
Function Induction and Task Generalization:
An Interpretability Study with Off-by-One Addition

Qinyuan Ye Robin Jia Xiang Ren
University of Southern California

{qinyuany, robinjia, xiangren}@usc.edu

Abstract

Large language models demonstrate the intriguing ability to perform unseen tasks
via in-context learning. However, it remains unclear what mechanisms inside
the model drive such task-level generalization. In this work, we approach this
question through the lens of off-by-one addition (i.e., 1+1=3, 2+2=5, 3+3=?), a
two-step, counterfactual task with an unexpected +1 function as a second step.
Leveraging circuit-style interpretability techniques such as path patching, we
analyze the models’ internal computations behind their performance and present
three key findings. First, we uncover a function induction mechanism that explains
the model’s generalization from standard addition to off-by-one addition. This
mechanism resembles the structure of the induction head mechanism found in prior
work and elevates it to a higher level of abstraction. Second, we show that the
induction of the +1 function is governed by multiple attention heads in parallel,
each of which emits a distinct piece of the +1 function. Finally, we find that this
function induction mechanism is reused in a broader range of tasks, including
synthetic tasks such as shifted multiple-choice QA and algorithmic tasks such as
base-8 addition. Overall, our findings offer deeper insights into how reusable and
composable structures within language models enable task-level generalization.1

1 Introduction

As the capabilities of language models (LMs) continue to grow, users apply them to increasingly
challenging and diverse tasks, accompanied by evolving expectations (Zhao et al., 2024; Tamkin
et al., 2024; Kwa et al., 2025). Consequently, it becomes impractical to include every task of interest
in a model’s training prior to deployment. In this context, task-level generalization—the ability of a
model to perform novel tasks at inference time—becomes highly crucial and valued.

Prior work shows that LMs already exhibit this capability to a significant extent through in-context
learning (Brown et al., 2020; Chen et al., 2022; Min et al., 2022a). The underlying mechanisms of
this behavior are being actively investigated, with work on induction heads (Olsson et al., 2022) and
function vectors (Hendel et al., 2023; Todd et al., 2024) offering substantial insights. However, our
understanding is still limited, especially regarding more complex generalization scenarios involving
unexpected elements or newly defined concepts in the task.

In this work, we aim to enhance our understanding of how models handle novelty and unconvention-
ality with one counterfactual task: off-by-one addition (i.e., 1+1=3, 2+2=5, 3+3=?). For humans, this
task consists of two sequential steps: standard addition, followed by an unexpected increment of one
to the sum. When a language model is prompted to perform this task with in-context learning, we
anticipate two possible outcomes: (1) the model acquires the intended +1 operation and thus outputs
7, or (2) it adheres to fundamental arithmetic rules and outputs 6.

1Code: § INK-USC/function-induction

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Mechanistic Inter-
pretability.

https://github.com/INK-USC/function-induction

We begin our study by evaluating six contemporary LMs on off-by-one addition. Our findings indicate
that all evaluated models consistently demonstrate the first outcome, effectively leveraging in-context
examples; furthermore, performance increases consistently as more shots are used. Motivated by
these observations, we seek a more comprehensive understanding of how models perform off-by-one
addition, and in particular, the +1 step of the task. To this end, we employ mechanistic interpretability
and path patching techniques (Wang et al., 2023), which enables us to trace the model’s output logits
to a specific set of attention heads and their interconnections responsible for +1 behavior.

Our analysis with Gemma-2 (9B) (Gemma Team, 2024) reveals that the model’s computation of
+1 is mainly governed by three groups of attention heads. Notably, two of these groups and their
connections resemble the structure of the induction head mechanism described in prior work (Olsson
et al., 2022)2. This observation leads to our hypothesis of a function induction mechanism—a notable
generalization of the induction head mechanism that transcends token-level pattern matching to
operate at the function-level. Our analysis also reveals that the +1 function is transmitted along six
(or more) paths in the model’s computation graph; in each path, an attention head writes a distinct
fraction of the function, whose aggregate effect yields the complete +1 function.

We further validate the universality of our findings across models and tasks (Olah et al., 2020; Merullo
et al., 2024). Regarding models, we repeat our analysis on Mistral-v0.1 (7B) (Jiang et al., 2023),
Llama-2 (7B) (Touvron et al., 2023) and Llama-3 (8B) (Touvron et al., 2023), confirming the
existence of the function induction mechanism, though in slightly varied forms. Regarding tasks,
we extend our analysis with four task pairs—off-by-k addition, shifted multiple-choice QA, Caesar
Cipher, and base-8 addition—designed to replace sub-steps in off-by-one addition with substantially
different operations. We demonstrate the reuse of the same mechanism in these task pairs.

Overall, our results advance our understanding of important language model capabilities such as
in-context learning and latent multi-step reasoning. They highlight the flexible and composable nature
of the function induction mechanism we have characterized, and provide substantive insights into
how models may generalize when encountering novel task variations.

2 LMs Learn Off-by-One Addition in Context

Off-by-one addition is a synthetic, counterfactual task involving two steps. The first step is standard
addition, and the second, unexpected step is a +1 function. In this work, we are interested in whether
and how the model can perform this task with in-context learning. We provide concrete 4-shot
examples of standard addition and off-by-one addition in Table 1. In this section, we first evaluate
contemporary language models on this task and describe our observations.

Base Task Standard Addition 4+3=7\n3+2=5\n6+0=6\n3+3=6\n1+0= 1
Contrast Task Off-by-One Addition 4+3=8\n3+2=6\n6+0=7\n3+3=7\n1+0= 2

Table 1: Example Prompt of Standard and Off-by-One Addition. Red is used to mark the base
prompt and answer. Orange is used to mark the contrast prompt and answer.

Data. To create the evaluation data, we randomly sample 100 test cases, each with 32 in-context
examples (ai + bi = ci) and one test example (atest + btest = ctest). We sample a, b, c from the
range of [0,999], and restrict that for all i, ctest ̸= ci. This is to make sure these test cases evaluate
models on inducing +1 function, instead of copying and pasting the answer token (ctest) from the
previous context (ci).

Models. We evaluate six recent LMs on this task: Llama-2 (7B) (Touvron et al., 2023),
Mistral-v0.1 (7B) (Jiang et al., 2023), Gemma-2 (9B) (Gemma Team et al., 2024), Qwen-2.5 (7B)
(Yang et al., 2024a), Llama-3 (8B) (Grattafiori et al., 2024) and Phi-4 (14B) (Abdin et al., 2024).
These models were developed by different organizations, employ different number tokenization
methods, and were released in different years, thereby providing a diverse and representative sample.
Please refer to Table 4 for details of these models.

2Induction heads (Olsson et al., 2022) facilitate a language model’s token copying behavior in sequences
like [A][B]...[A] → [B] by directly copying token [B] from the context. Our work aims to explain a
more abstract, function-level behavior—how models induce the function f(x) = x + 1 from sequences like
[A] f([B]) ... [C] → f([D]) (e.g., 1+1 = 3 ... 3+3 = 7). See Appendix B for further details.

2

2 4 8 16 32
Number of ICL Examples

0%

20%

40%

60%

80%

100%

C
on

tr
as

t A
cc

ur
ac

y

Llama-2 (7B)
Gemma-2 (9B)
Qwen-2.5 (7B)

Mistral-v0.1 (7B)
Llama-3 (8B)
Phi-4 (14B)

Figure 1: In-context Learning Per-
formance of Off-by-One Addition.

Evaluation Results. In Fig. 1, we report the accuracy when
different numbers of in-context examples are used. All eval-
uated models exhibit non-trivial performance on this task,
demonstrating that this behavior is pervasive. Addition-
ally, performance always improves as the number of shots
increases, indicating effective utilization of the in-context
examples. Notably, more recent models like Llama-3 (8B)
and Phi-4 (14B) achieve the strongest performance, with
near perfect results in the 8-shot experiments. More details
of our evaluation (e.g., reporting accuracy on standard addi-
tion, using a smaller number range like [0,9], or removing
the restriction of ctest ̸= ci) are deferred to §C.

3 Interpreting the Off-by-One Addition Algorithm

Off-by-one addition is likely an unseen task to these language models and represents a novel challenge,
yet as Fig. 1 shows, they effectively induced the +1 operation with in-context learning.

Intrigued by these observations, we aim to interpret the model’s internal computation behind this
behavior. §3.1 provides a brief overview of mechanistic interpretability and path patching, a line of
methods that we find highly suited to our investigation. We further formalize our notation in this
section. In §3.2 we describe our circuit discovery process and findings.

We choose Gemma-2 (9B) as the default model based on our preliminary experiments (§C), and use
“1+1=3\n2+2=5\n3+3=?” as a running example in the following. Unless specified otherwise, all
experiments below use 100 off-by-one addition test cases using numbers in the range of [0,9].3

3.1 Background: Mechanistic Interpretability and Path Patching

Mechanistic interpretability is a subfield of interpretability that aims to reverse-engineer model
computations and establish “correspondence between model computation and human-understandable
concepts.” (Wang et al., 2023) A transformer-based language model can be viewed as a computation
graph M , where components like attention heads and MLP layers serve as nodes, and their connections
as edges. We use M(y|x) to denote the logit of token y when using x as the input prompt. A circuit
C is a subgraph of M that is responsible for a certain behavior. In our study, the behavior of interest
is the induction and application of the +1 function in off-by-one addition.

The specific method we rely on is path patching (Wang et al., 2023), which is built on activation
patching (Meng et al., 2022) and causal mediation (Vig et al., 2020) methods from prior work. In
the past, such technique has supported interpretability findings on a wide range of model behaviors
(Hanna et al., 2023; Stolfo et al., 2023; Prakash et al., 2024b; Li et al., 2025).

Extending path patching to our case, we first run forward passes on both the base prompt xbase

(1+1=2\n2+2=4\n3+3=) and contrast prompt xcont (1+1=3\n2+2=5\n3+3=), to obtain the logits
M(.|xbase) and M(.|xcont). We will then (1) replace part of the activations in M(.|xcont) with the
corresponding activations in M(.|xbase); (2) let the replaced activations propagate to designated
target nodes (e.g., output logits, query of a specific head) in the graph; (3) replace the activations of
the target nodes in M(.|xcont) with the activations obtained in (2). The computation graph after such
replacement is denoted as M ′. If such a replacement alters the model’s output of “3+3=7” back to
“3+3=6”, we would believe that the part has contributed to the computation of the +1 function.

To simplify the notation, we define F (C, x) as the logit difference between ybase (6) and ycont (7)
when prompted with x and using the circuit C while knocking out nodes outside C in the computation
graph, i.e., F (C, x) = C(ybase|x) − C(ycont|x). Following Wang et al. (2023), we quantify the
effect of a replacement by first computing F (M ′, xcont), and then normalize it by the logit difference
before intervention, i.e., r = F (M ′,xcont)−F (M,xcont)

F (M,xcont)−F (M,xbase)
. See §D.1 for its expansion and explanations.

The resulting ratio r, which we refer to as relative logit difference, will typically fall in the range

3To accommodate our computational resources, circuit discovery experiments (§3.2) were conducted with 4
shots (accuracy=33%), while circuit evaluation experiments (§4) were performed with 16 shots (accuracy=86%).

3

24 28 32 36 40
Layer

0

4

8

12

H
ea

d
In

de
x

H41.4

H39.7

(a) Patching to Output Logits

32 36 40
Layer

H38.7

(b) Patching to H39.7 Value

-20%

-10%

0%

10%

20%

Lo
gi

t D
iff

. V
ar

ia
tio

n

+ = + = + = + = + =

Key

+
=

+
=

+
=

+
=

+
=

Q
ue

ry

(c) H41.4 Attn. Pattern

+ = + = + = + = + =

Key

+
=

+
=

+
=

+
=

+
=

(d) H39.7 Attn. Pattern

+ = + = + = + = + =

Key

+
=

+
=

+
=

+
=

+
=

(e) H38.7 Attn. Pattern

Figure 2: Circuit Discovery with
Gemma-2 (9B). Top: Patching Re-
sults on Selected Target Nodes.
(a) We identify Group 1 heads and
Group 2 heads that directly influence
the output logits.
(b) We identify Group 3 heads that
write to the value of H39.7.
Bottom: Attention Pattern of Se-
lected Heads. We use 4 ICL examples
in the format of “a+b=c\n”.
(c) Group 1 heads mainly attend to the
current token and <bos>.
(d) Group 2 heads attend to the answer
tokens (ci) of previous ICL examples
at the position of “=”.
(e) Group 3 heads attend to the preced-
ing “=” at the position of ci.

of [-100%, 0%], with -100% representing the model favors ybase (i.e., the model losts its ability on
off-by-one addition after replacement), and 0% representing the model favors ycont.

