
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Pitfalls, Subtleties, and Techniques in Automata-Based
Subword-Level Constrained Generation

Anonymous Authors1

Abstract
Constrained generation, where language models
are forced to output text that adheres to a specified
format, is a powerful tool for many tasks. Several
libraries implement variants of it as the founda-
tion for a larger feature set. In implementing our
own version, we uncovered many subtle problems
(some of which are present in existing libraries)
that can affect the downstream performance of
models that use constrained decoding.

Here, we describe the process and common pit-
falls when implementing robust constrained gener-
ation for the example of LLAMA2, but which can
be extended to all major tokenizers. Furthermore,
we address favorable properties of our character-
to-canonical pipeline (ease of use, efficiency, mod-
ularity, etc.). We hope this work guides you and
your tokens to reliable, correct constrained out-
puts.1

1. Introduction and Background
Constrained generation has become a popular tool to en-
force decoding constraints on LLMs and has found use
across a variety of tasks such as question-answering, code
generation, and information extraction. Several libraries im-
plement constrained generation, with varying feature sets,
trade-offs, and extractions. However, these are all optimized
for production rather than experimentation and research.

In an ongoing work, we needed lower-level control over
various aspects of constrained generation and implemented
a lightweight framework. In doing so, we uncovered many
subtleties that complicate constrained generation. These can
have large downstream effects, so it is important to get them
correct. Here, we cover some of our findings, both in terms

1Anonymous Institution, Anonymous City, Anonymous Re-
gion, Anonymous Country. Correspondence to: Anonymous Au-
thor <anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

1Our implementation will be released with the final paper.

A ◦ P ◦ S ◦ C
Pattern

Preprocessing

Subword Promotion

Canonicality

Figure 1: Our basic pipeline for converting user-defined,
character-level constraints into subword-level constraints. A
is the user-defined pattern. P is a set of preprocessing steps
designed to mimic the tokenizer’s pretokenization step or to
add additional, modular constraints. S promotes character-
level patterns to subword-level patterns. And C (optionally)
filters out non-canonical subword sequences.

of edge cases and pitfalls, and also in terms of usability,
extensibility, and performance. While we restrict our focus
to regular constraints and the LLAMA2 tokenizer (which fit
our research needs), the topics discussed here generalize to
non-regular constraints and other tokenizer families.

We draw inspiration from speech processing literature
(Mohri et al., 2008), which makes heavy use of modular,
composed finite-state transducer and automata pipelines in
order to produce a final model. This is particularly suitable
given the recent connections that have been found between
tokenization and automata theory (Song et al., 2021; Willard
& Louf, 2023; Berglund et al., 2024; Cognetta & Okazaki,
2024; Koo et al., 2024). We focus on a finite-state pipeline
that captures user-defined constraints (i.e., the desired output
schema), tokenizer properties (e.g., the tokenization algo-
rithm or byte-level fallbacks), and modular constraints (e.g.,
UTF-8 validity or mono- vs multi-linguality).

A summary of the main points of this paper is given in Table
1. We do not measure the effect of each of them individually
here (which is highly sensitive to the task, prompt, and
model), but note that they are common enough that we have
observed each of them in existing production-level guided
generation libraries,2 and we have found that they impacted
task performance in our concurrent research.

2A small list of related GITHUB issues is given in Appendix B.

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Pitfalls, Subtleties, and Techniques in Automata-Based Subword-Level Constrained Generation

Section Technique Benefit Tokenizer
Dependent?

3.1 Tokenizer Preprocessing Alignment with tokenizer configuration Yes

3.2 Subword Promotion Faster decoding (via constant time masking)
Alignment with tokenizer configuration Yes

3.3 Canonical Filtering Faster inference (by restricting search space)
Alignment with language model inductive prior Yes

3.3.1 Coalescence Faster inference (by skipping deterministic tokens) Yes
4.1 Canonical Unicode Prevents unrenderable outputs No

4.2 Mono- vs Multi-linguality Better modeling (via an additional semantic constraint)
Faster inference (by restricting search space) No

4.3 Character Literals vs Bytes Better modeling (by avoiding ambiguity) Yes
4.4 Token Healing Better modeling (by avoiding fragmented tokenizations) No
4.5 Isolated Space Fusion Better modeling (especially in Latin-script languages) Yes
5.1 Marginalization Better modeling (via well-grounded sampling) No

Table 1: A summary of the techniques in this paper, their benefits, and whether or not they are tokenizer agnostic.

