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Abstract—Manipulating deformable objects like cloth is chal-
lenging due to their complex dynamics, near-infinite degrees of
freedom, and frequent self-occlusions, which complicate state
estimation and dynamics modeling. Prior work has struggled with
robust cloth state estimation, while dynamics models, primarily
based on Graph Neural Networks (GNNs), are limited by their
locality. Inspired by recent advances in generative models, we
hypothesize that these expressive models can effectively capture
intricate cloth configurations and deformation patterns from
data. Building on this insight, we propose a diffusion-based
generative approach for both perception and dynamics modeling.
Specifically, we formulate state estimation as reconstructing the
full cloth state from sparse RGB-D observations conditioned on a
canonical cloth mesh and dynamics modeling as predicting future
states given the current state and robot actions. Leveraging a
transformer-based diffusion model, our method achieves high-
fidelity state reconstruction while reducing long-horizon dynam-
ics prediction errors by an order of magnitude compared to
GNN-based approaches. Integrated with model-predictive control
(MPC), our framework successfully executes cloth folding on a
real robotic system, demonstrating the potential of generative
models for manipulation tasks with partial observability and
complex dynamics.

I. INTRODUCTION

Textile deformable objects, such as clothing, are ubiquitous
in daily life. Yet, manipulating these objects is a long-standing
challenge in robotics [20, 42], due to their complex geometric
structures and dynamics. Effective cloth manipulation requires
accurately estimating the cloth’s geometry despite severe self-
occlusions, as well as reasoning over its complex, continuous
dynamics to optimize actions. These difficulties highlight the
need for advancements in both (i) state estimation and (ii) dy-
namics modeling to enable robust robotic cloth manipulation.

State estimation for cloth is particularly challenging due
to frequent self-occlusions arising from its highly deformable
structure. While humans intuitively infer full object shapes
from partial observations using prior experience, most existing
methods are unable to fully capture the complex mapping
between highly partial observations and high-dimensional ob-
ject states [7, 15, 1]. A promising direction is to develop
perception models that can “imagine” full states from partial
observations by leveraging extensive prior experience, akin to
human reasoning.

Modeling cloth dynamics poses another significant chal-
lenge due to its highly nonlinear nature. Current approaches
typically represent cloth using particle- or mesh-based struc-
tures and model their interactions with graph neural networks
(GNNs)[44, 15, 18]. GNNs offer advantages in data-scarce
domains through spatial equivariance and locality, but they

scale inefficiently with the number of graph nodes[31]. More-
over, the locality inherent to graph structures often limits their
ability to capture long-range dependencies, which is crucial
for accurate dynamics modeling.

In this work, we formulate state estimation and dynamics
prediction as conditional generation processes. State estima-
tion reconstructs full states from partial observations, while
dynamics prediction generates future states conditioned on the
current state and robot actions. To model these complex high-
dimensional mappings, we employ diffusion-based models,
inspired by their recent successes in capturing complex data
distributions in computer vision [22, 19], science [32], and
robotics [8]. We hypothesize that diffusion models with scal-
able architecture (e.g., Transformer [35]) can enable accurate
state reconstruction and dynamics modeling.

Building on these insights, we introduce UniClothDiff,
a unified framework that integrates a Diffusion Perception
Model (DPM), a Diffusion Dynamics Model (DDM), and
model-predictive control for cloth manipulation. Conceptu-
ally, DPM leverages diffusion models and Transformers to
reconstruct full cloth states from sparse and occluded RGB-
D observations, while DDM predicts long-horizon dynamics
conditioned on current states and actions. Trained on a large-
scale cloth interaction dataset with 500K transitions in sim-
ulation and evaluated in both simulation and real-world, our
models achieve substantial performance gains: DPM achieves
superior performance compared to prior approaches in cloth
state estimation, and DDM reduces long-horizon prediction
error by an order of magnitude compared to GNN-based
baselines. With an embodiment-agnostic action representation,
our framework can be deployed on both parallel grippers and
dexterous hands. Real-world experiments demonstrate superior
manipulation performance over previous approaches, high-
lighting the potential of generative modeling in deformable
object manipulation.

II. METHOD

A. Overview

We address the challenge of manipulating cloth with signif-
icant self-occlusions into target configurations. Our problem
formulation comprises three key spaces: observation space O,
state space S, and action space A. The objective is to learn
two essential components: a state estimator g : O → S and a
transition function T : S ×A → S for model-based control.

