γ = 0.564, L0 = 2.524. For 100M
cases, we have A = 0.592, B = 521.4, C = 0.242, α = 0.460, β = 0.604, γ = 0.647, L0 = 2.792.
Part of fitting and prediction examples are shown in Figure 15.

Fit the Momentum Law. We mainly follow the approach proposed by Tissue et al. (2024). The
objective function follows Equation (19) and we adopt the L-BFGS algorithm to minimize it. For a
fair comparison, we grid search over its hyperparameter λ in {0.95, 0.99, 0.995, 0.999, 0.9995} and
select the best hyperparameter based on the fitting accuracy over the training set. We also evaluate
the law over the full test set listed in Table 6. The prediction accuracy comparison between our
multi-power law and the momentum law is shown in Table 5.

I Details of Optimized LR schedule (Section 5)

Details of Optimizing the Surrogate Objective. To make the optimization more stable, we define
the following quantities dη := {dη1, dη2, . . . , dηT }, where dηi := ηi−1 − ηi. Thus we can con-
duct optimization with an easier constraint over mindη L̃Θ̂(dη). Notice that ηi = η0 −

∑i
k=1 dηk

and η is one-to-one with dη. We can denote L̃Θ̂(dη) = LΘ̂(η). So now, instead of directly opti-
mizing minη LΘ̂(η) in Equation (12), we can conduct optimization with an easier constraint over
mindη L̃Θ̂(dη), which is,

min
dη
L̃Θ̂(dη)

s.t.,

T∑
i=1

dηi ≤ η0, ∀1 ≤ 1 ≤ T,

0 ≤ dηi.

In practice, we find we can solve the optimization problem with a relaxed constraint,

min
dη
L̃Θ̂(dη)

s.t., 0 ≤ dηi ≤ η0.

The optimized results dη also satisfy the constraint
∑T

i=1 dηi ≤ η0, ∀1 ≤ 1 ≤ T . The constraints
are forced by clipping. Our optimization is applied to the law fitted over the training set mentioned
in Appendix H. Regarding the optimization details, we use the Adam optimizer with a constant
learning rate. The learning rate scale is searched ranging from 2 × 10−8 to 1 × 10−9 and the
optimization step number ranges from 50000 to 200000 for better convergence.

Decay Ratio Details. Following Hu et al. (2024), we take the decay function of both exponential
decay and linear decay. We grid search over 3000, 4000, 5000, 6000 and 7000 to find that the best
decay step number is 6000, with a total steps of 24000. The ending learning rate is set to 1/10 of the
peak learning rate following Hu et al. (2024). According to Figure 1, we find that the decay ratio of
our optimized learning rate schedule aligns with the grid-searched WSD. The ending learning rate
is lower than the empirical one and the decay shape is between linear and exponential functions.
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Figure 16: Ablation over peak learning rates. Left: the learning rates of the schedules; Right: the
loss curves of schedules. Updown: the first three rows are the results for the peak learning rate at
4× 10−4 and the last three rows are for the peak learning rate at 6× 10−4. For each set of the three
rows, the first row shows the fitting on the training set, the second row shows the prediction over
unseen schedules and the third row shows the extrapolation on a long horizon loss curve.
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Figure 17: Our optimized LR schedules and their loss curve compared with Cosine, WSD, and
WSDLD schedules. The total step number is 24000. The decay step number of WSD and its variant
is 4000. Upper: 25M; Lower: 100M; Left: Learning rates over step; Right: Losses over step.

Optimized Schedule of Longer Horizons and Different Model Sizes Apart from the optimized
LR schedules shown in Figure 1 and Figure 17, we further validate the optimized schedules of longer
horizons and different model sizes. We optimize the LR schedules of 72000 steps based on the multi-
power law fit over the training set. The training set conforms to the default setting only containing
curves with lengths no longer than 24000, and we conduct experiments from 25M to 400M. As
shown in Figure 18, the resulting schedules are also in the shape of WSD schedules, consisting of
a stable phase and a decay phase. We compare the loss curves of the optimized LR schedules with
those of commonly used Cosine LR schedules, we find that the optimized LR schedules outperform
the Cosine LR schedules across different model sizes.

