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Abstract

Recent advances in visual-language machine learning models have demonstrated exceptional
ability to use natural language and understand visual scenes by training on large, unstruc-
tured datasets. However, this training paradigm cannot produce interpretable explanations
for its outputs, requires retraining to integrate new information, is highly resource-intensive,
and struggles with certain forms of logical reasoning. One promising solution involves inte-
grating neural networks with external symbolic information systems, forming neural sym-
bolic systems that can enhance reasoning and memory abilities. These neural symbolic
systems provide more interpretable explanations to their outputs and the capacity to assim-
ilate new information without extensive retraining. Utilizing powerful pre-trained Vision-
Language Models (VLMs) as the core neural component, augmented by external systems,
offers a pragmatic approach to realizing the benefits of neural-symbolic integration. This
systematic literature review aims to categorize techniques through which visual-language
understanding can be improved by interacting with external symbolic information systems.

1 Introduction

1.1 Motivation

Vision-Language Models (VLMs) represent a significant leap forward in artificial intelligence (AI), showing
remarkable abilities to interpret complex visual scenes and generate coherent natural language descriptions,
powering advancements in tasks such as visual question answering (VQA) (Alayrac et al., 2022)) and im-
age/video captioning (Radford et al., |2021). Trained on vast web-scale datasets, these models excel at
mapping between visual inputs and textual concepts. However, this end-to-end training paradigm inherently
limits their capabilities in several critical ways. VLMs produce outputs without clear justifications, making
them difficult to trust or debug without specialized tools (Rudin et al, 2021} [Stan et al., [2024). Integrating
new factual knowledge or correcting errors typically requires resource-intensive retraining. Furthermore,
despite their semantic understanding, VLMs often struggle with tasks that require precise logical deduction,
mathematical calculation (for example, accurate object counting), verifiable factual recall of entities within
an image, and complex spatial reasoning (Khajuria et all 2024} [Zhang et all |2025b)). These limitations
hinder their deployment in high-stakes applications that require precision, reliability, and adaptability. The
concept of augmenting VLMs with external information systems has evolved into several distinct paradigms
that offer practical solutions to VLM limitations. These augmentation approaches can be broadly categorized
by the type of external resource utilized and how it interfaces with the VLM.

Retrieval-based augmentation has emerged as one of the most widespread approaches, with Retrieval Aug-
mented Generation (RAG) (Lewis et al.,|2021]) becoming a common paradigm in both research and commer-
cial applications. These methods retrieve relevant information from external sources to provide context for
the VLM’s processing. The retrieval mechanisms vary considerably: dense vector-based retrieval uses learned
embeddings to find semantically similar content, often employing pretrained encoders like CLIP or custom
embedding models; traditional term-based methods like BM25 provide lexical matching capabilities; and
structured retrieval from knowledge graphs enables access to explicitly encoded relationships and facts (See
Figure [1] for an example of knowledge graph retrieval). While some approaches fine-tune the VLM jointly
with the retriever to improve retrieval relevance and integration (Chen et al.l |2022b; [Rao et al., 2023 [Yuan
et al.l [2023b)), many implementations use frozen VLMs with off-the-shelf retrieval systems, demonstrating
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the flexibility of this augmentation strategy. The retrieved information can be integrated at different stages:
as additional input context (prompt augmentation), during the model’s reasoning process, or to validate and
refine outputs.
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Figure 1: Architecture of the Knowledge-based Augmentation Network (KAN) by [Zhang et al. (2020]).
The system extracts visual features via an object detector module and retrieves external knowledge from
ConceptNet with labeled relationships and reliability scores.

Symbolic computation augmentation represents another major category where VLMs interface with external
computational tools and reasoning engines. Program synthesis approaches enable VLMs to generate exe-
cutable code (e.g., Python scripts, SQL queries, or domain-specific languages. See figure [2| for an example)
that operates on structured representations or queries external systems, with the execution results informing
the VLM’s outputs. Symbolic reasoning engines such as logic solvers, planning systems, and specialized rea-
soning frameworks can be invoked to perform precise logical operations that complement the VLM’s pattern
recognition capabilities. The rapidly evolving paradigm of tool use (Schick et al., |2023; |Qin et al., |2023)
treats diverse external capabilities (calculators, APIs, specialized vision modules, web browsers) as tools that
the VLM can dynamically invoke based on task requirements. Additionally, symbolic graph operations allow
VLMs to manipulate structured representations like scene graphs or knowledge graphs through operations
such as graph traversal, node matching, or relational reasoning, bridging perceptual understanding with
structured symbolic manipulation.

These augmentation strategies offer a pragmatic path forward by building upon the sophisticated visual
and language understanding already present in state-of-the-art VLMs, rather than replacing them. Through
augmentation, a single VLM can be adapted to diverse tasks without needing to master every capability
internally. Importantly, VLMs can be trained when and how to invoke these external resources, discovering
effective strategies for combining their internal representations with external capabilities. This approach
enables targeted mitigation of specific weaknesses, such as mathematical computation through calculators,
factual accuracy through knowledge bases, and complex spatial reasoning through specialized geometric
modules (Suris et all, [2023; Marino et al., [2020; |Yi et al 2018). This systematic review examines how these
augmentation techniques are realized in practice, analyzing their implementation strategies, capabilities, and
the specific VLM limitations they address.

1.2 Augmented Vision-Language Models: Definition and Scope

We define an Augmented Model as a system where external information or computational processes are
actively integrated with a neural model’s inference operations (before, during, or after its forward pass) to
enhance its capabilities. This survey focuses specifically on inference-time augmentation, where external
resources are accessed during model execution, not training-time data augmentation. However, the AVLMs
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Figure 2: The ViperGPT framework by |Suris et al.| (2023). Given a visual query and an image/video input,
ViperGPT uses a code-generation model (GPT-3 Codex) to generate Python code that composes various
vision modules through an API. The generated program makes explicit function calls to vision capabilities
(e.g., find, compute_depth, count) and uses Python’s built-in logical and mathematical operators to reason
about the results.

we survey may still undergo finetuning to improve their ability to utilize these external resources effectively.
This inference augmentation is distinct from prompting techniques like chain-of-thought or in-context ex-
amples (Wei et al) [2023; [Zhao et al., 2023a)), which elicit latent reasoning capabilities without accessing
external data or tools.

A Vision-Language Model, for the purpose of this review, is a machine learning model that jointly processes
and understands visual and textual modalities, either through generation tasks (e.g., VQA, captioning),
alignment tasks (e.g., image-text retrieval, zero-shot classification), or both. This encompasses models that
output natural language text as well as those that learn joint representations of vision and language.

Therefore, an AVLM is an VLM integrated with external symbolic information systems, APIs, databases,
or other computational tools. An AVLM may involve modifications in VLM neural architecture, or it may
involve pre- or post-processing of inputs or outputs of the VLM. Regardless, these integrations aims to over-
come the inherent limitations of standalone VLMs and represent a particularly compelling implementation
of the augmented neural system concept. A glossary of key terms in this survey is included in Appendix [C]

1.3 Related Work and Knowledge Gap

The quest to enhance neural models, particularly in the vision-language domain, by incorporating external
knowledge or symbolic reasoning has spurred significant research, reflected in several existing surveys. Re-
views on knowledge-enhanced multimodal learning (Lymperaiou & Stamoul, [2022; |Zhao et al., 2023b; [Wajid|
investigate integrating factual knowledge, often via knowledge graphs or retrieval augmenta-
tion, to improve tasks like captioning and VQA. Concurrently, surveys exploring neuro-symbolic approaches
(Aditya et all 2019; [Senior et al., [2023; Hitzler et al. 2022; [Khan et al., 2024) examine the broader chal-
lenge of combining neural perception with symbolic reasoning, often focusing on graph neural networks,
spatio-temporal logic, or commonsense knowledge integration for better scene understanding and reasoning.
Specific areas like VQA have also been surveyed (Jamshed & Fraz, 2021; [Mostafa et all, 2020), tracing the
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evolution towards models capable of more complex reasoning, sometimes touching upon the need for external
knowledge or structured representations.

While these surveys provide valuable context by covering knowledge integration, neuro-symbolic methods,
and advances in VQA reasoning, they do not specifically offer a systematic review focused on the augmenta-
tion of VLMs through interaction with diverse external symbolic systems and tools. Existing reviews often
focus on specific knowledge types (e.g., knowledge graphs) or broader neuro-symbolic theory. There is a
knowledge gap in understanding the landscape of techniques specifically designed to connect modern VLMs
with external symbolic resources in a flexible, often learned manner (i.e., tool use). Particularly, there is
a lack of systematic analysis regarding how these augmentation techniques address core VLM challenges,
such as their noted difficulties with precise spatial reasoning (Wang et al. [2024c; |Zhang et al.,|2025b). Aug-
mentation via external tools or information sources presents a potential pathway to compensate for such
weaknesses by providing structured spatial information or enabling interactions with geometric reasoners, at
least until VLM architectures intrinsically improve in these areas.