At each timestep, the system processes multiview RGB-D
observations ot ∈ O, represented as ot = {I0t , I1t , . . . , I l−1

t }
with l camera views, to estimate the cloth’s 3D state st ∈ S
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Fig. 1: Overview. (a) Perception: Our Diffusion Perception Model (DPM) reconstructs the full cloth state from a partial point
cloud. Using a denoising process parameterized by ϵpθ , DPM refines the cloth state over K denoising steps, starting from
random noise. (b) Dynamics Prediction: Our Diffusion Dynamics Model (DDM) generates future cloth states based on the
current estimated state and robot actions, using a transformer-based architecture.

given canonical state of the template mesh sc. The state of
the cloth is defined by a mesh st = {Vt, Et}, where Et

represents the invariant edge connectivity and Vt ∈ RNv×3

denotes the positions of vertices in 3D space where Nv denotes
the number of vertices. We propose that generative models
can effectively infer unobserved patterns in partial RGB-D
observations, enabling robust state estimation.

Given the estimated state, a learned dynamics model f
predicts the future state st+1 ∈ S based on state history
st−i:t ∈ S and planned action at ∈ A. This dynamics model
is incorporated into a model-predictive control framework to
optimize action sequences for achieving target state sg:

(a0, ..., aH−1) = argmin
a0,...,aH−1∈A

J (T (s0, (a0, .., aH−1)), sg)

B. State Estimation

We first address the challenging problem of inferring com-
plete cloth configurations from partial observations.

a) Conditional Diffusion Process: We formulate cloth
state estimation as a conditional denoising diffusion process.
We use object point cloud as conditioning input to the model,
as the sim-to-real gap is minimized in the particle space [5].

Specifically, we model the conditional distribution
p(s|sc, epc) using standard denoising diffusion probabilistic
model (DDPM) [11], where sc represents the state of the
canonical cloth mesh and epc denotes the embedding of
the conditional point cloud. To get point cloud embedding,
we partition the point cloud into patches by first sampling
M center points using farthest point sampling (FPS) and
performing K-Nearest Neighbors (KNN) clustering. Then
each resulting patch is processed through a PointNet [29] to
obtain its embedding representation epc ∈ RB×M×D1 . where
B is the batch size and D1 is the dimension of the point
cloud embedding.

In the forward process, starting from the initial state s0,
gaussian noise is gradually added at levels t ∈ {1, ..., T} to get
noisy state as:st =

√
ᾱts0 +

√
1− ᾱtϵ , where ϵ ∼ N (0, I),

ᾱt :=
∏t

s=1 1−βs, and {β1, . . . , βT } is the variance schedule
of a process with T steps. In the reverse process, starting from
a noisy state st sampled from the normal distribution, the
conditional denoising network ϵpθ gradually denoising from st
to st−1 and finally construct s0.

b) Model Architecture: We adopt vanilla Vision Trans-
former (ViT) architecture [9] as our backbone, which has
been shown to be highly scalable in image and video genera-
tion [26, 22]. The model takes a point cloud and a canonical
template mesh as input, in addition to the noisy mesh state
that requires denoising. We detail our network architecture
and training objective below.

Tokenization. We tokenize the input mesh as non-
overlapping vertex patches. We first use farthest point sam-
pling (FPS) to sample a fixed number of points as patch centers
C ∈ RN×3. To patchify the mesh vertices, we use the N
centers obtained from FPS to construct a Voronoi diagram in
the 3D points space. This tessellation divides the point cloud
into N distinct regions, where each region contains all points
closer to its associated center than to any other center. Each
Voronoi cell is treated as a distinct patch, encompassing a
local neighborhood of points which will then go through a
PointNet [29] layer for feature extraction.

Conditioning. Following the tokenization process, the input
token is directly subjected to a sequence of transformer blocks
for processing. To effectively condition the point cloud embed-
ding, we adopt two approaches. First, the conventional layer
normalization is replaced with an adaptive layer normalization
(AdaLN) [39] to better incorporate conditional information.
Then, we incorporate conditional information through a cross-
attention layer positioned after the multi-head self-attention
(MHSA). In this cross-attention operation, the hidden states x



serve as the query vector, while the conditional information
acts as both the key and value vectors. The computation
proceeds as x = CrossAttention(W (c)

Q x,W
(c)
K epc,W

(c)
V epc)

where W (c) are learnable parameters, enabling effective con-
ditioning during the learning process.

Decoding. Finally, the decoding process transforms the
hidden states x into 3D vertex coordinates through a two-stage
process. First, we employ distance-weighted interpolation to
upsample the hidden states, where interpolation weights are
computed from canonical-space distances between vertices and
their corresponding patch centers. This operation produces
an intermediate representation x ∈ RB×Nv×D2 . A Multi-
Layer Perceptron (MLP) then maps this representation to the
final output xout ∈ RB×Nv×3, yielding the predicted noise
added onto the 3D coordinates for each vertex during the
diffusion forward process. Details of our model are presented
in Appendix E-A.

c) Training: For state estimation, the denoising model
ϵpθ(s

(k)|sc, epc) for DPM is trained by minimizing the loss:

LMSE =
∥∥∥ϵ− ϵpθ

(√
1− β(k)s+

√
β(k)ϵ

∣∣∣sc, epc

)∥∥∥2
where ϵ ∼ N (0, I) and β(k) ∈ R are K different noise levels
for k ∈ [1,K]. Training details are presented in Appendix E-B.