3.2 Circuit Discovery

Patching to the Output Logits. Our investigation begins by setting the output logits as the target
node, effectively asking “which attention heads directly influence the model output?” The results,
visualized in Fig. 2(a), highlight 10 attention heads with a relative logit difference |r| > 2%.

We further investigate the attention pattern of the highlighted heads and categorized them into two
groups. Group 1 heads appear exclusively in the last two layers of the model, and mainly attend to
the current token and the <bos> token at each position (Fig. 2(c)). Group 2 heads present periodical
patterns consistent with the ICL examples in the prompt (Fig. 2(d)). Specifically, at the position of the
last “=” token, where the model is expected to generate the answer as the next token, these attention
heads will attend to the answer tokens (ci) in previous ICL examples (ai + bi = ci).

We additionally conduct path patching using the value of Group 1 heads as the target node, revealing
that Group 2 heads also write to the value of Group 1 heads which then indirectly influence the
final output logits. Combining these findings, we hypothesize that Group 1 heads are responsible
for finalizing and aggregating information, while Group 2 heads are responsible for carrying the +1
function from the in-context examples to the test example.

Patching to the Value of Group 2 Heads. To further trace down the origin of the +1 function,
we set the value of each head in Group 2 as the target node for path patching. For example, H39.7
(Head 7 in Layer 39) is a representative head in Group 2 with a relative logit difference r of −27%
when patching to the final output. When setting H39.7’s value as the target node and performing
path patching, three heads are highlighted (Fig. 2(b)) and all of these heads follow the pattern of
attending to the previous token at certain positions (Fig. 2(e)). In particular, at the answer token ci in
each in-context example, these head attend to the “=” token immediately before ci. We repeat this
procedure for remaining heads in Group 2 and identify more attention heads with the previous-token
attending behavior. We collectively refer to them as Group 3 heads.

Our subsequent path patching attempts do not uncover any new attention heads leading to significant
logit differences, thus we conclude the algorithm at this point.

The Function Induction Hypothesis. Fig. 3 provides an overview of the circuit we identified,
illustrating the connections of the three head groups and highlighting the token positions they operate
on. The comprehensive list of heads in each group can be found in §D.2.1 and Fig. 21(b).

We find it particularly intriguing that the structure of the circuit, in particular Group 2 and Group 3,
resembles the structure of induction heads (Olsson et al., 2022), a known mechanism responsible
for language model’s copy-paste behavior. In the induction head mechanism, a previous token head

4

“copies information from the previous token to the next token”, and an induction head “uses that
information to find tokens preceded by the present token.” (Olsson et al., 2022) We provide an
illustration for the original induction head mechanism in §B.

Group 1Group 1

Group 2Group 2

Group 3Group 3

1 + 1 = 3 3 + 3 =\n …

Early layers

Next token pred.

35%

7

6

45%

Group 2

Group 3

Group 1

Head
key/value

query

output

legend

?

Figure 3: Overview of the Identified Circuit.

We hypothesize that the circuit we identify gener-
alizes this known mechanism from the token-level
to the function-level. Based on this intuition, the
three groups of attention heads will cooperate as
follows:

• Within an ICL example, at the "=" token (e.g.,
“1+1=”), the model initially drafts its answer
via early-layer computations (e.g., “2”), and
anticipates to generate it as the subsequent
token. However, at the answer token posi-
tion ci, the model encounters an unexpected
answer (e.g., “3”). Consequently, heads in
Group 3 register this discrepancy at the posi-
tion of ci. Given their previous-token attend-
ing behavior, we name heads in Group 3 as
previous token (PT) heads.

• In the test example portion of the prompt (e.g., “3+3=”), Group 2 heads retrieve the information
registered by Group 3 heads at the “=” token, and subsequently writes out the +1 function.
We name Group 2 heads as function induction (FI) heads as their operation resembles that of
standard induction heads but applies to arithmetic functions rather than tokens.

• Lastly, we refer to Group 1 heads as consolidation heads, hypothesizing their role in finalizing
the next-token output by synthesizing information from various sources.

4 Circuit Validation and Analysis

Previously, we constructed the function induction hypothesis based on our path patching results and
its structural similarity to that of the induction heads mechanism. In this section, we dive deeper into
the identified circuit, aiming to provide a more granular understanding.

0% 50% 100%
Accuracy

Contrast Prompt
(Ablate 6 Rand. Heads)

Contrast Prompt
(Ablate 6 FI Heads)

Contrast Prompt

Base Prompt

Base Acc Contrast Acc

Figure 4: Head Ablation Results.

Initial Validation: Ablating FI Heads. We begin
our investigation with head ablation, a common tech-
nique to validate a head’s involvement in a specific
model behavior (Halawi et al., 2023; Wu et al., 2025).
Here, we focus on FI heads and “ablate” a head by
replacing its output in the forward pass on xcont with
the corresponding head output in the forward pass on
xbase. As shown in Fig. 4(a), the complete, unablated
model achieved an accuracy of 86% on 16-shot off-
by-one addition. Upon ablating the six FI heads, the
model’s behavior switched back to standard addition,
resulting in 100% accuracy on standard addition and
0% on off-by-one addition. For a controlled compar-
ison, we also ablated six randomly selected heads;
these showed minimal influence on either the base or contrast accuracy. This set of results provides
preliminary evidence that the six FI heads are necessary in off-by-one addition.

Further Validation: Measuring the Causal Effect of FI Heads. In our hypothesis, FI heads are
responsible for writing the +1 function to the residual stream at the “=” token. This behavior is highly
relevant to recent work (Todd et al., 2024; Hendel et al., 2023) which indicates that a small number
of attention heads (i.e., function vector heads) effectively transport task representations (i.e., function
vectors) in in-context learning. The FI heads we identified align with this description, and moreover,
uncover a novel instantiation of the mechanism that operates within multi-step tasks.

5

Output

0

5In
pu

t

H39.7

Output

H39.12

Output

H36.7

Output

H32.1

Output

H32.6 (*)

0 5
Output

0

5In
pu

t

H25.13 (*)

0 5
Output

(H32.4) (*)

0 5
Output

(H28.6)

0 5
Output

(H24.9)

0 5
Output

9 Heads (Normalized)

0.50

0.25

0.00

0.25

0.50

Figure 5: Individual and Overall Effect of Identified FI Heads. Each head writes out different
information, which aggregates to implement the function of f(x) = x+ 1 (bottom-right panel). (*)
Effects of H32.6, H25.13, and H32.4 are rescaled to [-0.15, 0.15] to make the patterns more readable.

The notion of function vectors inspires us to further validate the role of FI heads through their causal
effect on a naive prompt xnaive, e.g., “2=2\n3=?”, for which the model is expected to assign a high
probability to “3”. If a FI head indeed writes out the +1 function, adding its output to the residual
stream at the final “=” token should cause the model to increase its probability of generating “4”.

Concretely, we construct the naive prompt “{x-1}={x-1}\n{x}=?” for x ∈ [0, 9], and track the
model’s logits for tokens [0, 9] both before and after adding the FI head output to the residual stream
at the corresponding layer. This leads to a 10× 10 heatmap, where the value at cell (xinput, youtput)
represents the change in logits for token y when the function vector is added.

In Fig. 5, we present these heatmaps for each of the six FI heads identified in §3.2. We include three
additional heads (H32.4, H28.6, H24.9) that, while showing modest effects (1% < |r| < 2%) in §3.2,
contribute meaningfully to the +1 function as revealed by this analysis. We find that FI heads work
collaboratively—each of them contributes a distinct piece to the overall +1 function. For example,
with an input x, H39.7 promotes x+ 1, H28.6 suppress x− 1, H32.1 promotes digits greater than
x, H24.9 suppresses x. When the outputs of these nine heads are added to the final residual stream
altogether, their combined effect implements the +1 function, as depicted in the last panel of Fig. 5.

Universality of Function Induction. To investigate the universality of our findings across models,
we repeat the path patching experiments with Llama-3 (8B), Llama-2 (7B), and Mistral-v0.1
(7B). We identified all three groups of heads across these models, except that the two consolidation
heads identified in Mistral-v0.1 display weaker and less consistent signals. Still, these observations
provide promising evidence that the function induction mechanism is general and consistently emerges
across various language models. See §D.2 for more details.

FI Heads (Ours) and FV Heads (Todd et al., 2024) are Two Disjoint Sets of Heads. While our
analysis demonstrates that FI heads transport task representations similarly to the FV heads described
in prior work, a direct comparison with Llama 2 (7B) reveals important distinctions. Todd et al.
(2024) reported that FV heads appear in early-middle layers of the model (before layer 20), whereas
our FI heads are located in late layers of the model (layer 29-31). There is no overlap between the
two sets of heads, suggesting that our work presents a distinct, previously undocumented finding. We
hypothesize that FI heads can be seen as an instantiation of the broader FV head mechanism, but are
only triggered in multi-step tasks where late layers are used to perform the late steps. See §D.2.4 for
the full list of FI/FV heads and §6 for related discussions.

Additional Analysis. Due to space limits, we defer various supporting evidence to the appendix.
We conduct a rigorous evaluation of our circuit using the faithfulness, completeness, and minimality
criteria introduced in Wang et al. (2023). Our circuit mostly satisfies these criteria, and we discuss the
results in §E. We deliberately focus on FI heads in §4 given the interesting insights from these results.
We provide further validation and analysis of consolidation heads and previous token heads in §F.

6

5 Task Generalization with Function Induction

Our investigation so far suggests that function induction is the key mechanism enabling the model to
generalize from standard addition and manage the unexpected +1 step in off-by-one addition. Given
the importance of task generalization for capable AI systems, we aim to explore the broader usage of
this mechanism. In this section, we investigate the role of function induction in a range of synthetic
and algorithmic tasks. Specifically, §5.1 introduces the four task pairs examined, and §5.2 presents
the overall findings and additional analyses for two of these pairs.

5.1 Tasks

(a) Off-by-k Addition (c) Caeser Cipher

Standard 4+3=7\n3+2=5\n6+0=6\n3+3=6\n1+0= 1 ROT-0 c -> c\nx -> x\ne -> e\nt -> t\nq -> q
Off-by-Two 4+3=9\n3+2=7\n6+0=8\n3+3=8\n1+0= 3 ROT-2 c -> e\nx -> z\ne -> g\nt -> v\nq -> s

(b) Shifted MMLU (d) Base-k Addition

Standard [...]\nAnswer: (B)\n[...]\nAnswer: (A) Base-10 25+16=41\n60+16=76\n13+35=48\n52+17= 69
Shift-by-One [...]\nAnswer: (C)\n[...]\nAnswer: (B) Base-8 25+16=43\n60+16=76\n13+35=50\n52+17= 71

Table 2: Task Pairs Used in Task Generalization Experiments. Red is used to mark the base
prompt and answer. Orange is used to mark the contrast prompt and answer.

(a) Off-by-k Addition. One extension of off-by-one addition is changing the offset to other values.
Here, we consider offsets k ∈ {−2,−1, 2}. We use k = 2 as a representative case to be reported in
the main paper. Results and analysis on the other offsets are deferred to §G.

(b) Shifted Multiple-choice QA. We consider going beyond arithmetic tasks and replace steps in
off-by-one addition with substantively different steps. The base task is chosen to be multiple-choice
QA questions on selected subjects of the MMLU dataset (Hendrycks et al., 2021). The contrast task
is created with an additional step to shift the answer choice letter by one letter, e.g., A→B, B→C.

(c) Caesar Cipher. One realistic task that leverages shifting functions is Caesar Cipher. During
encoding, a letter is replaced by the corresponding letter a fixed number of positions down the
alphabet (Wikipedia contributors, 2025). This task is also commonly used to evaluate a language
model’s reasoning capabilities (Prabhakar et al., 2024). Here we consider single-character Ceaser
Cipher with different offsets k ∈ {−12,−11, . . . , 0, . . . , 12, 13}. We use k = 0 as the base task, and
k = 2 as the representative contrast task.

(d) Base-k Addition. Lastly, we consider the task of base-k addition, which was used by Wu et al.
(2024) to assess the a model’s memorization versus generalization. Prior work (Ye et al., 2024)
suggests that LMs may formulate a shortcut solution for base-8 addition by interpreting it as “adding
22 to the sum” from in-context examples; our interpretability analysis helps further investigate this
observation. We consider two digit base-10 addition as the base task, and base-k addition as the
contrast task, with k ∈ {6, 7, 8, 9}. We use k = 8 as a representative case in the main paper.

