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ABSTRACT

Recent work has shown the utility of developing machine learning models that
respect the symmetries of eigenvectors. These works promote sign invariance,
since for any eigenvector v the negation −v is also an eigenvector. In this work,
we demonstrate that sign equivariance is useful for applications such as building
orthogonally equivariant models and link prediction. To obtain these benefits, we
develop novel sign equivariant neural network architectures. These models are
based on our analytic characterization of the sign equivariant polynomials and
thus inherit provable expressiveness properties.

1 INTRODUCTION

The need to process eigenvectors is ubiquitous in machine learning and the computational sciences.
For instance, there is often a need to process eigenvectors of operators associated with manifolds
or graphs, principal components (PCA) of arbitrary datasets, and eigenvectors arising from implicit
or explicit matrix factorization methods. However, eigenvectors are not merely unstructured data—
they have important structure in the form of symmetries (Rustamov et al., 2007; Lim et al., 2023).

Specifically, eigenvectors have sign and basis symmetries. An eigenvector v is sign symmetric in the
sense that the sign-flipped vector −v is also an eigenvector of the same eigenvalue. Basis symmetries
occur when there is a repeated eigenvalue, as then there are infinitely many choices of eigenvector
basis for the same eigenspace. As such, prior work has developed neural networks that are invariant
to these symmetries, improving empirical performance in several settings (Lim et al., 2023).
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Figure 1: Illustration of a sign
equivariant function f . When col-
umn 1 of the input is negated, col-
umn 1 of the output is also negated.

The first contribution of this work is to show that sign equiv-
ariant architectures are more natural than sign invariant archi-
tectures for several applications. First, we show that sign and
basis invariant networks are theoretically limited in expres-
sive power for learning edge representations (and more gener-
ally multi-node representations) because they learn structural
node embeddings that are known to be limited for link predic-
tion and multi-node tasks (Srinivasan & Ribeiro, 2019; Zhang
et al., 2021). In contrast, we show that sign equivariant mod-
els can bypass this limitation. Furthermore, we show that sign
equivariance combined with PCA can be used to parameterize
orthogonally equivariant point cloud models, thus giving an ef-
ficient alternative to PCA-based frame averaging (Puny et al.,
2022; Atzmon et al., 2022).

The second contribution of this work is to develop sign equiv-
ariant neural network architectures, with provable expressiveness guarantees. We achieve this by
deriving a complete characterization of sign equivariant polynomials, whose form directly leads to
our equivariant network architectures and are crucial to our expressivity analysis. Initial numerical
experiments support our theory and demonstrate the utility of sign equivariant models.
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Preliminaries. Let f : Rn×k → Rn×k be a function that takes eigenvectors v1, . . . , vk ∈ Rn of
an underlying matrix as input, and outputs representations f(v1, . . . , vk). We often concatenate the
eigenvectors into a matrix V = [v1, . . . , vk] ∈ Rn×k, and then write f(V ) as the application of f .

Sign equivariance means that if we flip the sign of an eigenvector, then the corresponding column
of the output has its sign flipped. In other words, for all choices of signs s1, . . . , sk ∈ {−1, 1}k,

f(s1v1, . . . , skvk):,j = sjf(v1, . . . , vk):,j , (1)
where A:,j is the j-th column of an n× k matrix A. See Figure 1 for an illustration. In matrix form,
letting diag({−1, 1}k) represent all k× k diagonal matrices with −1 or 1 on the diagonal, f is sign
equivariant if f(V S) = f(V )S for all S ∈ diag({−1, 1}k).
Permutation equivariance is often also a desirable property of our functions f . We say that f is
permutation equivariant if f(PV ) = Pf(V ) for all n × n permutation matrices P . For instance,
eigenvectors of matrices associated to simple graphs of size n have such permutation symmetries,
as the ordering of nodes is arbitrary (Lim et al., 2023).

2 APPLICATIONS OF SIGN EQUIVARIANCE

In this section, we summarize several applications for which modeling networks with sign equivari-
ant architectures is beneficial. Appendix B.1 also details how sign equivariant architectures could
improve sign invariant architectures.

2.1 MULTI-NODE REPRESENTATIONS AND LINK PREDICTION

(a) Eigenvector 1 (b) Sign Invariant (c) Sign Equivariant

Figure 2: (a) First nontrivial normalized Laplacian eigenvec-
tor of a graph, which is positional. Nodes u1 and u2 are
far apart in the graph, but automorphic. (b) Sign invariant
node features, which are structural. Nodes u1 and u2 have
the same feature. (c) Sign equivariant node features, which
are positional. Nodes u1 and u2 have opposite signs. A link
prediction model with sign invariant node features assigns u1
and u2 the same probability of connecting to w, while sign
equivariant node features could give higher probability to u1.

In Figure 2, we plot the first non-
trivial Laplacian eigenvector of an
example graph, viewed as a node
feature. Laplacian eigenvectors are
an example of positional encod-
ings (Srinivasan & Ribeiro, 2019)
that capture useful information of
graphs (Chung, 1997); for instance,
u1 and u2 are far in the graph, and
the eigenvector has very different
values on these two nodes. How-
ever, u1 and u2 are also automor-
phic, so certain node embeddings
— structural encodings — assign
them the same representation (e.g.
most GNNs). This is known to be
problematic for link prediction and
other multi-node tasks (Srinivasan &
Ribeiro, 2019; Zhang et al., 2021);
for instance, a function on structural
node encodings assigns both u1 and u2 the same probability of connecting to w, whereas a function
on a positional encoding (e.g. eigenvectors) can assign a higher probability for u1 to connect to w.

When processing eigenvectors of matrices associated to graphs, invariance to the sign and basis sym-
metries of the eigenvectors has been found useful (Dwivedi et al., 2022a; Lim et al., 2023), especially
for graph classification tasks. However, we show that exact invariance to these symmetries removes
positional information and thus the outputs of sign invariant or basis invariant networks (Lim et al.,
2023) are in fact structural encodings (see Appendix B.4).1 Hence, eigenvector-symmetry-invariant
networks cannot learn node representations that distinguish automorphic nodes, and thus face the
aforementioned difficulties when used for link prediction or multi-node tasks:
Proposition 1. Let f : Rn×k → Rn×dout be a permutation equivariant function, and let V =
[v1, . . . , vk] ∈ Rn×k be k orthonormal eigenvectors of an adjacency matrix A. Denote Z = f(V ).
Let nodes i and j be automorphic, and let zi and zj ∈ Rdout be their embeddings.

1When there are repeated eigenvalues, sign invariant embeddings still have some positional information.
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If f is sign invariant and the eigenvalues associated to the vl are distinct, then zi = zj .

If f is basis invariant and v1, . . . , vk are a basis for the first k eigenspaces, then zi = zj .