Zero-Ending Learning Rate Experiments. The optimized schedules consistently outperform
WSD variants with “zero-ending” learning rates. As shown in Figure 19, we compare WSD(LD)
variants with near-zero ending learning rates, the optimized schedules, and the original WSD(LD)
schedules. In this experiment, the ending learning rate is set to 3 × 10−7, which is 1/100 of the
previous setting. Notably, a lower ending learning rate does not consistently lead to improved final
loss. For example, the final loss of the WSD schedule increases with a near-zero ending learning
rate. This suggests a complex interaction between the ending learning rate and the decay func-
tion, highlighting the challenges of jointly optimizing these hyperparameters in WSD schedules. In
this context, the optimized schedule demonstrates its advantage by reducing the need for extensive
hyperparameter tuning in WSD variants.
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Figure 18: Left: optimized LR schedule vs Cosine LR schedule. The total step number is 72000,
and model sizes range from 25M to 400M. Right: The loss curves of optimized schedules and
Cosine schedules.
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Figure 19: The comparison between the optimized schedules with the WSD variants with end LR
as 0. WSD (ZE) and WSDLD (ZE) represent the WSD and WSDLD variants with ending learning
rate as 3×10−7, approximately “zero” ending LR compared to default 3×10−5. Left: the learning
rate comparison; Right: the loss comparison.

J Details of Discussion (Appendix A)

Model Types Ablation The multi-power law (MPL) is applicable across different model types,
validated over GPT2 (Radford et al., 2019) and OLMo (Groeneveld et al., 2024) apart from the
Llama2 (Touvron et al., 2023). For GPT2, the MPL is fitted on the constant and cosine schedules of
24000 steps. The fitted MPL can accurately predict the loss curve of the 72000-step cosine schedule,
as shown on the right of Figure 21. Moreover, as shown on the left of Figure 21, even the simplified
induced schedule (WSDSC, see Section 5.2) is superior to the WSD schedule and the commonly
used cosine schedule.

Model Sizes Ablation The multi-power law (MPL) experiments are conducted on 1B models and
144B tokens and the downstream tasks are tested for the optimized schedules. The architecture
matches 1B Llama3 (Dubey et al., 2024), with 32 heads and embedding dimension of 2048. The
sequence batch size is extended to 512 and the total batch size is close to 2M. For the training
stability, the peak learning rate is 2 × 10−4 across the experiments. The downstream tasks include
LAMBADA (Paperno et al., 2016), HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2020), and
ARC-easy (Gu & Dao, 2023; Clark et al., 2018), following the Mamba (Gu & Dao, 2023) practice.

Peak Learning Rate Ablation In the previous discussion, we fix the peak learning rate at 3×10−4.
To validate the scope of application for multi-power law, we run experiments over different peak
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Figure 20: Left: The experiments on 25M and 24000 steps of different seeds. The standard variance
of final loss is 0.0007 and the max gap is 0.0014. Right: Comparison between multi-power law and
momentum law. In the decay stage, the multi-power law not only presents higher accuracy to fit the
loss curve but also aligns with the curvature of the curve. As a comparison, the momentum law can
also fit the loss in the stable stage, but it predicts a counterfactual concave curve in the decay stage.
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Figure 21: The loss curves of GPT2 models. The multi-power law is fit over 24000-step constant
and cosine schedule losses. Left: The comparison between the cosine, WSD, and WSDSC (see
Section 5.2) schedules; Right: Prediction on the 72000-step loss curve of cosine schedule.

learning rates. As shown in Figure 4, the empirical law of two-stage LR schedules deviates when
the peak learning rate increases. Therefore, we run the experiments over the cases where the peak
learning rates are 4 × 10−4 and 6 × 10−4. The training set and the test set of loss curves conform
to the setting of peak learning rate 3× 10−4 except the peak LR. The two-stage case in the training
set has ηB = 0.3ηA while the two-stage cases in the test set have ηB = 0.1ηA and ηB = 0.6ηA
respectively. The results are shown in Figure 16. The multi-power law reaches average R2 value at
0.9965 in 4×10−4 case and 0.9940 in 6×10−4 case, exhibiting high accuracy in general. However,
we note that there are over-underestimations in the ηB = 0.6ηA two-stage case and the long-horizon
Cosine case. We conjecture that as the peak learning rate increases, the error introduced by our
approximation of the two-stage case law increases, and so does the error of loss reduction.