5.2 Results and Analysis

FI heads are reused in a wider range of tasks. Using the four task pairs introduced above, we
examine the role of the function induction mechanism we discover with head ablation experiments,
similar to the one done in Fig. 4. We run forward passes on both the base task and the contrast task.
We then replace the FI heads outputs in M(.|xcont) forward pass with the corresponding head outputs
in the M(.|xbase) forward pass.

We report results of the representative cases in Fig. 6. In all four task pairs, we first see a non-trivial
performance on the contrast task, indicating effective generalization. Upon ablating the six FI
heads, we observe a consistent trend: the model’s contrast accuracy substantially decreases; the base
accuracy increases and often returns to a level comparable to that achieved with the base prompt.

7

0% 50% 100%
Accuracy

Contrast Prompt
(Ablate 6 Rand. Heads)

Contrast Prompt
(Ablate 6 FI Heads)

Contrast Prompt

Base Prompt

(a) Off-by-Two Addition

0% 50% 100%
Accuracy

(b) MMLU: High School
Government and Politics

0% 50% 100%
Accuracy

(c) Cipher: ROT-2

0% 50% 100%
Accuracy

(d) Base-8 Addition

Base Acc
Contrast Acc

Figure 6: Task Generalization with FI Heads. In (d), base-8 addition has non-zero accuracy with
the base-10 prompt, because in these test cases the base-10 answers happen to be correct in base-8.

Output

0

5In
pu

t

H39.7

k = 2

Output

k = 1

Output

k = 1

Output

k = 2

0 5
Output

0

5In
pu

t

H25.13

0 5
Output

0 5
Output

0 5
Output

0.6

0.0

0.6

0.2

0.0

0.2

Figure 7: Effect of Two FI heads When Using Different Offsets in Off-by-k Addition.

These findings suggest that the mechanism identified with off-by-one addition is largely reused in
these task pairs, which share a similar underlying structure but also represents substantially different
sub-steps. This strongly demonstrates the mechanism’s flexibility and composability.

We also observe that in (b) Shifted MMLU and (c) Caesar Cipher, the model has non-zero contrast
accuracies when the FI heads are ablated. This implies that the six FI heads we found with off-by-one
addition are useful, but not complete for these task pairs. See §G for additional discussion.

Function vector analysis with off-by-k addition. We revisit the function vector style analysis done
in Fig. 5, but this time considering different offsets k ∈ {−2,−1, 1, 2}. Results on two representative
heads (H39.7 and H25.13) are shown in Fig. 7, with other heads deferred to Fig. 23-25.

We find that the effect of FI heads varies meaningfully with the offset k, demonstrating their generality
and consistency with the hypothesized functionality. For the two selected heads in Fig. 7, we find that
each of them has their own “specialty.” For example, the heatmap for H25.13 suggests its primary
responsibility for writing out ±2 functions. While its effect is stronger when the offset k = ±2, it
still contributes in the case of k = ±1 by suppressing the original output x.

Models struggle in base-8 addition due to under- or over-generalization. It may sound unintu-
itive why the induction mechanism specialized in shifting functions could facilitate base-8 addition.
One possible explanation is that the model initially performs standard base-10 addition with early
layers, and apply minor adjustments when necessary. This adjustment step is possibly handled by the
function induction mechanism in late layers.

Following this intuition, we propose one possible algorithm for two-digit base-8 addition in Listing 1.
No adjustment is needed when there is no carrying over from the unit digit (Case 1), e.g., 60+16 = 76
is correct in both base-8 and base-10. When carry-over occurs, two separate cases needs to be
considered. In Case 2, both the unit and the eight’s place digit require adjustment, e.g., 138 + 358 =
508 and 1310 + 3510 = 4810, so both 4 and 8 in 4810 need to be adjusted. In Case 3, only the unit
digit needs adjustment, e.g., 258 + 168 = 438 and 2510 + 1610 = 4110.

8

We randomly sample 100 32-shot prompts for each of these three cases, and track the model’s
behavior on the unit and eight’s place digit. We report the results in Table 3. In Case 1, digits are
adjusted unnecessarily in 7% (=6%+1%) of instances, suggesting over-generalization. Conversely,
in Case 2 and 3, digits were not adjusted as expected in 84% (=68%+16%) and 83% of instances,
suggesting under-generalization. Overall, this evidence suggests that while the model can induce
simple functions like +2 to some extent, it struggles with more complex situations where +2 should
be only be triggered under certain conditions. Alternatively, if the induction of these conditions is
viewed as an additional step in multi-step reasoning, the model we investigate may not yet be capable
of two-step induction in a three-step task, thereby limiting their performance in base-8 addition.

1 def base8addition(a, b):
2 # (1) perform base -10 addition
3 c = base10addition(a, b) # case 1
4 # (2) apply adjustments
5 if 8 <= a[0] + b[0] < 10: # case 2
6 c[0] = (c[0] + 2) % 10
7 c[1] = c[1] + 1
8 elif a[0] + b[0] >= 10: # case 3
9 c[0] = c[0] + 2

10 return c

Listing 1: One possible algorithm for
two-digit base-8 addition. This algorithm
divides all scenarios into three cases. c[0]
represents the unit digit and c[1] represents
the tens/eights digit in a two-digit number c.

Case Full Model Ablate FI Heads
Neither c[0] c[1] Both Neither

Case 1 93 6 1 0 100
Case 2 68 0 16 16 100
Case 3 83 14 0 0 100

Table 3: Error analysis for two-digit base-8 addi-
tion. We use 100 examples for each case specified in
Listing 1. The correct behavior is marked in green .
“Neither” suggests the number of times that neither
c[0] or c[1] is adjusted, which is anticipated in
Case 1. “c[0]” suggests that only c[0] is adjusted.
“Both” suggests both digits are adjusted.

6 Related Works

Mechanistic Interpretability. The field of mechanistic interpretability aims to reverse-engineer
complex neural networks into human-understandable algorithms (Bereska & Gavves, 2024; Sharkey
et al., 2025), enhancing our understanding of a wide range of model behaviors, including in-context
learning (Olsson et al., 2022), long-context retrieval (Wu et al., 2025), and chain-of-thought reasoning
(Cabannes et al., 2024). A common methodology involves analyzing their computation graphs of a
specific task, as exemplified by studies on indirect object identification (Wang et al., 2023), “greater
than” operation (Hanna et al., 2023), and entity tracking (Prakash et al., 2024a). Following this, our
work begins with the off-by-one addition task, and showcases the broader applicability of our findings
with various task pairs.

Function Vectors in LMs. Recent work has characterized in-context learning in language models
as the compression of in-context examples into a single task or function vector, which is subsequently
transported to the test example to trigger the model to apply the function (Todd et al., 2024; Hendel
et al., 2023; Yin & Steinhardt, 2025). These studies present strong evidence pertaining to single-step,
mapping-style tasks like country-to-capital and English-French translation. Our work is inspired by
this line of research, yet with two key differences: (1) We focus on off-by-one addition, a multi-step
arithmetic task, where the learning of the second step depends on the results of the preceding step.
(2) We provide a finer-grained interpretation on how function vectors, sent out by different attention
heads, vary in content but collaborate to form a complete function. In concurrent work, this latter
aspect was also explored by Hu et al. (2025), who investigate the task of add-k (i.e., “5→8, 1→4,
2→?”) using subspace decomposition.

Latent Multi-step Reasoning and Structural Compositionality in LMs. Various studies investi-
gate whether and how models perform latent multi-step reasoning, typically via multi-hop factoid
QA tasks (Yang et al., 2024b; Wang et al., 2024). Our work demonstrates that LMs can dynamically
infer the second step in a two-step problem from in-context examples, a process representing a novel,
flexible and composable form of latent multi-step reasoning. More broadly, our findings are relevant
to research investigating structural compositionality (Lepori et al., 2023) (i.e., breaking down complex
tasks into subroutines) in language models.

9

7 Conclusion

In this work, we present an interpretability study on the off-by-one addition task, with the broader goal
of investigating how language models handle unseen tasks using in-context learning. Our analysis led
to the discovery of a function induction mechanism, which handles the “twists” involved in gener-
alizing from seen to unseen tasks. This discovery extends and generalizes previous interpretability
findings on induction heads and function vectors. We further show this mechanism is broadly reused
beyond off-by-one addition, notably in realistic algorithmic tasks like Caesar Cipher and base-8
addition. Collectively, these observations deepen our understanding of what language models are
capable of with in-context learning and multi-step reasoning, and how models generalize to novel
tasks and situations. Moreover, our work provides compelling evidence that language models may
develop composable and general mechanisms for handling ever-changing task variations, suggesting
one possible pathway toward explaining and perhaps further enhancing model capabilities.

Acknowledgment

We thank anonymous reviewers who provided valuable feedback on our work. We thank Xisen
Jin, Ting-Yun Chang, Lorena Yan, Yuqing Yang, Deqing Fu, Ollie Liu, Daniel Firebanks-Quevedo,
Johnny Wei, as well as members of USC INK Lab and Allegro Lab for insightful discussions.
QY and XR were supported in part by the Office of the Director of National Intelligence (ODNI),
Intelligence Advanced Research Projects Activity (IARPA), via the HIATUS Program contract #2022-
22072200006, the Defense Advanced Research Projects Agency with award HR00112220046, and
NSF IIS 2048211. QY was also supported by a USC Annenberg Fellowship. RJ was supported in
part by the National Science Foundation under Grant No. IIS-2403436. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

References
Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,

Michael Harrison, Russell J. Hewett, Mojan Javaheripi, Piero Kauffmann, James R. Lee, Yin Tat
Lee, Yuanzhi Li, Weishung Liu, Caio C. T. Mendes, Anh Nguyen, Eric Price, Gustavo de Rosa,
Olli Saarikivi, Adil Salim, Shital Shah, Xin Wang, Rachel Ward, Yue Wu, Dingli Yu, Cyril Zhang,
and Yi Zhang. Phi-4 technical report, 2024. URL https://arxiv.org/abs/2412.08905.

Leonard Bereska and Stratis Gavves. Mechanistic interpretability for AI safety - a review. Transac-
tions on Machine Learning Research, 2024. ISSN 2835-8856. URL https://openreview.net/
forum?id=ePUVetPKu6. Survey Certification, Expert Certification.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems,
volume 33, pp. 1877–1901. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Vivien Cabannes, Charles Arnal, Wassim Bouaziz, Alice Yang, Francois Charton, and Ju-
lia Kempe. Iteration head: A mechanistic study of chain-of-thought. In A. Globerson,
L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances
in Neural Information Processing Systems, volume 37, pp. 109101–109122. Curran Asso-
ciates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/
c50f8180ef34060ec59b75d6e1220f7a-Paper-Conference.pdf.

Yanda Chen, Ruiqi Zhong, Sheng Zha, George Karypis, and He He. Meta-learning via language
model in-context tuning. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Pro-
ceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1:

10

https://arxiv.org/abs/2412.08905
https://openreview.net/forum?id=ePUVetPKu6
https://openreview.net/forum?id=ePUVetPKu6
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/c50f8180ef34060ec59b75d6e1220f7a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/c50f8180ef34060ec59b75d6e1220f7a-Paper-Conference.pdf

Long Papers), pp. 719–730, Dublin, Ireland, May 2022. Association for Computational Linguistics.
doi: 10.18653/v1/2022.acl-long.53. URL https://aclanthology.org/2022.acl-long.53/.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, et al. A mathematical framework for transformer
circuits. Transformer Circuits Thread, 1(1):12, 2021.

Javier Ferrando and Elena Voita. Information flow routes: Automatically interpreting language
models at scale. Arxiv, 2024. URL https://arxiv.org/abs/2403.00824.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
Gemma 2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118,
2024.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Danny Halawi, Jean-Stanislas Denain, and Jacob Steinhardt. Overthinking the truth: Understanding
how language models process false demonstrations, 2023. URL https://openreview.net/
forum?id=em4xg1Gvxa.

Michael Hanna, Ollie Liu, and Alexandre Variengien. How does GPT-2 compute greater-than?:
Interpreting mathematical abilities in a pre-trained language model. In Thirty-seventh Conference
on Neural Information Processing Systems, 2023. URL https://openreview.net/forum?id=
p4PckNQR8k.