C. Dynamics Prediction

Given the estimated state, the goal of dynamics prediction
is to reason about future states of the cloth given robot actions.
We extend our state estimation architecture to model dynamics
by modifying the condition input to incorporate robot actions
and enhancing the temporal modeling capability with addi-
tional temporal attention layers. The remaining components,
including tokenization, training objective, and decoding of the
model, are identical to those in the state estimation framework.

Conditional Diffusion Process. To learn the conditional
posterior distribution p(st+1:t+j+1|at, st−i:t), we parameterize
it using diffusion models. Here, at represents the robot action,
st−i:t denotes the historical states, and st+1:t+j+1 is the j
frame future states to be predicted at timestep t. Following
prior work [44, 41], we heuristically set i = 3 and j = 5.
The diffusion reverse process construct st conditioned on
history frames and action by gradually denoising from a
normal distribution with the denoising network ϵdθ . Since we
use delta end-effector position as action representation, to
effectively encode the action space, we employ a Fourier
feature-based embedding following NeRF [24] to represent
continuous spatial information, with detailed formulation in
Appendix.

D. Model-Based Planning

We integrate our diffusion dynamics model with Model Pre-
dictive Control (MPC) for robotic cloth manipulation. Given
a current cloth state sequence st−i:t ∈ S and target state sg ,

Category Method Simulation

↓ MSE (10−1) ↓ CD (10−1) ↓ EMD (10−1)

Cloth
TRTM [1] 5.07 ± 0.22 2.67 ± 0.61 1.65 ± 0.71
Transformer 5.44 ± 0.41 2.17 ± 0.19 1.61 ± 0.45
DPM 2.32 ± 0.21 1.95 ± 0.25 1.48 ± 0.47

T-shirt

GarmentNets [7] 18.6 ± 1.35 6.23 ± 0.79 2.79 ± 0.64
MEDOR [15] 21.0 ± 1.54 6.87 ± 0.95 2.24 ± 0.29
TRTM [1] 6.30 ± 0.45 5.15 ± 0.96 2.15 ± 0.29
Transformer 9.12 ± 0.57 5.56 ± 0.63 1.99 ± 0.62
DPM 2.76 ± 0.19 3.22 ± 0.41 1.95 ± 0.56

TABLE I: Quantitative results on state estimation. Lower
values indicate better performance. Errors represent a 95%
confidence interval.

we optimize an action sequence {at}T−1
t=0 by minimizing:

min
{at}T−1

t=0

ϕ (sT , sg) +

T−1∑
t=0

ℓ (st, at) , (1)

where ϕ combines weighted MSE and chamfer distance, and ℓ
enforces action smoothness. Our planning framework utilizes
Model Predictive Path Integral (MPPI) [37] for sampling-
based optimization. Refer to Appendix E-C for details on the
planning algorithm and hyperparameters.

III. EXPERIMENTS

In this section, we investigate three key research questions:

1) How effectively does the Diffusion Perception Model
handle self-occlusions inherent in cloth manipulation?

2) How does the Diffusion Dynamics Model improve dy-
namics prediction compared to prior approaches?

3) How do these enhanced perception and dynamics models
translate to overall system performance?

We address these questions in three stages: evaluating state
estimation accuracy (Section III-A), assessing dynamics mod-
eling performance (Section III-B), and validating our ap-
proach through real-world cloth manipulation experiments
(Section III-C).

A. State Estimation

1) Baselines: We evaluate our perception module against
four baseline approaches: GarmentNets[7], MEDOR[15],
TRTM[1] and Transformer, an ablated version of our model.

2) Results: We evaluate our method against baselines in
both simulation and real-world environments using Mean
Squared Error (MSE), Chamfer Distance (CD), and Earth
Mover’s Distance (EMD). Quantitative results are presented
in Table I. In the T-shirt object, TRTM [1] and Transformer
greatly outperform GarmentNets and MEDOR [15], demon-
strating that the topological information provided by the tem-
plate cloth mesh significantly enhances the perception capabil-
ities. Leveraging the cloth modeling prior during the learning
process, TRTM [1] demonstrates better performance compared
to Transformer. Our approach achieves further performance
gains over both TRTM [1] and Transformer, highlighting the
significant contributions of diffusion models to the task.
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Fig. 2: Long-horizon dynamics prediction error over time. Mean Squared Error (MSE) in dynamics prediction over time
under two scenarios: (a) using oracle simulation states, and (b) using DPM perception estimates, evaluated on cloths and
T-shirts. Our method significantly reduces error accumulation in both cases. Error bars represent 95% confidence intervals.