The problem zi = zj arises from the sign/basis invariances. We instead propose using sign equiv-
ariant networks to learn node representations zi = f(V )i,: ∈ Rk. These representations zi main-
tain positional information for each node (see Figure 2 (c)). Then we use a sign invariant decoder
fdecode(zi, zj) = fdecode(Szi, Szj) for S ∈ diag({−1, 1}k) to obtain edge representations. For
instance, the commonly used fdecode = MLP(zi ⊙ zj) is sign invariant. When the eigenvalues are
distinct, this approach has the desired invariances (giving structural edge representations) and also
maintains positional information in the node embeddings (see Appendix B.4). More details and the
proof of Proposition 1 are in Appendix B.3.

2.2 ORTHOGONAL EQUIVARIANCE

For various applications in modelling physical systems, we desire equivariance to rigid transfor-
mations; thus, orthogonally equivariant models have been a fruitful research direction in recent
years (Thomas et al., 2018; Deng et al., 2021; Satorras et al., 2021). We say that a function
f : Rn×k → Rn×k is orthogonally equivariant if f(XQ) = f(X)Q for any orthogonal Q ∈ O(k).
Several works have approached this problem using so-called Principal Component Analysis (PCA)
based frames (Puny et al., 2022; Atzmon et al., 2022; Xiao et al., 2020).

PCA-frame methods take an input X ∈ Rn×k, compute orthonormal eigenvectors RX of the co-
variance matrix cov(X) = (X − 1

n11
⊤X)⊤(X − 1

n11
⊤X) (assumed to have distinct eigenval-

ues), then average outputs of a base model h for each of the 2k sign-flipped inputs XRXS, where
S ∈ diag({−1, 1}k). We instead suggest using a sign equivariant network to parameterize an effi-
cient O(k) equivariant model. For a sign equivariant network h, we define our model f to be

f(X) = h(XRX)R⊤
X . (2)

Intuitively, this first transforms X by RX into a nearly canonical orientation that is unique up to
sign flips, processes XRX using the model h that respects the sign symmetries, then incorporates
orientation information back into the output by post-multiplying byR⊤

X . Our approach only requires
one forward pass through h, whereas frame averaging requires 2k forward passes. The following
proposition shows that f is indeed O(k) equivariant, and inherits universality properties of h.2

Proposition 2. Consider a domain X ⊆ Rn×k such that each X ∈ X has distinct covariance
eigenvalues, and let RX be a choice of orthonormal eigenvectors of cov(X) for each X ∈ X . If
h : X ⊆ Rn×k → Rn×k is sign equivariant, and if f(X) = h(XRX)R⊤

X , then f is well defined
and orthogonally equivariant. Moreover, if h is from a universal class of sign equivariant functions,
then the f of the above form universally approximate O(k) equivariant functions on X .

3 SIGN EQUIVARIANT POLYNOMIALS AND NETWORKS

In this section, we analytically characterize the sign equivariant polynomials, and use this characteri-
zation to develop sign equivariant architectures. As equivariant polynomials universally approximate
continuous equivariant functions (Yarotsky, 2022), our architectures inherit universality guarantees.

3.1 SIGN EQUIVARIANT POLYNOMIALS

Consider polynomials p : Rn×k → Rn′×k that are sign equivariant, meaning p(V S) = p(V )S for
S ∈ diag({−1, 1}k). We can show that a polynomial p is sign equivariant if and only if it can be
written as the elementwise product of a simple (linear) sign equivariant polynomial and a general
sign invariant polynomial, followed by another linear sign equivariant map.

Proposition 3. A polynomial p : Rn×k → Rn′×k is sign equivariant if and only if it can be written

p(V ) =W (2)
(
(W (1)V )⊙ pinv(V )

)
(3)

2A class of functions Fmodel from X → Y is universal with respect to a target class Ftarget if for all com-
pact D ⊆ X , ftarget ∈ Ftarget, and ϵ > 0, there is an fmodel ∈ Fmodel such that ∥fmodel(x)− ftarget(x)∥ <
ϵ for all x ∈ D.

3



Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

for sign equivariant linear W (2) and W (1), and a sign invariant polynomial pinv : Rn×k → Rn′×k.

The proof of this statement is in Appendix C. Sign equivariant linear maps W : Rn×k → Rn′×k

take a simple form, as they act independently on each column; W [v1, . . . , vk] = [W1v1, . . . ,Wkvk]

for some arbitrary linear maps W1, . . . ,Wk : Rn → Rn′
.

3.2 SIGN EQUIVARIANCE WITHOUT PERMUTATION SYMMETRIES

From the form of the sign equivariant polynomials, we can now develop our sign equivariant archi-
tectures. For now, we do not enforce permutation equivariance. We parameterize sign equivariant
f : Rn×k → Rn′×k as a composition of layers fl, each of the form

fl(V ) = [W
(l)
1 v1, . . . ,W

(l)
k vk]⊙ SignNetl(V ), (4)

in which the W (l)
i : Rn → Rn′

are arbitrary linear maps, and SignNetl : Rn×k → Rn′×k is sign
invariant (Lim et al., 2023). In the case of n = n′ = 1, there is a simple universal form; we can write
sign equivariant f : Rk → Rk as f(v) = v⊙MLP(|v|), where |v| is the elementwise absolute value.
These two architectures are universal because they can approximate sign equivariant polynomials.
Proposition 4. Functions of the form v 7→ v ⊙MLP(|v|) universally approximate continuous sign
equivariant functions f : Rk → Rk.

Compositions f2 ◦ f1 of functions fl as in equation 4 universally approximate continuous sign
equivariant functions f : Rn×k → Rn′×k.

3.3 SIGN EQUIVARIANCE AND PERMUTATION EQUIVARIANCE

We can build on the above architectures that do not satisfy permutation equivariance to develop sign
equivariant architectures that are permutation equivariant as well. A natural way to do this is by
using the DeepSets for Symmetric Elements (DSS) framework (Maron et al., 2020). Each layer
fl : Rn×k → Rn×k of our DSS-based sign equivariant network takes the following form on row i:

fl(V )i,: = f
(1)
l (Vi,:) + f

(2)
l

(∑
j ̸=i

Vj,:

)
(5)

Where f (1)l and f (2)l are sign equivariant functions as in Section 3.2. DSS has universal approxima-
tion guarantees (Maron et al., 2020), but they only apply for groups that act as permutation matrices,
whereas our sign group {−1, 1}k does not. The universal approximation properties of our proposed
DSS-based architecture are still an open question.

4 EXPERIMENTS

Table 1: Link prediction AUC and runtime per
epoch for structural edge models.