This systematic literature review aims to fill this gap by specifically categorizing and analyzing techniques
where VLMs interact with external symbolic information systems or tools to enhance their vision-language
understanding capabilities. We seek to provide a structured overview of how these augmentations are imple-
mented, what types of external systems are used, and how they address the limitations of standard VLMs,
with a particular interest in emerging tool-use paradigms and their application to challenging visual reasoning
tasks.

2 Overview: Three Stages of Vision-Language Fusion

The papers surveyed demonstrate a variety of techniques for augmenting vision-language models with ex-
ternal symbolic information systems. The selection of these studies is the result of a systematic literature
search conducted according to the PRISMA guidelines (Page et al.l [2021)), which involved querying academic
databases with specific keywords and applying rigorous inclusion/exclusion criteria to identify relevant pub-
lications (see Appendix [A]). This process ensures that the surveyed works specifically target inference-time
augmentation and filter out approaches like pure prompting or training-time knowledge integration. To
structure this diverse landscape, we categorize the surveyed approaches based on three key characteristics:

e When the external interaction occurs relative to the VLM’s processing pipeline. We distinguish be-
tween Early Fusion (integrating external data at the input stage, influencing initial representations),
Middle Fusion (interfacing with external systems during the VLM’s internal reasoning or generation
steps), and Late Fusion (using the VLM’s initial output to trigger external processing, validation,
or refinement).

o What type of external information or computation is leveraged. This includes Retrieval (accessing
pre-existing facts or knowledge from sources like knowledge graphs or text corpora) and Symbolic
Computation (generating new information through logical deduction, program execution, or special-
ized computational tools), or a combination of both.

e How the fusion is specifically implemented, detailing the particular mechanisms used in each ap-
proach.

This review primarily organizes findings according to the temporal fusion stage (When), as this significantly
impacts how external information influences the VLM. Within each temporal category (Early, Middle, Late),
we further analyze the type of external interaction (What) and discuss notable implementation details (How).
While some sophisticated methods may blend characteristics, this framework provides a structured lens
for comparing the underlying principles, capabilities, and trade-offs of different augmentation techniques.
The following sections elaborate on the findings for each category, referencing the detailed categorizations
presented in the Appendix tables (Tables [2] through [5).
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3 Early Fusion Methods

Early fusion methods augment the VLM by incorporating external information directly at the input stage,
before the core VLM begins its internal processing. This is often the conceptually simplest approach, treating
external information as additional context and potentially requiring no VLM architecture changes. Its main
advantage is implementation simplicity, offering a direct way to provide context. However, it faces challenges
related to the relevance and noise of retrieved information. For example, some implementations use generated
image captions as retrieved context which may introduce information loss. The choice between simple
prompt augmentation and more structured retrieval encoding depends on the desired level of integration
and complexity tolerance. These methods primarily fall into retrieval-based or, less commonly, symbolic
computation-based categories, as detailed in Appendix Table

3.1 Retrieval-Based Early Fusion

The most common early fusion strategy involves retrieving relevant information from external sources and
providing it alongside the primary visual and textual inputs. A primary technique is Prompt Augmen-
tation, where retrieved textual context is directly appended to the input prompt, exemplified by Retrieval
Augmented Generation (RAG) (Lewis et al., 2021)). This retrieved text can originate from various sources.
Text/Fact Retrieval draws information from text corpora or knowledge graphs (KGs), using approaches
ranging from pre-trained encoders like CLIP without further training to fine-tuning the retriever, possibly
jointly with the VLM, for better relevance (see Table[2} column "Retrieval FT"). See Figure [3|for an example
of text retrieval using a pretrained vision-language encoder. Reranking retrieved results is often employed
to enhance quality (Qu et al., 2024} [Liu et all 2024; Wen et all 2024). Retrieved KG triplets can also
be formatted as text for the prompt (see Table 2| column "Prompt Augmentation"). An alternative form
of prompt augmentation uses Image Caption Augmentation, where textual descriptions (captions, labels,
Optical Character Recognition (OCR)) are first generated from the visual input, and this text is then used
for retrieval or directly added to the prompt, with some methods jointly training the caption generator and
retriever (see Table [2], column "Image Caption"). While simplifying the problem to text-based retrieval, this
approach risks information loss during captioning.

Instead of appending raw text, another approach uses Retrieval Encoders to encode the retrieved informa-
tion (e.g., KG subgraphs, text passages) into separate embedding vectors. These embeddings then condition
the VLM, often through attention mechanisms (Yuan et al., 2023b; Weng et al., |2024; |Chen et al., |2022a;
Salemi et al.| 2023a)), Long Short Term Memory models (LSTMs) (Wu et al.| 2016|), or memory modules (Hu
et al} 2022). This allows for a more structured integration of knowledge. Specifically, KG subgraphs can be
encoded using Graph Neural Networks (GNNs) (see Table |2 column "Subgraph Enc") or fused with scene
graphs (see Table 2] column "KG Conv"). Multimodal KGs can also provide richer representations (Jiang &
Meng, 2023).

3.2 Symbolic Computation Early Fusion

Integrating the results of symbolic computations at the input stage is rare in the surveyed literature. The
primary example identified (Potapov et al., |2019)) involves transforming the visual input into a symbolic
scene graph. This structured representation, potentially processed by an external symbolic reasoning engine
like OpenCog, serves as input or conditioning for the VLM. This approach explicitly introduces symbolic
structure early on but depends heavily on robust perception-to-symbol conversion modules.
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Figure 3: Architecture for Retrieval Augmented Chest X-Ray Report Generation by [Ranjit et al.| (2023)).
Text embeddings from radiology impressions are indexed in a vector database. For an input X-ray image,
its embedding, generated by a contrastively pretrained vision-language encoder (CXR-ReDonE), is used to
retrieve the most similar text (impressions or sentences) from the database. This retrieved text then forms
the context for a prompt, along with specific instructions, which is fed to an LLM (e.g., OpenAl GPT
models) to generate the final radiology report impression. This process is illustrated for both indexing and
inferencing stages.

INFERENCING

4 Middle Fusion Methods

Middle fusion techniques integrate external information or symbolic computation during the VLM’s infer-
ence stage, allowing interaction with the model’s intermediate representations before the final response is
generated. Intermediate representations can mean either token-based such as in autoregressive generation,
or embedding-based as in dense retrieval techniques. This enables more dynamic and potentially iterative
integration compared to early fusion, where external data influences internal processing, reasoning steps, or
feature refinement. By allowing external information and symbolic processes to interact with the VLM’s
internal state, these methods enable context-aware reasoning and iterative refinement. This often involves
more complex architectures and training but holds promise for leveraging both neural pattern recognition
and symbolic manipulation more effectively. The rise of tool use and agent-based frameworks within this
category points towards VLMs acting less as monolithic predictors and more as components in larger rea-
soning systems, echoing paradigms like Kahneman’s System 1 (neural intuition) and System 2 (deliberate
symbolic reasoning) (Kahneman, 2011; Booch et al.,2020). These methods, categorized in Appendix Table
often involve feedback loops or specialized modules operating alongside main VLM components.

4.1 Retrieval-Based Middle Fusion

These methods retrieve external information based on intermediate VLM states and fuse it back into the
ongoing computation. One approach is Dense Retrieval, which uses dense vector similarity between in-
termediate VLM representations and a knowledge corpus to find relevant information (often images or text)
that is then fused back into the model’s layers, typically via attention (Wang et al) [2022b; Lin et al.l
[2023bj} |Jia et al., 2023). Another major approach leverages Graph-Based Retrieval, primarily using KGs.
This includes methods where intermediate visual or textual features trigger KG Querying; the retrieved
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subgraphs or facts are processed (often with GNNs) and fused with VLM representations, sometimes after
extracting visual subgraphs first (see Table [3] column "KG Prompt Augmentation'). Figure El illustrates a
middle fusion approach that constructs coupled scene and concept graphs, using shared entities as mediums
for cross-modal knowledge exchange. Other graph-based methods use Similarity Measures between inter-
nal VLM representations and KG elements to guide reasoning or weighting, rather than directly injecting
KG structure (Wu et al., [2024a} (Chae & Kim), 2022; [Li et al., [2019; ming Xian et al. 2023; Marino et al
. A significant group focuses on Concept/Scene Graph Fusion, explicitly combining internally gen-
erated scene graphs with external concept graphs (e.g., from ConceptNet (Speer et all [2018))), often using
GNNs on the combined graphs (see Table 3] column "Concept/Scene Fusion"). More complex structures like
Multimodal KGs (MMKGs) (Xi et al., Shi et al., 2022; [Santiesteban et al., 2024; Ouyang et al.,2024;
or Hypergraphs (Heo et al.l [2022; [Wang et al., 2024b) are also integrated using specialized
graph networks. Finally, Reinforcement Learning (RL) can be used to learn policies for querying or
integrating external knowledge based on the current state (Bougie et al.| [2018).
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Figure 4: The MAIL (Modality-Aware Integration with LLMs) framework by [Dong et al| (2024). The
system employs a two-stage prompting strategy: first generating a dense caption through a visual LLM, then
constructing a scene graph by extracting spatial and object features as triples (e.g., (person, wearing, coat)).
These scene graph entities are linked with external knowledge from ConceptNet to form a coupled concept
graph containing real-world facts (e.g., (coat, used_for, warn)). A pseudo-siamese graph medium fusion
module processes both graphs through parallel graph attention networks with different weights, using shared
mentioned entities as mediums to enable cross-modal exchange while preserving intra-modal information.