We are not the first to implement constrained generation,
even via automata theory. However, compared to Koo et
al. (2024), who also describe a finite-state pipeline for con-
strained generation, we focus more on practical implemen-
tation pitfalls and optimizations. Furthermore, we attach an
additional step to the pipeline, canonicalization, which can
be precomputed and has favorable properties.

1.1. Automata and Transducers

We briefly overview the relevant aspects of automata the-
ory but point the reader to Riley et al. (2009) and Sipser
(2013) for a more thorough treatment. Automata are a 5-
tuple A = (Q,Σ, δ, qstart, F) where Q is a (finite) set of
states, Σ is a (finite) alphabet, δ is a transition function3

δ : q × Σ → Q, qstart ∈ Q is the initial state, and F ⊆ Q
is a set of final states. Automata accept or reject strings
over Σ∗. Let w ∈ Σ∗ be a string, then w is accepted by
A if there is a path q0, q1, . . . , qn such that q0 = qstart and
δ(qi, wi) = qi+1 and qn ∈ F . Let L(A) be the set of strings
that are accepted by an automaton A. This set is closed under
many operations such as intersection (L(A) ∩ L(A′)), con-
catenation (L(A)L(A′) = {xy | x ∈ L(A)∨ y ∈ L(A′)}),
and Kleene-star (L(A)∗ =

⋃∞
i=0 L(A)i).

Finite-state transducers are a generalization of automata
with an input and output alphabet. A transducer is a 6-tuple
T = (Q,Σ,Γ, δ, qstart, F) where Q, Σ, qstart, and F are
defined as with automata, Γ is a (finite) output alphabet, and
δ : Q× Σ ∪ {ϵ} × Γ ∪ {ϵ} → Q is a transition function.4

3For simplicity, we restrict ourselves to deterministic automata,
but all of our results extend to non-deterministic automata.

4We allow the empty string ε on the inputs and outputs here as
the input string and output string may be of different lengths, and
since it is required for the subword promotion transducer (Cognetta
& Okazaki, 2024; Koo et al., 2024). For simplicity, we omit them
for automata, as they can always be made ε-free (Sipser, 2013).

Transducers accept pairs of strings x, y ∈ Σ∗ × Γ∗ if there
is a path through the transducer such that the concatenation
of the input and output symbols are x and y, respectively.

Transducers share many of the closure properties of au-
tomata, but have two additional operations of interest. Let
T1 and T2 be transducers with alphabets (Σ,Ξ) and (Ξ,Γ),
respectively. Transducer composition is defined as T1◦T2 =
{(x, y) | ∃ z ∈ Ξ∗s.t. (x, z) ∈ L(T1)∧ (z, y) ∈ L(T2)}. In
other words, it transduces x to y through an intermediate
string z. Automata and transducers can be composed (if
Σ = Ξ), and automaton-automaton composition is the same
as intersection. Transducer projection turns a transducer into
an automaton accepting PROJ(T) = {y | (x, y) ∈ L(T)}.

1.2. Constrained Generation

Constrained generation is a collection of techniques to force
language models to output sequences that match a speci-
fied pattern by essentially setting the probability of invalid
sequences to zero. The standard way to do this is to mask
out logits corresponding to invalid tokens before sampling
during generation. That is, instead of sampling a token ti
given a context cl from a softmax distribution

p(ti | cl) = SOFTMAX (l)i , (1)

where l ∈ R|Γ| are the logits that are produced by a language
model for cl, we sample from

p′(ti | cl) = SOFTMAX (l ⊙m)i , (2)

where ⊙ is the Hadamard product and m ∈ R|Γ| is a mask

mi =

{
1 vi ∈ Γ can satisfy the constraint
−∞ otherwise.

The masking ensures that tokens that cannot satisfy the con-
straint are given probability 0 after the SOFTMAX operation.

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Pitfalls, Subtleties, and Techniques in Automata-Based Subword-Level Constrained Generation

The unconstrained probability of a sequence t =
t1t2 . . . tn ∈ Γ∗ can be computed autoregressively as

p(t) = p(t1 | <s>)
|t|−1∏
i=1

p(ti+1 | <s>t1t2 . . . ti). (3)

Likewise, the constrained probability is typically given by

p′(t) = p′(t1 | <s>)
|t|−1∏
i=1

p′(ti+1 | <s>t1t2 . . . ti), (4)

though we discuss alternative formulations in Section 5.1.