B. Dynamics Prediction Results

1) Baselines: We evaluated our diffusion dynamics models
against three baseline approaches: a GNN-based method, an
analytical simulator, and an ablated version of our model.
For each baseline, we analyze the mean squared error (MSE)
across different timesteps on clothes and T-shirts.

2) Results: Error analysis over time (Figure 2) shows that
DDM consistently outperforms all baselines across both object
types and input settings. When using ground-truth states, GNN
performs the worst overall, except on cloth objects where
its performance is comparable to Transformer due to simpler
topology. On T-shirts with more complex dual-level topology,
Transformer surpasses GNN, demonstrating the transformer
architecture’s advantage in modeling geometric and temporal
dependencies. DDM achieves the lowest MSE at all timesteps,
with minimal error accumulation, benefiting from the proba-
bilistic nature of diffusion models that better capture cloth
state dynamics compared to direct MSE supervision. When
using estimated (noisy) states, we include Analytical Simulator
as a baseline. While it initially performs well on cloth, its
sensitivity to input noise leads to significant long-horizon
degradation, especially on T-shirts. In contrast, DDM remains
robust under perception noise and complex dynamics.

C. Real World Planning Results

a) Comparative Analysis: We demonstrate the seamless
integration of DPM and DDM within a Model Predictive Con-
trol (MPC) framework for complex cloth manipulation tasks.
Our approach is benchmarked against GNN as the dynamics
model. We evaluate in three types of occlusion: self-occlusion,
external occlusion by other objects (e.g., a robotic arm), and
combined occlusion. Quantitative and qualitative results are
presented in Table II and Figure 3, respectively. Our method
consistently outperforms GNN across all occlusion scenarios.
In simpler tasks like cloth folding, our model improves SR
by 30%. For more complex cases, such as dual-level topology
T-shirts where GNN struggles, it achieves up to a 30% gain.

Fig. 3: Qualitative results of real-world system deployment.

Method Cloth T-shirt Long-sleeve

Self Ext. Comb. Self Ext. Comb. Self Ext. Comb.

GNN 6/10 4/10 3/10 1/10 2/10 2/10 2/10 2/10 0/10
Ours 9/10 8/10 6/10 9/10 7/10 6/10 7/10 6/10 4/10

TABLE II: Quantitative results of real-world manipulation.
Each scenario is repeated 10 times with randomized states.

IV. CONCLUSION

We present UniClothDiff, a unified framework for cloth
manipulation that leverages Transformer-based diffusion mod-
els for both state estimation and long-horizon dynamics pre-
diction. Our method reconstructs full cloth configurations
from partial RGB-D inputs and significantly outperforms prior
GNN-based approaches. When combined with model-based
control, it enables precise and reliable manipulation. More-
over, our embodiment-agnostic action representation supports
zero-shot transfer to novel grippers. Extensive experiments
highlight the power of generative models in deformable ob-
ject manipulation, advancing the robustness and versatility of
robotic systems.
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APPENDIX A
LIMITATIONS

Our approach demonstrates strong performance in cloth
manipulation but has certain limitations. While transformer-
based diffusion models enable accurate state estimation and
long-horizon dynamics prediction, they require substantial
computational resources. Additionally, achieving the intended
contact point can be challenging in real-world execution when
the cloth is folded, creating overlapping layers. This issue can
be mitigated by integrating tactile sensing to enhance grasp
precision. As our method uses a particle-based representation,
it is inherently compatible with tactile feedback for more
robust manipulation [2, 13], which we leave as future work.

Moreover, our method does not explicitly perform online
system identification, which could improve adaptability to
different object materials. However, this aspect is orthogonal to
our diffusion-based dynamics model architecture. Prior work
has shown that historical information can be used to infer
physical parameters [44, 2], and a similar system identification
phase could be readily incorporated into our framework.

APPENDIX B
RELATED WORK

A. Deformable Object Manipulation

The manipulation of deformable objects, particularly gar-
ments, remains a fundamental challenge in robotics due to
high-dimensional state spaces and complex dynamics. Cur-
rent approaches fall into two main categories: model-free
and model-based methods. Model-free approaches, including
reinforcement learning (RL) [23, 16] and imitation learning
(IL) [3, 10, 8, 43, 27], learn direct observation-to-action map-
pings through end-to-end training. However, these methods
struggle with precise shape control due to the lack of explicit
object dynamics modeling. Model-based approaches require
accurate state estimation [6, 33, 34, 2, 14], challenging when
deformable objects like cloth exhibit severe self-occlusions.
Furthermore, learning dynamics models demands extensive
training data covering large state and action spaces. To over-
come these challenges, we propose leveraging the expressive
generative models, specifically diffusion models, for both
full-state estimation from partial observations and dynamics
modeling using large-scale simulation data.