4.2 Symbolic Computation Middle Fusion

These methods incorporate symbolic reasoning, calculations, or tool use within the VLM’s processing
pipeline. One key technique is Program Synthesis, where the VLM generates intermediate programs
(e.g., functional programs, Python code) operating on symbolic input representations or querying external
tools; the execution result influences subsequent VLM processing (Zhang et al., 2022c; 2023¢} [Hu et al.
2023D)), (Shirai et all [2023] see Figure[)), (Zhang et all, [2023b} [Li et al., 2021; Mishra et al., 2024; Xue et al.
2024). Another approach involves integrating Symbolic Logic Engines, translating intermediate VLM
representations into facts or queries processed by engines like differentiable first-order logic
2025a)), Answer Set Programming (ASP) (Riley & Sridharan| 2019; Mitchener et al.,2021)), Description Logic
(Tsatsou et all [2021)), planning domain definition languages (PDDL) (Zhang et al. 2022} [2023d)), temporal
logic (Choi et all, [2024)), specialized neurosymbolic languages like Scallop (Li et al. 2023d; Huang et all
, or embedding propositional logic operations . Vector Symbolic Architectures
(VSASs) represent symbols and perform operations using high-dimensional vectors within the neural archi-
tecture (Montone et al.,[2017}; [Kovalev et al.,[2021)). Some methods perform Symbolic Graph Operations
directly on graph representations (scene graphs, KGs) during processing, like guided walks or routing (]E
et al} [2022¢; [Liang et al., [2020; Wu et al), 2023} [Zhao, [2015} [Yang et al, [2020; [Zhang et al, [2023f; [Hudson
& Manning), [2019; |Cao et all) [2021)). Increasingly popular is Tool Use, where the VLM dynamically calls
external tools (calculators, APIs, vision algorithms, drawing tools) based on its intermediate state, integrat-
ing the tool’s output (see Table 3| column "Tool Use"). Lastly, Self Play involves using the VLM within a
simulated environment where it interacts, uses tools (potentially itself), and learns from feedback

et al 2021).
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Figure 5: Overview of the ViLaln approach for VLM planning of robotic actions |Shirai et al.| (2023). The
vision-language interpreter (ViLaln) generates a problem description from a linguistic instruction and scene
observation. The symbolic planner finds an optimal plan from the generated problem description.

4.3 Combined Retrieval and Symbolic Computation Middle Fusion

These advanced methods integrate both retrieval and symbolic computation during the forward pass. Many
employ Agent architectures where the VLM acts as a controller, deciding when to retrieve information and
when to use symbolic tools (including sub-agents or code execution) to achieve a goal (see Table 3] column
"Agents"). Other Approaches combine retrieval (e.g., from ontologies, KGs) with symbolic reasoning (e.g.,
probabilistic logic, program synthesis, graph walks, concept binding) in bespoke ways for specific tasks like
embodied QA, riddle solving, or rumor detection (Besbes et al., [2015} |[Aditya et al., 2016} [Adityal, [2017

Aditya & Barall, [2016}; [Tan et all 2021} [Liu et al, [2023a); [Stammer et all, [2024; [Vatashsky & Ullmanl, 2018
Gao et al. [2023c; 2024)).

5 Late Fusion Methods

Late fusion methods apply external information retrieval or symbolic computation after the VLM has gen-
erated an initial output. This external step typically serves to validate, refine, explain, or augment the
VLM’s output using structured knowledge or precise tools. Late fusion provides a powerful mechanism for
verification, refinement, and explanation by applying structured knowledge or precise computations to the
VLM’s generated output. It leverages the VLM’s ability to produce a plausible initial response, which then
guides a more targeted external process. This approach is particularly well-suited for enhancing reliability
and interpretability, as symbolic steps can act as explicit checks or provide traceable reasoning paths. The
main dependency is the quality of the initial VLM output; if it is too vague or incorrect, the subsequent
external process may be misguided. These techniques are cataloged in Appendix Table [4

5.1 Retrieval-Based Late Fusion

Here, the VLM’s output triggers a targeted retrieval query. In Dense Retrieval, the initial VLM output
(e.g., answer, rationale) queries a dense retrieval system. The retrieved information (text, facts) is then used
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to refine the output or provide supporting evidence (Song et al., |2022aib} [Shi et al., 2024). Alternatively,
using Knowledge Graph Retrieval, the VLM’s output (e.g., generated caption, predicted relationships)
queries a KG. Retrieved facts or subgraphs refine the output, for instance, by adjusting probabilities or
improving relationship predictions (Gao et al., 2022b; Huang et al., 2020; Xiao & Ful [2022).

5.2 Symbolic Computation Late Fusion

This involves applying symbolic tools or logic engines to the VLM’s output. Program Synthesis generates
programs based on the VLM’s output for analysis, validation, or transformation. Examples include gener-
ating Python code to verify VQA answers via vision APIs, treating symbolic programs as latent variables,
or generating Structured Query Language (SQL) queries from the output (see Table @ column "Program
Synth"). The influential Neural-Symbolic VQA (NS-VQA) approach 2018)), executing programs
on scene representations post-prediction, is often adapted. Symbolic Engines feed the VLM’s output (or
derived symbolic representations) into formal logic engines (e.g., Prolog, ASP, Probabilistic Soft Logic) for
consistency checking, inference, or validation (Sethuraman et al. 2021} |Aditya et al.| 2018} |Eiter et al.,|2022}
[2021; |Cunnington et al., 2024), or use PDDL for planning (Xu et al.,2022)). Tool Use involves calling exter-
nal tools or APIs based on the VLM’s output for specialized functions, verification, or generating structured
data (Yuan et al., 2023a; |Cesista et al., 2024} Cesistal, [2024} |Zhang| [2023)). Symbolic Graph Operations
perform manipulations on graph representations derived from the VLM’s output, such as reasoning over
action chains or graph traversals (Li et al. 2023a}; [Zhan et al., |2021} [Saqur & Narasimhanl [2020} |Johnston|
. Other Approaches include applying symbolic solvers to latent representations (Singh, |2018),
using VLM output confidence to trigger human interaction or further symbolic checks 2023)), or
updating conversational memory based on the response (Verheyen et al.| 2023).

5.3 Combined Retrieval and Symbolic Computation Late Fusion

These methods combine both retrieval and symbolic computation after the initial VLM output. Typically,
the VLM output is parsed into a logical form, relevant domain knowledge (facts or programs) is retrieved,
and a symbolic reasoner (e.g., probabilistic logic, ASP) derives the final answer (Sachan| [2020; Basu et al.|
2020). The AQuA framework (Basu et al] [2020) is depicted in Figure [6]

QUESTION
A J

Preprocessor
h 4 h 4
YOLO SRE
A 4
Query
Common Sense Generator
Knowledge
Knowledge (FACTS & RULES) Semantic
(FACTS) v Relations
] i o

s(ASP) Engine ASP Query

Figure 6: The architecture of the AQuA framework Basu et al.| (2020). It consists of five main modules:
(i) YOLO for object detection and feature extraction, (ii) a Preprocessor for the natural language question,
(iii) a Semantic Relation Extractor (SRE), (iv) a Query Generator based on semantic analysis, and (v) a
retrieval based Commonsense Knowledge module leveraging. The system utilizes an ASP engine for symbolic
reasoning.
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6 Discussion

The studies reviewed in this paper underscore the growing success of incorporating external symbolic in-
formation into vision-language models across different fusion paradigms. Here we discuss key observations,
challenges, and potential directions for future research stemming from these findings.

