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Abstract

Large language models demonstrate the intriguing ability to perform unseen tasks1

via in-context learning. However, it remains unclear what mechanisms inside the2

model drive such task-level generalization. In this work, we approach this question3

through the lens of off-by-one addition (i.e., 1+1=3, 2+2=5, 3+3=?), a two-step,4

counterfactual task with an unexpected +1 function as a second step. Leveraging5

circuit-style interpretability techniques such as path patching, we analyze the6

models’ internal computations behind their notable performance and present three7

key findings. First, we uncover a function induction mechanism that explains8

the model’s generalization from standard addition to off-by-one addition. This9

mechanism resembles the structure of the induction head mechanism found in prior10

work and elevates it to a higher level of abstraction. Second, we show that the11

induction of the +1 function is governed by multiple attention heads in parallel,12

each of which emits a distinct piece of the +1 function. Finally, we find that this13

function induction mechanism is reused in a broader range of tasks, including14

synthetic tasks such as shifted multiple-choice QA and algorithmic tasks such as15

base-8 addition. Overall, our findings offer deeper insights into how reusable and16

composable structures within language models enable task-level generalization.17

1 Introduction18

As the capabilities of language models (LMs) continue to grow, users apply them to increasingly19

challenging and diverse tasks, accompanied by evolving expectations [53, 36, 17]. Consequently, it20

becomes impractical to include every task of interest in a model’s training prior to deployment. In21

this context, task-level generalization—the ability of a model to perform novel tasks at inference22

time—becomes highly crucial and valued.23

Prior work shows that LMs already exhibit this capability to a significant extent through in-context24

learning [3, 5, 24]. The underlying mechanisms of this behavior are being actively investigated, with25

work on induction heads [30] and function vectors [12, 37] offering substantial insights. However, our26

understanding is still limited, especially regarding more complex generalization scenarios involving27

unexpected elements or newly defined concepts in the task.28

In this work, we aim to enhance our understanding of how models handle novelty and unconvention-29

ality with one counterfactual task: off-by-one addition (i.e., 1+1=3, 2+2=5, 3+3=?). For humans, this30

task consists of two sequential steps: standard addition, followed by an unexpected increment of one31

to the sum. When a language model is prompted to perform this task with in-context learning, we32

anticipate two possible outcomes: (1) the model acquires the intended +1 operation and thus outputs33

7, or (2) it adheres to fundamental arithmetic principles and outputs 6.34
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We begin our study by evaluating six contemporary LMs on off-by-one addition. Our findings indicate35

that all evaluated models consistently demonstrate the first outcome, effectively leveraging in-context36

examples; furthermore, performance increases consistently as more shots are used. Motivated by37

these observations, we seek a more comprehensive understanding of how models perform off-by-one38

addition, and in particular, the +1 step of the task. To this end, we employ mechanistic interpretability39

and path patching techniques [42], which enables us to trace the model’s output logits to a specific40

set of attention heads and their interconnections responsible for +1 behavior.41

Our analysis with Gemma-2 (9B) [8] reveals that the model’s computation of +1 is mainly governed42

by three groups of attention heads. Notably, two of these groups and their connections resemble the43

structure of the induction head mechanism described in prior work [30]1. This observation leads to44

our hypothesis of a function induction mechanism—a generalization of the induction head mechanism45

that operates at the function level. Our analysis also reveals that the +1 function is transmitted along46

six (or more) paths in the model’s computation graph; in each path, an attention head writes a distinct47

fraction of the function, whose aggregate effect yields the complete +1 function.48

We further validate the universality of our findings across models and tasks [29, 23]. Regarding49

models, we repeat the path patching procedure with Mistral-v0.1 (7B) [16] and Llama-3 (8B)50

[38], confirming the existence of the function induction mechanism, though in slightly varied forms.51

Regarding tasks, we extend our analysis with four task pairs—off-by-k addition, shifted multiple-52

choice QA, Caesar Cipher, and base-8 addition—designed to replace sub-steps in off-by-one addition53

with substantially different operations. We demonstrate the reuse of the same mechanism in these54

task pairs. Overall, our results highlight the flexible and composable nature of the function induction55

mechanism we have characterized, and provide an improved understanding of how language models56

may generalize when encountering unexpected aspects in a task.57

2 LMs Learn Off-by-One Addition in Context58

Off-by-one addition is a synthetic, counterfactual task involving two steps. The first step is standard59

addition, and the second, unexpected step is a +1 function. In our work, we are interested in whether60

and how the model can perform this task with in-context learning. We provide concrete 4-shot61

examples of standard addition and off-by-one addition in Table 1. In this section, we first evaluate62

contemporary language models on this tasks and describe our observations.63

Base Task Standard Addition 4+3=7\n3+2=5\n6+0=6\n3+3=6\n1+0= 1
Contrast Task Off-by-One Addition 4+3=8\n3+2=6\n6+0=7\n3+3=7\n1+0= 2

Table 1: Example Prompt of Standard and Off-by-One Addition. Red is used to mark the base
prompt and answer. Orange is used to mark the contrast prompt and answer.
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Figure 1: In-context Learning Perfor-
mance of Off-by-One Addition.

Data. To create the evaluation data, we randomly sample64

100 test cases, each with 32 in-context examples (ai+bi =65

ci) and one test example (atest+btest = ctest). We sample66

a, b, c from the range of [0,999], and restrict that for all i,67

ctest ̸= ci. This is to make sure these test cases evaluate68

models on inducing +1 function, instead of copying and69

pasting the answer (ctest) from the previous context (ci).70

Models. We evaluate six recent LMs on this task:71

Llama-2 (7B) [38], Mistral-v0.1 (7B) [16],72

Gemma-2 (9B) [8], Qwen-2.5 (7B) [48], Llama-373

(8B) [9] and Phi-4 (14B) [1]. These models were74

developed by different organizations, employ different75

number tokenization methods, and were released in differ-76

ent years, thereby providing a diverse and representative77

sample. Please refer to Table 4 for details of these models.78

1Induction heads facilitate a language model’s pattern copying behavior in sequences like [A][B]...[A]
→ [B]. See Appendix A for further details.
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Evaluation Results. In Fig. 1, we report the accuracy when different numbers of in-context79

examples are used. All evaluated models exhibit non-trivial performance on this task, demonstrating80

that this behavior is pervasive. Additionally, performance always improves as the number of shots81

increases, indicating effective utilization of the in-context examples. Notably, more recent models like82

Llama-3 (8B) and Phi-4 (14B) achieve the strongest performance, with near perfect results in83

the 8-shot experiments. More details of our evaluation (e.g., reporting accuracy on standard addition,84

using a smaller number range like [0,9], or removing the restriction of ctest ̸= ci) are deferred to §B.85

3 Interpreting the Off-by-One Addition Algorithm86

Off-by-one addition is likely an unseen task to these language models and represents a novel challenge,87

yet as Fig. 1 shows, they effectively induced the +1 operation with in-context learning.88