Roee Hendel, Mor Geva, and Amir Globerson. In-context learning creates task vectors. In
Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the Association for Com-
putational Linguistics: EMNLP 2023, pp. 9318–9333, Singapore, December 2023. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.624. URL https:
//aclanthology.org/2023.findings-emnlp.624/.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference on
Learning Representations, 2021. URL https://openreview.net/forum?id=d7KBjmI3GmQ.

Xinyan Hu, Kayo Yin, Michael I. Jordan, Jacob Steinhardt, and Lijie Chen. Understanding in-context
learning of addition via activation subspaces, 2025. URL https://arxiv.org/abs/2505.05145.

Samyak Jain, Robert Kirk, Ekdeep Singh Lubana, Robert P. Dick, Hidenori Tanaka, Tim Rocktäschel,
Edward Grefenstette, and David Krueger. Mechanistically analyzing the effects of fine-tuning on
procedurally defined tasks. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=A0HKeKl4Nl.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https://arxiv.org/
abs/2310.06825.

Thomas Kwa, Ben West, Joel Becker, Amy Deng, Katharyn Garcia, Max Hasin, Sami Jawhar, Megan
Kinniment, Nate Rush, Sydney Von Arx, Ryan Bloom, Thomas Broadley, Haoxing Du, Brian
Goodrich, Nikola Jurkovic, Luke Harold Miles, Seraphina Nix, Tao Lin, Neev Parikh, David Rein,
Lucas Jun Koba Sato, Hjalmar Wijk, Daniel M. Ziegler, Elizabeth Barnes, and Lawrence Chan.
Measuring ai ability to complete long tasks, 2025. URL https://arxiv.org/abs/2503.14499.

Michael Lepori, Thomas Serre, and Ellie Pavlick. Break it down: Evidence for structural composition-
ality in neural networks. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine
(eds.), Advances in Neural Information Processing Systems, volume 36, pp. 42623–42660. Curran
Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/85069585133c4c168c865e65d72e9775-Paper-Conference.pdf.

11

https://aclanthology.org/2022.acl-long.53/
https://arxiv.org/abs/2403.00824
https://openreview.net/forum?id=em4xg1Gvxa
https://openreview.net/forum?id=em4xg1Gvxa
https://openreview.net/forum?id=p4PckNQR8k
https://openreview.net/forum?id=p4PckNQR8k
https://aclanthology.org/2023.findings-emnlp.624/
https://aclanthology.org/2023.findings-emnlp.624/
https://openreview.net/forum?id=d7KBjmI3GmQ
https://arxiv.org/abs/2505.05145
https://openreview.net/forum?id=A0HKeKl4Nl
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2503.14499
https://proceedings.neurips.cc/paper_files/paper/2023/file/85069585133c4c168c865e65d72e9775-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/85069585133c4c168c865e65d72e9775-Paper-Conference.pdf

Belinda Z Li, Zifan Carl Guo, and Jacob Andreas. (how) do language models track state? arXiv
preprint arXiv:2503.02854, 2025.

Ziqian Lin and Kangwook Lee. Dual operating modes of in-context learning. In Forty-first Inter-
national Conference on Machine Learning, 2024. URL https://openreview.net/forum?id=
ElVHUWyL3n.

Xinxi Lyu, Sewon Min, Iz Beltagy, Luke Zettlemoyer, and Hannaneh Hajishirzi. Z-ICL: Zero-shot
in-context learning with pseudo-demonstrations. In Anna Rogers, Jordan Boyd-Graber, and Naoaki
Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 2304–2317, Toronto, Canada, July 2023. Association for
Computational Linguistics. doi: 10.18653/v1/2023.acl-long.129. URL https://aclanthology.
org/2023.acl-long.129/.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing Systems, volume 35, pp. 17359–17372. Curran
Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf.

Jack Merullo, Carsten Eickhoff, and Ellie Pavlick. Circuit component reuse across tasks in transformer
language models. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=fpoAYV6Wsk.

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. MetaICL: Learning to learn
in context. In Marine Carpuat, Marie-Catherine de Marneffe, and Ivan Vladimir Meza Ruiz
(eds.), Proceedings of the 2022 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pp. 2791–2809, Seattle, United States,
July 2022a. Association for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.201.
URL https://aclanthology.org/2022.naacl-main.201/.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? In
Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing, pp. 11048–11064, Abu Dhabi, United Arab
Emirates, December 2022b. Association for Computational Linguistics. doi: 10.18653/v1/2022.
emnlp-main.759. URL https://aclanthology.org/2022.emnlp-main.759/.

Neel Nanda and Joseph Bloom. Transformerlens. https://github.com/TransformerLensOrg/
TransformerLens, 2022.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures for
grokking via mechanistic interpretability. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=9XFSbDPmdW.

nostalgebraist. interpreting gpt: the logit lens. https://www.lesswrong.com/posts/
AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens, 2020. Accessed: 2025-06-17.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom in: An introduction to circuits. Distill, 2020. doi: 10.23915/distill.00024.001. URL
https://distill.pub/2020/circuits/zoom-in.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction heads.
arXiv preprint arXiv:2209.11895, 2022.

Akshara Prabhakar, Thomas L. Griffiths, and R. Thomas McCoy. Deciphering the factors influencing
the efficacy of chain-of-thought: Probability, memorization, and noisy reasoning. In Yaser Al-
Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings of the Association for Computational
Linguistics: EMNLP 2024, pp. 3710–3724, Miami, Florida, USA, November 2024. Association
for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.212. URL https://
aclanthology.org/2024.findings-emnlp.212/.

12

https://openreview.net/forum?id=ElVHUWyL3n
https://openreview.net/forum?id=ElVHUWyL3n
https://aclanthology.org/2023.acl-long.129/
https://aclanthology.org/2023.acl-long.129/
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://openreview.net/forum?id=fpoAYV6Wsk
https://aclanthology.org/2022.naacl-main.201/
https://aclanthology.org/2022.emnlp-main.759/
https://github.com/TransformerLensOrg/TransformerLens
https://github.com/TransformerLensOrg/TransformerLens
https://openreview.net/forum?id=9XFSbDPmdW
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://distill.pub/2020/circuits/zoom-in
https://aclanthology.org/2024.findings-emnlp.212/
https://aclanthology.org/2024.findings-emnlp.212/

Nikhil Prakash, Tamar Rott Shaham, Tal Haklay, Yonatan Belinkov, and David Bau. Fine-tuning
enhances existing mechanisms: A case study on entity tracking. In Proceedings of the 2024
International Conference on Learning Representations, 2024a. arXiv:2402.14811.

Nikhil Prakash, Tamar Rott Shaham, Tal Haklay, Yonatan Belinkov, and David Bau. Fine-tuning
enhances existing mechanisms: A case study on entity tracking. In The Twelfth International
Conference on Learning Representations, 2024b. URL https://openreview.net/forum?id=
8sKcAWOf2D.

Lee Sharkey, Bilal Chughtai, Joshua Batson, Jack Lindsey, Jeff Wu, Lucius Bushnaq, Nicholas
Goldowsky-Dill, Stefan Heimersheim, Alejandro Ortega, Joseph Bloom, Stella Biderman, Adria
Garriga-Alonso, Arthur Conmy, Neel Nanda, Jessica Rumbelow, Martin Wattenberg, Nandi
Schoots, Joseph Miller, Eric J. Michaud, Stephen Casper, Max Tegmark, William Saunders,
David Bau, Eric Todd, Atticus Geiger, Mor Geva, Jesse Hoogland, Daniel Murfet, and Tom
McGrath. Open problems in mechanistic interpretability, 2025. URL https://arxiv.org/abs/
2501.16496.

Alessandro Stolfo, Yonatan Belinkov, and Mrinmaya Sachan. A mechanistic interpretation of
arithmetic reasoning in language models using causal mediation analysis. In Houda Bouamor, Juan
Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, pp. 7035–7052, Singapore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.emnlp-main.435. URL https://aclanthology.org/2023.
emnlp-main.435/.

Alex Tamkin, Miles McCain, Kunal Handa, Esin Durmus, Liane Lovitt, Ankur Rathi, Saffron Huang,
Alfred Mountfield, Jerry Hong, Stuart Ritchie, Michael Stern, Brian Clarke, Landon Goldberg,
Theodore R. Sumers, Jared Mueller, William McEachen, Wes Mitchell, Shan Carter, Jack Clark,
Jared Kaplan, and Deep Ganguli. Clio: Privacy-preserving insights into real-world ai use, 2024.
URL https://arxiv.org/abs/2412.13678.

Eric Todd, Millicent Li, Arnab Sen Sharma, Aaron Mueller, Byron C Wallace, and David Bau.
Function vectors in large language models. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=AwyxtyMwaG.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Igor Tufanov, Karen Hambardzumyan, Javier Ferrando, and Elena Voita. Lm transparency tool:
Interactive tool for analyzing transformer language models. Arxiv, 2024. URL https://arxiv.
org/abs/2404.07004.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Yaron Singer,
and Stuart Shieber. Investigating gender bias in language models using causal mediation
analysis. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Ad-
vances in Neural Information Processing Systems, volume 33, pp. 12388–12401. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/
92650b2e92217715fe312e6fa7b90d82-Paper.pdf.

Boshi Wang, Xiang Yue, Yu Su, and Huan Sun. Grokking of implicit reasoning in transformers:
A mechanistic journey to the edge of generalization. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems, 2024. URL https://openreview.net/forum?id=
D4QgSWxiOb.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt.
Interpretability in the wild: a circuit for indirect object identification in GPT-2 small. In
The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=NpsVSN6o4ul.

Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert Webson, Yifeng Lu, Xinyun Chen, Hanxiao
Liu, Da Huang, Denny Zhou, and Tengyu Ma. Larger language models do in-context learning
differently, 2024. URL https://openreview.net/forum?id=DRGnEkbiQZ.

13

https://openreview.net/forum?id=8sKcAWOf2D
https://openreview.net/forum?id=8sKcAWOf2D
https://arxiv.org/abs/2501.16496
https://arxiv.org/abs/2501.16496
https://aclanthology.org/2023.emnlp-main.435/
https://aclanthology.org/2023.emnlp-main.435/
https://arxiv.org/abs/2412.13678
https://openreview.net/forum?id=AwyxtyMwaG
https://arxiv.org/abs/2404.07004
https://arxiv.org/abs/2404.07004
https://proceedings.neurips.cc/paper_files/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://openreview.net/forum?id=D4QgSWxiOb
https://openreview.net/forum?id=D4QgSWxiOb
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=DRGnEkbiQZ

Wikipedia contributors. Caesar cipher — Wikipedia, the free encyclopedia, 2025. URL https://en.
wikipedia.org/w/index.php?title=Caesar_cipher&oldid=1294051421. [Online; accessed
12-June-2025].

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art natural language
processing. In Qun Liu and David Schlangen (eds.), Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing: System Demonstrations, pp. 38–45, Online,
October 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-demos.6.
URL https://aclanthology.org/2020.emnlp-demos.6/.

Wenhao Wu, Yizhong Wang, Guangxuan Xiao, Hao Peng, and Yao Fu. Retrieval head mechanisti-
cally explains long-context factuality. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=EytBpUGB1Z.

Zhaofeng Wu, Linlu Qiu, Alexis Ross, Ekin Akyürek, Boyuan Chen, Bailin Wang, Najoung Kim,
Jacob Andreas, and Yoon Kim. Reasoning or reciting? exploring the capabilities and limitations of
language models through counterfactual tasks. In Kevin Duh, Helena Gomez, and Steven Bethard
(eds.), Proceedings of the 2024 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp.
1819–1862, Mexico City, Mexico, June 2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.naacl-long.102. URL https://aclanthology.org/2024.naacl-long.102/.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115, 2024a.

Sohee Yang, Elena Gribovskaya, Nora Kassner, Mor Geva, and Sebastian Riedel. Do large language
models latently perform multi-hop reasoning? In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 10210–10229, Bangkok, Thailand, August 2024b.
Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.550. URL https:
//aclanthology.org/2024.acl-long.550/.

Qinyuan Ye, Mohamed Ahmed, Reid Pryzant, and Fereshte Khani. Prompt engineering a prompt
engineer. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Asso-
ciation for Computational Linguistics: ACL 2024, pp. 355–385, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.21. URL
https://aclanthology.org/2024.findings-acl.21/.

Kayo Yin and Jacob Steinhardt. Which attention heads matter for in-context learning?, 2025. URL
https://arxiv.org/abs/2502.14010.