Model Test AUC Runtime (s)

GCN (constant input) .497±.01 .120±.00
SignNet .504±.01 1.24±.26
V ⊤
i,:Vj,: .562±.02 .005±.01

MLP(Vi,: ⊙ Vj,:) .629±.03 .052±.01
Sign Equivariant .737±.01 .117±.02

In this section, we experimentally test our sign
equivariant model on a link prediction task; more
experiments on other tasks are in Appendix E.

Link Prediction in Nearly Symmetric Graphs.
We present a synthetic link prediction task that nu-
merically demonstrates the benefits of sign equiv-
ariance in link prediction, as theoretically ex-
plained in Section 2.1. First, we generate a ran-
dom graphH of 500 nodes. Then we form a larger
graph G that contains two disjoint copies of H ,
along with 1000 uniformly-randomly added edges Without the random edges, each node in one
copy of H is automorphic to the corresponding node in the other copy. In Table 1, we show the link
prediction performance of several models that learn structural edge representations — the methods
that use eigenvectors have a sign invariant final prediction for each edge. GCN (Kipf & Welling,
2017) with all ones input and SignNet (Lim et al., 2023) both completely fail at this task (these
two models map automorphic nodes to the same embedding), while our sign equivariant model out-
performs all methods. Further, the equivariant model takes comparable runtime to GCN, and is
significantly faster than SignNet. See Appendix F.1 for more details.
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A RELATED WORK

Especially for link prediction, the need for structural node-pair representations that are not obtained
from structural node representations has been discussed in several works (Srinivasan & Ribeiro,
2019; Zhang et al., 2021; Cotta et al., 2023). As such, several works have developed methods for
learning structural node-pair representations that are not limited by structural node representations.
SEAL and other labeling-trick based methods (Zhang & Chen, 2018; Zhang et al., 2021) use added
node features depending on the node-pair that we want a representation of. This is empirically
successful in many tasks, but typically requires a separate forward pass through a GNN for each
node-pair under consideration. PEG (Wang et al., 2022) maintains positional information by us-
ing eigenvector distances in each layer of a GNN, but do not update eigenvector representations.
Identity-aware GNNs (You et al., 2021) and Neural Bellman-Ford Networks (Zhu et al., 2021) learn
pair representations by conditioning on a source node from the pair.

When using eigenvectors of graphs as node positional encodings for graph models like GNNs and
Graph Transformers, many works have noted the need to deal with the sign ambiguity of the eigen-
vectors. This is often done by encouraging sign invariance through data augmentation — the signs of
the eigenvectors are chosen randomly in each iteration of training (Dwivedi et al., 2022a;b; Kreuzer
et al., 2021; Mialon et al., 2021; Kim et al., 2022; He et al., 2022). In contrast, SignNet (Lim et al.,
2023) enforces exact sign invariance, by processing eigenvectors with a sign invariant neural archi-
tecture; this approach has been taken by some recent works (Rampasek et al., 2022; Geisler et al.,
2023; Murphy et al., 2023).

B APPLICATIONS OF SIGN EQUIVARIANCE

B.1 IMPROVING INVARIANT EIGENVECTOR NETWORKS

Neural networks that are invariant to eigenvector symmetries have been shown to empirically im-
prove graph learning models and achieve theoretically high expressive power (Lim et al., 2023).
SignNet (Lim et al., 2023), a sign invariant neural network, takes the form

f(v1, . . . , vk) = ρ(ϕ(v1) + ϕ(−v1), . . . , ϕ(vk) + ϕ(−vk)) (6)

for neural networks ρ and ϕ. This directly enforces invariant representations, without any inter-
mediate equivariant representations. However, many successful invariant models first have many
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equivariant layers before a final invariant operation as equivariant layers are more expressive: this
includes convolutional neural networks (LeCun et al., 1989), message passing graph neural net-
works (Gilmer et al., 2017), invariant graph networks (Maron et al., 2018), and group convolutional
neural networks (Cohen & Welling, 2016). Thus, sign equivariant layers may lead to better sign
invariant networks. Moreover, sign equivariant layers may improve on other aspects of SignNet,
such as expressiveness of node features (Proposition 1) and efficiency (Appendix B.2)

B.2 EFFICIENCY GAINS FROM SIGN EQUIVARIANT NETWORKS

Here, we show that our sign equivariant models can reduce the complexity of equivariant or invariant
networks for two different types of applications. Throughout, we consider functions f : Rn×k →
Rn×k, and we consider our permutation equivariant and sign equivariant DSS-based architecture
from Section 3.3.

The time cost (in floating point operations) per layer of our DSS-based model is O(n(kd + d2)),
where d is the maximum hidden dimension of the MLP and we assume constant depth MLPs. To see
this, note that we can precompute

∑n
j=1 Vj,:, so that each

∑
j ̸=i Vj,: can be computed in constant

time by subtracting Vi,: from the total sum. Then for each of the n rows, the MLPs require O(kd+
d2) to evaluate matrix multiplications. In this process, we only form tensors of size O(n(k + d)),
as the inputs and outputs are of size O(nk), and the hidden layers of the MLPs form tensors of size
O(nd).

B.2.1 EFFICIENT ORTHOGONALLY EQUIVARIANT NETWORKS

Consider the case of O(k) equivariant models f : Rn×k → Rn×k such that f(XQ) = f(X)Q for
all orthogonal matrices Q ∈ O(k). There are many orthogonally equivariant neural architectures
that are specialized to the special case of k = 3, which is very useful for applications in the physical
sciences (Thomas et al., 2018; Fuchs et al., 2020). Here we consider models that directly work for
general dimension k.

Frame averaging approaches (Puny et al., 2022; Atzmon et al., 2022) require 2k forward passes
of a base network fθ, one for each sign flip of the principal components. Letting their base net-
work be a permutation equivariant DeepSets (Zaheer et al., 2017), this means that they require
O(n(kd+ d2)2k) time to evaluate their model, where d is the hidden dimension of the base model.
Note that this has an extra exponential 2k factor compared to our O(n(kd+ d2)) cost.

Another general approach with universality guarantees comes from Villar et al. (2021), who ana-
lyze invariant polynomials to develop equivariant architectures. However, their method for O(k)
invariance or equivariance requires forming XX⊤, an n×n matrix. Thus, the complexity is at least
O(n2), which is a problem in applications, since oftentimes n is much larger than k. Variants of
their method do not need to compute all O(n2) inner products, but it is unclear how to maintain
permutation equivariance when doing this.