Intrigued by these observations, we aim to interpret the model’s internal computation behind this89

behavior. §3.1 provides a brief overview of mechanistic interpretability and path patching, a line of90

methods that we find highly suited to our investigation. We further formalize our notation in this91

section. In §3.2 we describe our circuit discovery process and findings.92

We choose Gemma-2 (9B) as the default model based on our preliminary experiments (§B), and93

use “1+1=3\n2+2=5\n3+3=?” as a running example in the following. Unless specified otherwise, all94

experiments use 100 off-by-one addition test cases using numbers in the range of [0,9].295

3.1 Background: Mechanistic Interpretability and Path Patching96

Mechanistic interpretability is a subfield of interpretability that aims to reverse-engineer model97

computations and establish “correspondence between model computation and human-understandable98

concepts.” [42] A transformer-based language model can be viewed as a computation graph M ,99

where components like attention heads and MLP layers serve as nodes, and their connections as100

edges. We use M(y|x) to denote the logit of token y when using x as the input prompt. A circuit C101

is a subgraph of M that is responsible for a certain behavior. In our study, the behavior of interest is102

the induction and application of the +1 function in off-by-one addition.103

The specific method we rely on is path patching [42], which generalizes activation patching [22] and104

causal mediation [40] from prior work. In the past, such technique has supported interpretability105

findings on a wide range of model behaviors [11, 35, 33, 19].106

Extending path patching to our case, we first run forward passes on both the base prompt xbase107

(1+1=2\n2+2=4\n3+3=) and contrast prompt xcont (1+1=3\n2+2=5\n3+3=), to obtain the logits108

M(.|xbase) and M(.|xcont). We will then (1) replace part of the activations in M(.|xcont) with the109

corresponding activations in M(.|xbase); (2) let the replaced activations propagate to designated110

target nodes (e.g., output logits, query of a specific head) in the graph; (3) replace the activations of111

the target nodes in M(.|xcont) with the activations obtained in (2). The computation graph after such112

replacement is denoted as M ′. If such a replacement alters the model’s output of “3+3=7” back to113

“3+3=6”, we would believe that the part has contributed to the computation of the +1 function.114

To simplify the notation, we define F (C, x) as the logit difference between ybase (6) and ycont (7)115

when prompted with x and using the circuit C while knocking out nodes outside C in the computation116

graph, i.e., F (C, x) = C(ybase|x)− C(ycont|x). Following Wang et al. [42], we quantify the effect117

of a replacement by first computing F (M ′, xcont), and then normalize it by the logit difference118

before intervention, i.e., r = F (M ′,xcont)−F (M,xcont)
F (M,xcont)−F (M,xbase)

. See §C.1 for its expansion and explanations.119

The resulting ratio r, which we refer to as relative logit difference, will typically fall in the range120

of [-100%, 0%], with -100% representing the model favors ybase (i.e., the model losts its ability on121

off-by-one addition after replacement), and 0% representing the model favors ycont.122

3.2 Circuit Discovery123

Patching to the Output Logits. Our investigation begins by setting the output logits as the target124

node, effectively asking “which attention heads directly influence the model output?” The results,125

visualized in Fig. 2(a), highlight 10 attention heads with a relative logit difference |r| > 2%.126

2To accommodate our computational resources, circuit discovery experiments (§3.2) were conducted with 4
shots (accuracy=33%), while circuit evaluation experiments (§4) were performed with 16 shots (accuracy=86%).
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Figure 2: Circuit Discovery with
Gemma-2 (9B). Top: Patching Re-
sults on Selected Target Nodes.
(a) We identify Group 1 heads and
Group 2 heads that directly influence
the output logits.
(b) We identify Group 3 heads that
write to the value of H39.7.
Bottom: Attention Pattern of Se-
lected Heads. We use 4 ICL examples
in the format of “a+b=c\n”.
(c) Group 1 heads mainly attend to the
current token and <bos>.
(d) Group 2 heads attend to the answer
token (ci) of previous ICL examples at
the position of “=”.
(e) Group 3 heads attend to the preced-
ing “=” at the position of ci.

We further investigate the attention pattern of the highlighted heads and categorized them into two127

groups. Group 1 heads appear exclusively in the last two layers of the model, and mainly attend to128

the current token and the <bos> token at each position (Fig. 2(c)). Group 2 heads present periodical129

patterns consistent with the ICL examples in the prompt (Fig. 2(d)). Specifically, at the position of the130

last “=” token, where the model is expected to generate the answer as the next token, these attention131

heads will attend to the answer token (ci) in previous ICL examples (ai + bi = ci).132

We additionally conduct path patching using the value of Group 1 heads as the target node, revealing133

that Group 2 heads also write to the value of Group 1 heads which then indirectly influence the134

final output logits. Combining these findings, we hypothesize that Group 1 heads are responsible135

for finalizing and aggregating information, while Group 2 heads are responsible for carrying the +1136

function from the in-context examples to the test example.137

Patching to the Value of Group 2 Heads. To further trace down the origin of the +1 function,138

we set the value of each head in Group 2 as the target node for path patching. For example, H39.7139

(Head 7 in Layer 39) is a representative head in Group 2 with a relative logit difference r of −27%140

when patching to the final output. When setting H39.7’s value as the target node and performing141

path patching, three heads are highlighted (Fig. 2(b)) and all of these heads follow the pattern of142

attending to the previous token at certain positions (Fig. 2(e)). In particular, these head attend to143

the “=” token from the answer token ci in each in-context example. We repeat this procedure for144

remaining heads in Group 2 and identify more attention heads with the previous-token attending145

behavior. We collectively refer to them as Group 3 heads.146

Our subsequent path patching attempts do not uncover any new attention heads leading to significant147

logit differences, thus we conclude the algorithm at this point.148
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Figure 3: Overview of the Identified Circuit.