Kang Min Yoo, Junyeob Kim, Hyuhng Joon Kim, Hyunsoo Cho, Hwiyeol Jo, Sang-Woo Lee,
Sang-goo Lee, and Taeuk Kim. Ground-truth labels matter: A deeper look into input-label
demonstrations. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings of the
2022 Conference on Empirical Methods in Natural Language Processing, pp. 2422–2437, Abu
Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics. doi: 10.
18653/v1/2022.emnlp-main.155. URL https://aclanthology.org/2022.emnlp-main.155/.

Wenting Zhao, Xiang Ren, Jack Hessel, Claire Cardie, Yejin Choi, and Yuntian Deng. Wildchat:
1m chatGPT interaction logs in the wild. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=Bl8u7ZRlbM.

Ziqian Zhong, Ziming Liu, Max Tegmark, and Jacob Andreas. The clock and the pizza: Two stories in
mechanistic explanation of neural networks. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=S5wmbQc1We.

Tianyi Zhou, Deqing Fu, Vatsal Sharan, and Robin Jia. Pre-trained large language models use fourier
features to compute addition. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://openreview.net/forum?id=i4MutM2TZb.

14

https://en.wikipedia.org/w/index.php?title=Caesar_cipher&oldid=1294051421
https://en.wikipedia.org/w/index.php?title=Caesar_cipher&oldid=1294051421
https://aclanthology.org/2020.emnlp-demos.6/
https://openreview.net/forum?id=EytBpUGB1Z
https://aclanthology.org/2024.naacl-long.102/
https://aclanthology.org/2024.acl-long.550/
https://aclanthology.org/2024.acl-long.550/
https://aclanthology.org/2024.findings-acl.21/
https://arxiv.org/abs/2502.14010
https://aclanthology.org/2022.emnlp-main.155/
https://openreview.net/forum?id=Bl8u7ZRlbM
https://openreview.net/forum?id=S5wmbQc1We
https://openreview.net/forum?id=i4MutM2TZb

A Limitations

Regarding circuit discovery experiments (§3, §D and §E), the identified circuit is limited as it does not
perfectly satisfy the faithfulness and completeness criteria, even with our best efforts. This challenge
arises because achieving simultaneous satisfaction of faithfulness, completeness, and minimality is
difficult, as these criteria often regulate each other. Moreover, number tokens are often mapped into a
sinusoidal (Fourier) feature space rather than a linear space in language models (Nanda et al., 2023;
Zhong et al., 2023; Zhou et al., 2024), which further complicates our interpretability analysis.

Regarding circuit analysis (§4 and §F), we mainly used causal intervention methods and examine the
causal effect of attention heads on naive prompts. Future work could provide deeper mechanistic
insights by analyzing the query-key and output-value circuits within these heads (Elhage et al., 2021),
or by investigating the role of MLP layers in the overall mechanism.

Regarding task generalization experiments (§5 and §G), our current scope is limited to two-step tasks
where the second step involves a shifting-related function. We anticipate that the function induction
mechanism could operate on a broader spectrum of functions, which could be investigated in future
work. Additionally, the task pairs we investigated are synthetic or algorithmic; further exploration of
the role of function induction heads on naturally occurring texts would be highly valuable.

B Induction Head Mechanism and Function Induction Mechanism

Induction
Heads

Induction
Heads

Previous
Token Heads

Previous
Token Heads

Llama 0 Llama

Next token pred.

25%1

0 50%

Induction
Heads

Previous
Token Heads

Head
key/value

query

output

legend

?was released evaluation of

Group 1Group 1

Group 2Group 2

Group 3Group 3

1 + 1 = 3 3 + 3 =\n …

Early layers

Next token pred.

35%

7

6

45%

Group 2

Group 3

Group 1

?…

Figure 8: Comparing Induction Head (Left) and Function Induction (Right).

Comparing Induction Head and Function Induction. Fig. 8 provides a side-by-side visualization
of the induction head mechanism (Olsson et al., 2022) and the hypothesized function induction mech-
anism (§3.2), demonstrating their structural similarity and explaining the basis for our hypothesis.

To provide a more concrete example on how induction heads work, consider the hypothetical scenario
where a language model is completing the prompt: “Llama 0 was released in 2022. This paper
presents an extensive evaluation of Llama ...” When the model first encounters an uncommon phrase,
e.g., “Llama 0”, a previous token head will attend to “Llama” and register the information that
“Llama appears before 0” at the position of “0”. Later on, when “Llama” appears in the context
again, an induction head will retrieve this piece of information from position of “0” and increase
the likelihood of generating “0” as the next token. This induction head mechanism informs our
hypothesis on function induction in §3.2 and the collaborative interaction between previous token
heads and function induction heads in Fig. 8 (Right).

Relevance to In-context Learning with False Demonstrations. Various prior works investigate
how language models handle false, random, or perturbed demonstrations in in-context learning (Min
et al., 2022b; Yoo et al., 2022; Wei et al., 2024; Lyu et al., 2023; Lin & Lee, 2024). Notably, Halawi
et al. (2023) adopted an interpretability approach, observing the overthinking behavior of models
(i.e., models draft truthful answers at early layers and flip them to untruthful answers at late layers),
and identified false induction heads that are responsible for copying the untruthful answers from the
ICL examples.

15

Our analysis of off-by-one addition was largely motivated by these studies. Here we revisit the findings
of Halawi et al. (2023) along with ours, using a unified view of two-step tasks, i.e., z = f(g(x)). In
Halawi et al. (2023), the first step, y = g(x) is typically a text classification task, e.g., news topic
classification, and the second step, z = f(y) is a permutation of the labels, e.g., {Business→Sci/Tech,
Sci/Tech→World, World→Sport, Sports→Business}. In our work, y = g(x) is standard addition,
and z = f(y) is a +1 function.

In this view, our findings with off-by-one addition are consistent with those in Halawi et al. (2023),
while also advancing the understanding in several aspects: (1) In both cases, language models
decompose the task into two steps, and induce the second step based on the results of the first step.
The second step could be either a conditional copy-paste function, e.g., a permutation of labels,
or an algorithmic function, e.g., a +1 function. The latter represents a novel finding of this study,
demonstrating that the second step can exhibit forms more complex than copy-paste operations. (2)
Our path patching procedure has led us to identify two additional group of heads (consolidation heads
and previous token heads) that are involved in handling false demonstrations. (3) Our work also
suggests that the strategy to improve truthfulness by zeroing out false induction heads or function
induction heads may have unintended consequences on models’ positive capabilities, given their
positive contributions to the cipher task and the base-8 addition task.

Related to the view of two-step tasks, Jain et al. (2024) demonstrate that models learn a “wrapper”
function g over an existing function f in a sequential fine-tuning setting. Our work and Halawi
et al. (2023) suggest that language models demonstrate simple forms of this behavior with in-context
learning as well.

C Off-by-One Addition Evaluation

Models. In §2 we evaluated six recent language models on the task of off-by-one addition. In
Table 4 we provide details of these models.

Model Name Huggingface Identifier Reference Tokenization
0-9 0-999

Llama-2 (7B) meta-llama/Llama-2-7b-hf Touvron et al. (2023) ✓
Mistral-v0.1 (7B) mistralai/Mistral-7B-v0.1 Jiang et al. (2023) ✓
Gemma-2 (9B) google/gemma-2-9b Gemma Team (2024) ✓
Qwen-2.5 (7B) Qwen/Qwen2.5-7B Yang et al. (2024a) ✓
Llama-3 (8B) meta-llama/Meta-Llama-3-8B Grattafiori et al. (2024) ✓
Phi-4 (14B) microsoft/phi-4 Abdin et al. (2024) ✓

Table 4: Models Evaluated on Off-by-One Addition. “0-9” means the model uses digit-level
tokenization for numbers, e.g., “123” is tokenized into [“1”,“2”,“3”], “0-999” means all numbers
smaller than 1000 are considered one single token, e.g., “123” is tokenized into [“123”].

2 4 8 16 32
Number of ICL Examples

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

(a) Base Acc.

2 4 8 16 32
Number of ICL Examples

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

(b) Contrast Acc.

2 4 8 16 32
Number of ICL Examples

0

20

40

60

80

100

Po
rt

io
n

(%
)

(c) Others

Llama-2 (7B)
Gemma-2 (9B)
Qwen-2.5 (7B)
Mistral-v0.1 (7B)
Llama-3 (8B)
Phi-4 (14B)

Figure 9: Off-by-One Addition Evaluation, Reporting Base Accuracy.

Reporting base and contrast accuracy. Previously in Fig. 1, we reported the accuracy of off-by-
one addition (i.e., the percentage of time that the model outputs 7 when given 3+3). In Fig. 9(a) we
additionally report the accuracy of standard addition (e.g., “3+3=6”), when the models are given the
contrast prompt (e.g., “1+1=3\n2+2=5”). We find that the base accuracy consistently decrease with

16

https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/mistralai/Mistral-7B-v0.1
https://huggingface.co/google/gemma-2-9b
https://huggingface.co/Qwen/Qwen2.5-7B
https://huggingface.co/meta-llama/Meta-Llama-3-8B
https://huggingface.co/microsoft/phi-4

more in-context learning examples. In Fig. 9(c), we show that models may also output numbers that
are incorrect either in standard addition or off-by-one addition (i.e., neither “6” or “7”).

2 4 8 16 32
Number of ICL Examples

0

20

40

60

80

100
Ac

cu
ra

cy
 (%

)
(a) Range [0,9]

2 4 8 16 32
Number of ICL Examples

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

(b) Range [0,99]

2 4 8 16 32
Number of ICL Examples

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

(c) Range [0,999]

Llama-2 (7B)
Gemma-2 (9B)
Qwen-2.5 (7B)
Mistral-v0.1 (7B)
Llama-3 (8B)
Phi-4 (14B)

Figure 10: Off-by-One Addition Evaluation, Using Smaller Number Ranges.

Results in a smaller number range. Previously in Fig. 1, we reported results when the operands
were sampled from the range of [0,999]. In Fig. 10, we additionally report results when sampling
from the range of [0,9] and [0,99]. For two models using 0-9 tokenization (Gemma-2 (9B) and
Qwen-2.5 (7B)), the performance drops with larger number ranges. For the remaining models, the
performance remains stable regardless of the number ranges.4

2 4 8 16 32
Number of ICL Examples

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

(a) No Constraint

2 4 8 16 32
Number of ICL Examples

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

(b) i, ctest ci

2 4 8 16 32
Number of ICL Examples

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

(c) i, ctest = ci

Llama-2 (7B)
Gemma-2 (9B)
Qwen-2.5 (7B)
Mistral-v0.1 (7B)
Llama-3 (8B)
Phi-4 (14B)

Figure 11: Off-by-One Addition Evaluation, Different Sampling Constraints.

Results with/without the constraint of ctest ̸= ci. Previously in §2 we deliberately impose the
constraint that ∀i, ctest ̸= ci. This is to rule out the possibility that language models perform off-by-
one addition via copying ctest from previous contexts. In Fig. 11, we compare the results of two
additional sampling strategies: (1) no constraint on ctest and ci; (2) ∃i, ctest = ci. By comparing
Fig. 11(b) and (c) we see that for Mistral-v0.1 (7B) and Gemma-2 (9B), the accuracy is higher
when ∃i, ctest = ci. This observation implies that these two models leverages copy-paste induction
more than function induction in performing off-by-one addition, though more rigorous analysis is
required to draw a conclusion.

Results with off-by-k addition. In Fig. 12-13, we present 32-shot off-by-k addition results with
various offsets k using Gemma-2 (9B) and Llama-3 (8B) respectively.5 One consistent trend is
that models struggle more with offsets k of larger absolute values. While Llama-3 (8B) generally
outperforms Gemma-2 (9B), Gemma-2 (9B) demonstrates strong performance when k = ±10,
potentially due to its adoption of 0-9 tokenization. An additional observation reveals that Gemma-2
(9B) typically achieves stronger performance with even values of k compared to odd values.

4We chose Gemma-2 (9B) as the default model in our study because (1) we focused on the range of [0,9] in
early stage of this work to prioritize simplicity, and Gemma-2 (9B) performs competitively in this setting; (2)
Qwen-2.5 (7B), Llama-3 (8B), Phi-4 (14B) were not released or integrated into transformer-lens at that
time. We acknowledge this experimental design limitation and address it by interpreting Llama-3 (8B) and
Mistral-v0.1 (7B) in §D.

5The visualization of Fig. 12-13 was inspired by Prabhakar et al. (2024).

17

10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10
Offset k

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Performance with different offset k, Gemma-2 (9B), 32-shot

Range [0,9]
Range [0,99]
Range [0,999]

Contrast Acc.
Base Acc.