B. Learning-Based Dynamics Models

Learning-based dynamics models aim to predict state tran-
sitions directly from interaction data, with the choice of
state representation playing a critical role. Pixel-based rep-
resentations frame the problem as action-conditioned video
prediction [12, 40]. However, these models often require
extensive training data, are sensitive to occlusions, and struggle
to generate physically plausible predictions due to the lack of
explicit 3D structure [41]. In contrast, particle-based represen-
tations, like point clouds and meshes, offer a more structured
and physically grounded approach to modeling deformable
objects. These representations are typically processed using
graph neural networks (GNNs), which model state transitions

through message passing [44, 15, 33, 34, 2]. While GNNs
have demonstrated effectiveness, we find that diffusion models
provide a more scalable and expressive alternative, enabling
accurate state transition learning from large-scale datasets and
advancing deformable object dynamics modeling.

C. Diffusion Models

Diffusion models [11] have emerged as a powerful paradigm
in generative modeling, capable of capturing complex, high-
dimensional data distributions precisely. They have demon-
strated significant success across various domains, including
image generation [30, 26], video generation [36, 22], 3D
shape synthesis [28], and robotic policy learning [8, 43].
In this study, we extend the representational capabilities of
diffusion models to tackle key challenges in deformable object
manipulation: perception and dynamics modeling. Specifically,
we employ diffusion models to recover full geometric details
from partial observations, enabling accurate state estimation
despite severe occlusions and complex object configurations.
Additionally, we employ diffusion models to learn expressive
dynamics models that capture highly non-linear state transi-
tions, enabling robust model-based planning.

APPENDIX C
EXPERIMENT SETUP

A. Task Description

We evaluate our method on challenging cloth manipulation
tasks characterized by significant visual occlusion and com-
plex physical dynamics, demonstrating the real-world perfor-
mance of our diffusion-based perception and dynamics model.

Cloth folding. This task explores robotic cloth folding tasks
across diverse fabrics. We employ prediction results from
DPM to define target shapes, enabling accurate shape matching
between the manipulated cloth and desired folding configura-
tions. The system aims to robustly handle variations in fabric
characteristics while maintaining folding accuracy. This task
is more challenging than usual pushing or relocating tasks
due to significant visual occlusions during the folding process,
and the increased action complexity. Achieving precise folding
to a specified target configuration requires both an accurate
estimation and dynamic prediction of the cloth. We tested with
square handkerchiefs made of three different materials. Each
of these clothes has a different visual appearance and size.

T-shirt folding. This task focuses on folding a T-shirt into
the target configuration. T-shirts present unique challenges
due to their dual-layer structure and compliant dynamics. We
evaluate our approach on four T-shirts of different sizes and
physical properties. We set more challenging target states
(such as diagonal fold and fold in half) that require higher
motion accuracy. Incorrect actions will increase the recovery
cost. Some target states also require changing the grasp contact
points and performing multiple folds. Figure 4 shows all the
test cloths and T-shirts with various materials and sizes used
in our real-world experiments.
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Fig. 4: Cloth overview. We evaluate our method on different
square cloths and T-shirts with varying colors and materials.

B. Physical Setup

We validate our system on two robotic platforms: (1) a sin-
gle UFactory xArm-6 robotic arm with Fin Ray Effect-based
soft robotic fingers for gripping cloth, and (2) a stationary
bimanual dexterous system consisting of two UFactory xArm-
7 robotic arms, each equipped with a 6-DoF Ability hand.
Both setups use a single RGB-D camera: the Intel RealSense
D435 with 640 × 480 resolution for the xArm-6 and the L515
with 1024 × 768 resolution for the dual-arm system. Figure 5
illustrates our hardware setup.

C. Data Collection

We collect training data for learning state estimation and
dynamics prediction in a simulation environment built on
SAPIEN [38]. The rigid bodies, such as the robot arm, are
simulated using the built-in PhysX-based simulator, while the
cloth is simulated with the projective dynamics (PD) solver
[4]. The two systems are coupled at the time step level by
alternating updates: the PD system treats the positions and
velocities of PhysX-managed objects as boundary conditions,
and PhysX does the same for the PD-managed cloth. In the
PD system, the cloth is modeled as a hyper-elastic thin shell.
We follow Ly et al. [21] to simulate collision and friction in
the PD system.

Our data collection pipeline consists of two main com-
ponents: state estimation and state transitions. For state es-
timation, we use up to four calibrated depth cameras [45],
which enable realistic stereo depth simulation, positioned at
randomized angles to generate paired datasets of fused point
clouds and ground-truth mesh states. The cloth is initialized by
applying a random force. For state transition data, we simulate
cloth trajectories by applying controlled manipulation actions.
Each trajectory is generated by selecting a random vertex on
the cloth and moving it to a target position (pick-and-place).
We collected a comprehensive dataset of 500K examples, with
action magnitudes carefully controlled between 0.02 and 0.05
units to ensure physical plausibility. Each example is an 8-step
motion sequence, recording the cloth’s deformation from the
initial state through the entire manipulation process. Detailed
data collection procedures are provided in Appendix D-B.