B.2.2 EFFICIENT SIGN INVARIANT NETWORKS

Consider again the form of SignNet (Lim et al., 2023), f(V ) = ρ([ϕ(vi) + ϕ(−vi)]i=1,...,k). In
the permutation equivariant version, e.g. when ϕ is a DeepSets (Zaheer et al., 2017) or a message
passing neural network (Gilmer et al., 2017), ϕ maps from Rn → Rn×d, where d is the hidden
dimension. Thus, computing ϕ(vi) + ϕ(−vi) for all k vectors vi require an O(nkd) sized tensor to
be formed (even if the output space of ϕ is Rn, a vectorized implementation computes all ϕ(vi) +
ϕ(−vi) in two batched inference calls to ϕ, which would require O(nkd) sized intermediate tensors).
This is a multiplicative factor larger than the sign equivariant requirement of O(n(k + d)) sized
tensors. Moreover, it would take O(nkd2) time to compute ϕ(vi) + ϕ(−vi) for each i, which is a
multiplicative factor larger than the O(n(kd+ d2)) time for the sign equivariant architecture.

8
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B.3 EDGE REPRESENTATIONS AND LINK PREDICTION

B.3.1 SIGN INVARIANT LINK PREDICTION DECODERS

We have an ansatz for universal permutation invariant and sign invariant functions at n = 2, that is
f : R2×k → Rdout . Note that SignNet is only known to be universal for such functions at n = 1,
where there are no permutation symmetries (Lim et al., 2023).

We will parameterize such functions as

f(v1, . . . vk) = φ (v1 ⊙ v1, v1 ⊙ rev(v1), . . . , vk ⊙ vk, vk ⊙ rev(vk)) . (7)

Here, rev : R2 → R2 reverses the vector, so rev(a)1 = a2 and rev(a)2 = a1. Moreover,
φ : R2×2k → Rdout is a permutation invariant neural network, so φ(PX) = φ(X) for all 2 × 2
permutation matrices P . Note that it is easy to parameterize permutation invariant functions φ in a
maximally expressive way, e.g. by DeepSets. Now, we show that this parameterization is universal:

Proposition 5. Functions f : R2×k → Rdout of the above form are permutation invariant and sign
invariant, and they universally approximate permutation invariant and sign invariant functions.

Proof. Invariance of f is easy to see; let P be a 2× 2 permutation matrix and si ∈ {−1, 1} for each
i. Then

f(Pv1s1, . . . , Pvksk) = φ ((Pv1s1)⊙ (Pv1s1), (Pv1s1)⊙ rev(Pv1s1), . . .) (8)
= φ (P (v1s1 ⊙ v1s1), P (v1s1 ⊙ rev(v1s1)), . . .) (9)
= φ (P (v1 ⊙ v1), P (v1 ⊙ rev(v1)), . . .) (10)
= φ (v1 ⊙ v1, v1 ⊙ rev(v1), . . .) (11)
= f(v1, . . . , vk), (12)

where the second to last inequality is by permutation invariance of φ. Next, we show universal
approximation.

Let h : R2×k → Rdout be a continuous permutation invariant and sign invariant function. Then by
the decomposition theorem in Lim et al. (2023), we can write

h(v1, . . . , vk) = ρ(ϕ(v1v
⊤
1 ), . . . , ϕ(vkv

⊤
k )), (13)

for continuous functions ρ and ϕ. As a composition of continuous functions, the function ψ : B ⊆
R2×2k → Rdout given by ψ(A1, . . . , Ak) = ρ(ϕ(A1), . . . , ϕ(Ak)) is continuous, where B is the
subset of R2×2k consisting of (v1v⊤1 , . . . , vkv

⊤
k ) such that each vi ∈ R2. Note that ψ is permutation

invariant on B, in the sense that for any 2× 2 permutation matrix P , we have

ψ(PA1P
⊤, . . . , PAkP

⊤) = ψ(A1, . . . , Ak), (14)

because if viv⊤i = Ai, then

ψ(PA1P
⊤, . . . , PAkP

⊤) = h(Pv1, . . . , Pvk) = h(v1, . . . , vk) = ψ(A1, . . . , Ak), (15)

by permutation invariance of h.

Now, we define our permutation invariant function φ : C ⊆ R2×2k → Rdout , on the domain

C = {[v1 ⊙ v1, v1 ⊙ rev(v1), . . . , vk ⊙ vk, vk ⊙ rev(vk)] : vi ∈ R2}. (16)

We define φ by

φ(A) = ψ

([
A1,1 A2,2

A2,2 A2,1

]
,

[
A1,3 A2,4

A2,4 A2,3

]
, . . . ,

[
A1,2k−1 A2,2k

A2,2k A2,2k−1

])
. (17)

9
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To see that φ is permutation invariant, we need only consider the case where P =

[
0 1
1 0

]
, in which

case

φ(PA) = ψ

([
A2,1 A1,2

A1,2 A1,1

]
,

[
A2,3 A1,4

A1,4 A1,3

]
, . . . ,

[
A2,2k−1 A1,2k

A1,2k A1,2k−1

])
(18)

= ψ

(
P

[
A1,1 A2,2

A2,2 A2,1

]
P⊤, P

[
A1,3 A2,4

A2,4 A2,3

]
P⊤, . . . , P

[
A1,2k−1 A2,2k

A2,2k A2,2k−1

]
P⊤

)
(19)

= ψ

([
A1,1 A2,2

A2,2 A2,1

]
,

[
A1,3 A2,4

A2,4 A2,3

]
, . . . ,

[
A1,2k−1 A2,2k

A2,2k A2,2k−1

])
(ψ perm. invariant)

(20)
= φ(A), (21)

where in the second equality, we use the fact that A2,2j = A1,2j , j = 1, . . . , k for A ∈ C, because
A2,2j = (vj ⊙ rev(vj))2 = (vj ⊙ rev(vj))1 = A1,2j for some vj ∈ R2. Moreover, φ is clearly
continuous and sign invariant. Defining f : R2×k → Rdout using this φ, we compute that

f(v1, . . . vk) = φ (v1 ⊙ v1, v1 ⊙ rev(v1), . . . , vk ⊙ vk, vk ⊙ rev(vk)) (22)

= ψ

([
v21,1 v1,1v1,2

v1,1v1,2 v21,2

]
, . . . ,

[
v2k,1 vk,1vk,2

vk,1vk,2 v2k,2

])
(23)

= ψ
(
v1v

⊤
1 , . . . , vkv

⊤
k

)
(24)

= h(v1, . . . , vk), (25)

so we are done.

If φ instead comes from a universally approximating class of permutation invariant neural networks
(rather than being an arbitrary continuous permutation invariant function), then on a compact domain
we can get ϵ approximation of f to h by letting φ approximate ψ to ϵ accuracy.

B.3.2 PROOF OF PROPOSITION 1

Proposition 1. Let f : Rn×k → Rn×dout be a permutation equivariant function, and let V =
[v1, . . . , vk] ∈ Rn×k be k orthonormal eigenvectors of an adjacency matrix A. Denote Z = f(V ).
Let nodes i and j be automorphic, and let zi and zj ∈ Rd

out be their embeddings.