The Function Induction Hypothesis. Fig. 3149

provides an overview of the circuit we identi-150

fied, illustrating the connections of the three head151

groups and highlighting the token positions they152

operate on. The comprehensive list of heads in153

each group can be found in §C.2.1 and Fig. 4(c).154

We find it particularly intriguing that the structure155

of the circuit, in particular Group 2 and Group 3,156

resembles the structure of induction heads [30],157

a known mechanism responsible for language158

model’s copy-paste behavior. In the induction159

head mechanism, a previous token head “copies160

information from the previous token to the next to-161

ken”, and an induction head “uses that information162

to find tokens preceded by the present token.” [30]163
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We provide an illustration for the original induction head mechanism in §A. We hypothesize that164

the circuit we identify generalizes this known mechanism from the token-level to the function-level.165

Based on this intuition, the three groups of attention heads will cooperate as follows:166

• Within an ICL example, at the " = " token (e.g., “1+1=”), the model initially drafts its answer167

via early-layer computations (e.g., “2”), and anticipates to generate it as the subsequent token.168

However, at the answer token position ci, the model encounters an unexpected answer (e.g.,169

“3”). Consequently, heads in Group 3 register this discrepancy at the position of ci. Given their170

previous-token attending behavior, we name heads in Group 3 as previous token (PT) heads.171

• In the test example portion of the prompt (e.g., “3+3=”), Group 2 heads retrieve the information172

registered by Group 3 heads at the “=” token, and subsequently writes out the +1 function.173

We name Group 2 heads as function induction (FI) heads as their operation resembles that of174

standard induction heads but applies to arithmetic functions rather than tokens.175

• Lastly, we refer to Group 1 heads as consolidation heads, hypothesizing their role in finalizing176

the next-token output by synthesizing information from various sources.177

4 Circuit Evaluation and Analysis178

Previously, we constructed the function induction hypothesis based on our path patching results and179

its structural similarity to that of the induction heads mechanism. In this section, we dive deeper into180

the properties of the identified circuit by evaluating its quality and conducting additional analyses,181

with the goal of providing a more granular understanding of its behavior.182
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Figure 4: Circuit Evaluation.

Circuit Evaluation. We begin our evaluation with head ablation, a common technique to validate a183

head’s involvement in a specific model behavior [10, 46]. Here, we focus on FI heads and “ablate” a184

head by replacing its output in the forward pass on xcont with the corresponding head output in the185

forward pass on xbase. As shown in Fig. 4(a), the complete, unablated model achieved an accuracy of186

86% on 16-shot off-by-one addition. Upon ablating the six FI heads, the model’s behavior switched187

back to standard addition, resulting in 100% accuracy on standard addition and 0% on off-by-one188

addition. For a controlled comparison, we also ablated six randomly selected heads; these showed189

minimal influence on either the base or contrast accuracy. This set of results provides preliminary190

evidence that the six FI heads are necessary in off-by-one addition.191

We further conduct more rigorous evaluation of our circuit on the faithfulness, completeness, and192

minimality criteria introduced in [42]. Note that we focus on interpreting the “off-by-one” component193

of the task, rather than the standard addition component. Hence, these circuit evaluation metrics are194

adapted accordingly. The faithfulness metric measures whether a circuit C has a similar performance195

to the full model M , i.e., whether F (C, xcont) is close to F (M,xcont), with F (C, x) defined earlier196

in §3.1. We find that F (M,xbase) = 7.17, F (M,xcont) = −1.26, and F (C, xcont) = 0.56,197

suggesting that C recovers 7.17−0.56
7.17−(−1.26) = 78.4% of the performance of M .198

The completeness criterion evaluates whether for each subset K ⊆ C, the difference between199

F (C\K,xcont) and F (M\K,xcont) is small. In the following, we will omit the xcont term for200

brevity. We use various different sets (e.g., randomly or greedily selected) as K and report the results201

in Fig. 4(b). We find most points representing (F (C\K), F (M\K)) fall slightly below the x = y202

line, while maintaining a monotonic trend, suggesting that the circuit C is partially complete. This203

represents the best we can achieve with our current methodology. We also find that when K is the204
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set of all PT heads or all FI heads, both f(C\K) and f(M\K) are high, suggesting that the model205

favors ybase in next-token generation (i.e., 3+3=6) and switches back to standard addition under these206

ablation conditions. These observations are consistent with our function induction hypothesis.207

Lastly, the minimality criterion measures whether each head v in C is necessary, by seeking a subset208

K ⊆ C\{v} that has a high score of |F (C\(K ∪ {v})) − F (C\K)|. We manually constructed209

the K sets for this purpose. As shown in Fig. 4(c), each head in C is relevant to the task and has a210

non-trivial effect (>2%) in performing off-by-one addition.211

What do FI heads write out? In our hypothesis, FI heads are responsible for writing the +1212

function to the residual stream at the “=” token. This behavior is highly relevant to recent findings213

on function vectors in language models [37, 12], which indicates that a small number of attention214

heads effectively transport task representations (i.e., function vectors) in in-context learning. The FI215

heads we identified align with this description, and moreover, generalize these findings because the216

mechanism we discovered operates within a multi-step task.217

Despite this distinction, the abstraction of function vectors inspires our approach to interpret the role218

of FI heads through their causal effect on a naive prompt xnaive, e.g., “2=2\n3=?”, for which the219

model is expected to assign a high probability to “3”. If a FI head indeed writes out the +1 function,220

adding its output to the residual stream at the final “=” token should cause the model to increase its221

probability of generating “4” instead.222

Concretely, we construct the naive prompt “{x-1}={x-1}\n{x}=?” for x ∈ [0, 9], and track the223

model’s output logits of [0, 9] both before and after adding the FI head output to the residual stream224

at the corresponding layer. This leads to a 10× 10 heatmap, where the value at cell (xinput, youtput)225

represents the change in logits for token y when the function vector is added.226

In Fig. 5, we present these heatmaps for each of the six FI heads identified in §3.2. We include three227

additional heads (H32.4, H28.6, H24.9) that, while showing a weaker effect (i.e., 1% < |r| < 2%) in228

§3.2, exhibit notable pattern in this analysis. We find that each of the FI heads contributes a distinct229

fragment to the overall +1 function. For example, with an input x, H39.7 promotes x + 1, H28.6230

suppresses x− 1, H32.1 promotes digits greater than x, H24.9 suppress x. When the outputs of these231

nine heads are aggregated and added to the final residual stream, their combined effect implements232

the +1 function, as depicted in the bottom-right panel of Fig. 5.233

Universality of Function Induction. To investigate the universality of our findings across mod-234

els, we repeat the path patching experiments with Llama-3 (8B) and Mistral-v0.1 (7B). We235

identified all three groups of heads in Llama-3 (8B) that account for their behavior in off-by-one236

addition. For Mistral-v0.1 (7B), we only identified FI heads and PT heads, suggesting a slight237

variation. Still, these observations provide promising evidence that the function induction mechanism238

is general and consistently emerges across various language models. See §C.2 for more details.239
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5 Task Generalization with Function Induction240

Our investigation so far suggests that function induction is the key mechanism enabling the model to241

generalize from standard addition and manage the unexpected +1 step in off-by-one addition. Given242

that task generalization is crucial for developing capable AI systems, we aim to explore the broader243

usage of this mechanism. In this section, we investigate the role of function induction in a range of244

synthetic and algorithmic tasks. Specifically, §5.1 introduces the four task pairs examined, and §5.2245

presents the overall findings and additional analyses for two of these pairs.246

5.1 Tasks247

(a) Off-by-k Addition (c) Caeser Cipher

Standard 4+3=7\n3+2=5\n6+0=6\n3+3=6\n1+0= 1 ROT-0 c -> c\nx -> x\ne -> e\nt -> t\nq -> q
Off-by-Two 4+3=9\n3+2=7\n6+0=8\n3+3=8\n1+0= 3 ROT-2 c -> e\nx -> z\ne -> g\nt -> v\nq -> s

(b) Shifted MMLU (d) Base-k Addition

Standard [...]\nAnswer: (B)\n[...]\nAnswer: (A) Base-10 25+16=41\n60+16=76\n13+35=48\n52+17= 69
Shift-by-One [...]\nAnswer: (C)\n[...]\nAnswer: (B) Base-8 25+16=43\n60+16=76\n13+35=50\n52+17= 71

Table 2: Task Pairs Used in Task Generalization Experiments. Red is used to mark the base
prompt and answer. Orange is used to mark the contrast prompt and answer.