Batch Size Ablation We conduct ablation experiments on sequence batch sizes of 64 and 256 to
validate our method. The default sequence batch size in our experiments is 128, with a sequence
length of 4096, resulting in a default total batch size of approximately 0.5M tokens. Batch size
is a critical parameter that influences the training process, particularly the peak learning rate. The
chosen sequence batch sizes of 64 and 256 correspond to total batch sizes of 0.25M and 1M tokens,
respectively. These experiments are performed using 25M models, following the procedure outlined
in Appendix H. As illustrated in Figure 22, the multi-power law (MPL) consistently demonstrates
high predictive accuracy, with R2 values exceeding 0.9970 across both cases. Additionally, for
1B model experiments, the batch size is set to 512. While the coefficients of MPL are batch size-
dependent, the functional form of MPL remains robust across varying batch size configurations.
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Figure 22: Ablation study on batch sizes. The R2 values for batch sizes of 64 and 256 are 0.9977 and
0.9973, respectively. Row One: Learning rate schedules. Row Two: Loss curves for experiments
with a sequence batch size of 64. Row Three: Loss curves for experiments with a sequence batch
size of 256. Column One: Training set results. Column Two: Test set results, focusing on loss
curves with the same horizon as the training set. Column Three: Test set results, focusing on loss
curves with an extended horizon.

K Recover the Optimal Learning Rate Schedule for Momentum Law

In Section 5, by optimizing the multi-power law proposed in this paper, we greedily determine the
learning rate at each step that allows the loss curve to converge most rapidly, resulting in a faster-
converging learning rate. Experimentally, this optimized learning rate unsurprisingly converged to a
smaller training loss, outperforming the cosine learning rate schedule and common WSD schedules.
Meanwhile, recent concurrent work Tissue et al. (2024) has introduced a scaling law with a mo-
mentum term that can predict loss curve under various learning rate schedules, which can be written
as

L(s) = L0 +A · S−α
1 − C · S2,

where S1 =
∑s

i=1 ηi and S2 =
∑s

i=1

∑i
k=1(ηk−1 − ηk) · λi−k. λ is hyper-parameter typically

ranges from 0.99 to 0.999. L0, A,C are undetermined positive constants.

Similar to Section 5, here we could also optimize this law to get a learning rate schedule with faster
convergence as

min
η1,η2,...,ηs

LΞ(η1, η2, . . . , ηs) (A)

s.t., 0 ≤ ηi ≤ ηi−1, ∀1 ≤ i ≤ T,

ηi ≤ η0,

where Ξ represents the hyper-parameter and undetermined constants in L(s), which is fixed in our
setting to optimize η1, . . . , ηs. And for simplicity of derivation, we introduce η0 in front of η as the
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maximal LR. Compared with multi-power law, this optimization problem is obviously convex, so
we could get its minimizer in theory. Surprisingly, the optimal learning rate schedule for this law is a
two-stage learning rate schedule, with learning rate η2 = 0 in the second stage. In conclusion, we get
a quite trivial optima learning rate schedule for momentum law in (Tissue et al., 2024). This shows
the superiority of our multi-power law over theirs. Next, we will formalize the above arguments
mathematically.
Theorem 2. For s → ∞, the optimal learning rate schedule {η0, η1, . . . , ηs} which minimize the
optimization problem (A) is that

η0 → · · · → η0︸ ︷︷ ︸
of number i+1

→ 0→ · · · → 0︸ ︷︷ ︸
of number s−i

.

proof.

