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Abstract
Real-world graphs naturally exhibit hierarchical
or cyclical structures that are unfit for the typical
Euclidean space. While there exist graph neu-
ral networks that leverage non-Euclidean spaces
to embed such structures more accurately, these
methods are confined under the message-passing
paradigm, making the models vulnerable against
side-effects such as oversmoothing. More recent
work have proposed attention-based graph Trans-
formers that can easily model long-range interac-
tions, but their extensions towards non-Euclidean
geometry are yet unexplored. To bridge this gap,
we propose Fully Product-Stereographic Trans-
former, a generalization of Transformers towards
operating entirely on the product of constant cur-
vature spaces. Our model can learn the curvature
appropriate for the input graph in an end-to-end
fashion, without the need of additional tuning on
different curvature initializations. We also pro-
vide a kernelized approach to non-Euclidean at-
tention, which enables our model to run in cost
linear to the number of nodes and edges while
respecting the underlying geometry. Experiments
on graph reconstruction and node classification
demonstrate the benefits of our approach.

1. Introduction
Graph-structured data often comprise of complex structures
such as hierarchical trees and cycles, yet using the typical
Euclidean space requires a large number of dimensions to
accurately embed such structures (Sala et al., 2018). In
response, the graph learning community has developed gen-
eralizations of graph convolutional neural networks (GCNs)
to spaces with non-zero curvature such as hyperbolic, spher-
ical, or mixed-curvature spaces with both negative and posi-
tive curvatures (Chami et al., 2019; Bachmann et al., 2020).
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Figure 1. Illustration of our proposed FPS-T architecture. Well-
known constant curvature spaces can be projected to the stere-
ographic model, with a common chart map isomorphic to the
Euclidean space. Each space can efficiently embed different types
of graphs (e.g., trees in hyperbolic space, lines in Euclidean space,
and cycles in spherical space). In FPS-T, each l-th layer chooses
a set of curvatures κl that fits the input graph by changing the
curvatures in a differentiable manner.

However, existing non-Euclidean GCNs aggregate features
via message-passing and are thus susceptible to oversmooth-
ing, making it difficult to stack deep layers and learn long-
range interactions in the graph (Yang et al., 2022). While
there exist Transformer-based graph encoders that can eas-
ily exchange information across larger distances through
global attention (Kim et al., 2022), these approaches are still
confined within the Euclidean regime, and their extension
towards mixed-curavture spaces has not yet been studied.

In this paper, we propose Fully Product-Stereographic
Transformer (FPS-T), a generalization of the Transformer
architecture (Vaswani et al., 2017) towards mixed-curvature
non-Euclidean geometry (see Figure 1). Specifically, we
endow each attention head a stereographic model with curva-
ture κ that can universally represent Euclidean (κ = 0), hy-
perbolic (κ < 0), and spherical spaces (κ > 0) (Bachmann
et al., 2020). We then generalize each operation in the Trans-
former framework to work on the product-stereographic
model. Each operation is end-to-end differentiable with
respect to κ, and thus our approach can jointly learn embed-
dings as well as curvatures that best fit the input graph.
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Related work. Hyperbolic GCNs are known to outper-
form Euclidean GCNs in various tasks on hierarchical
graphs (Chami et al., 2019). To take advantage of both
hyperbolic and spherical spaces, Bachmann et al. (2020) pro-
posed a GCN that operates on the stereographic model. In
this work, we develop a graph Transformer that can capture
long-range interactions while operating on the steregraphic
model with learnable curvatures.

2. Fully Product-Stereographic Transformer
Here, we describe the details of FPS-T. We first discuss the
stereographic model that can universally represent spherical,
Euclidean, and hyperbolic spaces. and generalize each oper-
ation in Transformer to the product-stereographic model.