If f is sign invariant and the eigenvalues associated to the vl are distinct, then zi = zj .

If f is basis invariant and Vλi
∩ {v1, . . . , vk} = dim(Vλi

) ∀i ∈ [k], then zi = zj .

Proof. We only prove the basis invariance claim, as the sign invariance claim is a special case; basis
invariance is sign invariance when eigenvalues are distinct. The condition Vλi ∩ {v1, . . . , vk} =
dim(Vλi) ∀i ∈ [k] means that if there is an eigenvector from some eigenspace in the input
{v1, . . . , vk}, then there is a basis for that eigenspace in {v1, . . . , vk} (e.g. we don’t allow taking as
input only one eigenvector of a two dimensional eigenspace).

Let P ∈ Rn×n be a permutation matrix associated to an automorphism that maps node i to node j,
so PAP⊤ = A and Pei = ej , where el is the lth standard basis vector. Let Vt = [vr1 , . . . , vrdt ] be
the matrix whose columns are the eigenvectors vrl that are associated to eigenvalue λi. The columns
of Vt are thus an orthonormal basis for the eigenspace associated to λt. Note that for any of these
eigenvectors, we have

A(Pvrl) = PAP⊤(Pvrl) = PAvrl = Pλivrl = λt(Pvrl), (26)

so Pvrl is also an eigenvector of A with eigenvalue λt. As P is orthogonal, note that
Pvr1 , . . . , Pvrdt is still an orthonormal basis of the eigenspace. Thus, there exists an orthogonal
matrix Qt ∈ Rdt×dt such that PVt = VtQt — see Lim et al. (2023).
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Repeat the above argument to get such a Qt for each of the eigenbases V1, . . . , Vl. We can then see
that

zj = f(V1, . . . , Vl)j,:

= f(V1Q1, . . . , VlQl)j,: basis invariance
= f(PV1, . . . , PVl)j,: choice of Qt

= (Pf(V1, . . . , Vl))j,: permutation equivariance
= f(V1, . . . , Vl)i,: choice of P
= zi.

So we are done.

B.4 SIGN INVARIANCE AND STRUCTURAL NODE OR NODE-PAIR ENCODINGS

In this section, we show that when the eigenvalues λ1, . . . , λk are distinct, then sign invariant func-
tions of the orthonormal eigenvectors v1, . . . , vk give structural node or node-pair representations.
This can also be generalized in a straightforward way to larger tuples of nodes beyond pairs, though
we only consider nodes and node-pairs for ease of exposition. First, we give a formal definitions.

Definition 1 (Structural Representations (Srinivasan & Ribeiro, 2019)). Let A ∈ Rn×n be the
adjacency matrix of a graph on node set {1, . . . , n}.

A function f : Rn×n → Rn is a node structural representation if f(PAP⊤) = Pf(A) for all n×n
permutation matrices P .

A function f : Rn×n → Rn×n is a node-pair structural representation if f(PAP⊤) = Pf(A)P⊤

for all n× n permutation matrices P .

For the below proposition, we define three types of functions:

• Let fnode : Rn×k → Rn be sign invariant and permutation equivariant; that is,
fnode(Pv1s1, . . . , Pvksk) = Pfnode(v1, . . . , vk) for si ∈ {−1, 1} and P a permutation
matrix.

• Let fdecode : R2×k → R be sign invariant; that is, fdecode(Szi, Szj) = fdecode(zi, zj) for
S ∈ diag({−1, 1}k).

• Let fequiv : Rn×k → Rn×k be a permutation equivariant and sign equivariant function; that
is, fequiv(PV (A)S) = Pfequiv(V (A))S for S ∈ diag({−1, 1}k) and P a permutation
matrix.

Proposition 6. Let A ⊆ Rn×n denote the matrices with distinct first-k eigenvalues. For A ∈ A, let
V (A) = [v1(A), . . . , vk(A)] be orthonormal eigenvectors of A, associated to the first-k (distinct)
eigenvalues λ1(A), . . . , λk(A). (These eigenvectors are thus defined up to a sign flip). Then

(a) The map qnode : A → Rn given by qnode(A)i = fnode (fequiv(V (A)))i is well-defined and gives
a structural node representation.

(b) The map qpair : A → Rn×n defined by qpair(A)i,j = fdecode (fequiv(V (A))i,:, fequiv(V (A))j,:)
is well-defined and gives a structural node-pair representation.

Note that the identity mapping V (A) 7→ V (A) is permutation equivariant and sign equivariant, so
using fnode or fdecode directly on eigenvectors also gives structural representations. The statement
(b) means that our link prediction pipeline with sign equivariant node features and sign invariant
decoding produces structural node-pair representations. We prove that these functions are well-
defined, because a general function applied to the eigenvectors may not be due to sign ambiguity; in
our case, the choice of signs does not affect the output of the function.

Proof. Part (a) We first show that qnode : A → Rn is well-defined. Suppose we had another choice
of eigenvectors, so the eigenvectors we input are V (A)S for some S ∈ diag({−1, 1}k). Then

fnode (fequiv(V (A)S)) = fnode (fequiv(V (A))S) = fnode (fequiv(V (A)) , (27)

11
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where the first equality is by sign equivariance, and the second equality by sign invariance. Thus,
the value of qnode(A) is unchanged.

Now, let P be any permutation matrix. Then for each eigenvector vi(A), i ∈ [k], we have
(PAP⊤)Pvi(A) = PAvi(A) = λi(A)Pvi(A), so Pvi(A) is an eigenvector of PAP⊤ associ-
ated to λi(A) = λi(PAP

⊤). Hence, we denote vi(PAP⊤) = Pvi(A) (the choice of sign does not
matter as q does not depend on the sign. Now, we have that

qnode(PAP
⊤) = fnode

(
fequiv(V (PAP⊤))

)
(28)

= fnode (fequiv(PV (A))) (29)
= Pfnode (fequiv(V (A))) (30)
= Pqnode(A) (31)

where the second to last equality is by permutation equivariance of fnode and fequiv.

Part (b) That qpair : A → Rn×n is well-defined follows from a similar argument to the qnode case.
Let P be a permutation matrix, and σ : [n] → [n] its underlying permutation. We compute that

qpair(PAP
⊤)i,j = fdecode

(
fequiv(V (PAP⊤))i,:, fequiv(V (PAP⊤))j,:

)
(32)

= fdecode (fequiv(PV (A))i,:, fequiv(PV (A))j,:) (33)
= fdecode ([Pfequiv(V (A))]i,:, [Pfequiv(V (A))]j,:) (34)

= fdecode
(
fequiv(V (A))σ−1(i),:, fequiv(V (A))σ−1(j),:

)
(35)

= qpair(A)σ−1(i),σ−1(j) (36)

= (Pqpair(A)P
⊤)i,j (37)

B.5 PROOF OF PROPOSITION 2

Proposition 2. Consider a domain X ⊆ Rn×d such that each X ∈ X has distinct covariance
eigenvalues, and let RX be a choice of orthonormal eigenvectors of cov(X) for each X ∈ X . If
h : X ⊆ Rn×d → Rn×d is sign equivariant, and if f(X) = h(XRX)R⊤

X , then f is well defined
and orthogonally equivariant.