Firstly, we reparameterize (A) as

min
∆1,∆2,...,∆s

L̂Ξ(∆1,∆2, . . . ,∆s)

s.t., 0 ≤ ∆i, ∀1 ≤ i ≤ T,
s∑

i=1

∆i ≤ η0,

where ∆i := ηi−1 − ηi. Then we write out the L̂Ξ(∆1,∆2, . . . ,∆s)

L̂Ξ(∆1,∆2, . . . ,∆s) = L0 +A · (sη0 −
s∑

j=1

j∑
i=1

∆i)
−α − C ·

s∑
j=1

j∑
i=1

∆iλ
j−i.

We take the partial derivative of L with respect to ∆i

∂L

∂∆i
= αAΦ−α−1 · (s− i+ 1)− C · (λ0 + λ1 + · · ·+ λs−i)

= αAΦ−α−1 · (s− i+ 1)− C · 1− λs−i+1

1− λ
,

where Φ := (sη0 −
∑s

j=1

∑j
i=1 ∆i). Setting ∂L

∂∆i
= 0, then we have

Φ−α−1 =
C

αA

1− λs−i+1

(1− λ)(s− i+ 1)
.

Notice that by the definition of Φ, it’s invariant with i, but here we write Φ as a function of i. We
also know from KKT condition that ∂L

∂∆i
= 0 or δi = 0 is satisfied for all i ∈ {1, 2, . . . , s}. So now

we can get a lemma below
Lemma 1. There exists at most 1 index i ∈ {1, 2, . . . , s} such that ∆i ̸= 0.

proof.

Assume that there are i ̸= j, and ∆i ̸= 0 and ∆j ̸= 0, then ∂L
∂∆i

= ∂L
∂∆j

= 0. Further we have

Φ−α−1 =
C

αA

1− λs−i+1

(1− λ)(s− i+ 1)
=

C

αA

1− λs−j+1

(1− λ)(s− j + 1)
.

Since i, j ∈ N+, C
αA

1−λs−i+1

(1−λ)(s−i+1) is impossible to get the same output from two different positive
integers. Thus i = j.

Now assume that ∆i ̸= 0, then the lemma below implies the results in Theorem
Lemma 2. For s→∞, and all i ∈ {1, 2, . . . , s}, it holds that

Φ−α−1 ̸= C

αA

1− λs−i+1

(1− λ)(s− i+ 1)
.
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proof.

We prove this lemma by showing that the left-hand side is a o( 1s ) asymptotic and the right-hand side
is ω( 1s ), so that when s→∞, the left side will always less than the right side, then our proof ends.
Next, we show that the right-hand side is ω( 1s ). We first let t := s − i + 1 ∈ {1, 2, . . . , s}. We
notice that 1−λt

1−λ ∈ [1, 1
1−λ ], so we have

C

αA

1− λs−j+1

(1− λ)(s− j + 1)
≥ C

αA

1

s− j + 1

= ω(
1

s
).

Then we show that the left-hand side is an o( 1s ) asymptotic. We consider a two-stage learning
rate schedule such that the 1-stage learning rate is ηmax, the two-stage learning rate is 0, and the
two-stage lasts for time 10 logλ ϵ. Since Φ is the minimizer of L, so we have inequality

L0 +A ·Φ−α − C ·
s∑

j=1

j∑
i=1

∆iλ
j−i ≤ L0 +A · [(s− 10 logλ ϵ)]

−α − c · 1− ϵ10

1− λ
ηmax

A ·Φ−α ≤ A · [(s− 10 logλ ϵ)]
−α + c · ϵ10

1− λ
ηmax,

where in the second inequality we use the property that
∑s

j=1

∑j
i=1 ∆iλ

j−i ≤ ηmax

1−λ . We set
ϵ = [(s− 10 logλ ϵ)]

−α, then we have

Φ−α ≤ ϵ+
C

A
· ϵ10

1− λ
ηmax

= O(ϵ)

= O
(
(s)−α

)
Thus we have

Φ−α−1 = O(
1

s1+α
) = o(

1

s
).

Then we get the results in Lemma 2.

According to KKT condition, for all i ∈ {1, 2, . . . , s}, it holds that

Φ−α−1 =
C

αA

1− λs−i+1

(1− λ)(s− i+ 1)
or

s∑
i=1

∆i = η0.