6.1 Domain-Specific Limitations and Augmentation Solutions

The integration of external symbolic systems in vision-language models addresses fundamental perceptual
and reasoning limitations that distinguish visual understanding from purely textual tasks. We organize
domain-centric limitations of VLMs along five phenomena that recur across the surveyed studies: spatial,
temporal, knowledge grounding, physical commonsense, and action/embodiment (STKPA). Each category
of limitation has driven the development of specific augmentation patterns that leverage the complementary
strengths of neural perception and symbolic computation. Orthogonal to this axis is how external structure
is injected, via retrieval, program/tool execution, or logic/constraint checking, and when it is injected (early,
middle, or late fusion; see Sections . The matrix in Table [1| summarizes typical augmentation patterns
observed for each phenomenon. Across the 264 papers in our corpus, each work is aligned with at least one
STKPA category, as shown in Tables [2] to We will discuss each domain and highlight some example
augmentation solutions and their associated datasets.

6.1.1 Spatial numeracy and geometry

VLMs struggle with tasks requiring exact measurements or counts within visual scenes, with error rates
exceeding 30% on simple counting tasks (Wang et al., 2024¢). This limitation stems from the continuous
nature of visual features in neural representations conflicting with discrete spatial reasoning requirements.

Effective augmentation systems externalize discrete structure through two primary families of approaches.
First, program synthesis methods compile questions to programs that operate on structured scene repre-
sentations. Neural-Symbolic VQA (Yi et all 2018) achieved 99.8% accuracy on CLEVR through explicit
program execution over scene graph representations, effectively saturating the benchmark with a 15+ per-
centage point improvement over end-to-end neural baselines. Second, visual API orchestration methods like
ViperGPT (Suris et al.| [2023)) generate Python code that composes heterogeneous computer vision modules
such as detectors, object/semantic segmenters, or depth estimators, each providing complementary sym-
bolic information about the visual scene. This compositional approach allows VLMs to leverage specialized
perception modules’ strengths while maintaining flexibility through learned orchestration policies.

Spatial reasoning benchmarks have been fundamental in evaluating AVLMs’ ability to understand geometric
relationships and counting (Table [5). The CLEVR family of datasets (Johnson et al., |2016) provides syn-
thetic but precisely controlled evaluation of spatial reasoning, with extensions like Super-CLEVR (Li et al.,
2022€)) testing domain robustness and CLEVR-POC (Abraham et al., [2024) introducing partial observabil-
ity challenges. Scene graph datasets including Visual Genome (Krishna et al.l 2016 and VCD (Shen et al.
2024) evaluate models on real-world spatial relationships between objects. More recent benchmarks like
SOK-Bench (Wang et al.; |2024a) combine spatial and knowledge requirements, while specialized datasets
test whether VLMs can reason about times and locations (Zhang et al., [2023a) or answer complex visual
information-seeking questions (Chen et al., [2023).

6.1.2 Temporal and causal ordering

In video understanding, VLMs frequently misinterpret temporal sequences and causal relationships, with
accuracy drops of 20-40% on tasks requiring temporal ordering compared to static image reasoning (Yi
et al., 2019)). The absence of explicit temporal reasoning mechanisms in standard architectures necessitates
augmentation with structured temporal representations.

Middle-fusion pipelines address this by tracking entities and actions through specialized tools (detection,
tracking, pose estimation, optical ﬂow) to construct event sequences that programs or planners can reason
over. Logic-based approaches apply temporal operators and constraint checks to predicted timelines, with
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Retrieval Symbolic Computation

Spatial KG fact retrieval to bias relations/attributes Executable visual programs over scene graphs (NS-
(Marino et all, [2020; [Li et all, [2020); dense re- VQA) [2018); Python tool orchestration
gion/sentence retrieval for spatial cues for counting/geometry (detector/segmenter/depth)
let al 2022b} Lin et al. [2022); graph-based re- (Suris et al., 2023); visual program distillation
trieval of related objects/relations (Wang et al.| |et al.,2023b)); ASP /logic verification of spatial pred-
[2022¢; [Zhu et al.| [2020D) icates (Basu et al.| [2020} [Eiter et all 2022} |Sethu-|

raman et al., [2021); probabilistic neural-symbolic
constraints (Vedantam et al., 2019)

Temporal Knowledge-guided caption/entity retrieval for LLM-orchestrated video tools (tracking,
event context (Xi et al,[2024; [Hou et al [2020); OCR/ASR, shot segmentation) [2024));
ontology lookup of task/event relations program traces over events (Zhang et al., [2023¢);
et al., 2020) symbolic activity reasoning with tool-augmented

execution [2023); temporal logic/order
constraints and ASP checks (Choi et al| [2024}

Knowledge Outside-knowledge retrieval (text/KG, rerank- Code/program generation to query KGs/APIs or

grounding ing) for OK-VQA (Marino et al) |2019; |Chen| compose operators (Subramanian et al) [2023;
let al., [2022b; Wen et all [2024); multi-source |Zhang),|2023); agentic tool-use for information seek-
multimodal retrieval (entities, captions, KG) ing (Hu et al.,[2023c|); PSL/formal-logic consistency
(Zhu et al| 2020b} [Salemi et all [2023aj and entailment (Aditya et al. |2016} [Sethuraman)|
et al.l 2021)) let al.} 2021} |Eiter et al., [2022)

Physical  Affordance/functional KB retrieval (e.g., Con- Differentiable/explicit physics for feasibility

common-  ceptNet) (Speer et al.|[2018; Marino et al.l[2020); |et al) [2023); vision-tool composition for metric/-

sense knowledge-aided captioning (Huang et al.,[2020) geometry checks (Surfs et al. [2023)); 3D symbolic
grounding of objects/relations ;
rule/constraint checking for stability, containment,
and causal function (Aditya et al., |2018; [Vedantam|
let al., 2019} |Zhao|, [2015))

Action / External maps/knowledge for navigation and Planner interfaces (PDDL/ASP) invoked from

embodi-  planning (Li et al [2022d} [Ni et al 2023); VL- VLM outputs (Shirai et al| [2023} [Zhang et all

ment action models transferring web knowledge for ; plan—execute—observe loops grounded by

control (Brohan et all [2023); robotic manipu-
lation knowledge bases (Gao et al., [2023b)

VLMs (Zhang et al. 2023b} |Gao et all [2023b));
tool documentation for zero-shot tool use (Hsieh

et al.|, 2023)); planner validity /safety constraints and
neuro-symbolic agent frameworks (Xu et al 2022

[Cunnington et al., [2024)

Table 1: Reasoning domains and associated augmentation mechanisms with example implementations

temporal logic systems (Choi et al [2024) showing 15-25% improvements on temporal ordering tasks. Re-
trieval of script knowledge or prototypical event progressions biases hypotheses toward plausible sequences,
while late-fusion verifiers test temporal feasibility against these priors. These augmented approaches sepa-
rate perceptual feature extraction from logical temporal inference, allowing each component to operate in
its optimal representational space.

Temporal reasoning evaluation is primarily anchored by CLEVRER (Table[5), which extends
spatial reasoning into the temporal domain through collision events and causal chains in synthetic videos.
The Compositional 4D dataset (Wang et all) |2024d) further challenges models with four-dimensional scene
understanding requiring both temporal and physical reasoning. While fewer dedicated temporal datasets
exist compared to other domains, temporal reasoning is often implicitly tested in embodied agent benchmarks
and video understanding tasks that require tracking state changes over time.
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6.1.3 Knowledge-intensive grounding

The challenge of linking language to specific visual entities requiring external knowledge (identifying land-
marks, recognizing famous individuals, understanding fine-grained categories) represents a fundamental lim-
itation where learned pattern matching proves insufficient due to sparse training data for highly specific
instances (Kalai et al., 2025).

Multimodal knowledge graph navigation addresses this through explicit retrieval and graph-based reasoning.
VQA-GNN (Wang et al., 2022¢|) demonstrated 4.6% improvement on GQA by coupling internally generated
scene graphs with external concept graphs through graph neural networks that enable message passing
between visual features and symbolic knowledge. KAT (Gui et al.| [2021)) achieved 53.1% on OK-VQA, a
5.1% improvement over PICa which relied solely on GPT-3’s parametric knowledge (Yang et al., [2022).
The integration of structured knowledge graphs like ConceptNet enables more accurate entity recognition
through explicit retrieval of facts about identity, function, and long-tail categories, rather than relying solely
on learned pattern matching.

Knowledge-based VQA represents the largest category of benchmarks for AVLMs (Table . The progression
from general VQA (Agrawal et al.l [2015) to fact-based FVQA (Wang et al., 2016} [Lin et al., [2023c) and
knowledge-aware KVQA (Shah et al., |2019)) reflects increasing demands for external knowledge. OK-VQA
(Marino et all |2019)) and its successor (Reichman et all [2023) have become standard benchmarks requir-
ing knowledge beyond visual content. Specialized variants target encyclopedic knowledge (Mensink et al.)
2023)), cultural domains (Agarwal et al.; 2024)), named entities (Lerner et al., 2022} |Qiu et al., 2024)), and
synthetic knowledge generation (Su et al., 2024). Advanced reasoning benchmarks like A-OKVQA (Schwenk
et all 2022) and Visual Riddles (Bitton-Guetta et al.l |2024) combine knowledge requirements with com-
plex compositional reasoning, while CRIC (Gao et al., |2019) tests compositional reasoning on vision and
commonsense.