Following the autoregressive nature of modern language
models, we can check if the sequence resulting from adding
a given token to the current context is a prefix of a sequence
that matches the constraint. Let t1t2 . . . tk be some context
and vi be the token corresponding to the logit li, then mi = 1
if t1t2 . . . tkviΓ∗ ⊆ L(As), where As is a subword-level
automaton (e.g., the result of the equation in Figure 1).

2. Constrained Generation Packages
2.1. Outlines

OUTLINES (Willard & Louf, 2023) is a fully-featured
constrained generation library. They provide regular and
context-free constraints built into a prompt-templating sys-
tem. To our knowledge, OUTLINES was the first to perform
subword promotion, which they implement as an “index”.
Rather than a purely finite-state approach, OUTLINES allows
users to define a constraint (we refer to regular constraints
here, but the same is true for context-free constraints) which
is converted to an automaton. They then iterate over each
state of the automaton and determine, for each token in
the vocabulary, what state (if any) it would lead to if read
character-by-character from the current state. This produces
a hash table that allows one to traverse the character-level
automaton using subword tokens. Additionally, it produces
a static set of valid subword tokens for each state.

On top of this foundation, they build a large feature set for
common constrained generation use cases like JSON output
or categorical sampling and includes other generic LLM
inference techniques like chain-of-thought.

2.2. Guidance

GUIDANCE (Guidance AI, 2023) is another fully-featured
constrained generation library. Like OUTLINES, it allows
for regular and context-free constraints but has additional
functionality for dynamic constraints—constraints can be
added, removed, or modified during inference, depending
on prior output.

Perhaps partially due to dynamic constraints, GUIDANCE
does not pre-compile a subword-level constraint. Instead, it

dynamically constructs masks by iterating over each token
in the vocabulary and checking if it can satisfy the final
constraint. The authors argue that there is a beneficial trade-
off between the time it takes to perform dynamic masking
and the preprocessing time required to construct a compiled,
static mask (Geng et al., 2025).

GUIDANCE makes use of an abstract syntax tree data struc-
ture for representing constraints and, in this way, allows
for modularity (i.e., by defining a GrammarNode which
corresponds to a family of constraints.).

2.3. XGrammar

XGRAMMAR (Dong et al., 2025) is the most similar in
scope to our implementation. Compared to OUTLINES and
GUIDANCE, it has relatively few features and rather focuses
on being a highly-performant constrained generation core
that other functionality can be built on.

Like GUIDANCE, it uses dynamic masking built on top of a
custom grammar framework but mixes static and dynamic
constraints with an “adaptive token mask cache”. This cache
identifies when tokens at a specific rule in a grammar are
“context-independent” and can be immediately verified with-
out moving into nested rules. They find such tokens are rel-
atively common and can be cached so that they don’t need
to be recomputed later. They additionally provide many
other decoding time optimizations to ensure that dynamic
masking is performant, such as token prefilling.

2.4. Other

Two popular generic inference libraries, LLAMA.CPP
(Gerganov & Community, 2023) and VLLM (Kwon et al.,
2023), include basic structured generation as a feature.
LLAMA.CPP implements their own, which uses dynamic
masking, while VLLM integrates OUTLINES and GUID-
ANCE. SGLANG is another inference engine designed for
constrained generation (Zheng et al., 2024). They provide a
number of constraint primitives, inference primitives, and
runtime optimizations to enable efficient constrained gener-
ation. DOMINO (Beurer-Kellner et al., 2024) is a framework
that focuses on performant and “minimally-invasive” con-
strained generation with dynamic masking.

2.5. Dynamic vs. Precompiled Constraints

Constrained generation libraries are split over how to treat
masking, with some (like OUTLINES and Koo et al. (2024))
precompiling static masks that can just be looked up at will,
and others GUIDANCE and DOMINO performing on-the-
fly, dynamic masking, where at each inference step, the
entire vocabulary is enumerated and checked for validity.
XGRAMMAR mixes the two by selectively caching masks
where possible and dynamically computing them otherwise.