So if the i we choose for ∆i ̸= 0 can’t satisfy the first condition, then it should satisfy the second one,
which is equivalent to that ∆i = η0. Thus we get the optimal learning rate schedule for momentum
law, which is

η0 → · · · → η0︸ ︷︷ ︸
of number i+1

→ 0→ · · · → 0︸ ︷︷ ︸
of number s−i

.

L Proof of Theorem 1

To prove the whole theorem, we first treat all λi and Σii as constants, and we give a theorem in this
scenario.
Theorem 3. For θT ∼ Φ(θ0, E), we have the following estimate of E[L(θT )]:

M(θ0, E) :=
1

2

d∑
i=1

(
θ20,iλi exp(−2λiS1) + η1Σii ·

1− exp(−2λiS1)

2

)

− 1

2

T∑
k=2

(ηk−1 − ηk)

d∑
i=1

1− exp(−2λiSk)

2
Σii,
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where Sk :=
∑T

τ=k ητ , and the estimation error is bounded as

|E[L(θT )]−M(θ0, E)| ≤ 5ηmax

d∑
i=1

λ3
iS1 exp(−2λiS1)θ

2
0,i + 5 exp(2)η2max

d∑
i=1

Σiiλi.

To prove the theorem, we first introduce some notations and auxiliary expectations. WLOG, we
assume that H = diag(λ1, . . . , λd). And we define that

U(θ, η, S) :=
1

2

d∑
i=1

(
θ2i λi exp(−2λiS) + ηΣii ·

1− exp(−2λiS)

2

)
.

We decompose the expected loss EθT∼Φ(θ0,E)[L(θT )] into a telescoping sum of T + 1 auxiliary
expectations A0, A1, . . . , AT :

EθT∼Φ(θ0,E)[L(θT )] = A0 +

T∑
k=1

(Ak −Ak−1)

Ak := Eθk∼Φ(θ0,E≤k)[U(θk, ηk, Sk+1)], (B)

Here we define η0 = η1 for convenience. Also we define ST+1 = 0, so AT = EθT∼Φ(θ0,E)[L(θT )].
The above theorem needs the following lemma.
Lemma 3. If x ∈ [0, 1], then

∃ξ1 ∈ [0, 10] s.t. (1− x)2 = exp(−2x)(1 + ξ1x
2),

∃ξ2 ∈ [0, 10] s.t. (1− 2x) = exp(−2x)(1 + ξ2x
2).

Proof. The above inequalities hold for x = 0. For x ∈ (0, 1], we have 1−(1−2x) exp(2x)
x2 ≥

1−(1−x)2 exp(2x)
x2 ≥ 1−exp(−2x) exp(2x)

x2 = 0 since 1 − 2x ≤ (1 − x)2 ≤ exp(−2x). Also note that
1−(1−2x) exp(2x)

x2 is an increasing function of x. So we have 1−(1−2x) exp(2x)
x2 ≤ 1−(−1)·exp(2)

12 ≤
10.

Lemma 4.
k−1∑
t=1

ηt exp(−2λiSt) ≤
1

2λi
exp(−2λiSk) ≤

k−1∑
t=1

ηt exp(−2λiSt+1) ≤
1

λi
exp(−2λiSk).

Proof. The first inequality follows the fact that lower Darboux sum is smaller than the Darboux
integral

k−1∑
t=1

ηt exp(−2λiSt) =

k−1∑
t=1

(St − St+1) exp(−2λiSt)

≤
∫ S1

Sk

exp(−2λiS)dS

=
1

2λi
[exp(−2λiSk)− exp(−2λiS1)]

≤ 1

2λi
exp(−2λiSk).

and the upper Darboux sum’s property induces the second inequality. Also, we have that
k−1∑
t=1

ηt exp(−2λiSt+1) =

k−1∑
t=1

ηt exp(−2λiSt) exp(2λiηt)

≤
k−1∑
t=1

ηt exp(−2λiSt) exp(2)

≤ exp(2)

2λi
exp(−2λiSk).