2.1. Stereographic Model
The d-dimensional stereographic model stdκ = {x ∈ Rd| −
κ∥x∥2 < 1} is a space with constant curvature κ. Its metric
tensor at point x ∈ stdκ is defined as gκ(x) = 4

1+κ∥x∥2 I =:

(λκ
x)

2I , where λκ
x is known as the conformal factor. Usual

addition and scalar-multiplication are replaced with Möbius
operations: x⊕κ y = (1−2κxTy−κ∥y∥2)x+(1+κ∥x∥2)y

1−2κxTy+κ2∥x∥2∥y∥2 and
α ⊗κ x = tanκ(α arctanκ(∥x∥2)) x

∥x∥2
where x,y ∈ stdκ

and α ∈ R. Each point x is associated with its tangent
space Txstdκ ∼= Rd, the set of vectors tangent to point x.
The log-map logκx and exp-map expκx are used to project
points on stdκ to a tangent space, and vice versa. Parallel
transport PTκ

x→y moves vectors in Txstdκ to Tystdκ through
a smooth connection. One attractive property of the stereo-
graphic model is that all operations are differentiable w.r.t κ
at any point, including κ = 0, which allows us to learn the
curvature κ autonomously based on data. For operations on
the product of stereographic models ⊗n

i=1st
d
κi

, we substi-
tute the symbol κ with ⊗κ := (κ1, . . . , κn), (e.g., exp⊗κ

x ).
More information can be found in (Bachmann et al., 2020).

2.2. Stereographic Neural Networks
Given a Euclidean function f , we can define its stereo-
graphic variant as exp⊗κ

0

(
f
(
log⊗κ

0 (X)
))

. The stereo-
graphic linear layer Linear⊗κ(X;W ) is thus defined by
setting f as the Euclidean linear layer f(X;W ) = XW .
The same approach can be used for activation functions
(e.g., ReLU), from which we obtain stereographic activa-
tion functions Act⊗κ, and similarly for stereographic layer
normalization LN⊗κ. For classification, we attach a stereo-
graphic logit layer as proposed by Bachmann et al. (2020).

2.3. Stereographic Multi-Head Attention
Using stereographic neural networks, we propose a multi-
head attention mechanism for product-stereographic repre-
sentations. The key intuition is that each h-th attention head
operates on the κh-stereographic space. Given a sequence
of n product-stereographic embeddings X ∈ stn×d

κ , the
attention head with curvature κ first obtains values using

the stereographic linear layer. For queries and keys, it maps
each stereographic embedding to the tangent space of the
values as

Q = XWQ ∈ TV stn×d′

κ , K = XWK ∈ TV stn×d′

κ

V = Linearκ(X;W V ) ∈ stn×d′

κ ,

where WQ,WK ,WV ∈ Rd×d′
are learnable weights.

Then, the attention-score between the i-th query Qi and j-th
key Kj is computed by parallel transporting the vectors to
the origin, and taking the Riemannian inner product at the
origin (which is equivalent to Euclidean dot product) as

αij = ⟨PTVi→0(Qi),PTVj→0(Kj)⟩.

Finally, we aggregate the values based on the attention
scores using the Einstein midpoint as

Aggκ (V ,α)i :=
1

2
⊗κ

 n∑
j=1

αijλ
κ
Vj∑n

k=1 αik(λκ
Vk

− 1)
Vj


with conformal factors λκ

Vi
at point Vi ∈ std

′

κ . By concate-
nating the aggregated results from each attention head, the
result of product-stereographic multi-head attention is

MHA⊗κ(X) = ∥Hh=1Aggκh
(V h,αh) ∈ ⊗H

h=1st
n×d
κh

where κh denotes the curvature of the h-th attention head.

2.4. Wrap-up
For completeness, we fill in the gap on 1) how input graph
embeddings are formulated, 2) how skip-connection is im-
plemented, and 3) how representations are transferred be-
tween Transformer layers with distinct curvatures.