Moreover, is h is from a universal class of sign equivariant functions, then the f of the above form
universally approximate O(k) equivariant functions on X .

Proof. First, we show that f is well defined. RX is only unique up to sign flips, as RXS is an
orthonormal set of eigenvectors of cov(X) for S ∈ diag({−1, 1}k). However, no matter the choice
of signs, f(X) takes the same value, since

h(XRXS)(RXS)
⊤ = h(XRXS)S

⊤R⊤
X (38)

= h(XRX)SS⊤R⊤
X sign equivariance (39)

= h(XRX)R⊤
X . (40)

Next, we show that f is O(k) equivariant. Let Q ∈ O(k) be any orthogonal matrix. Note that

cov(XQ) =

(
XQ− 1

n
11⊤XQ

)⊤ (
XQ− 1

n
11⊤XQ

)
= Q⊤cov(X)Q. (41)

Thus, Q⊤RX is an orthonormal set of eigenvectors of cov(XQ). This means that there is a choice
of signs S ∈ diag({−1, 1}k) such that Q⊤RXS = RXQ. Hence, we have that

f(XQ) = h(XQRXQ)R
⊤
XQ (42)

= h(XQQ⊤RXS)(Q
⊤RXS)

⊤ (43)

= h(XRX)SS⊤R⊤
XQ sign equivariance (44)

= h(XRX)R⊤
XQ (45)

= f(X)Q⊤, (46)
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so f is O(k) equivariant.

Universal Approximation. Our proof of the universality of this class of functions builds on the
proof of the universality of frame averaging (Puny et al., 2022). Let ftarget be a continuous O(k)
equivariant function and let ϵ > 0 be a desired approximation accuracy. Then ftarget is also sign
equivariant (as the sign matrices S ∈ diag({−1, 1}k) are orthogonal).

Hence, by sign equivariant universality, we can choose a sign equivariant h such that
∥h(X)− ftarget(X)∥ < ϵ for all X ∈ X (where ∥·∥ is the Frobenius norm). Define the O(k)
equivariant f(X) = h(XRX)R⊤

X . Then for all X ∈ X we have that

∥ftarget(X)− f(X)∥ =
∥∥ftarget(X)− h(XRX)R⊤

X

∥∥ (47)

=
∥∥ftarget(X)RXR

⊤
X − h(XRX)R⊤

X

∥∥ RX orthogonal (48)

=
∥∥ftarget(XRX)R⊤

X − h(XRX)R⊤
X

∥∥ orthogonal equivariance (49)

= ∥ftarget(XRX)− h(XRX)∥ RX orthogonal (50)
< ϵ. (51)

So f approximates ftarget within ϵ accuracy on X , and we are done.

C CHARACTERIZATION OF SIGN EQUIVARIANT POLYNOMIALS

In this Appendix, we characterize the form of the sign equivariant polynomials. This is useful,
because for a finite group, equivariant polynomials universally approximate equivariant continu-
ous functions (Yarotsky, 2022); thus, if a model universally approximates equivariant polynomials,
then it universally approximates equivariant continuous functions. Using equivariant polynomials to
analyze or develop equivariant machine learning models has been done successfully in many con-
texts (Zaheer et al., 2017; Yarotsky, 2022; Segol & Lipman, 2019; Dym & Maron, 2021; Maron
et al., 2019; 2020; Villar et al., 2021; Dym & Gortler, 2022).

C.1 SIGN INVARIANT POLYNOMIALS Rk → R

For simplicity, we start with the case of sign invariant polynomials p : Rk → R. The sign equivariant
polynomials take a very similar form. We can write any polynomial from Rk to R in the form

p(v) =

D∑
d1,...,dk=0

Wd1,...,dk
vd1
1 · · · vdk

k (52)

for some coefficients Wd1,...,dk
∈ R and some D ∈ N. Sign invariance tells us that for any S =

diag(s1, . . . , sk) ∈ diag({−1, 1}k), we must have

D∑
d1,...,dk=0

Wd1,...,dk
vd1
1 · · · vdk

k = p(v) = p(Sv) =

D∑
d1,...,dk=0

Wd1,...,dk
sd1
1 · · · sdk

k vd1
1 · · · vdk

k .

(53)
This holds for any v ∈ Rk, so for all choices of d1, . . . , dk we must have

Wd1,...,dk
= sd1

1 · · · sdk

k Wd1,...,dk
, for all (s1, . . . , sk) ∈ {−1, 1}k. (54)

Note that sdi
i = 1 if di is an even number. Hence, there are no constraints on Wd1,...,dk

if all di are
even. On the other hand, suppose dj is odd for some j. Let si = 1 for i ̸= j and sj = −1. Then the
constraint says that Wd1,...,dk

= −Wd1,...,dk
, so we must have Wd1,...,dk

= 0. To summarize, we
have

Wd1,...,dk
=

{
free di even for each i
0 else

(55)

Where being free means that the coefficient may take any value in R. Thus, any sign invariant p only
has terms where each variable vi is raised to an even power. It is also easy to see that any polynomial
p where each variable vi is raised to only even powers if sign invariant, so we have the following
proposition:
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Proposition 7. A polynomial p : Rk → R is sign invariant if and only if it can be written

p(v) =

D∑
d1,...,dk=0

Wd1,...,dk
v2d1
1 · · · v2dk

k , (56)

for some coefficients Wd1,...,dk
∈ R and D ∈ N.

C.2 SIGN EQUIVARIANT POLYNOMIALS Rk → Rk

The case of sign equivariant polynomials p : Rk → Rk is very similar. For l ∈ [k], the lth output
dimension of any polynomial p : Rk → Rk can be written

p(v)l =

D∑
d1,...,dk=0

W(l)
d1,...,dk

vd1
1 · · · vdk

k , (57)

where W(l)
d1,...,dk

∈ R are coefficients (note the extra l index, so there are k times more coefficients
than in the invariant case). By sign equivariance, we have

sl · p(v)l = p(Sv)l (58)

sl ·
D∑

d1,...,dk=0

W(l)
d1,...,dk

vd1
1 · · · vdk

k =

D∑
d1,...,dk=0

W(l)
d1,...,dk

sd1
1 · · · sdk

k vd1
1 · · · vdk

k . (59)

As this holds for all inputs v ∈ Rk, we have the following constraints on the coefficients:

slW
(l)
d1,...,dk

= sd1
1 · · · sdk

k W(l)
d1,...,dk

(60)

W(l)
d1,...,dk

= sl · sd1
1 · · · sdk

k W(l)
d1,...,dk

, (61)

where we use the fact that sl = 1/sl since sl ∈ {−1, 1}. If dj is odd for j ̸= l, then similarly
to the invariant case, we can take si = 1 for i ̸= j and sj = −1 in the above equation to see that
W(l)

d1,...,dk
= 0. If dl is even, then dl+1 is odd, so we have that W(l)

d1,...,dk
= 0 by the same argument.