It completes the proof.
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The following lemma characterizes the difference between two consecutive auxiliary expectations
Ak and Ak−1.
Lemma 5. If ηmax ≤ 1

λmax
, then for all k ∈ [T ],

Ak −Ak−1 = −1

2
(ηk−1 − ηk)

d∑
i=1

1− exp(−2λiSk)

2
Σii + ϵk,

where the error term ϵk is bounded by

|ϵk| ≤ 5

d∑
i=1

η2kλ
3
i exp(−2λiSk)Eθk−1∼Φ(θ0,E≤k−1)[θ

2
k−1,i] + 5

d∑
i=1

η3kΣiiλ
2
i exp(−2λiSk).

Proof. By the definition of Ak and Ak−1, we have

Ak −Ak−1 = Eθk∼Φ(θ0,E≤k)[U(θk, ηk, Sk+1)]− Eθk−1∼Φ(θ0,E≤k−1)[U(θk−1, ηk−1, Sk)]

= Eθk−1∼Φ(θ0,E≤k−1)

[
Egk∼N (Hθk−1,Σ)[U(θk−1 − ηkgk, ηk, Sk+1) | θk−1]︸ ︷︷ ︸

=: Ū(θk−1)

−U(θk−1, ηk−1, Sk)
]
.

We expand Ū(θk−1) := Egk∼N (Hθk−1,Σ)[U(θk−1 − ηkgk, ηk, Sk+1) | θk−1] based on the defini-
tion of U :

Ū(θk−1) =
1

2

d∑
i=1

(
λi exp(−2λiSk+1)

(
(1− ηkλi)

2θ2k−1,i + η2kΣii

)
+ ηkΣii ·

1− exp(−2λiSk+1)

2

)

=
1

2

d∑
i=1

(
λi exp(−2λiSk+1)(1− ηkλi)

2θ2k−1,i + ηkΣii

(
1− exp(−2λiSk+1)

2
+ ηkλi exp(−2λiSk+1)

))

=
1

2

d∑
i=1

(
λi exp(−2λiSk+1)(1− ηkλi)

2θ2k−1,i + ηkΣii ·
1− exp(−2λiSk+1)(1− 2ηkλi)

2

)
.

Since ηkλi ∈ [0, 1] for all i, by Lemma 3, we can find ξ1,i, ξ2,i ∈ [0, 10] such that

(1− ηkλi)
2 = exp(−2ηkλi)(1 + ξ1,iη

2
kλ

2
i ), (1− 2ηkλi) = exp(−2ηkλi)(1 + ξ2,iη

2
kλ

2
i ).

Then we can rewrite Egk∼N (Hθk−1,Σ)[U(θk−1 − ηkgk, ηk, Sk+1) | θk−1] as

Ū(θk−1) =
1

2

d∑
i=1

(
(1 + ξ1,iη

2
kλ

2
i )λi exp(−2λiSk)θ

2
k−1,i + ηkΣii ·

1− (1 + ξ2,iη
2
kλ

2
i ) exp(−2λiSk)

2

)

=
1

2

d∑
i=1

(
λi exp(−2λiSk)θ

2
k−1,i + ηkΣii ·

1− exp(−2λiSk)

2

)

+
1

2

d∑
i=1

ξ1,iη
2
kλ

3
i exp(−2λiSk)θ

2
k−1,i −

1

2

d∑
i=1

ξ2,iη
3
kΣiiλ

2
i exp(−2λiSk).

Subtracting U(θk−1, ηk−1, Sk) from the above expression, we have

Ū(θk−1)− U(θk−1, ηk−1, Sk) = −
1

2
(ηk−1 − ηk)

d∑
i=1

1− exp(−2λiSk)

2
Σii

+
1

2

d∑
i=1

ξ1,iη
2
kλ

3
i exp(−2λiSk)θ

2
k−1,i −

1

2

d∑
i=1

ξ2,iη
3
kΣiiλ

2
i exp(−2λiSk).

Taking the expectation over θk−1 ∼ Φ(θ0, E≤k−1) proves the lemma.