6.1.4 Physical commonsense and affordances

VLMs often lack robust understanding of physical properties and object affordances visible in scenes, com-
monly misunderstanding material properties, physical constraints, or predicted behavior under manipulation
(Yi et all 2019; |Wang et all 2024d). This gap necessitates specialized bridging mechanisms that translate
between continuous visual features and discrete symbolic representations.

Two augmentation routes have proven effective. First, symbolic vector or graph representations bridge
continuous perception and discrete physical predicates. Vector Symbolic Architectures (Montone et al.
2017} [Kovalev et al.l |2021) represent spatial relationships as high-dimensional vectors supporting symbolic
operations like binding and unbinding within the neural architecture itself. Graph neural networks operat-
ing on coupled scene-concept graphs (Dong et al., [2024} [Song et al. |2023) enable cross-modal knowledge
exchange, with ConceptNet integration showing 8-12% improvements on tasks requiring physical common-
sense reasoning. Second, tool-enabled pipelines call physics or geometry modules (depth estimation, meshing,
simple simulators) to test feasibility or measure quantities before answering. The structured nature of ex-
ternal knowledge allows models to access explicit relationships like "glass IsA fragile" or "liquid HasProperty
flows_ downward" that may not be reliably encoded in learned parameters.

Physical reasoning evaluation is less explicitly represented in current benchmarks but appears implicitly
across multiple datasets (Table . The Compositional 4D dataset (Wang et al., [2024d) specifically targets
understanding of physical dynamics and material properties across time. Visual Commonsense Reasoning
(VCR) (Zellers et al.| |2018)) requires understanding of physical plausibility and social dynamics, while ex-
plainable reasoning benchmarks (Cao et al. 2019) often involve physical world knowledge. The relative
scarcity of dedicated physical commonsense benchmarks represents a gap in current evaluation frameworks,
despite this being a critical limitation of VLMs.

6.1.5 Action and embodiment

In robotics and embodied Al applications, the challenge of translating visual scenes and natural language
instructions into executable action sequences requires precision and verifiability that standalone VLLMs cannot
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provide. Augmentation patterns treat VLMs as interpreters that generate symbolic action specifications for
downstream execution.

Methods like ViLaln (Shirai et all) [2023) generate PDDL specifications that symbolic planners execute
with guaranteed optimality properties. Systems employing Answer Set Programming (Zhang et all 2022b)
or other formal planning languages leverage logical consistency checking. Many approaches implement
plan—execute—observe-reflect loops that re-plan on mismatch, with retrieval supplying action/operator li-
braries and environment maps. Tool interfaces expose planners and low-level skills through well-defined
APIs, while safety and validity are enforced through logic layers checking preconditions, effects, and con-
straints. This vision-to-symbol translation separates flexible perception from rigorous planning, enabling
reliable task execution in physical environments.

Embodied AI benchmarks evaluate AVLMs’ ability to translate understanding into executable actions (Table
). Web-based environments like WebArena (Zhou et al.,|2023) and ScreenAgent (Niu et al.,|2024) test agents
on realistic computer control tasks, while Spider2-V (Cao et al., |2024) focuses on data science workflows.
Robotic manipulation benchmarks (Gao et al.; 2023b) evaluate physical grounding and tool use in real-world
settings. These agent-focused evaluations represent a shift from passive question-answering to active, goal-
directed interaction with environments, requiring integration of perception, reasoning, and action execution.

6.2 Common Architectural Patterns in AVLMs

While the surveyed papers employ diverse implementation strategies, our analysis reveals three fundamental
architectural patterns that have emerged as dominant paradigms for augmenting vision-language models.
These patterns represent crystallized design solutions that address specific computational challenges in vision-
language understanding. These patterns distribute differently across fusion stages, with retrieval-based
approaches primarily operating at the input stage, while symbolic computation patterns span both middle
and late fusion paradigms.

6.2.1 The Retrieval-Integration Pipeline Pattern

The retrieval-reasoning pipeline has evolved from simple keyword matching to sophisticated neural retrieval
systems. The evolution of this pattern over the past decade (2016-2024) reflects increasing sophistication in
how external knowledge is indexed, accessed and integrated in the following ways:

o Early Simple Retrieval (2016-2018): Direct keyword matching or TF-IDF based retrieval from
knowledge bases, with retrieved facts concatenated to prompts (Wang et al.l |2015; [Narasimhan &
Schwing| [2018])

o Learned Dense Retrieval (2019-2020): Introduction of learned embeddings using pretrained
encoders like CLIP, enabling semantic similarity search (Li et al., [2020; [Zhang et al.| [2020)

o Joint VLM-Retriever Training (2021-2022): End-to-end training of retriever and VLM com-
ponents, optimizing retrieval for downstream task performance (Chen et al., 2022b; (Gui et al., 2021)

o Tool-Augmented Retrieval (2023-2024): Retrieval as one tool among many, with VLMs learn-
ing when and what to retrieve (Yan & Xie| [2024; |[Hao et al., |2024b)

Critical design decisions in this pattern include the choice of embedding space, where CLIP-based retrieval
demonstrates strong performance on vision-language tasks (Gui et al., [2021), retrieval granularity with
sentence-level retrieval showing advantages for factoid questions (Chen et al., 2022b)), and integration mech-
anism where attention-based fusion consistently outperforms simple concatenation (Yuan et al. [2023b; Weng
et al., [2024)).

6.2.2 The Intermediary Program Pattern

This pattern treats program synthesis as a bridge between neural perception and symbolic computation,
with the VLM generating executable code that operates on structured representations or invokes external
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tools. The generated programs serve as interpretable reasoning chains that can be verified, debugged, and
modified. Importantly, we distinguish between domain-specific program synthesis and general-purpose code
generation, as they represent different points on the expressiveness-tractability spectrum.

This pattern’s evolution has followed a similar progression to the retrieval-reasoning pipeline, moving from
static patterns to dynamic, learned behaviors:

o Static Logic on VLM Outputs (2018-2019): Early approaches applied predefined symbolic
logic engines (ASP, Prolog) to VLM-extracted scene graphs, requiring manual rule specification
(Aditya et al.l 2018} Riley & Sridharan, [2019)

o Domain-Specific Program Synthesis (2020-2022): VLMs learned to generate programs in
constrained domain-specific languages (DSLs) with guaranteed executability. NS-VQA (Yi et al.,
2018) synthesizes functional programs over a fixed set of visual primitives, while|Zhang et al.| (2025a))
generates first-order logic expressions

o General-Purpose Code Generation (2022-2023): Shift to generating Python or SQL code with
broader expressiveness but without execution guarantees. ViperGPT (Suris et al., 2023|) generates
unrestricted Python code composing vision APIs, while|Gupta & Kembhavi| (2022)) produces Python
programs for visual reasoning

o Dynamic Tool Orchestration (2023-2024): VLMs as orchestrators selecting and composing
heterogeneous tools including APIs, specialized models, and code execution environments (Hu et al.,
2023c; (Wu et al., [2024b; [Liu et al., |2023b))

The key architectural components include: (1) Program specification language - DSLs offer tractability
with limited expressiveness (NS-VQA’s 20 primitives achieve 99.8% on CLEVR (Yi et al. |2018)), while
general-purpose languages enable broader capabilities but require error handling; (2) Execution environment
- ranging from symbolic executors for DSLs to sandboxed Python interpreters with vision library access;
(3) Error handling mechanisms - recent approaches like [Mishra et al.| (2024]) incorporate execution feedback
for iterative refinement. ViperGPT demonstrates the general-purpose approach’s flexibility, achieving strong
performance across diverse visual reasoning tasks through unrestricted Python generation (Suris et al., 2023)).

6.2.3 The Graph Fusion Pattern

Graph-mediated fusion explicitly models relationships between visual elements and external knowledge
through graph structures, enabling structured reasoning over combined perceptual and symbolic informa-
tion. This pattern typically involves three stages: graph construction (from visual input and/or external
knowledge), graph alignment (connecting visual and symbolic graphs), and graph neural network processing
for joint reasoning.