Figure 12: Off-by-k Addition Evaluation, Gemma-2 (9B)

10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10
Offset k

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Performance with different offset k, Llama-3 (8B), 32-shot

Range [0,9]
Range [0,99]
Range [0,999]

Contrast Acc.
Base Acc.

Figure 13: Off-by-k Addition Evaluation, Llama-3 (8B)

D Circuit Discovery

D.1 Relative Logit Diff

§3.1 introduced r, the relative logit difference, to measure the effect of a replacement during circuit
discovery. We now elaborate on this formula to enhance clarity.

r =
F (M ′, xcont)− F (M,xcont)

F (M,xcont)− F (M,xbase)
(1)

=
[M ′(ybase|xcont)−M ′(ycont|xcont)]− [M(ybase|xcont)−M(ycont|xcont)]

[M(ybase|xcont)−M(ycont|xcont)]− [M(ybase|xbase)−M(ycont|xbase)]
(2)

D.2 Identified Heads

In the main paper, we focus on interpreting Gemma-2 (9B). To explore the universality of the mecha-
nism, we additionally conduct path patching with Llama-3 (8B), Llama-2 (7B) and Mistral-v0.1
(7B). We list the identified attention heads below.

D.2.1 Gemma-2 (9B)

Gemma-2 (9B) has 42 layers and 16 heads per layer. Path patching experiments were conducted with
4-shot off-by-one addition with numbers sampled from range [0,9].

• Consolidation Heads: H41.4, H41.5, H40.11, H40.12;
• Function Induction (FI) Heads: H39.7, H39.12, H36.7, H32.1, H32.6, H25.13;
• Previous Token (PT) Heads: H38.6, H38.7, H38.9, H35.14, H35.9, H31.4, H31.5, H29.5.

D.2.2 Llama-3 (8B)

Llama-3 (8B) has 32 layers and 32 heads per layer. Path patching experiments were conducted with
4-shot off-by-one addition with numbers sampled from range [0,999]. We visualize the path patching
results in Fig. 14.

18

20 24 28
Layer

0

4

8

12

16

20

24

28

H
ea

d
In

de
x

H28.16

H26.2

(a) Patching to Output Logits

20 24 28
Layer

H24.10

(b) Patching to H26.2 Value

-20%

-10%

0%

10%

20%

R
el

at
iv

e
Lo

gi
t D

iff
.

+ = + = + = + = + =

Key

+
=

+
=

+
=

+
=

+
=

Q
ue

ry
(c) H28.16 Attn. Pattern

+ = + = + = + = + =

Key

+
=

+
=

+
=

+
=

+
=

(d) H26.2 Attn. Pattern

+ = + = + = + = + =

Key

+
=

+
=

+
=

+
=

+
=

(e) H24.10 Attn. Pattern

Figure 14: Circuit Discovery with Llama-3 (8B). Results are consistent with those with Gemma-2
(9B) in Fig. 2.

• Consolidation Heads: H31.1, H30.25, H29.11, H29.10, H28.16, H28.17, H28.18;
• Function Induction (FI) Heads: H26.2, H23.13, H23.15;
• Previous Token (PT) Heads: H24.10, H24.11, H22.25, H22.27, H21.7.

D.2.3 Mistral-v0.1 (7B)

20 24 28
Layer

0

4

8

12

16

20

24

28

H
ea

d
In

de
x

(H31.1)

H30.4

(a) Patching to Output Logits

20 24 28
Layer

H29.7

(b) Patching to H30.4 Value

-20%

-10%

0%

10%

20%
R

el
at

iv
e

Lo
gi

t D
iff

.

+ = + = + = + = + =

Key

+
=

+
=

+
=

+
=

+
=

Q
ue

ry

(c) H31.1 Attn. Pattern

+ = + = + = + = + =

Key

+
=

+
=

+
=

+
=

+
=

(d) H30.4 Attn. Pattern

+ = + = + = + = + =

Key

+
=

+
=

+
=

+
=

+
=

(e) H29.7 Attn. Pattern

Figure 15: Circuit Discovery with Mistral-v0.1 (7B). Results are mostly consistent with those
with Gemma-2 (9B) in Fig. 2, with the exception of the consolidation heads showing weaker signals.

Mistral-v0.1 (7B) has 32 layers and 32 heads per layer. Path patching experiments were conducted
with 4-shot off-by-one addition with numbers sampled from range [0,9]. We visualize the results in
Fig. 15. For the two consolidation heads in the list below, they show weaker effect and attend to both
the current token and some other tokens, which slightly deviates from our findings with Gemma-2
(9B). Apart from this, the results using Mistral-v0.1 are consistent with other models.

19

• Consolidation Heads: (H31.10), (H31.1)
• Function Induction (FI) Heads: H30.2, H30.3, H30.4, H30.8, H30.10, H30.18, H31.2
• Previous Token (PT) Heads: H29.4, H29.6, H29.7.

D.2.4 Llama-2 (7B)

20 24 28
Layer

0

4

8

12

16

20

24

28

H
ea

d
In

de
x H31.4

H29.16

(a) Patching to Output Logits

20 24 28
Layer

H28.16

(b) Patching to H29.16 Value

-20%

-10%

0%

10%

20%

R
el

at
iv

e
Lo

gi
t D

iff
.

+ = + = + = + = + =

Key

+
=

+
=

+
=

+
=

+
=

Q
ue

ry

(c) H31.10 Attn. Pattern

+ = + = + = + = + =

Key

+
=

+
=

+
=

+
=

+
=

(d) H29.16 Attn. Pattern

+ = + = + = + = + =

Key

+
=

+
=

+
=

+
=

+
=

(e) H28.16 Attn. Pattern

Figure 16: Circuit Discovery with Llama-2 (7B). Results are mostly consistent with those with
Gemma-2 (9B) in Fig. 2.

Llama-2 (7B) has 32 layers and 32 heads per layer. Path patching experiments were conducted
with 4-shot off-by-one addition with numbers sampled from range [0,9]. We visualize the results in
Fig. 16.

All three groups of heads are present in Llama-2 (7B). However, we notice two small variations
compared to the circuit in Gemma-2 (9B). (1) We identified H16.24 that achieves r = 2.12%, but its
attention pattern doesn’t fit that of a consolidation head or a function induction head. Since 2.12% is
slightly above the 2% threshold we set, we consider this noise; (2) One previous token head (H29.1)
no longer attends to the “=” immediately before the answer token ci at the token ci. Instead, it attends
to the “=” token one ICL example away.

To discuss our findings with those of Todd et al. (2024) with a common ground, we extract the list
of FV heads by selecting the 10 heads with the highest absolute average indirect effect (AIE) from
Fig. 19 in Todd et al. (2024). These heads are concentrated in early-middle layers (before layer 20),
whereas our FI heads appear in late layers (layers 29-31). There is no overlap between the two sets.

• Consolidation Heads: H31.28, H31.10, H30.3;
• Function Induction (FI) Heads: H31.30, H31.4, H29.26, H29.16, H30.26, H30.3;
• Previous Token (PT) Heads: H30.13, H29.1, H28.5, H28.10, H28.16, H28.24, H27.31;
• Miscellaneous Heads: H16.24;
• Function Vector Heads (Todd et al., 2024): H9.25, H11.2, H11.18, H12.15, H12.18, H12.28,

H13.7, H14.1, H14.16, H16.10.

D.3 Additional Interpretability Analysis

D.3.1 Logit Lens Analysis

In this section, we apply logit lens (nostalgebraist, 2020), a widely-adopted interpretability method,
to off-by-one addition. This involves directly computing the logits from intermediate layer represen-
tations using the final layer norm and the final unembedding layer.

20

0 5 10 15 20 25 30 35 40
Layer

20

10

0

10

20

30

Lo
gi

t

(a) Logits

Logit(ybase)
Logit(ycont)

0 5 10 15 20 25 30 35 40
Layer

2

1

0

1

2

3

4

Lo
gi

t D
iff

(b) Logit Diff, Logit(ybase)-Logit(ycont)

Figure 17: Logit Lens Results when Using xcont as the Input Prompt.

0 5 10 15 20 25 30 35 40
Layer

20

10

0

10

20

30

Lo
gi

t

(a) Logits

Logit(ybase)
Logit(ycont)

0 5 10 15 20 25 30 35 40
Layer

5

0

5

10

15

20

25

Lo
gi

t D
iff

(b) Logit Diff, Logit(ybase)-Logit(ycont)

Figure 18: Logit Lens Results when Using xbase as the Input Prompt.

We use Gemma-2 (9B) and 100 16-shot examples in this set of experiments. In Fig. 17, we report the
logits of the base answer ybase (i.e., model outputting 3+3=6), the contrast answer ycont (i.e., model
outputting 3+3=7) and their differences, computed using the contrast prompt xcont (i.e., 1+1=3) as
model input. In Fig. 18, we repeat the experiments using xbase (i.e., 1+1=2) as the input prompt.

By comparing Fig. 17(a) and Fig. 18(a), we find that the curves in the two subplots begin to diverge
notably after layer 25. This supports our claim that the model performs standard addition in the early
layers and apply the +1 function in late layers.

Additionally, by comparing Fig. 17(b) and Fig. 18(b), we find that the logit diff decreases sharply
after layer 38 in Fig. 17(b), a phenomenon absent in Fig. 18(b). This is consistent with our findings
that H39.7 and H39.12 contribute significantly to writing out the +1 function to the residual stream.

D.3.2 Activation Patching Analysis

In this section, we apply activation patching (Meng et al., 2022) to off-by-one addition. We performed
this analysis in the early stages of our work to gather initial intuitions and signals for our problem,
before transitioning to path patching for a more fine-grained understanding of the model’s internal
computation.

We use Gemma-2 (9B) and 100 4-shot examples in this set of experiments. First, we run forward
passes for both the base prompt xbase and the contrast prompt xcont. We store the activations and
then replace the activations in the xcont forward pass with corresponding activations in the xbase

forward pass. We consider activation patching by token (Fig. 19) and by head (Fig. 20). We report
the ratio r′ = 1 + r = F (M ′,xcont)−F (M,xbase)

F (M,xcont)−F (M,xbase)
in these figures following previous works. We scaled

the colormap in the figures to the range of [-50%, 50%] for clear visualization.

Fig. 19(a) visualizes the information flow from in-context examples to the residual stream of the
last “ =” token. Additionally, Figure 19(b) highlights several layers, specifically layers 32, 36, and
39 at the last “=” token, and layers 35 and 38 at the answer tokens ci in the in-context examples.
This aligns with the FI heads (H36.7, H39.7, H39.12) and PT heads (H35.9, H35.14, H38.6, H38.7,
H38.9) identified in §3.2. Figure 19(c) further reveals that MLP layers also play critical roles at
certain positions. It is possible that FI heads write the +1 function to the residual stream, with
subsequent attention and MLP layers involved in the execution of the +1 function. This hypothesis is
inspired by prior observations of how MLP layers in transformer models are involved in arithmetic
operations (Nanda et al., 2023; Stolfo et al., 2023). In this work, we limit our focus to attention heads,
deferring further analysis of MLP layers to future work.

21

0 10 20 30 40
Layer

+
=

+
=

+
=

+
=

+
=

To
ke

n

(a) Residual Stream

0 10 20 30 40
Layer

+
=

+
=

+
=

+
=

+
=

(b) Attention Output

0 10 20 30 40
Layer

+
=

+
=

+
=

+
=

+
=

(c) MLP Output

-50%

-25%

0%

25%

50%

Figure 19: Activation Patching By Token.

0 5 10 15
Head

0

5

10

15

20

25

30

35

40

La
ye

r

(a) Output

0 5 10 15
Head

0

5

10

15

20

25

30

35

40

La
ye

r

(b) Query

0 5 10 15
Head

0

5

10

15

20

25

30

35

40

La
ye

r

(c) Key

0 5 10 15
Head

0

5

10

15

20

25

30

35

40

La
ye

r

(d) Value

0 5 10 15
Head

0

5

10

15

20

25

30

35

40

La
ye

r

(e) Attn Pattern

-50%

-25%

0%

25%

50%

Figure 20: Activation Patching By Head.

Results in Fig. 20 guide and complement our path patching experiments in §3.2. The identified PT
heads (H35.9, H38.6, H38.7, H38.9) are highlighted in Fig. 20(b) and the FI heads (H36.7, H39.7,
H39.12, H32.1, H25.13) are highlighted in Fig. 20(d).