(a) Off-by-k Addition. One extension of off-by-one addition is changing the offset to other values.248

Here, we consider offsets k ∈ {−2,−1, 2}. We use k = 2 as a representative case to be reported in249

the main paper. Results and analysis on the other offsets are deferred to §E.250

(b) Shifted Multiple-choice QA. We consider going beyond arithmetic tasks and replace steps in251

off-by-one addition with substantively different steps. The base task is chosen to be multiple-choice252

QA questions on selected subjects of the MMLU dataset [13]. The contrast task is created with an253

additional step to shift the answer choice letter by one letter, e.g., A→B, B→C.254

(c) Caesar Cipher. One realistic task that leverages shifting functions is Caesar Cipher. During255

encoding, a letter is replaced by the corresponding letter a fixed number of positions down the alphabet256

[44]. This task is also commonly used to evaluate a language model’s reasoning capabilities [31]. Here257

we consider single-character Ceaser Cipher with different offsets k ∈ {−12,−11, . . . , 0, . . . , 12, 13}.258

We use k = 2 as the representative case in the main paper.259

(d) Base-k Addition. Lastly, we consider the task of base-k addition, which was used by Wu et al.260

[47] to assess the a model’s memorization versus generalization. Prior work [50] suggests that LMs261

may formulate a shortcut solution for base-8 addition by interpreting it as “adding 22 to the sum”262

from in-context examples; our interpretability analysis helps further investigate this observation. We263

consider two digit base-10 addition as the base task, and base-k addition as the contrast task, with264

k ∈ {6, 7, 8, 9}. We use k = 8 as a representative case in the main paper.265

5.2 Results and Analysis266

FI heads are reused in a wider range of tasks. Using the four task pairs introduced previously, we267

examine the role of the function induction mechanism we discover with head ablation experiments,268

similar to the one done in Fig. 4(a). We run forward passes on both the base task and the contrast269

task. We then replace the FI heads outputs in M(.|xcont) forward pass with the corresponding head270

outputs in the M(.|xbase) forward pass.271

We report results of the representative cases in Fig. 6. In all four task pairs, we first see a non-trivial272

performance on the contrast task, indicating effective generalization. Upon ablating the six FI heads,273

we observe a consistent trend: the model’s contrast accuracy significantly decreases; the base accuracy274

increases and often returns to a level comparable to that achieved with the base prompt. These findings275

suggest that the mechanism identified with off-by-one addition is largely reused in these task pairs,276

which share a similar underlying structure but also represents substantially different sub-steps. This277

strongly demonstrates the mechanism’s flexibility and composability.278
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We also observe that in (b) Shifted MMLU and (c) Caesar Cipher, the model has non-zero contrast279

accuracies when the FI heads are ablated. This implies that the six FI heads we found with off-by-one280

addition are useful, but not complete for these task pairs. See §E for additional discussion.281

Function vector analysis with off-by-k addition. We revisit the function vector style analysis done282

in Fig. 5, but this time considering different offsets k ∈ {−2,−1, 1, 2}. Results on two representative283

heads (H39.7 and H25.13) are shown in Fig. 7. We find that the effect of FI heads varies appropriately284

with the offset k, demonstrating their generality and consistency with the hypothesized functionality.285

For these two selected heads, we find that each of them has their own “specialty.” For example, the286

heatmap for H25.13 suggests its primary responsibility for writing out ±2 functions. While its effect287

is stronger when the offset k = ±2, it still contributes in the case of k = ±1 by suppressing the288

original output x.289

Models struggle in base-8 addition due to under- or over-generalization. It may sound unintu-290

itive why the induction mechanism specialized in shifting functions could facilitate base-8 addition.291

One possible explanation is that the model initially performs standard base-10 addition with early292

layers, and apply minor adjustments when necessary. This adjustment step is possibly handled by the293

function induction mechanism in late layers.294

Following this intuition, we propose one possible algorithm for two-digit base-8 addition in Listing 1.295

No adjustment is needed when there is no carrying over from the unit digit (Case 1), e.g., 60+16 = 76296

is correct in both base-8 and base-10. When carry-over occurs, two separate cases needs to be297

considered. In Case 2, both the unit and the eight’s place digit require adjustment, e.g., 138 + 358 =298

508 and 1310 + 3510 = 4810, so both 4 and 8 in 4810 need to be adjusted. In Case 3, only the unit299

digit needs adjustment, e.g., 258 + 168 = 438 and 2510 + 1610 = 4110.300

We randomly sample 100 32-shot prompts for each of these three cases, and track the model’s301

behavior on the unit and eight’s place digit. We report the results in Table 3. In Case 1, digits are302

adjusted unnecessarily in 7% (=6%+1%) of instances, suggesting over-generalization. Conversely,303

in Case 2 and 3, digits were not adjusted as expected in 84% (=68%+16%) and 83% of instances,304

suggesting under-generalization. Overall, this evidence suggests that while the model can induce305
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simple functions like +2 to some extent, it struggles with more complex situations where +2 should306

be only be triggered under certain conditions. Alternatively, if the induction of these conditions is307

viewed as an additional step in multi-step reasoning, the model we investigate may not yet be capable308

of two-step induction in a three-step task, thereby limiting their performance in base-8 addition.309

1 def base8addition(a, b):
2 # (1) perform base -10 addition
3 c = base10addition(a, b) # case 1
4 # (2) apply adjustments
5 if 8 <= a[0] + b[0] < 10: # case 2
6 c[0] = (c[0] + 2) % 10
7 c[1] = c[1] + 1
8 elif a[0] + b[0] >= 10: # case 3
9 c[0] = c[0] + 2

10 return c

Listing 1: One possible algorithm for
two-digit base-8 addition. This algorithm
divides all scenarios into three cases. c[0]
represents the unit digit and c[1] represents
the tens/eights digit in a two-digit number c.

Case Full Model Ablate FI Heads
Neither c[0] c[1] Both Neither

Case 1 93 6 1 0 100
Case 2 68 0 16 16 100
Case 3 83 14 0 0 100

Table 3: Error analysis for two-digit base-8 addi-
tion. We use 100 examples for each case specified
in Listing 1. The anticipated behavior is marked in
green . “Neither” suggests the number of times that

neither c[0] or c[1] is adjusted, which is antici-
pated in Case 1. “c[0]” suggests that only c[0] is
adjusted. “Both” suggests both digits are adjusted.