Key Design Variations:

o Scene-Concept Graph Coupling: Methods like VQA-GNN (Wang et al.| 2022c) and MAIL (Dong
et al., |2024)) construct parallel scene graphs (from images) and concept graphs (from knowledge
bases), using shared entities as bridges. Graph attention networks enable cross-modal message
passing while preserving intra-modal structure, with VQA-GNN showing 4.6% improvement on
GQA through this approach (Wang et al.| [2022c)

e Multimodal Knowledge Graph Integration: Approaches incorporating MMKGs (Xi et al.|
2024; [Liu et al., 2021)) where nodes contain both visual exemplars and textual descriptions, enabling
richer cross-modal grounding through joint embedding spaces

¢ Dynamic Graph Construction: Methods that construct query-specific subgraphs rather than us-
ing fixed graph structures, with [Li et al.| (2022b]) demonstrating improved efficiency through adaptive
graph pruning.
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Critical implementation choices include graph representation (heterogeneous vs. homogeneous nodes), align-
ment mechanisms (entity matching vs. learned attention), and message passing strategies (synchronous vs.
asynchronous updates). The graph-mediated pattern provides a principled way to preserve structural infor-
mation while enabling neural reasoning, making it particularly effective for tasks requiring explicit relational
understanding between visual elements and conceptual knowledge.

6.2.4 Cross-Pattern Observations

Several key insights emerge from analyzing these patterns:

1. Temporal Distribution: Retrieval-based approaches concentrate in early fusion (where they mod-
ify inputs), while program and graph-based patterns distribute across middle and late fusion stages
(where they can interact with intermediate representations or refine outputs).

2. Complementarity: The most successful recent systems combine patterns - for example, using
retrieval to gather relevant facts, then applying program synthesis for precise computation over
retrieved information (Castrejon et al., 2024; Lu et al., [2023).

3. Interpretability-Simplicity Trade-off: Program-based approaches offer highest interpretability
through executable traces but require more specialized, task-specific training. Graph-based methods
provide moderate interpretability through explicit relational structure. Pure retrieval offers limited
interpretability but is simplest to implement.

4. Scalability Characteristics: Retrieval scales well with knowledge base size using approximate
nearest neighbor search (Chen et al.l |2022b]), program synthesis complexity grows with the size of
the DSL or API set (Yi et al., [2018), while graph methods face quadratic complexity in number of
nodes, requiring approximation techniques for large graphs (Wang et al. 2022c]).

These architectural patterns provide a technical foundation for designing augmented vision-language systems,
with the choice of pattern depending on task requirements for accuracy, interpretability, and computational
efficiency.

6.3 Future Directions for Vision-Centric Augmentation Research

Cross-Modal Knowledge Integration Through Bidirectional Grounding: Rather than treating re-
trieved information as passive context, future research should explore augmentation techniques that leverage
cross-modal correspondences more deeply. For example, retrieved knowledge about typical spatial layouts
(e.g., "monitors are usually on desks") could constrain visual parsing, while visual evidence could trigger tar-
geted knowledge retrieval. Multimodal knowledge graphs where nodes represent visual concepts with both
image exemplars and textual descriptions (Jiang & Meng) 2023; Xi et al., 2024) could enable richer cross-
modal reasoning through joint embedding spaces. This bidirectional interaction between symbolic knowledge
and visual processing could improve both grounding accuracy and reasoning efficiency by ensuring consis-
tency between what the model sees and what external knowledge suggests should be present.

Embodied Vision-Language Systems with Reinforcement Learning for Tool Use: The integration
of VLMs with physical embodiment and interactive environments presents unique augmentation opportuni-
ties beyond one-shot prediction. Embodied systems can iteratively refine understanding through interaction:
moving cameras to new viewpoints, manipulating objects to reveal hidden properties, or executing actions
to test hypotheses about the physical world (Gao et al., 2023b)). Recent advances in reinforcement learn-
ing for visual tool use, exemplified by approaches like VTool-R1 (Wu et al., 2025)), demonstrate how RL
can train VLMs to dynamically select and compose vision tools based on environmental feedback and task
requirements. Future research should develop reward functions that balance exploration (trying new tool
combinations) with exploitation (using known effective strategies), while incorporating human preferences to
ensure safe and interpretable tool usage patterns. This includes learning when to request human intervention
for ambiguous visual scenes or safety-critical decisions in autonomous systems.
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Interpretable Visual Program Synthesis for Safety-Critical Applications: While current visual pro-
gramming approaches demonstrate success on controlled benchmarks (Suris et al., [2023; (Gupta & Kembhavi,
2022)), deploying these systems in safety-critical domains requires advances that combine program synthesis
with interpretability mechanisms. Future systems must handle partial observability through techniques like
uncertainty-aware program generation that explicitly represents confidence in different execution paths. (Bao
et al.l [2023; |Vedantam et al., |2019; |Chae & Kim)| 2022)) The challenge of providing interpretability becomes
paramount in high-stakes applications. Systems should produce visual reasoning chains that show which
image regions were examined, what external tools were invoked, and how intermediate results combined to
reach conclusions. This requires developing visualization techniques that render program execution traces
overlaid on images with attention heatmaps, tool call annotations, and confidence scores. For medical imag-
ing, autonomous driving, or industrial inspection, these interpretable execution traces serve dual purposes,
enabling domain experts to verify correctness and providing auditable records for regulatory compliance.
The key is balancing completeness (showing all reasoning steps for full transparency) with comprehensi-
bility (avoiding overwhelming users with excessive detail through hierarchical or interactive visualization
approaches).

Scalable Visual Program Libraries and Transfer Learning: Current visual programming approaches
often require task-specific program templates or limited APIs. Future research should develop methods for
building compositional program libraries that grow through experience, enabling VLMs to synthesize increas-
ingly complex vision pipelines by combining learned subroutines. This includes meta-learning approaches
that discover reusable visual reasoning patterns across tasks and transfer learning techniques that adapt
programs from source domains (where supervision is abundant) to target domains (where it is scarce). The
vision-language community would benefit from standardized APIs and benchmark tasks for visual program
synthesis, analogous to how HuggingFace standardized model interfaces for NLP.

Adaptive Augmentation Based on Task Uncertainty: Rather than applying fixed augmentation strate-
gies, future AVLMSs should dynamically determine when and how to invoke external resources based on un-
certainty estimation. For instance, a model confident in its counting ability for sparse scenes might bypass
external tools, while requesting symbolic computation for cluttered environments. This adaptive approach
requires developing calibrated uncertainty measures for different aspects of visual reasoning (spatial rela-
tionships, object recognition, attribute prediction) and learning policies that optimize the trade-off between
accuracy gains and computational costs of augmentation.

7 Conclusion

Vision-Language Models have revolutionized AI’s ability to connect vision and language, yet standalone
models struggle with factual accuracy, complex reasoning, adaptability, and interpretability. This system-
atic review charted the landscape of Augmented Vision-Language Models (AVLMs), which overcome these
limitations by integrating VLMs with external symbolic information systems and computational tools. We
surveyed a diverse range of techniques, categorizing them by fusion timing (early, middle, late) and the nature
of augmentation (retrieval, symbolic computation, combined), revealing a clear consensus: augmenting VLMs
significantly boosts performance and interpretability on knowledge-intensive and reasoning-heavy tasks by
synergizing neural pattern recognition with symbolic precision (Marino et al., [2020; Vedantam et al.l |2019;
Bitton-Guetta et al., |2024; [Yan & Xiel [2024; [Hu et al., 2023c). A particularly powerful paradigm emerging
from this landscape is tool use, which offers a flexible and unifying abstraction for AVLM design. This ap-
proach frames the VLM as an intelligent orchestrator trained to select and utilize external capabilities (such
as knowledge bases, calculators, code execution, specialized algorithms, formal reasoners) encapsulated as
"tools," enabling modularity and scalability. Significant challenges remain in managing interaction complex-
ity, ensuring scalability and efficiency, guaranteeing robustness against unreliable external inputs, developing
comprehensive evaluation methods, and refining the tool integration mechanisms themselves. Nevertheless,
the advancement of AVLMs, particularly through the lens of tool use, represents a crucial progression towards
more capable, reliable, and trustworthy AI systems that effectively blend neural perception with symbolic
reasoning, allowing them to not only see and describe the world but also reason about it with greater depth,
accuracy, and transparency.
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A Methodology

This section describes the process of gathering relevant articles for this survey, following the Preferred
Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. The goal of this approach
is to avoid bias when selecting what papers to review, focusing on the merits of the paper and the relevancy
to the topic of AVLMs.

A.1 Search Strategy
A.1.1 Databases and Search Queries

We utilized two primary databases for our literature search:

e Google Scholar: Known for its extensive coverage of scholarly publications across disciplines.

e Semantic Scholar: Provides advanced search capabilities and citation analysis, facilitating the
identification of semantically relevant works.

A.1.2 Search Terms

We formulated specific search queries to capture studies related to augmented vision-language models inter-
acting with symbolic systems during inference. The search strategy used the strengths of both databases
by employing an iterative process of testing and refining the search query until the resulting set of papers
was adequately relevant. Google Scholar is more sensitive to the inclusion of keywords, and so we used a
combination of Boolean operators to refine the results effectively.