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Pitfalls, Subtleties, and Techniques in Automata-Based Subword-Level Constrained Generation

A clear consensus on which is better has not been reached,
with proponents of dynamic masking arguing that it is faster
(no start-up time and relatively low runtime overhead, es-
pecially when compared to the runtime cost of the base
language model’s inference step) and more flexible (Geng
et al., 2025; Beurer-Kellner et al., 2024; Dong et al., 2025),
while precomputed-masking proponents argue it is faster
when amortized over the life of the model (pay a start-up
cost for optimized inference) (Koo et al., 2024), especially
as the size of modern LLM vocabularies grow (e.g., the
GEMMA3 tokenizer has 260k elements in the subword vo-
cabulary (Gemma Team et al., 2025)).

Like Willard and Louf (2023) and Koo et al. (2024), we em-
ploy static constraints based on compiled automata. Static
constraints fit nicely into our framework as the combina-
tion of many modular automata is itself an automaton that
can be optimized or efficient usage during inference. How-
ever, many of the techniques we present here also apply to
dynamic-masking constrained generation.

3. Compiling Automata From Tokenizers
We now focus on how to compile automata from tokenizer
configurations to enable constrained generation that matches
the implementation details of the tokenizer.

3.1. Preprocessing

One difficult aspect of designing proper constraints is that
tokenizers often have a preprocessing normalization step
that transforms the raw text input into a standardized format.
A problem arises where the user must a) know the normal-
ization requirements of a particular tokenizer and b) be able
to write their constraints in a way that matches it.

On the other hand, using a finite-state pipeline, this can be
hidden from the user. After the user has defined a pattern
(without knowledge of the pretokenization steps), we can
use a precompiled preprocessing transducer to implement
the pretokenization and convert the user’s pattern into one
that matches what the text would actually look like during
inference. By abstracting this away from the end-user, we
reduce the likelihood of errors in the constraint definition
and, by making tokenizer-aware pipelines, we allow for
per-tokenizer, precompiled preprocessing transducers to be
constructed, which centralizes the sources of errors.

3.1.1. EXAMPLE: START-OF-SEQUENCE AND SPACING

The example in Figure 2(a) contains a Prepend prepro-
cessing step, where a space is added to the very start of
the input sequence,5 and space tokens are converted to a

5This is because the LLAMA2 tokenizer is built on SENTENCE-
PIECE, which has this behavior by default.

"normalizer": {
"type": "Sequence",
"normalizers": [
{
"type": "Prepend",
"prepend": "__"

},
{
"type": "Replace",
"pattern": {
"String": " "

},
"content": "__"

}
]

},
"pre_tokenizer": null,

(a) The preprocessing step for LLAMA2.

0 1ε:▁

' ':▁
a:a
b:b
c:c

(b) The preprocessing transducer.

Figure 2: The preprocessor for LLAMA2 and a transducer
which implements it. Composing this with the input pattern
preprocesses it to match the tokenizer specification.

special space marker “_” (U+2581). This can be realized by
a finite-state transducer, shown in Figure 2(b).

The example shown here is simple (by choice, for space
reasons), but arbitrarily complex preprocessors could exist
that handle things like text normalization (e.g., punctua-
tion normalization) or conversion (e.g., canonical forms for
numbers or addresses) (Ebden & Sproat, 2015).

3.2. Subword Promotion

Subword promotion promotes character-level patterns to
subword-level patterns—in other words, it accepts subword
sequences t ∈ Γ∗ if the detokenized form matches the
character-level constraint A. This allows the users to en-
code their constraints in a standard (character-level) regex,
which abstracts away things like the subword vocabulary of
the model they are using and subword boundary marking
schemes. This step additionally allows for O(1)-time satis-
fiability queries—that is, given a constraint, a context, and a
subword token, we can determine in constant time whether
the token, when added to the context, can still possibly sat-
isfy the constraint. This is in contrast to “on-the-fly” checks
like those used in XGRAMMAR and GUIDANCE.

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Pitfalls, Subtleties, and Techniques in Automata-Based Subword-Level Constrained Generation

2

4

b

0 b

1a

b

3a
b

(a) A character-level automaton.

1

4

a:ε

2

a:#a,b:#b

3

b:ε

a:#aa

0

a:a,
b:b

a:ε

a:#a,
b:#b

b:ε

b:#bb

(b) A character-to-subword transducer.