310

6 Related Works311

Mechanistic Interpretability. The field of mechanistic interpretability aims to reverse-engineer312

complex neural networks into human-understandable algorithms [2, 34], enhancing our understanding313

of a wide range of model behaviors, including in-context learning [30], long-context retrieval [46],314

and chain-of-thought reasoning [4]. A common methodology involves analyzing their computation315

graphs of a specific task, as exemplified by studies on indirect object identification [42], “greater than”316

operation [11], and entity tracking [32]. Following this, our work begins with the off-by-one addition317

task, and showcases the broader applicability of our findings with various task pairs.318

Function Vectors in LMs. Recent work has characterized in-context learning in language models319

as the compression of in-context examples into a single task or function vector, which is subsequently320

transported to the test example to trigger the model to apply the function [37, 12, 51]. These studies321

present strong evidence pertaining to single-step, mapping-style tasks like country-to-capital and322

English-French translation. Our work is inspired by this line of research, yet with two key differences:323

(1) We focus on off-by-one addition, a multi-step arithmetic task, where the learning of the second324

step depends on the results of the preceding step. (2) We provide a finer-grained interpretation on325

how function vectors, sent out by different attention heads, vary in content but collaborate to form a326

complete function. In concurrent work, this latter aspect was also explored by Hu et al. [14], who327

investigate the task of add-k (i.e., “5→8, 1→4, 2→?”) using subspace decomposition.328

Latent Multi-step Reasoning and Structural Compositionality in LMs. Various studies investi-329

gate whether and how models perform latent multi-step reasoning, typically via multi-hop factoid QA330

tasks [49, 41]. Our work demonstrates that LMs can dynamically infer the second step in a multi-step331

problem from in-context examples, a process representing a novel, flexible and composable form of332

latent multi-step reasoning. More broadly, our findings are relevant to research investigating structural333

compositionality [18] (i.e., breaking down complex tasks into subroutines) in language models.334

7 Conclusion335

In this work, we present an interpretability study on the off-by-one addition task, with the broader goal336

of investigating how language models handle unseen tasks using in-context learning. Our analysis led337

to the discovery of a function induction mechanism, which handles the “twists” involved in gener-338

alizing from seen to unseen tasks. This discovery extends and generalizes previous interpretability339

findings on induction heads and function vectors. We further show this mechanism is broadly reused340

beyond off-by-one addition, notably in realistic algorithmic tasks like Caesar Cipher and base-8341

addition. Collectively, these observations deepen our understanding of how models generalize to new342

tasks and situations, and provide compelling evidence that language models may have developed343

composable and general mechanisms for handling intricate linguistic and task structures.344
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Limitations345

Regarding path patching experiments (§3), the identified circuit has limitations as it does not perfectly346

satisfy the faithfulness and completeness criteria, even with our best efforts. This challenge arises347

because achieving simultaneous satisfaction of faithfulness, completeness, and minimality is difficult,348

as these criteria often regulate each other. Moreover, number tokens are often mapped into a sinusoidal349

(Fourier) feature space rather than a linear space in language models [27, 54, 55], which further350

complicates our interpretability analysis. Besides this limitation, our analysis in §4 focused primarily351

on the identified FI heads and their causal effect on naive prompts. Future research could dive into the352

details of the previous token heads and the consolidation heads, or further investigate the query-key353

and output-value circuits of these heads [6].354

Regarding task generalization experiments (§5) , our current scope is limited to two-step tasks355

where the second step involves a shifting-related function. We anticipate that the function induction356

mechanism could operate on a broader spectrum of functions, which could be investigated in future357

work. Additionally, the task pairs we investigated are synthetic or algorithmic; further exploration of358

the behavior of function induction heads on naturally occurring text distributions would be highly359

valuable.360

Broader Impact361

Our work does not involve model training and thus does not directly introduce new malicious or362

harmful applications. However, our findings broadly demonstrate that when presented with false363

information in the prompt, models tend to follow and even generalize such inaccuracies. This364

observation could offer insights into unintended applications or behaviors of language models, such365

as the generation of misinformation (e.g., if prompted with the false premise that the Earth is flat,366

the model might generate a convincing article supporting this claim) or how the model acts overly367

sycophantically (e.g., if a user believes “1+1=3”, the model might not only endorse this but also368

extend it to “2+2=5”). It is our hope that the insights from our interpretability analysis can inform369

efforts to address these critical societal problems.370
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A Induction Head Mechanism and Function Induction Mechanism613
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Figure 8: Comparing Induction Head (Left) and Function Induction (Right).

Comparing Induction Head and Function Induction. Fig. 8 provides a side-by-side visualization614

of the induction head mechanism [30] and the hypothesized function induction mechanism (§3.2),615

demonstrating their structural similarity and explaining the basis for our hypothesis.616

To provide a more concrete example on how induction heads work, consider the hypothetical scenario617

where a language model is completing the prompt: “Llama 0 was released in 2022. This paper618

presents an extensive evaluation of Llama ...” When the model first encounters an uncommon phrase,619

e.g., “Llama 0”, a previous token head will attend to “Llama” and register the information that620

“Llama appears before 0” at the position of “0”. Later on, when “Llama” appears in the context621

again, an induction head will retrieve this piece of information from position of “0” and increase622

the likelihood of generating “0” as the next token. This induction head mechanism informs our623

hypothesis on function induction in §3.2 and the collaborative interaction between previous token624

heads and function induction heads in Fig. 8 (Right).625

Relevance to In-context Learning with False Demonstrations. Various prior works investigate626

how language models handle false, random, or perturbed demonstrations in in-context learning627

[25, 52, 43, 21, 20]. Notably, Halawi et al. [10] adopted an interpretability approach, observing the628

overthinking behavior of models (i.e., models draft truthful answers at early layers and flip them to629

untruthful answers at late layers), and identified false induction heads that are responsible for copying630

the untruthful answers from the ICL examples.631

Our analysis of off-by-one addition was largely motivated by these studies. Here we revisit the findings632

of Halawi et al. [10] along with ours, using a unified view of two-step tasks, i.e., z = f(g(x)). In633

[10], the first step, y = g(x) is typically a text classification task, e.g., news topic classification, and634

the second step, z = f(y) is a permutation of the labels, e.g., {Business→Sci/Tech, Sci/Tech→World,635

World→Sport, Sports→Business}. In our work, y = g(x) is standard addition, and z = f(y) is a +1636

function.637

In this view, our findings with off-by-one addition are consistent with those in [10], while also638

advancing the understanding in several aspects: (1) In both cases, language models decompose the639

task into two steps, and induce the second step based on the results of the first step. The second step640

could be either a conditional copy-paste function, e.g., a permutation of labels, or an algorithmic641

function, e.g., a +1 function. The latter represents a novel finding of this study, demonstrating that642

the second step can exhibit forms more complex than copy-paste operations. (2) Our path patching643

procedure identified two additional group of heads (consolidation heads and previous token heads)644

that are involved in handling false demonstrations. (3) Our work also suggests that the strategy to645

improve truthfulness by zeroing out false induction heads or function induction heads may have646

unintended consequences on models’ positive capabilities, given their positive contributions to the647

cipher task and the base-8 addition task.648

Related to the view of two-step tasks, Jain et al. [15] demonstrate that models learn a “wrapper”649

function g over an existing function f in a sequential fine-tuning setting. Our work and [10] suggest650

that language models demonstrate simple forms of this behavior with in-context learning as well.651
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B Off-by-One Addition Evaluation652

Models. In §2 we evaluated six recent language models on the task of off-by-one addition. In653

Table 4 we provide details of these models.