Intel RealSense L515Intel RealSense D435

xArm-6 xArm-7xArm-7

Ability robot handsSoft robotic gripper

Fig. 5: Hardware overview. Our real-world platform includes
a UFactory xArm-6 and a bimanual dexterous system consist-
ing of two UFactory xArm-7 robots with Ability hands. Each
robot is equipped with one RGB-D camera.

D. Implementation Procedure

Our system integrates OWLV2 [25] and Segment Any-
thing [17] to detect and segment desktop objects from RGB-D
input. A single-view partial point cloud of the target object
serves as input, which is processed via DPM to infer the
state of the cloth. To address the dimensional and positional
discrepancies between predicted and observed point clouds,
we implement a two-stage alignment process. First, we com-
pute the spatial dimensions of the observed point cloud and
apply appropriate scaling transformations to the predicted
point cloud. Subsequently, we employ the Iterative Closest
Point (ICP) algorithm for fine-grained alignment, ensuring that
MPC-generated grasping positions and motion trajectories can
be accurately mapped to the physical object. For manipulation,
we model both soft robotic grippers and dexterous hands by
representing their end effectors as particles that attach to mesh
vertices during motion. To evaluate our system, we first collect
realistic and challenging target states through teleoperation.
We then conduct 10 experimental trials for the same target
state, executing a delta action sequence through the MPC
with the dynamics model. These actions are transformed into
absolute positions in the base frame of the robotic arm,
with smooth cartesian trajectories generated using joint online
trajectory planning.

APPENDIX D
SIMULATION DETAILS

A. Simulation Setup

Detailed physical parameters for cloth simulation is pre-
sented in Table III.

B. Data Collection

To collect state estimation data, we set up a comprehensive
multi-view system that incorporates up to four calibrated
stereo-depth sensors, strategically placed at randomized view-
ing angles within predefined ranges. Cloth is initialized by
given an randomly pick-and-place action. This configura-
tion enables the generation of paired datasets consisting of
fused point clouds alongside their corresponding ground-truth
mesh states across multiple viewpoints. The system leverages
SAPIEN’s advanced stereo depth simulation capabilities[45],



Phyical Parameter Value

collision margin 1e-3
collision weight 5e3
collision sphere radius 8e-3
damping 1e-2
thickness 1e-3
density 1e3
stretch stiffness 1e3
bend stiffness 1e-3
friction 0.5
gravity -9.81

TABLE III: Dataset statistics.

which significantly reduces the sim-to-real gap by faithfully
reproducing point cloud characteristics observed in real-world
scenarios. This high-fidelity simulation approach ensures ro-
bust and reliable state estimation performance when trans-
ferred to physical environments. In our point cloud fusion
process, we augment camera extrinsic parameters to simulate
real-world calibration errors. Specifically, we introduce rota-
tional variations ranging from −1.5◦ to 1.5◦ and translational
variations from -0.5 to 0.5 cm. To better mimic real-world
conditions, we also simulate depth sensor noise and occlusion
effects by applying random point dropout with ratios between
0.1 and 0.2, and introducing noise to the fused point cloud.

To collect dynamics data, we employ diverse action sam-
pling strategies to generate a comprehensive dataset of 500K
examples. Our sampling approach encompasses two key
methodologies designed to capture realistic cloth manipulation
scenarios. The first method involves applying directionally-
randomized displacements to selected mesh vertices, with
particular emphasis on folding-oriented actions where the cloth
is manipulated to create various folding patterns. We also sim-
ulate picking and relocation actions by applying upward and
translational movements to randomly selected vertices. The
second methodology focuses on pair-wise vertex manipulation,
where vertex pairs are selected based on their spatial distances
to simulate actions such as folding one point of the cloth onto
another. Each incremental action is precisely controlled, with
magnitudes ranging from 0.02 to 0.05 units. To evaluate the
model’s performance across different time horizons and assess
the impact of auto-regressive inference error accumulation,
we generate action sequences varying in length from 15 to
35 steps. All resultant mesh deformations throughout these
sequences are meticulously recorded to capture the complete
dynamics of the cloth’s behavior.

APPENDIX E
IMPLEMENTATION DETAILS

A. Model Details

a) Point Cloud Encoder: We employ a patch-based ar-
chitecture for point cloud encoding that processes the input
through local grouping and feature extraction. The encoder
first groups points using a KNN-based strategy, then processes
each local patch through a specialized patch encoder, and
finally incorporates positional information through learnable

embeddings. This design enables effective capture of both
local geometric structures and global spatial relationships.