D.3.3 Alternative Head Ablation Methods

In the main paper, we “ablate” or “knock out” a head by replacing its output in the xcont forward
pass with the corresponding head output in the xbase forward pass. This instance-specific ablation
approach is adopted to better isolate the +1 function computation in each instance. However, this
differs from ablation methods commonly used in interpretability work, such as zero ablation (Halawi
et al., 2023) or mean ablation (Wang et al., 2023).

To demonstrate the consistency of our findings across different ablation settings, we repeated the
experiment in Fig. 4 using zero ablation and mean ablation. For mean ablation, we averaged head
outputs at the final “=” token from 100 standard addition examples. We found that in all ablation
settings (zero ablation, mean ablation, and our instance-specific ablation), the contrast accuracy
reduced to 0% and the base accuracy increased to 100% after ablation.

E Circuit Evaluation

In §4, we primarily validated the identified circuit using head ablation experiments and causal effect
visualizations. Wang et al. (2023) proposed a more rigorous framework for circuit evaluation, based
on faithfulness, completeness, and minimality. In the following, we evaluate the identified circuit
according to these metrics. Note that we focus on interpreting the “off-by-one” component of the
task, rather than the standard addition component. Hence, these circuit evaluation metrics are adapted
accordingly to use F (M,xbase) as a reference point.

The faithfulness metric measures whether a circuit C has a similar performance to the full model M ,
i.e., whether F (C, xcont) is close to F (M,xcont), with F (C, x) defined earlier in §3.1. We find that
F (M,xbase) = 7.17, F (M,xcont) = −1.26, and F (C, xcont) = 0.56, suggesting that C recovers

7.17−0.56
7.17−(−1.26) = 78.4% of the performance of M .

22

4 2 0 2 4 6 8
F(C \ K)

4

2

0

2

4

6

8

F(
M

 \
K

)

(a) Completeness

Random Set
Greedy Search Set
Empty Set
Consolidation Head
Func. Induction Head
Previous Token Head

x=y

(41
,4)

(40
,12

)

(40
,11

)

(41
,5)

(39
,7)

(36
,7)

(32
,1)

(39
,12

)

(25
,13

)

(32
,6)

(38
,7)

(35
,9)

(31
,4)

(31
,5)

(38
,6)

(38
,9)

(29
,5)

(35
,14

)
0%

10%

20%

30%

40%

C
ha

ng
e

in
 L

og
it

D
iff

er
en

ce

(b) Minimality

Consolidation Head
Func. Induction Head
Previous Token Head

Figure 21: Circuit Evaluation.

The completeness criterion evaluates whether for each subset K ⊆ C, the difference between
F (C\K,xcont) and F (M\K,xcont) is small. In the following, we will omit the xcont term for
brevity. We use various different sets (e.g., randomly or greedily selected) as K and report the results
in Fig. 4(b). We find most points representing (F (C\K), F (M\K)) fall slightly below the x = y
line, while maintaining a monotonic trend, suggesting that the circuit C is partially complete. This
represents the best we can achieve with our current methodology. We also find that when K is the
set of all PT heads or all FI heads, both f(C\K) and f(M\K) are high, suggesting that the model
favors ybase in next-token generation (i.e., 3+3=6) and switches back to standard addition under these
ablation conditions. These observations are consistent with our function induction hypothesis.

Lastly, the minimality criterion measures whether each head v in C is necessary, by seeking a subset
K ⊆ C\{v} that has a high score of |F (C\(K ∪ {v})) − F (C\K)|. We manually constructed
the K sets for this purpose. As shown in Fig. 4(c), each head in C is relevant to the task and has a
non-trivial effect (>2%) in performing off-by-one addition.

E.1 Improving the Identified Circuit with Local Search

Our circuit evaluation above is based on the circuit discovery procedure described in §3.2, where
we used a 2% threshold to highlight relevant heads and ensure that the number of heads involved is
manageable. This evaluation reveals that circuit C achieves a faithfulness score of 78.4%, recovering
a substantial portion of the model’s behavior but suggesting we may have missed several heads
responsible for the remaining 22%.

To address this, we employ a local search method. Specifically, we enumerate heads not in C (i.e.,
v ∈ M\C), add each to C to form a new circuit C ′ = C ∪ {v}, and evaluate the faithfulness score of
C ′. We identify 7 heads that produce faithfulness score changes greater than 1.5%, which we report
in Table 5. These include 6 heads (H37.6, H38.8, H40.0, H37.4, H24.9, H32.4) that increase the
faithfulness score and 1 head (H36.6) that decreases it.

Including the 6 score-increasing heads in C (denoted C6) raises the faithfulness score to 89%.
Including all 7 heads By including the 7 heads (denoted C7) reduces the faithfulness score to 82%,
which still exceeds the 78% achieved by the original circuit C.

We further examine the attention pattern of these heads. H37.6, H24.9, H32.4, and H36.6 exhibit
patterns consistent with FI heads, while H38.8 fits the description of consolidation heads. However,
H40.0 and H37.4 do not fit any head group in our function induction hypothesis. At “=” tokens, H40.0
attends to itself in the forward pass of xbase but not in the forward pass of xcont, likely suppressing
the standard addition answer (ybase) by weakening its consolidation. H37.4 attends to “=” tokens
in previous ICL examples at each “=”, likely retrieving the consolidation signal from earlier ICL
examples.

23

∆ Faithfulness (%) Rel. Logit Diff r (%)

H37.6 3.13 0.88
H38.8 2.33 0.55
H40.0 2.29 -1.26
H37.4 1.96 0.39
H24.9 1.86 1.64
H32.4 1.67 1.29

H36.6 -3.44 -1.15

Table 5: Identifying Missing Heads with Local Search. The “Rel. Logit Diff r” columns reports the
relative effect r of these heads when patching to the final logits (§3.2). Previously we set a threshold
of 2% and hence these heads were not identified.

Output

0

5In
pu

t

H39.7

Output

H39.12

Output

H36.7

Output

H32.1

Output

H32.6

0 5
Output

0

5In
pu

t

H25.13

0 5
Output

(H32.4)

0 5
Output

(H28.6)

0 5
Output

(H24.9)

0 5
Output

9 Heads (Normalized)

0.50

0.25

0.00

0.25

0.50

Figure 22: Individual and Overall Effect of Identified FI Heads (Standard Addition).

F Circuit Analysis

Due to space limit, we mainly perform circuit analysis on function induction (FI) heads and present
the most notable findings in the main paper (§4). In this section, we discuss remaining findings on FI
heads in §F.1. We also present additional analysis on consolidation heads in §F.2 and previous token
(PT) heads in §F.3.

F.1 Function Induction (FI) Heads

What do FI heads write out in standard addition? Our function vector style analysis in §4
primarily focuses on what FI heads write out in off-by-one addition. However, these heads may also
assume roles in standard addition. To investigate this, we add the FI head outputs in the M(.|xbase)
to the naive prompt xnaive, and visualize the effect in Fig. 22. By comparing Fig. 5 and Fig. 22, we
observe that most FI heads contribute meaningful but distinct information in standard addition, with
H39.12 being an exception given its minimal effect in standard addition. The aggregated effect in the
bottom-right panel in Fig. 22 suggests that FI heads collectively suppress x− 1 and promote x in
standard addition.

One possibility is that FI heads reinforce the answer x, or double-check it by performing (x− 1) + 1
in standard addition. In contrast, during off-by-one addition, the standard addition answers are first
“locked in” after early layers, and the FI heads are repurposed to perform +1. We leave further
investigation of this phenomenon to future work.

What do FI heads write out in off-by-k addition? Previously in Fig. 7, we demonstrated how the
effect of H39.7 and H25.13 changes with respect to different offset k. In Fig. 23-25 we report the

24

Output

0

5In
pu

t

H39.7

Output

H39.12

Output

H36.7

Output

H32.1

Output

H32.6

0 5
Output

0

5In
pu

t

H25.13

0 5
Output

(H32.4)

0 5
Output

(H28.6)

0 5
Output

(H24.9)

0 5
Output

9 Heads (Normalized)

0.50

0.25

0.00

0.25

0.50

Figure 23: Individual and Overall Effect of FI Heads in Off-by-k Addition, k = −2.

Output

0

5In
pu

t

H39.7

Output

H39.12

Output

H36.7

Output

H32.1

Output

H32.6

0 5
Output

0

5In
pu

t

H25.13

0 5
Output

(H32.4)

0 5
Output

(H28.6)

0 5
Output

(H24.9)

0 5
Output

9 Heads (Normalized)

0.50

0.25

0.00

0.25

0.50

Figure 24: Individual and Overall Effect of FI Heads in Off-by-k Addition, k = −1.

effect of all nine heads when k = −2,−1, 2. We find that for some heads (e.g., H32.1 and H24.9),
their effect of suppressing x remains consistent across different k values. For other heads (e.g., H39.7,
H39.12, H25.13), their effect changes accordingly with k.

F.2 Consolidation Heads

We repeat our function vector style analysis from §4, but this time use the consolidation heads as
the subject. Concretely, we patch the outputs of these heads from the last token residual stream in
off-by-one addition (e.g., “1+1=3\n2+2=5\n3+3=?”) to the naive prompts (e.g., “2=2\n3=?”). We
report the effect of this intervention on the output logits in Fig. 26.

We observe that three of these heads (H41.4, H40.11, H40.12) are suppressing answers other than x,
and one head (H41.5) is promoting answers other than x. Their aggregated effect leads to promoting
x and suppressing x+ 1, which counters the effect brought by FI heads discussed in Fig. 5.

Discussion. We name these heads as “consolidation heads” based on three observations: (1) they
appear in the final two layers; (2) they attend exclusively to the current token and the <bos> token,
suggesting that they mainly process information locally at the current token; (3) our causal analysis in
Fig. 26 shows that some of them are promoting 3+3=6 and some are promoting 3+3=7 in off-by-one
addition, suggesting that they are weighing the two possible outputs collaboratively.

25

Output

0

5In
pu

t

H39.7

Output

H39.12

Output

H36.7

Output

H32.1

Output

H32.6

0 5
Output

0

5In
pu

t

H25.13

0 5
Output

(H32.4)

0 5
Output

(H28.6)

0 5
Output

(H24.9)

0 5
Output

9 Heads (Normalized)

0.50

0.25

0.00

0.25

0.50

Figure 25: Individual and Overall Effect of FI Heads in Off-by-k Addition, k = 2.

0 5
Output

0

5In
pu

t

H41.4

0 5
Output

H41.5

0 5
Output

H40.11

0 5
Output

H40.12

0 5
Output

4 Heads

0.5

0.0

0.5

Figure 26: Causal Effect of Consolidation Heads. The aggregated effect of consolidation heads
counter the effect of FI heads by promoting x and suppressing x+ 1.

Despite these observations, our understanding on the exact role of these heads, and why they emerge,
remain limited. We believe it relates to the broader phenomenon of “negative” behavior in language
models, which has been noted as a challenge for current interpretability methods (Sharkey et al.,
2025). We hope future work will present a finer-grained interpretation of these heads.

F.3 Previous Token (PT) Heads

Off-by-one Addition Off-by-two Addition

Prompt Setting Base Acc Cont. Acc Base Acc Cont. Acc

Base Prompt 1.00 0.00 1.00 0.00
Contrast Prompt 0.11 0.86 0.04 0.46
Contrast Prompt (Ablate PT Heads) 0.96 0.04 0.95 0.01
Contrast Prompt (Ablate 8 Random Heads) 0.09 0.89 0.05 0.46

Table 6: Head Ablation Experiments with Previous Token Heads.

Head Ablation Experiments. To validate the role of previous token heads, we first repeat the
head ablation experiments in Fig. 4, but we ablated previous token heads instead. We consider both
off-by-one addition and off-by-two addition, and use 16-shots in the prompt. We report the results in
Table 6. Ablating the previous tokens heads almost completely restores the model’s default behavior.
This supports our hypothesis that these heads are critical for inducing the +1 function.

Causal Effect. To further investigate the causal effect of previous token (PT) heads, we adapt our
causal analysis method previously used for FI heads and consolidation heads. For example, consider
the off-by-one addition prompt, “1+1=3\n2+2=5\n3+3=?”, we extract the PT head outputs at the
tokens marked in brown, average the outputs over the two tokens (3 and 5), and add them to the

26

forward pass of the naive prompt “2=2\n3=?", at the token 2 marked in brown. In our experiments,
we scaled this explanatory example to 100 4-shot examples of off-by-one addition to extract the PT
head outputs.