Model Name Huggingface Identifier Reference Tokenization
0-9 0-999

Llama-2 (7B) meta-llama/Llama-2-7b-hf Touvron et al. (2023) ✓
Mistral-v0.1 (7B) mistralai/Mistral-7B-v0.1 Jiang et al. (2023) ✓
Gemma-2 (9B) google/gemma-2-9b Gemma Team (2024) ✓
Qwen-2.5 (7B) Qwen/Qwen2.5-7B Yang et al. (2024) ✓
Llama-3 (8B) meta-llama/Meta-Llama-3-8B Grattafiori et al. (2024) ✓
Phi-4 (14B) microsoft/phi-4 Abdin et al. (2024) ✓

Table 4: Models Evaluated on Off-by-One Addition. “0-9” means the model uses digit-level
tokenization for numbers, e.g., “123” is tokenized into [“1”,“2”,“3”], “0-999” means all numbers
smaller than 1000 are considered one single token, e.g., “123” is tokenized into [“123”].
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Figure 9: Off-by-One Addition Evaluation, Reporting Base Accuracy.

Reporting base and contrast accuracy. Previously in Fig. 1, we reported the accuracy of off-by-655

one addition (i.e., the percentage of time that the model outputs 7 when given 3+3). In Fig. 9(a) we656

additionally report the accuracy of standard addition (e.g., “3+3=6”), when the models are given the657

contrast prompt (e.g., “1+1=3\n2+2=5”). We find that the base accuracy consistently decrease with658

more in-context learning examples. In Fig. 9(c), we show that models may also output numbers that659

are incorrect either in standard addition or off-by-one addition (i.e., neither “6” or “7”).660
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Figure 10: Off-by-One Addition Evaluation, Using Smaller Number Ranges.

Results in a smaller number range. Previously in Fig. 1, we reported results when the operands661

were sampled from the range of [0,999]. In Fig. 10, we additionally report results when sampling662

from the range of [0,9] and [0,99]. For two models using 0-9 tokenization (Gemma-2 (9B) and663

Qwen-2.5 (7B)), the performance drops with larger number ranges. For the remaining models, the664

performance remains stable regardless of the number ranges.3665

3We chose Gemma-2 (9B) as the default model in our study because (1) we focused on the range of [0,9] in
early stage of this work to prioritize simplicity, and Gemma-2 (9B) performs competitively in this setting; (2)
Qwen-2.5 (7B), Llama-3 (8B), Phi-4 (14B) were not released or integrated into transformer-lens at
that time. We acknowledge this experimental design limitation and address it by interpreting Llama-3 (8B)
and Mistral-v0.1 (7B) in §C.
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Figure 11: Off-by-One Addition Evaluation, Different Sampling Constraints.

Results with/without the constraint of ctest ̸= ci. Previously in §2 we deliberately impose the666

constraint that ∀i, ctest ̸= ci. This is to rule out the possibility that language models perform off-by-667

one addition via copying ctest from previous contexts. In Fig. 11, we compare the results of two668

additional sampling strategies: (1) no constraint on ctest and ci; (2) ∃i, ctest = ci. By comparing669

Fig. 11(b) and (c) we see that for Mistral-v0.1 (7B) and Gemma-2 (9B), the accuracy is higher670

when ∃i, ctest = ci. This observation implies that these two models leverages copy-paste induction671

more than function induction in performing off-by-one addition, though more rigorous analysis is672

required to draw a conclusion.673
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Figure 12: Off-by-k Addition Evaluation, Gemma-2 (9B)
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Figure 13: Off-by-k Addition Evaluation, Llama-3 (8B)

Results with off-by-k addition. In Fig. 12-13, we present 32-shot off-by-k addition results with674

various offsets k using Gemma-2 (9B) and Llama-3 (8B) respectively.4 One consistent trend is675

that models struggle more with offsets k of larger absolute values. While Llama-3 (8B) generally676

outperforms Gemma-2 (9B), Gemma-2 (9B) demonstrates strong performance when k = ±10,677

potentially due to its adoption of 0-9 tokenization. An additional observation reveals that Gemma-2678

(9B) typically achieves stronger performance with even values of k compared to odd values.679

4The visualization of Fig. 12-13 was inspired by Prabhakar et al. [31].
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C Circuit Discovery680

C.1 Relative Logit Diff681

§3.1 introduced r, the relative logit difference, to measure the effect of a replacement during circuit682

discovery. We now elaborate on this formula to enhance clarity.683

r =
F (M ′, xcont)− F (M,xcont)

F (M,xcont)− F (M,xbase)
(1)

=
[M ′(ybase|xcont)−M ′(ycont|xcont)]− [M(ybase|xcont)−M(ycont|xcont)]

[M(ybase|xcont)−M(ycont|xcont)]− [M(ybase|xbase)−M(ycont|xbase)]
(2)

684

C.2 Identified Heads685

In the main paper, we focus on interpreting Gemma-2 (9B). To explore the universality of the686

mechanism, we additionally conduct path patching with Llama-3 (8B) and Mistral-v0.1 (7B).687

We list the identified attention heads below.688

C.2.1 Gemma-2 (9B)689

• Consolidation Heads: H41.4, H41.5, H40.11, H40.12;690

• Function Induction (FI) Heads: H39.7, H39.12, H36.7, H32.1, H32.6, H25.13;691

• Previous Token (PT) Heads: H38.6, H38.7, H38.9, H35.14, H35.9, H31.4, H31.5, H29.5.692

C.2.2 Llama-3 (8B)693
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Figure 14: Circuit Discovery with Llama-3 (8B). Results are consistent with those with Gemma-2
(9B) in Fig. 2.