The search query used in Google Scholar was:

"("augmented" OR "knowledge" OR "knowledge graphs" OR
"knowledge augmentation" OR "commonsense knowledge" OR
"commonsense reasoning" OR "tool use" OR

"retrieval augmented" OR "retrieval-augmented" OR
"external knowledge" OR "neural symbolic" OR
"neural-symbolic" OR "symbolic")

AND

("vision-language" OR "vision language" OR

"visual question answering" OR "image question answering" OR
"video question answering" OR "image caption" OR

"video caption" OR "image text" OR "spatial reasoning" OR
"visual reasoning")

AND

("neural network" OR "machine learning" OR

"artificial intelligence" OR "deep learning")

-"virtual reality" -"augmented reality"

Semantic Scholar is less sensitive to keywords and more of a semantic search, so for this database, we
employed a set of targeted queries to capture key aspects of our research focus:

o "Commonsense reasoning in visual question answering"
e "Knowledge graphs for image or video captioning'"

o "External knowledge in visual reasoning'

e "Neural-symbolic vision-language models"

e "Tool use in vision-language tasks'
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A.2

"Retrieval-augmented image question answering"
"Symbolic reasoning in Al for vision"
"Commonsense in image-text models"
"Neural-symbolic visual question answering"

"Multimodal knowledge graph LLM"

Inclusion and Exclusion Criteria

To ensure the relevance and quality of the studies included in this review, we established clear inclusion and
exclusion criteria.

A21

A.2.2

Inclusion Criteria

Relevance: Studies that describe machine learning models integrating external symbolic informa-
tion systems during inference.

Language: Publications written in English.

Implementation Focus: Papers providing detailed descriptions of implementation methods rather
than purely conceptual or theoretical discussions.

Vision-Language Tasks: Research focusing on tasks such as visual question answering, image
captioning, and video captioning where the input is imagery and/or text and the output is natural
language text.

Exclusion Criteria

We excluded studies that did not align with the focus of this review, such as:

Prompting Techniques: Research solely on prompt engineering or techniques that rely on internal
reasoning patterns without external data augmentation (e.g., chain-of-thought prompting).

Self-Prompting/Recursive Prompting: Methods that involve iterative querying without inte-
gration of external symbolic information systems.

Synthetic Data Generation: Studies focusing on generating synthetic data to improve model
performance without external symbolic system interaction.

Architectural Modifications Without External Integration: Papers discussing model archi-
tectures like vision encoder adapters for large language models that do not involve external symbolic
systems during inference.

Training with Structured Knowledge: Research that involves training models with external
knowledge but does not allow for the external knowledge to be modified or read during inference
(e.g., methods where external knowledge is embedded in model parameters).

A.3 Selection Process

The selection process involved several iterative steps to refine and identify the most relevant studies.

A3l

Initial Search Results

e Google Scholar: The search yielded 980 papers after filtering by category and removing irrelevant

results based on titles and abstracts.

e Semantic Scholar: The targeted queries returned 1,332 papers.
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A.3.2

Total Papers Collected

In total, 2,312 papers were collected from both databases.

A.3.3

Relevance Scoring

In alignment with the theme of augmented models, we utilized the GPT-40 OpenAI model (gpt-4o-
2024-08-06) to assist in the relevance assessment:

A.3.4

Automated Categorization: GPT-40 was prompted to categorize each paper and assign a rele-
vance score ranging from 1 to 10 based on the alignment with the review topic.

Threshold for Inclusion: Papers scoring less than 8 out of 10 were excluded from further
consideration.

Iteration and Validation: The relevance scoring process was iterated, and we ensured that all
highly relevant papers were retained, even if they narrowly missed the initial threshold.
Manual Screening

Total Papers After Automated Filtering: 616 papers remained after applying the relevance
threshold.

Full-Text Assessment: We conducted a thorough manual review of the full text of these papers.

Final Selection: After removing duplicates and papers not meeting the inclusion criteria, 264
papers were selected for detailed analysis. See Figure [7}

Records identified
through search
(n=2312)

| |
v

Records after
deduplication
(n=2277)

Other sources
(n=7)

h 4

Records screened by Records excluded
PT4a : 2
(n=2277) (n=1696)
Full-text articles Full-text articles
d for eligibility 5| excluded, with reasons
(n=581) (n=317):
l Out of scope (n=292)
No full text (n=1)
Foreign language (n=1)
Studies included Duplicate (n=20)
(n=264) Lack quality (n=3)

Figure 7: PRISMA Flowchart

A.4 Data Extraction and Synthesis

From the selected studies, we extracted pertinent information to facilitate a comprehensive understanding
of the methods:

e Integration Techniques: Description of how external systems were integrated with vision-language

models, classified into early fusion, middle fusion, and late fusion methods.
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A5

o Types of External Symbolic Systems: Categorization of external symbolic systems used, such

as knowledge graphs, symbolic logic engines, and program synthesis tools.

o Tasks Addressed: Identification of the specific vision-language tasks tackled by each study, in-

cluding visual question answering, image captioning, and others.

e Implementation Details: Detailed examination of the models’ architectures, including the inter-

action mechanisms with external symbolic systems during inference.

Quality Assessment

We assessed the quality of the included studies based on:

A.6

o Clarity of Methodology: Transparency and reproducibility of the methods described.

o Experimental Rigour: Adequacy of experimental design, including dataset usage, evaluation

protocols, and statistical significance of results.

e Contribution to the Field: The extent to which the study advanced understanding or provided

innovative solutions in augmented vision-language models.

Limitations

While we aimed for a comprehensive review, certain limitations exist:

e Publication Bias: Unpublished works or those not indexed in the selected databases may have

been missed.

o Language Restriction: Non-English publications were excluded, which may omit relevant research

conducted in other languages.

e Dynamic Field: Given the rapidly evolving nature of machine learning research, new studies may

have emerged after the completion of our search.

o AI Bias: The use of GPT4o in filtering of papers could potentially remove relevant search results.

By following this systematic approach, we ensured a thorough and unbiased selection of relevant literature,
providing a solid foundation for the subsequent analysis and discussion in this review.

B Categorization Tables

This section contains the tables categorizing the surveyed papers based on the fusion method (Early, Middle,
Late) and the type of augmentation (Retrieval, Symbolic Computation, Combined). It also includes a table
summarizing relevant datasets. These tables correspond to the synthesis presented in the main Results
section.
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Table 2: Early Fusion Methods in Vision-Language Model Augmentation. Bracketed tags denote pre-
dominant reasoning domain categories: Spatial, Temporal, Knowledge grounding, Physical commonsense,

Action/Embodiment
Retrieval
Prompt Augmentation Querying KG Retrieval Encoders
Image Caption Retrieval FT Prompt Augmentation Subgraph Enc

Gao et al.}, 2022a) [K]
n et all [2024) [K]

(Li et al[[2018) [S,K]
Fabian et al., [2023) [K
2023) [K] (Ravi et al [2022) [K] -
# > (Li et all [2020) [K]

(Sharifymoghaddam et al., [2024)) [K] Ranjlt et al 023) [K] (Narasimhan & Schwing} [2018) [K] (Rao ot al) 2023) [K]

(Ghosal et al.l [2023) [K :
= Qu et al}[2024) [K] (Vickers et al.} |2021) [K
e e I Liu et al.| 2024) [K] (Guo et al] 2022) [K] e S o) ()
. Yan & Xie, [2024) [K] (Wang et all, [2015) [S,K] mﬁ t oL B033a) [K]

K] (Natu et al., [2023) [K] -

(Thalani ot al. 2024) [K (Lin et al, [2023a) [K]

) [K] (Barezi & Kordjamshidi, [2024) [K] (Torino et al}[2020) [S,K]
J (Wang et al, [2022a)) [K]

}?;I?ggeit;l' 2024 [II<<] Qu et al.[|2020) [T,K]
(Wang ot all MQOQZ’) K] Padhi et al.t 2024)) [K]

' Iscen et al.| |
: - Joshi et al.
(GorceOlono o s B02) (K] Chem et al] Ogava ot alhooy) (1] Gevcpento ot L BB 1K)
il : Gur et al.} Chen et al.| [2022c) [K] Jringret A 5023 K]
Cui et all | Kan et al}|2021) [S,K] (Mondal et éﬂ 5024) [K]
Zhu et al. (Gan et al.,[2023) [K] (Tee ot all [2024) (K]

Hao et al.

Yang et al [2019) [T,K]

'Lemer ot al. 2023 K]

Retrieval

Retrieval Encoders (Continued)
Encoder Architectures

KG Encoding
KG Conv MMKG Attn Attention LSTM

Chen et al} [2021D) [K]

(Ziacefard & Lécud] 2020 K]
st o (oan )
Zhu et al.| 2020b) [K Jiang & Meng| [2023) [K h u et a 01 S,K
( D [ ] (Jiang EY ) [K] 1@.@@] w -- [ I

(Hussain et al [2022)) [K]
(i & Moons, 2029) [K] (Salemi et al.,|2023a)) [K]
(Ye et al., |2021)) [S]

Retrieval Symbolic

Retrieval Encoders (cont.)