3 2#b

4

#b
#bb

0 1a #b

#a

#bb

(c) The promoted subword-level automaton.

Figure 3: An example of subword promotion. Composing the automaton (a) with the transducer (b) produces a new
automaton (c) where each path defines a subword sequence that would match the original (a) at the character level.

In the on-the-fly setting, the satisfiability query is done with
the original, character-level pattern — when checking if
a token can satisfy the constraints, the token is read out
character-by-character and the constraint automaton is tra-
versed to ensure that it is potentially satisfying. This avoids
a potential startup cost (constructing the compiled, subword-
level pattern), but introduces runtime overhead (scanning the
vocabulary and processing each token) (Geng et al., 2025).

In our finite-state pipeline, subword promotion is done
by building a character-to-lexicon transducer that trans-
duces character sequences to subword tokens (Cognetta &
Okazaki, 2024; Koo et al., 2024). Specifically, it encodes the
language ∪w∈Γ([w1][w2]. . .[wn],[w]) and is composed
with the input pattern then projected to an automaton over
subwords. Figure 3 gives an example of subword promotion.

3.3. Canonical Filtering

The subword-promotion transducer promotes character-
level patterns to subword-level patterns that accept any se-
quence satisfying the character-level pattern. For example, if
the constraint allowed the word “Alphabet”, the subword au-
tomaton would accept [Al][pha][bet], [Alphabet],
[Alpha][bet], etc.

This behavior does not reflect that a tokenizer is a one-to-
one mapping from strings to token sequences, so a natural
extension is to allow only the sequences the tokenizer would
produce. Let T : Σ∗ → Γ∗ be a tokenizer, and T−1 be the
inverse, detokenization function. Tokenizers define one-to-
one mappings, but, the character-to-subword transducer S is
a one-to-many mapping that allows any sequence t′ such that
T−1(t) ∈ L(A). Instead, we want to restrict the subword
automaton to only sequences t such that T−1(t) ∈ L(A)
and T (T−1(t)) = t, the canonical tokenization.

Previous works (Song et al., 2021; Berglund et al., 2024;
Cognetta & Okazaki, 2024; Tran-Thien, 2024) show that
the automaton of only canonical tokenizations can be pre-
computed, which is costly at first, but only has to be done
once for a tokenizer. Consequently, ensuring canonicality

is as simple as intersecting the subword-level automaton
with the canonical automaton. Figure 4 shows a subword-
level automaton and the remaining paths after filtering out
non-canonical sequences.

Limiting the paths in our subwords-level automaton to only
those corresponding to canonical tokenizations is benefi-
cial for several reasons. As per the stars and bars theorem
(Wikipedia contributors, 2025), the number of ways to tok-
enize a sequence of length n into k tokens is

(
n−1
k−1

)
, so the

total number of ways to tokenize a string s is (at most)

|s|∑
k=1

(|s| − 1

k − 1

)
= 2|s|−1. (5)

On the other hand, there is only one canonical tokenization
of s, which massively reduces the number of acceptable
strings in our subword automaton when combined with a
canonical constraint filter.

Furthermore, ensuring canonicality maintains the inductive
bias of our model, as canonical tokenizations are what the
model has been trained on. Lastly, as described in the next
section, decoding speed is vastly improved, especially when
combined with a constraint pattern.

Canonical filtering has a downside in that the size of the
resulting automaton can be very large compared to the
character-level automaton (Berglund et al., 2024; Cognetta
& Okazaki, 2024), especially if repetition operations are in-
volved. We have found that, unless the constraint is heavily
restricted, using canonical filtering with repetition results in
automata that are too large to be used efficiently. We have
found restricting the search space (e.g., by specifying a set
word list, rather than all strings over Σ) and using Σ∗ rather
than Σ≤k (where applicable) helps manage this to a degree.

3.3.1. SPEEDING UP DECODING (“COALESCENCE”)

A speedup in decoding is based on the observation that,
for a given state in the constraint automaton, decoding can
be skipped if there is only one outgoing arc (since there

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Pitfalls, Subtleties, and Techniques in Automata-Based Subword-Level Constrained Generation

0

4

A

1

Al

3Am
2

Ama

l

m
ma

7
p

6ph

5
pha

a 10

az

z

9
zo

8

zon▁

h
ha

a

12ab

bet▁

b

11be

o

on▁

n▁

et▁

e t▁

Figure 4: A subword-level constraint for the words {Alphabet, Amazon}. The darker paths represent the canonical
tokenizations (Section 3.3). Other than at the starting state, each state has at most one canonical arc. Thus, once we have
decoded the first token, we do not need to actually decode the rest and can simply add them to the context (Section 3.3.1).

is only one valid token, which must have probability 1).
As canonicality filtering removes all alternative paths that
do not match the canonical tokenization, this situation is
encountered frequently, especially for a restrictive pattern
like a multiple-choice constraint (see Figure 4).