Llama-3 (8B) has 32 layers and 32 heads per layer. Path patching experiments were conducted694

with 4-shot off-by-one addition with numbers sampled from range [0,999]. We visualize the path695

patching results in Fig. 14.696

• Consolidation Heads: H31.1, H30.25, H29.11, H29.10, H28.16, H28.17, H28.18;697

• Function Induction (FI) Heads: H26.2, H23.13, H23.15;698

• Previous Token (PT) Heads: H24.10, H24.11, H22.25, H22.27, H21.7.699
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Figure 15: Circuit Discovery with Mistral-v0.1 (7B). Results are mostly consistent with those
with Gemma-2 (9B) in Fig. 2, with the exception of the consolidation heads.

C.2.3 Mistral-v0.1 (7B)700

Mistral-v0.1 (7B) has 32 layers and 32 heads per layer. Path patching experiments were con-701

ducted with 4-shot off-by-one addition with numbers sampled from range [0,9]. We visualize the702

results in Fig. 15. For the two consolidation heads in the list below, they show weaker effect and703

attend to both the current token and some other tokens, which slightly deviates from our findings with704

Gemma-2 (9B) and Llama-3 (8B). Apart from this, the results using Mistral-v0.1 are consistent705

with our function induction hypothesis.706

• Consolidation Heads: (H31.10), (H31.1)707

• Function Induction (FI) Heads: H30.2, H30.3, H30.4, H30.8, H30.10, H30.18, H31.2708

• Previous Token (PT) Heads: H29.4, H29.6, H29.7.709

C.3 Additional Interpretability Analysis710

C.3.1 Logit Lens Analysis711

In this section, we apply logit lens [28], a widely-adopted interpretability method, to off-by-one712

addition. This involves directly computing the logits from intermediate layer representations using713

the final layer norm and the final unembedding layer.714

We use Gemma-2 (9B) and 100 16-shot examples in this set of experiments. In Fig. 16, we report the715

logits of the base answer ybase (i.e., model outputting 3+3=6), the contrast answer ycont (i.e., model716

outputting 3+3=7) and their differences, computed using the contrast prompt xcont (i.e., 1+1=3) as717

model input. In Fig. 17, we repeat the experiments using xbase (i.e., 1+1=2) as the input prompt.718

By comparing Fig. 16(a) and Fig. 17(a), we find that the curves in the two subplots begin to diverge719

notably after layer 25. This supports our claim that the model performs standard addition in the early720

layers and apply the +1 function in late layers.721

Additionally, by comparing Fig. 16(b) and Fig. 17(b), we find that the logit diff decreases sharply722

after layer 38 in Fig. 16(b), a phenomenon absent in Fig. 17(b). This is consistent with our findings723

that H39.7 and H39.12 contribute significantly to writing out the +1 function to the residual stream.724
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Figure 16: Logit Lens Results when Using xcont as the Input Prompt.
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Figure 17: Logit Lens Results when Using xbase as the Input Prompt.
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Figure 18: Activation Patching By Token.
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Figure 19: Activation Patching By Head.

C.3.2 Activation Patching Analysis725

In this section, we apply activation patching [22] to off-by-one addition. We performed this analysis in726

the early stages of our work to gather initial intuitions and signals for our problem, before transitioning727

to path patching for a more fine-grained understanding of the model’s internal computation.728

We use Gemma-2 (9B) and 100 4-shot examples in this set of experiments. First, we run forward729

passes for both the base prompt xbase and the contrast prompt xcont. We store the activations and730

then replace the activations in the xcont forward pass with corresponding activations in the xbase731

forward pass. We consider activation patching by token (Fig. 18) and by head (Fig. 19). We report732
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the ratio r′ = 1 + r = F (M ′,xcont)−F (M,xbase)
F (M,xcont)−F (M,xbase)

in these figures following previous works. We scaled733

the colormap in the figures to the range of [-50%, 50%] for clear visualization.734

Fig. 18(a) visualizes the information flow from in-context examples to the residual stream of the last “735

=” token. Additionally, Figure 18(b) highlights several layers, specifically layers 32, 36, and 39 at the736

last “=” token, and layers 35 and 38 at the answer token c in the in-context examples. This aligns with737

the FI heads (H36.7, H39.7, H39.12) and PT heads (H35.9, H35.14, H38.6, H38.7, H38.9) identified738

in §3.2. Figure 18(c) further reveals that MLP layers also play critical roles at certain positions. It is739

possible that FI heads write the +1 function to the residual stream, with subsequent attention and MLP740

layers involved in the execution of the +1 function. This hypothesis is inspired by prior observations741

of how MLP layers in transformer models are involved in arithmetic operations [27, 35]. In this work,742

we limit our focus to attention heads, deferring further analysis of MLP layers to future work.743

Results in Fig. 19 guide and complement our path patching experiments in §3.2. The identified PT744

heads (H35.9, H38.6, H38.7, H38.9) are highlighted in Fig. 19(b) and the FI heads (H36.7, H39.7,745

H39.12, H32.1, H25.13) are highlighted in Fig. 19(d).746

C.3.3 Alternative Head Ablation Methods747

In the main paper, we “ablate” or “knock out” a head by replacing its output in the xcont forward748

pass with the corresponding head output in the xbase forward pass. This instance-specific ablation749

approach is adopted to better isolate the +1 function computation in each instance. However, this750

differs from ablation methods commonly used in interpretability work, such as zero ablation [10] or751

mean ablation [42].752

To demonstrate the consistency of our findings across different ablation settings, we repeated the753

experiment in Fig. 4(a) using zero ablation and mean ablation. For mean ablation, we averaged head754

outputs at the final “=” token from 100 standard addition examples. We found that in all ablation755

settings (zero ablation, mean ablation, and our instance-specific ablation), the contrast accuracy756

reduced to 0% and the base accuracy increased to 100% after ablation.757

D Function Vector Analysis758
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Figure 20: Rescaled Effect of H32.6, H25.13 and H32.4. We rescale the effect of these three heads
in Fig. 5 to [-0.15, 0.15] to make the patterns more readable. When x is the input, both H25.13 and
H32.4 suppresses x− 1.

Rescaled Effect of Selected Heads. In Fig. 20, we rescale the effect of H32.6, H25.13, H32.4 in759

Fig. 5 to visualize their patterns more clearly. H25.13 and H32.4 contribute to the +1 function by760

suppressing x− 1. However, the role of H32.6 is unclear from the heatmap.761

What do FI heads write out in standard addition? Our function vector style analysis in §4762

primarily focuses on what FI heads write out in off-by-one addition. However, these heads may also763

assume roles in standard addition. To investigate this, we add the FI head outputs in the M(.|xbase)764

to the naive prompt xnaive, and visualize the effect in Fig. 21. By comparing Fig. 5 and Fig. 21, we765

observe that most FI heads contribute meaningful but distinct information in standard addition, with766

H39.12 being an exception given its minimal effect in standard addition. The aggregated effect in the767

bottom-right panel in Fig. 21 suggests that FI heads collectively suppress x− 1 and promote x in768

standard addition.769
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Figure 21: Individual and Overall Effect of Identified FI Heads (Standard Addition).
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Figure 22: Individual and Overall Effect of FI Heads in Off-by-k Addition, k = −2.