Thus, we must have

W(l)
d1,...,dk

=

{
free dl odd, and di even for each i ̸= l

0 else
. (62)

Thus, the lth entry p(v)l only contains monomials of the term v2d1
1 · · · v2dl+1

l · · · v2dk

k , where each
term besides vl is raised to an even power. We can factor out a vl and write such terms as vl ·
v2d1
1 · · · v2dk

k . It is also easy to see that any polynomial with monomials only of this form is sign
equivariant. Thus, we have proven Proposition 8.
Proposition 8. A polynomial p : Rk → Rk is sign equivariant if and only if it can be written

p(v)l = vl ·

 D∑
d1,...,dk=0

W(l)
d1,...,dk

v2d1
1 · · · v2dk

k

 . (63)

In vector format, p is sign equivariant if and only if it can be written as p(v) = v ⊙ pinv(v) for a
sign invariant polynomial pinv : Rk → Rk.

C.3 SIGN EQUIVARIANT POLYNOMIALS Rn×k → Rn′×k

Finally, we will handle the case of polynomials p : Rn×k → Rn′×k equivariant to diag({−1, 1}k).
This is the case we most often deal with in practice, when we have input V = [v1 . . . vk] for
k eigenvectors vi ∈ Rn of some n × n matrix. For a ∈ [n′] and b ∈ [k], the (a, b)th output of a
polynomial Rn×k → Rn′×k is

p(V )a,b =

D∑
di,j=0

W(a,b)
d

n∏
i=1

k∏
j=1

V
di,j

i,j , (64)
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where the sum ranges over di,j ∈ {0, . . . , D} for i ∈ [n] and j ∈ [k], and
d = (d1,1, . . . , dn,1, d1,2, . . . , dn,k) is a shorthand to index coefficients W(a,b)

d ∈ R. By sign equiv-
ariance, we have that:

sb · p(V )a,b = p(V S)a,b (65)

sb ·
D∑

di,j=0

W(a,b)
d

n∏
i=1

k∏
j=1

V
di,j

i,j =

D∑
di,j=0

W(a,b)
d sd̃1

1 · · · sd̃k

k

n∏
i=1

k∏
j=1

V
di,j

i,j , (66)

where d̃j =
∑n

i′=1 di′,j is the number of times that an entry from column j of V appears in the
product

∏n
i=1

∏k
j=1 V

di,j

i,j . As this holds over all V , we thus have that

W(a,b)
d = sb · sd̃1

1 · · · sd̃k

k · W(a,b)
d . (67)

By analogous arguments to the previous subsections, if d̃j is odd for j ̸= b, we have that the
W(a,b)

d = 0. Likewise, if d̃b is even, we have W(a,b)
d = 0. Thus, the constraint on W is

W(a,b)
d =

{
free

∑
i di,b odd, and

∑
i di,j even for each j ̸= b

0 else
. (68)

In particular, this means that the only nonzero terms in the sum that defines p(V )a,b have an even
number of entries from column j for j ̸= b, and an odd number of entries from column b. Thus, each
term can be written as Vid,b · pinv(V )d for some index id ∈ [n] and sign invariant polynomial pinv.
Moreover, it can be seen that any polynomial that only has terms of this form is sign equivariant.
Thus, we have shown the following proposition:

Proposition 9. A polynomial p : Rn×k → Rn′×k is sign equivariant if and only if it can be written
as

p(V )a,b =

D∑
di,j=0

W(a,b)
d Vid,b · pinv(V )d, (69)

where pinv is a sign invariant polynomial, the sum ranges over all d, and id ∈ [n] for each d.

Now, we show that this implies Proposition 3. In particular, we will write p in the form

p(V ) =W (2)
(
(W (1)V )⊙ qinv(V )

)
, (70)

for sign equivariant linear maps W (2) and W (1), and a sign equivariant polynomial qinv. To do
so, let D̃ denote the number of all possible d that the sum in equation 69 ranges over. We take
W (1) : Rn×k̃ → RD̃n′×k andW (2) : RD̃n′×k → Rn′×k. These sign equivariant linear maps have to
act independently on each column of their input, so W (1)V = [W

(1)
1 v1, . . .W

(1)
k vk] for linear maps

W
(1)
i : Rn → RD̃n′

. We define W (1)
b to be the linear map such that (W (1)

b vb)d,a =W
(a,b)
d Vid,b for

a ∈ [n′]. For the sign invariant polynomial qinv, we take qinv(V )d,a = pinv(V )d.

Finally, we define W (2) to compute the sum in equation 69. In particular, for X = [x1, . . . , xk] ∈
RD̃n′×k we write W (2)X = [W

(2)
1 x1, . . . ,W

(2)
k xk], where (W

(2)
b xb)a =

∑
d xid,b. It can be seen

that with these definitions of W (2),W (1), and qinv, we have written p in the desired form.

D SIGN EQUIVARIANT ARCHITECTURE UNIVERSALITY

In this section, we prove Proposition 4 on the universality of our proposed sign equivariant architec-
tures, which we restate here:
Proposition 4. Functions of the form v 7→ v ⊙MLP(|v|) universally approximate continuous sign
equivariant functions f : Rk → Rk.

Compositions f2 ◦ f1 of functions fl as in equation 4 universally approximate continuous sign
equivariant functions f : Rn×k → Rn′×k.

We prove the two statements of the proposition in the next two subsections.
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D.1 UNIVERSALITY FOR FUNCTIONS Rk → Rk

Proof. Let X ⊆ Rk be a compact set, let ϵ > 0, and let ftarget : X → Rk be a continuous sign
equivariant function that we wish to approximate within ϵ. Choose a sign equivariant polynomial p
that approximates ftarget to within ϵ/2 on X . By compactness, we can choose a finite bound B > 0
such that |vi| < B for all v ∈ X .

By Proposition 8, we can write p(v)l = vl ·
∑D

d1,...,dk=0 Wd1,...,dk
v2d1
1 · · · v2dk

k . By the universal
approximation theorem for multilayer perceptrons, we can choose a MLP : X → Rk such that
approximates q(v) =

∑D
d1,...,dk=0 Wd1,...,dk

v2d1
1 · · · v2dk

k up to ϵ/(2B). Note that q(|v|) = q(v), so
v 7→ MLP(|v|) also approximates q within ϵ/(2B) accuracy.