We borrow the embedding technique proposed by To-
kenGT (Kim et al., 2022). Given a graph G = (V, E)
with node features XV ∈ R|V|×d and edge features
XE ∈ R|E|×d, we tokenize the graph into a sequence
X = [XV ,XE ] by treating each node and edge as an
independent token. To embed the graph topology, the to-
kens are augmented with learnable Laplacian positional
encoding and type identifiers distinguishes between node-
and edge-tokens. We assume each token embedding ini-
tially lies on T0std

′

⊗κ1 , the tangent space at the origin of the
product-stereographic model of the first layer, and thus ap-
ply exp⊗κ1

0 (X) on the tokens to place them on the product-
stereographic manifold prior to encoding through FPS-T.

Recall that vanilla Transformer utilizes skip-connections
and layer normalization to mitigate vanishing gradients to-
wards better convergence (Vaswani et al., 2017). In FPS-T,
we switch to

Xl = MHA⊗κ(LN⊗κ(X
in
l ))⊕κ X in

l

Xout
l = FFN⊗κ(LN⊗κ(Xl))⊕κ Xl.
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Table 1. Graph reconstruction results in average mAP scores and
95% confidence intervals across 5 random seeds.

Dataset Web-Edu Power Facebook Bio-Worm
Curvature -0.63 -0.28 -0.08 -0.03

MLP 83.24±1.32 83.89±4.02 50.64±15.12 73.34±20.85

GCN 79.95±0.23 98.25±0.02 78.99±0.29 93.32±1.06

GAT 88.86±0.36 99.03±0.01 82.81±0.25 97.76±0.03

SAGE 86.34±0.31 97.58±0.14 81.01±0.26 96.86±0.06

SGC 78.78±0.12 97.69±0.05 74.69±0.36 89.73±0.59

TOKENGT 89.56±0.03 99.08±0.00 84.62±0.13 97.75±0.03

HGCN 80.13±0.31 96.82±0.08 74.35±5.39 86.96±0.30

HGNN 83.64±0.26 97.85±0.05 78.74±0.58 90.97±1.06

HAT 90.21±0.36 93.86±0.34 80.09±0.20 93.58±0.42

κ-GCN 55.34±35.88 98.23±0.09 20.80±20.69 84.16±13.67

Q-GCN 80.34±0.07 97.87±0.01 76.33±0.01 96.15±0.01

FPS-T 99.00±0.08 99.18±0.06 86.06±0.06 97.90±0.16

The product-stereographic feed-forward network FFN⊗κ,
for which we use two stereographic linear layers with a
stereographic activation in between, fuses representations
from distinct geometries together.

Lastly, each l-th Transformer layer operates on a dis-
tinct product-stereographic space std⊗κl where κl =

(κl
1, . . . , κ

l
H) together forms the geometric signature. In

between layers, representations are translated from std⊗κl

to std⊗κl+1 by assuming a shared tangent space at the origin
(i.e., X in

l+1 = (exp
⊗κl+1

0 ◦ log⊗κl
0 )(Xout

l )). In case of clas-
sification tasks where logits are computed, the stereographic
logit layer operates on the stereographic space of the last
layer (i.e., std⊗κL where L denotes the number of layers).

2.5. Cost Linearization of Stereographic Attention
One drawback of the graph embedding method above
is its computational cost that becomes intractable with
large graphs. As computing the attention score ma-
trix takes time and memory quadratic to the input se-
quence length, a graph with N nodes and M edges in-
curs an asymptotic cost of O((N + M)2), or O(N4)
for dense graphs. Therefore, we linearize the atten-
tion score computation similar to the kernelization pro-
cedure introduced by Linearized Attention (Katharopou-
los et al., 2020). Let Q̃i = PTVi→0(Qi) and K̃j =
PTVj→0(Kj) be the tangent vectors on the origin prior
to taking the dot-product. Then,, we can approximate the