The following lemma gives an upper bound for Eθk−1∼Φ(θ0,E≤k−1)[θ
2
k−1,i].
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Lemma 6. If ηmax ≤ 1
λmax

, then for all k ∈ [T ] and i ∈ [d],

Eθk−1∼Φ(θ0,E≤k−1)[θ
2
k−1,i] ≤ θ20,i exp(−2λi(S1 − Sk)) +

exp(2)

λi
ηmaxΣii.

Proof. By the update rule, we have
E[θ2t,i] = (1− ηtλi)

2E[θ2t−1,i] + η2tΣii.

Since (1− ηtλi)
2 ≤ exp(−2ηtλi) and ηt ≤ ηmax, we have the following bound:

E[θ2t,i] ≤ exp(−2ηtλi)E[θ2t−1,i] + ηtηmaxΣii.

Expanding the recursion, we have

E[θ2k−1,i] ≤ θ20,i exp(−2λi(S1 − Sk)) +

k−1∑
t=1

ηtηmaxΣii exp(−2λi(St+1 − Sk))

= θ20,i exp(−2λi(S1 − Sk)) + exp(2λiSk)ηmaxΣii

k−1∑
t=1

ηt exp(−2λiSt+1)

≤ θ20,i exp(−2λi(S1 − Sk)) + exp(2λiSk)ηmaxΣii ·
1

λi
exp(−2λiSk)

= θ20,i exp(−2λi(S1 − Sk)) +
1

λi
ηmaxΣii,

where the first inequality uses the fact that
∏k−1

τ=t+1 exp(−2ητλi) = exp(−2λi(St+1 − Sk)) and
the second inequality uses Lemma 4.

Lemma 7. In the setting of Lemma 5, we can bound the sum of the error terms ϵk as∣∣∣∣∣
T∑

k=1

ϵk

∣∣∣∣∣ ≤ 5ηmax

d∑
i=1

λ3
iS1 exp(−2λiS1)θ

2
0,i + 5 exp(2)η2max

d∑
i=1

Σiiλi.

Proof. By the upper bound of |ϵk|,∣∣∣∣∣
T∑

k=1

ϵk

∣∣∣∣∣ ≤
T∑

k=1

|ϵk| ≤ 5

d∑
i=1

T∑
k=1

η2kλ
3
i exp(−2λiSk)Eθk−1∼Φ(θ0,E≤k−1)[θ

2
k−1,i]︸ ︷︷ ︸

=: E1,i

+5

d∑
i=1

T∑
k=1

η3kΣiiλ
2
i exp(−2λiSk)︸ ︷︷ ︸

=: E2,i

.

For E1,i, we apply Lemma 6 and have

E1,i ≤
T∑

k=1

η2kλ
3
i exp(−2λiSk)

(
θ20,i exp(−2λi(S1 − Sk)) +

exp(2)

λi
ηmaxΣii

)

=

T∑
k=1

η2kλ
3
i exp(−2λiS1)θ

2
0,i +

T∑
k=1

exp(2)η2kλ
2
i ηmaxΣii exp(−2λiSk)

≤ ηmax

T∑
k=1

λ3
iS1 exp(−2λiS1)θ

2
0,i + η2max

exp(2)

2

T∑
k=1

Σiiλi,

where the last inequality uses Lemma 4. For E2,i, we have

E2,i =
T∑

k=1

η3kΣiiλ
2
i exp(−2λiSk)

≤ η2max

T∑
k=1

ηkΣiiλ
2
i exp(−2λiSk)

≤ η2max

1

2λi
Σiiλ

2
i
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Now we are ready to prove Theorem 3.

Proof for Theorem 3. Using Lemma 5 and Lemma 7, we have that
T∑

k=1

Ak −Ak−1 = −1

2

T∑
k=1

(ηk−1 − ηk)

d∑
i=1

1− exp(−2λiSk)

2
Σii + ϵ,

where the error bound ϵ can be bounded as

ϵ ≤ 5ηmax

d∑
i=1

λ3
iS1 exp(−2λiS1)θ

2
0,i + 5 exp(2)η2max

d∑
i=1

Σiiλi.