Memory Symbolic

(Fu et al] [2022) [K] (Potapov et al [2019) [S]

21



Under review as submission to TMLR

Table 3: Middle Fusion Methods in Vision-Language Model Augmentation. Bracketed tags denote pre-
dominant reasoning domain categories: Spatial, Temporal, Knowledge grounding, Physical commonsense,

Action/Embodiment
Retrieval
Dense Retrieval Graph
KG Prompt Augmentation KG/NN Similarity Con%(‘elitiérslcene
(Lot al| p017) K]
(Ci et al.| [2023D) [K]
Yang et al.| |2023) [S,K
Zheng et al.[]2021) [K] ang <t ol 15055¢ [[S”K]]
et al]2018 5]} Khan ot al.| [2022b) [S,K]
(Narasimhan et al.[|2018) [K] Khan ot al.| 2022a) [S.K]
(Zhu| 2022) [S,

(Zhang et al.||2023c) [K] ]
(Singh ot al| 2010} [K] .
(Jiang et al.[]2020) [T,A,K] Wu et al.][2024a) [K] ‘-l [I[<S’1:I,<]]
3023) [K] (Chae & Kim| 2022} (K] 022 K]
i et al.[|2019 : 2

(Wang et al.||2022b) [K] Yu et al.
(Cin et al.|2023b) [K] Du et al.| 2022) [K] i : ]
. —= s Zh t al.|[2021) [S,K
(Jia et al. K] ' (ming Xian ct al.][2023) [K] qui?gg; - “202 T [[S,’K]]
1 , (Marino et al.;[2020) [K] [Gao ot al.| 2023a) [S,A]
2ozza [K]

Zhang et al

(Narayanan ot al. 12021) [K]

Retrieval Symbolic Computation
Graph RL Program Synthesis
MMKGs Hypergraphs

(Zhang et al.| [2022c) [K]
S,K]

(Xi et al.| 2024) [T,K 2023e) [S,
erfa H2022 e <|m: [S,K]
Santiesteban et al. [2024) [K] (K] (Bougic ot al.| 2018) [A,K] A,S]
(Santiesteban et al.| ) ‘ Vang s 2024 [K] (Bougie et al.|| ) [A, [A]

K]

Ouyang et al.[|2024) [K]
(Liu'et al] h2021 &<] Mlshra ot al.| 2024} [K]
ue et al.[[202 ,K]

Symbolic Computation
VSA Symbolic Graph Ops

(Li ot al. i
‘Im [SaK] Hu et al. [S]
(Wu et al; m [T,K] an et al.|[2024) [T]

Tool Use

Logic Engines

(Zhang et al.|[2025a) [K]
(Riley & Sridharan/[2019) [K]
(Mitchener et al.[]2021) [A]

9Tsatsou et al. K]
g [A] Montone et al.| |2017) [S] 1 P,S,K] -
T,K] ovalev et al.||2021) [S] Yang et al. ”2020 [S] Liu 2,1; :lgggg(}f [[KA]]
[S] Zhang et al.|2023f) [K] ~ ol 505 (K]
( ) [K] (Hudson & Manning| [2019) [S] ‘o2
Huang et al.[12021) [K] Cao et al.[|2021)
ang et al.||2023 } [A]
Symbolic Computation Combined Retr & Symb
Self Play Agents Other
(Bosbes ot al ] [2015) [K]
Wlm [K,P]
mll K]
' 6} [K]
m. A,K]

(Misiunas et al.][2024) [K
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Table 4: Late Fusion Methods in Vision-Language Model Augmentation. Bracketed tags denote pre-
dominant reasoning domain categories: Spatial, Temporal, Knowledge grounding, Physical commonsense,
Action/Embodiment

Retrieval Symbolic Computation
Dense Knowledge Graph Program Synth Symbolic Engines
(Vedantam et all [2019) [S]
(Yi et al., [2018) [S (Sethuraman et al., [2021) [S,K]
Song et all [2022a)) [K] (Gao et all[2022b) [S,K] (Surfs et al., [2023) [S,P] (Aditya et al[[2018) [S]
Song et al., |2022b) [K] (Huang et all[2020) [K] (Khandelwal et al.[2023) [S] Eiter et al.|[2022) [S,K]
hi et al| [2024) [S,T,K] (Xiao & Fu;|2022) [S,K] (Subramanian et al.[2023) [S,K] Eiter et al.|[2021) [K]

(Gupta & Kembhavi| [2022) [S] (Cunnington et al, [2024) [K]
(Bhaisaheb et al., [2023) [S,K]

Symbolic Computation Combined

Symbolic Graph Ops Tool Use Other Combined

(Li et all|2023a) [A,T] (Yuan et al., [2023a)) [K] (Xu et al., 2022) [A]
(Zhan et al}[2021) [S] Cesista et al.| [2024) [K] (Singh, 2018) [K] (Sachan, [2020) [K]
(Cesistal, [2024) TK (Bao et al.}[2023) [K] (Basu et al., [2020) [S,K]

(Saqur & Narasimhan| 2020) [S,K] ]
(Johnston et al.}[2023) [S,K] (Zhang] 2023) [K] (Verheyen et al}[2023) [T,K]

Table 5: Datasets Relevant to Augmented Vision-Language Models. Bracketed tags denote predom-
inant reasoning domain categories: Spatial, Temporal, Knowledge grounding, Physical commonsense,
Action/Embodiment

Spatial Reasoning [S] Knowledge Based VQA [K]  Reasoning VQA [S,K]
CLEVER Scene Graph KBVQA Reasoning VQA

QAgrawal et al. |2015D
(Wang et al., |2016)
(Lin et al., 2023c])
(Shah et al.| 2019)
Marino et al.; [2019)

q‘]o}g}isc:tl §lt a;'(ls 129016D QReichman et al. ]2023[) QSZIE;V;ZH; Ztl al.2|, oligﬁ 2D
dmmﬁ% (Krishna et al., [2016) (Su et al.| [2024) (Zelters ot aL %018)
QAbraham et al.l |2024D ]—l,Shen et al. I—[2024 QM?}I;isrlln(l; eat]élgolzng (Cao et al.l '2()19|)

(Wang et al., |2024d) QBitton—Guetta et al.| |2024D

Cao et al., 12020)
Sung et al., [2022)
(Agarwal et al.|[2024)

Qiu et al., [2024;
Lerner et al., 2022
Knowledge and Spatial [K,S] Agents [A] Task Specific
Knowledge and Spatial Agents Robotics [A] Other (Task) [K]

(Chen et al. (Niu et al.l, 2024 qHayashi et al., |2024D

Zhou et al., [2023 (Gao et al.l, 2023b) Jin et al.| 2024
Cao et al.} 2024 (]-Hu et al., 2023a
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C Glossary of Key Terms

Table 6: Key Terms and Definitions

Term

Definition

Vision-Language Model

(VLM)

Model jointly processing visual and textual modalities through tasks like
VQA, captioning, or image-text retrieval.

Augmented VLM (AVLM)

VLM integrated with external symbolic systems, APIs, or tools during in-
ference to overcome standalone limitations.

Neural-Symbolic System

Hybrid architecture combining neural pattern recognition with symbolic log-
ical reasoning and knowledge representation.

Early Fusion

Integration of external information at input stage, before VLM internal pro-
cessing begins.

Middle Fusion

Integration during VLM’s inference, interacting with intermediate represen-
tations before final output.

Late Fusion

Integration after VLM generates initial output, typically for validation, re-
finement, or explanation.

Retrieval Augmented Gener-
ation (RAG)

Retrieving relevant external information to provide as context for model
generation.

Knowledge Graph (KG)

Structured knowledge as directed graph with entity nodes and relationship
edges, encoded as triplets.

Scene Graph

Structured visual scene representation with object nodes and spatial rela-
tionship edges.

Program Synthesis

Automatic generation of executable code (Python, SQL) by models for rea-
soning operations.

Tool Use VLMs dynamically invoking external tools (calculators, APIs, vision mod-
ules) based on task needs.

Graph  Neural = Network Neural architecture for graph data, enabling message passing across nodes

(GNN) and edges.

Dense Retrieval

A retrieval method using learned dense vector embeddings to find semanti-
cally similar content through vector similarity metrics rather than keyword
matching.

Visual Question Answering

(VQA)

Task requiring natural language answers to questions about visual content.

ConceptNet

Multilingual common-sense knowledge graph with semantic concept net-
works.

Answer Set Programming Declarative programming paradigm for knowledge representation and logical
(ASP) constraint solving.
PDDL Planning Domain Definition Language - a standardized language for express-
ing planning problems and domains in automated planning systems.
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