We report the causal effect of these PT head outputs in Fig. 27. Similar to the findings with FI heads,
we find that each PT head conveys distinct information. For example, H38.7 promotes x ± 1 and
x±2, H35.14 promotes x+1 and suppresses x−1. Collectively, these heads suppress x and promote
x+1, which aligns with the hypothesized role of PT heads. Unexpectedly, these heads also promotes
x − 1. We attribute this to the task shift from off-by-one addition and the naive prompt, and the
token-level averaging operation we employ which may cause loss of information.

Pairs of Heads with Countering Effect. We notice that two pairs of PT head (H38.6/7 and H31.4/5)
demonstrate opposing patterns, and they happen to be in the same group in group query attention.
Similarly, two consolidation heads (H41.4/5; Fig. 26) have a similar countering effect. Hence we
hypothesize that group query attention may help these heads develop countering or hedging behaviors.

0 5
Output

0

5In
pu

t

H38.9 (*)

0 5
Output

H38.6

0 5
Output

H38.7

0 5
Output

H35.9

0 5
Output

H35.14 (*)

0 5
Output

0

5In
pu

t

H31.5

0 5
Output

H31.4

0 5
Output

H29.5 (*)

0 5
Output

8 Heads

0.2

0.0

0.2

Figure 27: Causal Effect of Previous Token Heads. (*) Effects of H38.9, H35.14 and H29.5 are
rescaled to [-0.02, 0.02] to make the patterns more readable.

G Task Generalization

G.1 Tasks and Data Preparation

In this section we describe the task pairs we used in §5 with more details.

Off-by-k Addition. For experiments in the range of [0,9], we consider k ∈ {−2,−1, 1, 2}. For
experiments in the range of [0,99] and [0,999], we consider k ∈ {−10,−9, ...,−1, 1, 2, ..., 10}. We
have reported the results in Fig. 12-13, incorporating the range and offset information. We use 16
shots in the experiments in Fig. 6(a).

Shifted Multiple-choice QA. We focus on 6 subjects in the MMLU dataset (Hendrycks et al.,
2021): high school government and politics, high school US history, US foreign policy, marketing,
high school psychology, sociology. We downloaded the MMLU dataset from § hendrycks/test.
We chose these subjects because Gemma-2 (9B) achieves 90% accuracy with 5 shots on them.
For subjects where Gemma-2 (9B) achieves lower accuracies, tracking and analyzing performance
on Shift-by-One MMLU becomes challenging, because the model could score points by random
guessing. We use 16 shots in the experiments in Fig. 6(b), where the 16 shots combine “validation”
and “dev” examples from the MMLU dataset.

Caesar Cipher. We adopted a cyclic approach where “a” is considered the next character after “z”.
We also included both lower-case or upper-case examples, e.g., “c -> d” and “C -> D” are both valid
examples in ROT-1. We use 16 shots in the experiments in Fig. 6(c).

27

https://github.com/hendrycks/test

0% 50% 100%
Accuracy

Contrast Prompt
(Ablate 6 Rand. Heads)

Contrast Prompt
(Ablate 6 FI Heads)

Contrast Prompt

Base Prompt

(a) k = 2

0% 50% 100%
Accuracy

(a) k = 1

0% 50% 100%
Accuracy

(a) k = 1

0% 50% 100%
Accuracy

(a) k = 2

Base Acc
Contrast Acc

Figure 28: Task Generalization with FI Heads, Off-by-k Addition. We consider addition in the
range of [0,9] and k ∈ {−2,−1, 1, 2}.

0% 50% 100%
Accuracy

Contrast Prompt
(Ablate 6 Rand. Heads)

Contrast Prompt
(Ablate 6 FI Heads)

Contrast Prompt

Base Prompt

(a) High School
Government and Politics

0% 50% 100%
Accuracy

(b) High School US History

0% 50% 100%
Accuracy

(c) US Foreign Policy

Base Acc
Contrast Acc

0% 50% 100%
Accuracy

Contrast Prompt
(Ablate 6 Rand. Heads)

Contrast Prompt
(Ablate 6 FI Heads)

Contrast Prompt

Base Prompt

(d) Marketing

0% 50% 100%
Accuracy

(e) High School Psychology

0% 50% 100%
Accuracy

(f) Sociology

Figure 29: Task Generalization with FI Heads, Shifted MMLU.

In the early stages of this work, we experimented with multi-character Caesar cipher. To prevent
multiple characters from being tokenized as a single unit (e.g., “ew” as one token in Gemma-2’s
tokenizer), we used a preceding whitespace () before each character, formatting it as “ e w” so that
“ e” and “ w” became separate tokens. However, we ultimately focused on one-character Caesar
cipher in the experiments because Gemma-2 (9B) has insufficient performance on the multi-character
version. The tokenization-aware formatting was retained. The actual model input will be “ c -> d”
for the example “c -> d”.

Base-k Addition. We sampled two-digit addition problems using a procedure similar to off-by-k
addition, with one additional constraint that the sum number c has two digits in both base-10 and
base-k. We use 32 shots in the experiments in Fig. 6(d). For the base-8 addition analysis in §5.2 and
Table 3, examples for Case 1-3 were resampled.

G.2 Results

Full Results using Different Offsets and Bases. Previously in Fig. 6, we report results on repre-
sentative cases, e.g., k = 2 in off-by-k addition, the subject of “high school government and politics”
in shifted MMLU. In Fig. 28-31, we report results of the full list of offsets and subjects.

We observe that some of these task variants exceed Gemma-2 (9B)’s capabilities. For instance,
Gemma-2 (9B) has notable performance on cipher when k ∈ {−2,−1, 1, 2, 3, 13} but shows insuf-
ficient performance in other settings. Similarly, it only exhibits non-trivial performance on certain
subjects of Shifted MMLU. However, when models do have non-trivial performance, we consistently
see the involvement of the FI heads, evidenced by the decreased contrast accuracy after ablating them.

28

0% 50% 100%
Accuracy

Contrast Prompt
(Ablate 9 Rand. Heads)

Contrast Prompt
(Ablate 9 FI Heads)

Contrast Prompt

Base Prompt

(a) k = 12

0% 50% 100%
Accuracy

(b) k = 11

0% 50% 100%
Accuracy

(c) k = 10

0% 50% 100%
Accuracy

(d) k = 9

0% 50% 100%
Accuracy

(e) k = 8

Base Acc
Contrast Acc

0% 50% 100%
Accuracy

Contrast Prompt
(Ablate 9 Rand. Heads)

Contrast Prompt
(Ablate 9 FI Heads)

Contrast Prompt

Base Prompt

(f) k = 7

0% 50% 100%
Accuracy

(g) k = 6

0% 50% 100%
Accuracy

(h) k = 5

0% 50% 100%
Accuracy

(i) k = 4

0% 50% 100%
Accuracy

(j) k = 3

0% 50% 100%
Accuracy

Contrast Prompt
(Ablate 9 Rand. Heads)

Contrast Prompt
(Ablate 9 FI Heads)

Contrast Prompt

Base Prompt

(k) k = 2

0% 50% 100%
Accuracy

(l) k = 1

0% 50% 100%
Accuracy

(m) k = 1

0% 50% 100%
Accuracy

(n) k = 2

0% 50% 100%
Accuracy

(o) k = 3

0% 50% 100%
Accuracy

Contrast Prompt
(Ablate 9 Rand. Heads)

Contrast Prompt
(Ablate 9 FI Heads)

Contrast Prompt

Base Prompt

(p) k = 4

0% 50% 100%
Accuracy

(q) k = 5

0% 50% 100%
Accuracy

(r) k = 6

0% 50% 100%
Accuracy

(s) k = 7

0% 50% 100%
Accuracy

(t) k = 8

0% 50% 100%
Accuracy

Contrast Prompt
(Ablate 9 Rand. Heads)

Contrast Prompt
(Ablate 9 FI Heads)

Contrast Prompt

Base Prompt

(u) k = 9

0% 50% 100%
Accuracy

(v) k = 10

0% 50% 100%
Accuracy

(w) k = 11

0% 50% 100%
Accuracy

(x) k = 12

0% 50% 100%
Accuracy

(y) k = 13

Figure 30: Task Generalization with FI Heads, Caesar Cipher. We consider k ∈
{−12,−11, ...,−1} and {1, 2, ..., 13}. In this figure, we ablate 6 FI heads plus 3 additional FI
heads (discussed in §4 and Fig. 5), yielding a clearer pattern than ablating 6 heads alone.

Ablating three additional FI Heads. Previously in Fig. 6, we ablate the 6 FI heads we identified
in §3.2 by setting a threshold of |r| > 2%. In §4 and Fig. 5 we showed that 3 additional FI heads
with weaker effect (1% < |r| < 2%) also contribute meaningfully to off-by-one addition. Here we
consider repeating the experiments on task generalization in Fig. 6 and ablating the 9 heads together.
We report the results in Fig. 32.

We find that the 3 weaker heads contribute meaningfully to the Shifted MMLU, causing its contrast
performance to drop to near 0% when all 9 heads are ablated (Fig. 32(b)), contrasting with 12%
when 6 heads are ablated (Fig. 6(b)). We have a similar observation with Caesar Cipher (k = 2),
where contrast accuracy drops to 0% in (Fig. 32(c)), contrasting with 36% when 6 heads are ablated
(Fig. 6(c)). These observations suggest that the 3 heads may specialize in letters more than numbers.
Understanding these detailed specializations will be an interesting direction for future work.

29

0% 50% 100%
Accuracy

Contrast Prompt
(Ablate 6 Rand. Heads)

Contrast Prompt
(Ablate 6 FI Heads)

Contrast Prompt

Base Prompt

(a) k = 6

0% 50% 100%
Accuracy

(b) k = 7

0% 50% 100%
Accuracy

(c) k = 8

0% 50% 100%
Accuracy

(d) k = 9

Base Acc
Contrast Acc

Figure 31: Task Generalization with FI Heads, Base-k Addition. We consider k ∈ {6, 7, 8, 9}.
The dashed lines represent the base prompt’s contrast accuracy, emphasizing the delta in contrast
accuracies between rows.

0% 50% 100%
Accuracy

Contrast Prompt
(Ablate 9 Rand. Heads)

Contrast Prompt
(Ablate 9 FI Heads)

Contrast Prompt

Base Prompt

(a) Off-by-Two Addition

0% 50% 100%
Accuracy

(b) MMLU: High School
Government and Politics

0% 50% 100%
Accuracy

(c) Cipher: ROT-2

0% 50% 100%
Accuracy

(d) Base-8 Addition

Base Acc
Contrast Acc

Figure 32: Task Generalization with FI Heads, Ablating 9 FI Heads. We repeat the experiment in
Fig. 6, this time ablating three additional FI heads (H32.4, H28.6, H24.9) which showed a weaker
effect (1% < |r| < 2%) during circuit discovery on off-by-one addition.

H Reproducibility

Frameworks. We primarily use the § transformer-lens (Nanda & Bloom, 2022) library for
model inference and interpretability analysis. This library is built on the § transformers (Wolf
et al., 2020) library. We have also used the § llm-transparency-tool (Ferrando & Voita, 2024;
Tufanov et al., 2024) for early exploration.

Hardware. All experiments were conducted with one NVIDIA RTX A6000 GPU (48GB). Path
patching experiments involving 100 4-shot examples and iterating over all attention heads for a given
target node will typically take 2 hours.

Code Release. Our code can be found at § INK-USC/function-induction.

30

https://github.com/TransformerLensOrg/TransformerLens
https://github.com/huggingface/transformers
https://github.com/facebookresearch/llm-transparency-tool
https://github.com/INK-USC/function-induction

	Introduction
	LMs Learn Off-by-One Addition in Context
	Interpreting the Off-by-One Addition Algorithm
	Background: Mechanistic Interpretability and Path Patching
	Circuit Discovery

	Circuit Validation and Analysis
	Task Generalization with Function Induction
	Tasks
	Results and Analysis

	Related Works
	Conclusion
	Limitations
	Induction Head Mechanism and Function Induction Mechanism
	Off-by-One Addition Evaluation
	Circuit Discovery
	Relative Logit Diff
	Identified Heads
	Gemma-2 (9B)
	Llama-3 (8B)
	Mistral-v0.1 (7B)
	Llama-2 (7B)

	Additional Interpretability Analysis
	Logit Lens Analysis
	Activation Patching Analysis
	Alternative Head Ablation Methods

	Circuit Evaluation
	Improving the Identified Circuit with Local Search

	Circuit Analysis
	Function Induction (FI) Heads
	Consolidation Heads
	Previous Token (PT) Heads

	Task Generalization
	Tasks and Data Preparation
	Results

	Reproducibility