aggregation step as:
(∑n

j=1

⟨Q̃i,K̃j⟩λκ
Vj∑n

k=1⟨Q̃i,K̃k⟩(λκ
Vk

−1)
Vj

)
≈[

ϕ(Q̃)
(
ϕ′(K̃)T Ṽ

)]
i

where ϕ′(K)i = ϕ(K)i(λ
κ
Vi

− 1)

and Ṽi =
λκ
Vi

λκ
Vi

−1Vi. This approximation enables FPS-T

to encode graphs with O(N + M) cost, which matches
the complexity of message-passing GCNs, while taking the
non-Euclidean geometry into account. In our experiments,
we use the linearized FPS-T and find that this approach
performs well in practice.
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Figure 2. Left: Test mAP scores using smaller feature dimensions.
Right: mAP (solid) and curvature (dashed) of FPS-T vs. TokenGT
during training on Web-Edu.

3. Experiments
We empirically test FPS-T on graph reconstruction and
node classification. Overall, we initialize all curvatures
as zero to demonstrate its practicality by not requiring tun-
ing over different curvature combinations. We compare
against Euclidean (GCN, GAT, SAGE, SGC), hyperbolic
(HGCN, HGNN, HAT), and mixed-curvature (κ-GCN, Q-
GCN) message-passing GCNs. We also test TokenGT,
which is equivalent to FPS-T with fixed-zero curvatures.

3.1. Graph Reconstruction
Setting. We experiment graph reconstruction of four dif-
ferent real-world networks used in Xiong et al. (2022): Web-
Edu, Power, Facebook, and Bio-Worm. The goal of graph
reconstruction is to learn continuous node representations of
the given graph that preserve the edge connectivity structure
through distances among the learned representations. We
train the representations of the nodes h by minimizing the
loss function that aims for preserving local connectivity:

L(h,G) =
∑

(u,v)∈E

log
e−d(hu,hv)∑

v′:(u,v′ )̸∈E e
−d(hu,hv′ )

.

For fair comparison, we use a single-layer with latent di-
mension 16 for all models. For κ-GCN, we use the product
of two stereographic models, both of which the curvature
is initialized as zero. For Q-GCN, we test different time
dimensions in {1, 8, 16}, and report the best performance.
For FPS-T, we use two attention heads with all curvatures
initialized as zero. Other hyperparameters such as learning
rates follow Xiong et al. (2022).

Results. Table 1 shows the results in mean average-
precision (mAP), the average ratio of nearest nodes on the
feature space that are actual neighbors of each node. We find
that FPS-T outperforms all baselines, but more importantly,
FPS-T shows significant performance gains compared to
Euclidean TokenGT on three networks that are largely hy-
perbolic. For further analysis, we train a single-head FPS-T
and TokenGT on Web-Edu. The right plot of Figure 2 shows
the curvature and mAP scores during training. We find that
the curvature is adjusted towards the hyperbolic domain,
which matches with the overall sectional curvature of Web-
Edu. The mAP score of FPS-T also converges to a larger
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Table 2. Node classification results in average F1 scores and 95% confidence intervals across 10 random seeds.

Dataset Texas Cornell Wisconsin Actor Airport Citeseer Pubmed Cora
H(G) 0.11 0.13 0.20 0.22 0.72 0.74 0.80 0.81