Thus, for all v ∈ X , we have that

|f(v)i − p(v)i| = |vi ·MLP(|v|)i − vi ·
D∑

d=1

Wd1,...,dk
v2d1
1 · · · v2dk

k | (71)

= |vi||MLP(|v|)i −
D∑

d=1

Wd1,...,dk
v2d1
1 · · · v2dk

k | (72)

≤ B · |MLP(|v|)i −
D∑

d=1

Wd1,...,dk
v2d1
1 · · · v2dk

k | (73)

< ϵ/2, (74)

so ∥f − p∥∞ < ϵ/2 on X and we are done by the triangle inequality.

D.2 UNIVERSALITY FOR FUNCTIONS Rn×k → Rn′×k

Recall that each layer of our sign equivariant network from Rn×k → Rn′×k takes the form

fl(V ) = [W
(l)
1 v1, . . . ,W

(l)
k vk]⊙ SignNetl(V ).

Proof. Let X ⊆ Rn×k be compact, and let ftarget : X → Rn′×k be a continuous sign equivariant
function that we wish to approximate. Since X is compact, we can choose a finite bound B > 0

such that |Vij | < B for all V ∈ X . Let p : X ⊆ Rn×k → Rn′×k be a sign equivariant polynomial
that approximates ftarget up to ϵ/2 accuracy. Using Proposition 9, we can write

p(V )a,b =

D∑
di,j=0

W(a,b)
d Vid,b · pinv(V )d,

for some sign invariant polynomials pinv(V )d. We will have one network layer f1 approximate the
summands, and have the second network layer f2 compute the sum.

First, we absorb the coefficients W(a,b)
d into the sign invariant part, by defining the sign invariant

polynomial qinv(V )d,a,b = W(a,b)
d pinv(V )d, so we can write

p(V )a,b =

D∑
di,j=0

Vid,b · qinv(V )d,a,b.

Now, let dhidden ∈ N denote the number of all possible d that appear in the sum, multiplied by n′.
We define f1 : X → Rdhidden×k as follows. As SignNet (Lim et al., 2023) universally approximates
sign invariant functions on compact sets, we can let SignNet1 : X → Rdhidden×k be a SignNet that
approximates qinv(V ) up to ϵ/(2B) accuracy, so

|SignNet1(V )(d,a),b − qinv(V )d,a,b| <
ϵ

2B · dhidden
. (75)
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Table 2: Node clustering accuracy on CLUSTER (Dwivedi et al., 2022a), 100k parameter budget.
Runtime is in seconds per epoch.

Pos. Enc. Train Acc. (%) Test Acc. (%) Runtime

None 60.9±0.08 60.0±0.05 5.4
LapPE (flip) 74.3±0.39 73.5±0.13 5.4
SignNet 76.5±0.13 74.0±0.04 10.2
Sign Equivariant 77.0±0.28 74.3±0.16 7.0

For b ∈ [k], we also define the weight matricesW (1)
b ∈ Rdhidden×n of the layer by letting the (d, a)th

row (W
(1)
b )(d,a),: for any a ∈ [n] only be nonzero in the idth index, where it is equal to 1. Thus,

(W
(1)
b vb)(d,a) = Vid,b. (76)

Hence, the first layer takes the form

f1(V )(d,a),: =
[
Vid,1 · SignNet1(V )(d,a),1 . . . Vid,k · SignNet1(V )(d,a),k

]
∈ Rk. (77)

Now, for the second layer, we let SignNet(V )i,j = 1 for all i ∈ [n], j ∈ [k], which can be rep-
resented exactly. Then for each column b ∈ [k] we will define weight matrices W (2)

b such that
(W

(2)
b )a,(d,i) = 1 if a = i and is 0 otherwise. Then we can see that

f2 ◦ f1(V )a,b =
∑
d

Vid,b · SignNet1(V )(d,a),b. (78)

To see that this approximates the polynomial p, for any V ∈ X we can bound

|p(V )a,b − f2 ◦ f1(V )a,b| =

∣∣∣∣∣∑
d

Vid,b ·
(
qinv(V )d,a,b − SignNet1(V )(d,a),b

)∣∣∣∣∣ (79)

≤
∑
d

|Vid,b|
∣∣(qinv(V )d,a,b − SignNet1(V )(d,a),b

)∣∣ (80)

≤ B
∑
d

∣∣(qinv(V )d,a,b − SignNet1(V )(d,a),b
)∣∣ (81)

< B
∑
d

ϵ

2Bdhidden
(82)

≤ ϵ

2
(83)

By the triangle inequality, f2 ◦ f1 is ϵ-close to ftarget, so we are done.

E FURTHER EXPERIMENTAL RESULTS

E.1 NODE CLASSIFICATION ON CLUSTER

Beyond link prediction and multi-node tasks, expressive positional node embeddings can also be
useful in node-level prediction tasks. For instance, consider the node-level task of community de-
tection or semi-supervised node clustering. Here we want to give nearby nodes the same label.
Far-away nodes may be automorphic or nearly automorphic, and a structural node encoding method
would force these nodes to get the same lable.

In Table 2, we show results for the node classification task CLUSTER (Dwivedi et al., 2022a), where
the task is to cluster nodes in graphs drawn from Stochastic Block Models (Abbe, 2017). Models are
restricted to a 100k learnable parameter budget. We see that the sign equivariant model outperforms
the other models, and takes less time per epoch than SignNet.
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F EXPERIMENTAL DETAILS

F.1 LINK PREDICTION IN NEARLY SYNTHETIC GRAPHS

The base graphs H we generate are Erdös-Renyi graphs with 500 nodes and p = .05 probability for
each edge to be included. Let V = [v1, . . . , vk] be Laplacian eigenvectors of the graph. We take
k = 16 in these experiments. The unlearned decoder baseline simply takes the predicted probability
of a link between i and j to be proportional to the dot product of the eigenvectors embeddings of
node i and node j; this has no learnable parameters. In other words, the node embeddings zi and
zj are taken to be Vi,: and Vj,: respectively, and the edge prediction is z⊤i zj . The learned decoder
baseline takes the same zi and zj , but takes the edge prediction to be MLP(zi ⊙ zj). Every other
method learns node embeddings zi and zj , and takes the edge prediction to be z⊤i zj .

Each model is restricted to around 25,000 learnable parameters (besides the Unlearned Decoder,
which has no parameters). We train each method for 100 epochs with an Adam optimizer (Kingma
& Ba, 2014) at a learning rate of .01. The train/validation/test split is 80%/10%/10%, and is chosen
uniformly at random.
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