Hyperparameter Value
Output dimension 1024
Number of groups 256
Group size 64
Group radius 0.15
Position embedding dimension 128
Patch encoder hidden dims [128, 512]

TABLE IV: Point cloud encoder hyperparameters.

b) Model Architecture: We design a transformer-based
architecture for state estimation, which consists of a point
cloud encoder, positional embedding module, and a series
of transformer blocks. The model takes both point cloud
observations and mesh states as input. The point cloud is
first processed through a patch-based encoder, while the mesh
states are embedded using a patchified positional encoding
scheme. These features are then processed through transformer
blocks with cross-attention mechanisms to predict the mesh
state.

Hyperparameter Value
Number of attention heads 16
Attention head dimension 88
Number of transformer layers 4
Inner dimension 1408
Dropout 0.0
Cross attention dimension 1024
Point cloud embedding dimension 1024
Number of input frames 2
Number of output frames 1
Activation function GEGLU
Output MLP dimensions [512, 256]
Normalization type AdaLayerNorm
Normalization epsilon 1e-5

TABLE V: Model hyperparameters.

c) Action Embedding: We employ a Fourier feature-
based action encoding scheme to effectively represent mesh
manipulation actions in a high-dimensional space. The action
encoder consists of two main components: (1) a Fourier
feature mapping that projects 3D action vectors into a higher-
dimensional space using sinusoidal functions, and (2) a multi-
layer perceptron that further transforms these features into the
desired embedding dimension.

The Fourier feature mapping applies frequency-based en-
coding separately to each spatial dimension (Ax, Ay, Az) of
the action vectors using both sine and cosine functions, result-
ing in an intermediate representation of dimension 2× 3×F ,
where F is the number of Fourier frequencies. This represen-
tation is then processed through an MLP to produce the final
action embeddings.

B. Training Details

We train our model using distributed data parallel training
on 4 H100 GPUs. The model is trained with a batch size of
128 per GPU and gradient accumulation steps of 4, resulting in
an effective batch size of 2048. We use the AdamW optimizer



Fig. 6: Example training data.

Hyperparameter Value
Fourier frequencies 8
Fourier feature dimension 48
MLP hidden dimensions [512, 512]
Output dimension output_dim
Activation function SiLU
Position normalization Center & Scale

TABLE VI: Action encoder hyperparameters.

with a learning rate of 1e-5 and cosine learning rate scheduler
with 1000 warmup steps. For numerical stability and training
efficiency, we employ mixed-precision training with bfloat16
and enable TF32 on supported hardware.

C. Planning Details

For planning, we employ a hybrid approach combining
Model Predictive Control (MPC) and Cross Entropy Method
(CEM). Our planner optimizes action sequences by iteratively
sampling actions, evaluating their outcomes using the learned
dynamics model, and updating the sampling distribution based
on the costs. To enhance planning efficiency, we introduce two
key strategies: (1) an informed action sampling mechanism
and (2) a grasp point selection method. For action sampling,

Hyperparameter Value
Number of GPUs 4
Batch size per GPU 128
Gradient accumulation steps 4
Effective batch size 1024
Learning rate 1e-5
Learning rate scheduler Cosine
Warmup steps 1000
Mixed precision bfloat16
Number of workers 16

TABLE VII: Training hyperparameters.

we initialize the sampling distribution using a prior direction
informed by the target state. Specifically, we identify the K
vertices with highest mean squared error (MSE) between the
current and target states, and compute a weighted average
direction based on their distances to the grasp point:

dmain =

K∑
i=1

wi(s
i
t − sic), wi =

1

∥pg − pi∥+ ϵ
(2)

where sit and sic are target and current states of vertex i, pg
is the grasp point position, and pi is the position of vertex i.



This informed direction guides the initial sampling distribution
for more efficient exploration.

For grasp point selection, we employ a temperature-
controlled softmax strategy based on vertex displacements.
Given the current state Sc and target state St, we compute
a probability distribution over all vertices:

p(i) =
exp(∥sit − sic∥2/τ)∑
j exp(∥s

j
t − sjc∥2/τ)

(3)

where sit and sic represent the position of vertex i in
target and current states respectively, and τ is a temperature
parameter that controls the concentration of the probability
distribution. A lower temperature leads to more deterministic
selection focusing on maximum displacement vertices, while
a higher temperature enables more exploratory behavior. The
grasp point is then sampled from this distribution:

g ∼ p(i) (4)

This probabilistic selection mechanism provides several ad-
vantages over deterministic maximum displacement selection:
(1) it allows for exploration of different grasp points, (2) it
can adapt to different manipulation scenarios by adjusting the
temperature parameter, and (3) it provides a smoother transi-
tion between different grasp point candidates. The planning
algorithm is outlined in Algorithm 1. Hyperparameters for
model-based planning is listed in Table IX.