MLP 70.54±3.00 58.38±4.04 81.20±1.87 33.62±0.55 54.05±1.78 52.58±1.97 67.17±0.91 52.44±1.08

GCN 57.84±1.62 47.84±1.77 45.40±2.62 27.09±0.36 92.00±0.63 71.38±0.43 78.37±0.26 80.40±0.53

GAT 59.46±1.12 55.14±1.80 46.20±2.30 27.43±0.23 92.35±0.36 71.70±0.28 78.14±0.31 82.29±0.46

SAGE 68.38±3.54 70.54±2.01 78.40±0.52 36.87±0.50 93.21±0.57 70.58±0.42 77.31±0.59 78.88±0.87

SGC 57.57±2.96 52.97±2.87 46.40±2.01 27.14±0.46 90.48±1.01 72.11±0.38 75.11±1.27 79.68±0.65

TOKENGT 88.65±2.06 71.62±2.13 83.00±0.65 36.59±0.89 95.90±0.59 71.23±0.51 78.93±0.27 81.42±0.79

HGCN 54.59±3.93 55.68±1.80 55.60±2.53 28.89±0.16 92.47±0.63 69.92±0.61 75.67±0.99 80.00±0.85

HGNN 50.81±3.60 52.70±1.42 54.60±2.68 29.09±0.19 90.55±0.71 69.82±0.53 76.72±0.86 79.30±0.51

HAT 82.16±2.52 70.54±1.67 81.80±1.36 38.34±0.26 92.88±0.57 68.14±0.53 77.50±0.42 79.81±0.58

κ-GCN 56.22±4.38 55.68±5.59 46.60±2.41 26.39±0.60 82.58±3.70 54.06±4.45 68.61±3.05 73.70±0.69

Q-GCN 51.35±3.44 55.95±2.85 52.80±2.20 28.18±0.55 91.39±1.05 66.15±0.45 77.13±0.59 79.63±0.57

FPS-T 89.19±2.37 72.16±2.96 83.60±1.14 39.61±0.54 96.01±0.55 70.03±0.71 78.52±0.58 82.32±0.70

point as the curvature deviates away from zero, indicating
that the non-Euclidean feature space can contain better local
optima for graph reconstruction. The left plot of Figure 2
also reveals that FPS-T preserves the reconstruction per-
formance better as we decrease the dimension from 16, as
FPS-T using only 4 dimensions (92.00 mAP with 12.7k pa-
rameters) outperforms TokenGT with d = 16 (89.13 mAP
with 53.6k parameters). This aligns with previous work
that theoretically showed non-Euclidean spaces to be more
dimension-efficient in embedding complex structures com-
pared to Euclidean spaces (Sala et al., 2018).

3.2. Node Classification
Setting. For node classification we experiment on eight
networks used by Pei et al. (2020): three WebKB networks
(Texas, Cornell, and Wisconsin), an Actor co-occurrence
network from Wikipedia, three citation networks (Citeseer,
Pubmed, Cora), and an Airport network. These networks are
chosen to test our approach under a wide spectrum of graph
homophily H(G), which measures the ratio of edges that
connect nodes that share the same label (Pei et al., 2020).

For all methods, we use 16 feature dimensions and train
each model to minimize the cross-entropy loss using an
Adam optimizer with learning rate 1e−2. For models that
use learnable curvatures (i.e., κ-GCN and FPS-T), we use
learning rate of 1e−4 for the curvatures. The optimal num-
ber of layers, activation function, dropout rate, and weight
decay of each method are chosen via grid search on each
dataset.

Results. Table 2 shows the results from node classifica-
tion. Overall, our method shows the best accuracy on 6
out of 8 datasets, showing that FPS-T is effective across
networks with various graph homophily. Especially in het-
ereophilic networks, we find that the small receptive fields
of message-passing GCNs are extremely ineffective, often
being outperformed by MLPs that completely ignore the
graph connectivity. On the other hand, FPS-T consistently
outperforms MLP as well as GCN baselines, due to its ca-
pability to capture long-range interactions.

4. Conclusion
We propose FPS-T, a generalized Transformer architec-
ture that can operate on mixed-curvature spaces with learn-
able curvatures. Combined with the tokenization technique
of TokenGT (Kim et al., 2022), our model can embed
graph structures more accurately and parameter-efficiently
than its Euclidean counterpart by operating on the product-
stereographic model. We also show that our model outper-
forms existing non-Euclidean GCN frameworks on node
classification by capturing long-range interactions. By lin-
earizing the attention mechanism through kernelized approx-
imation, FPS-T runs in cost linear to the number of nodes
and edges, allowing practical use on large-scale networks.
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