According to (B), we have

E[L(θT )] = A0 +

T∑
k=1

(Ak −Ak−1).

Plugging in the expression of each Ak, we get the results in Theorem 3.

Next, to prove Theorem 1, we take the expectation of M(θ, E) over all λi and Σii as

E[M(θ0, E)] =
1

2
∥θ0∥22E[λ exp(−2λS1)] +

d

4
ηmaxE[Σ]−

d

4
ηmaxE[Σ exp(−2λS1)]

− d

4

T∑
k=2

(ηk−1 − ηk) (E[Σ]− E[Σ exp(−2λSk)])

=
1

2
∥θ0∥22µ

1

Zλ

∫ D

0

λα+1 exp(−2λS1)dλ+
d

4
ηmaxµ−

d

4
ηmaxµF

1

Zλ

∫ D

0

λα+ρ exp(−(2S1 +G)λ)dλ

− dµ

4

T∑
k=2

(ηk−1 − ηk)(1− F
1

Zλ

∫ D

0

λα+ρ exp(−(2Sk +G)λ)dλ)

=
∥θ0∥22µγ(α+ 2, D)

2α+3Zλ
S−α−2
1 +

d

4
ηmaxµ−

dηmaxµFγ(α+ ρ+ 1, D)

2α+ρ+3Zλ
(S1 +

G

2
)−α−ρ−1

− dµ

4

T∑
k=2

(ηk−1 − ηk)

(
1− Fγ(α+ ρ+ 1, D)

Gα+ρ+1Zλ
(
2

G
Sk + 1)−α−ρ−1

)
where γ(·, ·) denote the lower incomplete gamma function such that γ(s, x) :=

∫ x

0
ts−1e−tdt, Zλ

denote the partition function such that Zλ :=
∫D

0
p(λ)dλ. The second equality uses Assumption 1,

and the last equality uses the property of Laplace Transform. To make the expression clear, we let
F = Gα+ρ+1Zλ

γ(α+ρ+1,D) , and we define the following parameters L0, A,B,C,R as

L0 :=
d

4
ηmaxµ,

A :=
∥θ0∥22µγ(α+ 2, D)

2α+3Zλ
,

B :=
dµ

4
,

C :=
2

G
,

R :=
dηmaxµFγ(α+ ρ+ 1, D)

2α+ρ+3Zλ
.

So we get that

M̃(θ0, E) := E[M(θ0, E)]

= L0 +AS−α−2
1 −R(S1 +

1

C
)−αρ−1 −

T∑
k=2

B(ηk−1 − ηk)
(
1− (CSk + 1)−α−β−1

)
.
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Also, we take the expectation of the error bound as∣∣∣E[L(θT )]− M̃(θ0, E)
∣∣∣ ≤E[5ηmax

d∑
i=1

λ3
iS1 exp(−2λiS1)θ

2
0,i] + E[5 exp(2)η2max

d∑
i=1

Σiiλi]

=5ηmax∥θ0∥22E[λ3S1 exp(−2λS1)] + 5 exp(2)η2maxdE[Σλ]

=5ηmax∥θ0∥22
1

Zλ

∫ D

0

λ3+αS1 exp(−2λS1)dλ

+ 5 exp(2)η2maxd
1

Zλ
µF

∫ D

0

λ1+ρ exp(−2Gλ)dλ

=
5ηmax∥θ0∥22γ(4 + α,D)

24+αZλ
S−α−3
1 +

5 exp(2)η2maxdµFγ(2 + ρ,D)

(2G)ρ+2Zλ

=O(S−α−3
1 ) +O(η2max)

Notice that, not only in the case of T iterations, the results above holds for all 0 ≤ t ≤ T , with the
next variable replacement

M̃(θ0, E)← M̃t(θ0, E),

L(θT )← L(θt),
Si ← Si(t).

So we complete the proof of Theorem 1.

L.1 Proof of Corollary 1

If S1(t) >
1

ηmax
, then we have

Rηmax(S1(t) +
1

C
)−α−ρ−1 ≤ Rη2max(S1(t) +

1

C
)−α−ρ

= O(η2max).

It completes the proof.
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