D. Baseline Implementation

We introduce details of baseline implementation.
a) GNNs: We adopt the implementation from [44]. We

construct a comprehensive graph representation for modeling
cloth dynamics, incorporating object particles, end-effector
interactions, and material properties. The graph structure con-
sists of four main components: (1) state and action represen-
tations, (2) particle attributes and instance information, (3)
relation matrices for particle interactions, and (4) material-
specific physics parameters. The state representation captures
both spatial positions and temporal dynamics through a history
buffer of nhis frames and future predictions of nfuture frames.
Each state vector contains the 3D positions (x, y, z) of both
cloth particles and the end-effector. We maintain a fixed-
size particle set through Farthest Point Sampling (FPS) with
an adaptive radius range of [0.05, 0.1]. We show detailed
parameters for graph construction below.

Hyperparameter Value
Maximum particles (Nobj ) 100
Maximum relations (NR) 1000
History frames (nhis) 3
Future frames (nfuture) 5
State dimension 3
Attribute dimension 2
FPS radius range [0.05, 0.1]
Adjacency radius range [0.74, 0.76]
Topk neighbors 5

TABLE VIII: GNN model hyperparameters.

Parameter Value
Number of iterations 5
Samples per iteration 16
Sequence length 5
Action dimension 3
Initial std deviation 0.1
Temperature 1.0

TABLE IX: Planning hyperparameters.

APPENDIX F
ADDITIONAL RESULTS

a) Dynamics Prediction: Quantitative results on percep-
tion input scenario is presented in Table X.We present more
qualitative results on forward dynamics prediction in Figure 8
and Figure 9.

Type Method ↓ MSE ↓ CD ↓ EMD
(10−3) (10−2) (10−2)

T-shirt
GNN 6.36 ± 1.30 8.88 ± 1.12 8.29 ± 1.94

Transformer 4.18 ± 0.73 4.26 ± 0.51 7.93 ± 0.70
DDM 0.55 ± 0.27 1.49 ± 0.13 3.22 ± 0.47

Cloth
GNN 2.17 ± 1.44 5.02 ± 0.90 7.31 ± 4.65

Transformer 1.30 ± 0.65 2.27 ± 0.46 7.06 ± 2.08
DDM 0.66 ± 0.45 2.12 ± 0.54 5.51 ± 1.03

TABLE X: Quantitative results of last frame dynamics pre-
diction. Long-horizon dynamics prediction results with DPM
perception noisy input. Errors represent a 95% confidence
interval.

b) Planning: We present more qualitative results in Fig-
ure 11 in the simulation environment on planning.

c) Failure Cases Analysis: We also present failure cases
results in Figure 7. We observed four kinds of common cases
that may cause failure of an action.



Algorithm 1 MPC Planning Algorithm

Require: Initial state si, target state st, dynamics model fθ, number of iterations N
Require: Number of samples K, sequence length L, action bounds [amin, amax]

1: Initialize µ← 0, σ ← 0.1
2: abest ← None, cbest ←∞
3: for i = 1 to N do
4: Amppi ← SampleGaussian(K/2, L, µ, σ, [amin, amax])
5: Auniform ← SampleUniform(K/2, L, [amin, amax])
6: A← Concatenate(Amppi, Auniform)
7: Spred ← fθ(S,A) ▷ Predict trajectories
8: C ← ComputeCost(Spred, A, T ) ▷ Evaluate costs
9: if min(C) < cbest then

10: cbest ← min(C)
11: abest ← A[argmin(C)]
12: end if
13: µ, σ ← UpdateDistribution(A,C, τ) ▷ Update using weighted averaging
14: σ ← σ · (1− i/N) ▷ Anneal exploration
15: end for
16: return abest

(a) Incorrect grasp point
(b) Gripper-induced cloth 

damage scenarios
(c) Wrong dynamics prediction

(d) Complex garments with 

specialized features (zippers, 

down-filled materials)

Fig. 7: Analysis of failure modes. Systematic categorization and visualization of common failure cases, highlighting key
limitations: (a) grasp point selection errors, (b) gripper-induced cloth damage, (c) dynamics prediction inaccuracies, and (d)
complex garment features (e.g., zippers, down-filled materials).



Fig. 8: Qualitative results on cloth dynamics prediction using DDM.



Fig. 9: Qualitative results on t-shirt dynamics prediction using DDM.



(a) Lift cloth (b) Fold cloth (c) Rotate cloth (d) Pull cloth

Fig. 10: Simulated cloth manipulation environments. Visualization of diverse manipulation scenarios in simulation: (a)-(d)
demonstrate different cloth-robot interactions with varied object configurations and manipulation tasks.

Fig. 11: Model predictive control evaluation in simulation. Demonstration of our diffusion-based dynamics model integrated
with MPC across diverse manipulation tasks using xArm7, validated on various cloth types.
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