One possibility is that FI heads reinforce the answer x, or double-check it by performing (x− 1) + 1770

in standard addition. In contrast, during off-by-one addition, the standard addition answers are first771

“locked in” after early layers, and the FI heads are repurposed to perform +1. We leave further772

investigation of this phenomenon to future work.773

What do FI heads write out in off-by-k addition? Previously in Fig. 7, we demonstrated how the774

effect of H39.7 and H25.13 changes with respect to different offset k. In Fig. 22-24 we report the775

effect of all nine heads when k = −2,−1, 2. We find that for some heads (e.g., H32.1 and H24.9),776

their effect of suppressing x remains consistent across different k values. For other heads (e.g., H39.7,777

H39.12, H25.13), their effect changes accordingly with respect to k.778

E Task Generalization779

E.1 Tasks and Data Preparation780

In this section we describe the task pairs we used in §5 with more details.781

Off-by-k Addition. For experiments in the range of [0,9], we consider k ∈ {−2,−1, 1, 2}. For782

experiments in the range of [0,99] and [0,999], we consider k ∈ {−10,−9, ...,−1, 1, 2, ..., 10}. We783
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Figure 23: Individual and Overall Effect of FI Heads in Off-by-k Addition, k = −1.
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Figure 24: Individual and Overall Effect of FI Heads in Off-by-k Addition, k = 2.

have reported the results in Fig. 12-13, incorporating the range and offset information. We use 16784

shots in the experiments in Fig. 6(a).785

Shifted Multiple-choice QA. We focus on 6 subjects in the MMLU dataset [13]: high school786

government and politics, high school US history, US foreign policy, marketing, high school psy-787

chology, sociology. We downloaded the MMLU dataset from § hendrycks/test. We chose these788

subjects because Gemma-2 (9B) achieves 90% accuracy with 5 shots on them. For subjects where789

Gemma-2 (9B) achieves lower accuracies, tracking and analyzing performance on Shift-by-One790

MMLU becomes challenging, because the model could score points by random guessing. We use 16791

shots in the experiments in Fig. 6(b), where the 16 shots combine “validation” and “dev” examples792

from the MMLU dataset.793

Caesar Cipher. We adopted a cyclic approach where “a” is considered the next character after “z”.794

We also included both lower-case or upper-case examples, e.g., “c -> d” and “C -> D” are both valid795

examples in ROT-1. We use 16 shots in the experiments in Fig. 6(c).796

In the early stages of this work, we experimented with multi-character Caesar cipher. To prevent797

multiple characters from being tokenized as a single unit (e.g., “ew” as one token in Gemma-2’s798

tokenizer), we used a preceding whitespace ( ) before each character, formatting it as “ e w” so that799

“ e” and “ w” became separate tokens. However, we ultimately focused on one-character Caesar800

cipher in the experiments because Gemma-2 (9B) has insufficient performance on this task when801
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Figure 25: Task Generalization with FI Heads, Off-by-k Addition. We consider addition in the
range of [0,9] and k ∈ {−2,−1, 1, 2}.
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Figure 26: Task Generalization with FI Heads, Shifted MMLU.

working with multiple characters. The tokenization-aware formatting was retained. The actual model802

input will be “ c -> d” for the example “c -> d”.803

Base-k Addition. We sampled two-digit addition problems using a procedure similar to off-by-k804

addition, with one additional constraint that the sum number c has two digits in both base-10 and805

base-k. We use 32 shots in the experiments in Fig. 6(d). For the base-8 addition analysis in §5.2 and806

Table 3, examples for Case 1-3 were resampled.807

E.2 Results808

Full Results using Different Offsets and Bases. Previously in Fig. 6, we report results on repre-809

sentative cases, e.g., k = 2 in off-by-k addition, the subject of “high school government and politics”810

in shifted MMLU. In Fig. 25-28, we report results of the full list of offsets and subjects.811

We observe that some of these task variants exceed Gemma-2 (9B)’s capabilities. For instance,812

Gemma-2 (9B) has notable performance on cipher when k ∈ {−2,−1, 1, 2, 3, 13} but shows insuf-813

ficient performance in other settings. Similarly, it only exhibits non-trivial performance on certain814

subjects of Shifted MMLU. However, when models do have non-trivial performance, we consistently815

see the involvement of the FI heads, evidenced by the decreased contrast accuracy after ablating them.816

Ablating three additional FI Heads. Previously in Fig. 6, we ablate the 6 FI heads we identified817

in §3.2 by setting a threshold of |r| > 2%. In §4 and Fig. 5 we showed that 3 additional FI heads818

with weaker effect (1% < |r| < 2%) also contribute meaningfully to off-by-one addition. Here we819

consider repeating the experiments on task generalization in Fig. 6 and ablating the 9 heads together.820

We report the results in Fig. 29.821
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Figure 27: Task Generalization with FI Heads, Caesar Cipher. We consider k ∈
{−12,−11, ...,−1} and {1, 2, ..., 13}. In this figure, we ablate 6 FI heads plus 3 additional FI
heads (discussed in §4 and Fig. 5), yielding a clearer pattern than ablating 6 heads alone.

We find that the 3 weaker heads contribute meaningfully to the Shifted MMLU, causing its contrast822

performance to drop to near 0% when all 9 heads are ablated (Fig. 29(b)), contrasting with 12%823

when 6 heads are ablated (Fig. 6(b)). We have a similar observation with Caesar Cipher (k = 2),824

where contrast accuracy drops to 0% in (Fig. 29(c)), contrasting with 36% when 6 heads are ablated825

(Fig. 6(c)). These observations suggest that the 3 heads may specialize in letters more than numbers.826

Understanding these detailed specializations will be an interesting direction for future work.827

F Reproducibility828

Frameworks. We primarily use the § transformer-lens [26] library for model inference and829

interpretability analysis. This library is built on the § transformers [45] library. We have also830

used the § llm-transparency-tool [7, 39] for early exploration.831

Hardware. All experiments were conducted with one NVIDIA RTX A6000 GPU (48GB). Path832

patching experiments involving 100 4-shot examples and iterating over all attention heads for a given833

target node will typically take 2 hours.834
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Figure 28: Task Generalization with FI Heads, Base-k Addition. We consider k ∈ {6, 7, 8, 9}.
The dashed lines represent the base prompt’s contrast accuracy, emphasizing the delta in contrast
accuracies between rows.
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Figure 29: Task Generalization with FI Heads, Ablating 9 FI Heads. We repeat the experiment in
Fig. 6, this time ablating three additional FI heads (H32.4, H28.6, H24.9) which showed a weaker
effect (1% < |r| < 2%) during circuit discovery on off-by-one addition.
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