With JSON generation being a major application of con-
strained generation, we conduct a small experiment to show
the speed-up generated by canonical filtering. We construct
a prompt and a simple JSON template to generate Pokedex
entries for Pokemon. We create 100 JSON entries and mea-
sure the average time per entry and the ratio of skippable
tokens across all generation steps.

Model Canonical Skip Rate Rel. Time

LLAMA2-7B
no 24.5% -
yes 77.9% -15.7%

LLAMA2-13B
no 26.5% -
yes 78.9% -21.0%

Table 2: Effect of decoding-skipping in combination with
canonicality on inference time. Note how canonicality no-
tably increases the skip rate and decreases inference time.
The JSON schema is given in Appendix C.

OUTLINES proposed the idea of “coalescence”, in which
an ad-hoc heuristic is described to find and remove such
detours in the decoding automaton,6 and a similar technique
was described by Tran-Thien (2024) and Zheng et al. (2024).
Though in essence related to canonicality, their approach is
difficult to implement, adds computational effort, does not
result in canonicality, and cannot always find all optimiza-
tions. Our implementation of canonicality as a finite-state
transduction (Cognetta & Okazaki, 2024) guarantees all
optimizations naturally without additional effort.

6https://blog.dottxt.co/coalescence.html

4. Pattern Design and Modular Filtering
Now that our core pipeline is implemented, we turn to vari-
ous modular constraints that can be immediately integrated
into the pipeline via a simple composition so that the user
does not have to implement it themselves or even know the
details in depth. These constraints are largely orthogonal
to the correctness of the user-defined scheme or the inte-
gration with the tokenization specification, but can be used
to improve modeling or runtime performance or to simply
constrain the output in a more fine-grained way without
resorting to writing extremely complex regular expressions.

4.1. Canonical Unicode

Often, LLMs use a (UTF-8) byte-level fallback to ensure
that all sequences are representable by the tokenizer. When
generating text, the model may fall back to generating bytes
(which will be converted to Unicode codepoints during deto-
kenization), which introduces the possibility of generating
invalid byte sequences. We can place a “canonical UTF-8”
automaton in our finite-state pipeline that guarantees only
valid UTF-8 sequences are generated (Höhrmann, 2010).

Unicode canonicality applies not only to the UTF-8 byte-
level sequences, but also to the sequence of Unicode code-
points (i.e., the equivalence between two distinct codepoint
sequences that represent the same character). For example,
when a sequence of codepoints is used to represent a charac-
ter that has its own codepoint representation — for example,
u+◦ (U+0075 and U+030A) vs ů (U+016F). This many-
to-one phenomenon can also be observed in South Asian
Brahmic scripts, where finite-state processing has been suc-
cessfully employed to perform canonical normalization and
well-formedness checking of orthographic syllables in Uni-
code (Johny et al., 2021; Gutkin et al., 2022).

Enforcing this version of Unicode canonicality via automata
can be easily integrated into our pipeline as a modular con-

6

https://blog.dottxt.co/coalescence.html

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Pitfalls, Subtleties, and Techniques in Automata-Based Subword-Level Constrained Generation

straint, without requiring the user to encode it manually into
their initial constraint (which would be very difficult).

4.2. Mono- vs Multi-linguality Filtering

Modern LLMs are typically trained on multilingual corpora
(which is reflected in their tokenizer vocabulary). However,
it is often the case that inference is done in a monolingual
setting (e.g., question-answering tasks tend to be done in
a single language, at least at the individual question level).
Allowing multilinguality when monolinguality is desired
has two negative effects: 1) probability mass is guaranteed to
leak from the desired language to tokens of other languages
and 2) a larger space of acceptable sequences is available,
which slows decoding.

Aligned with one of our central goals of making it easier
for users to define a prompt and have it be refined later,
we want to alleviate the burden of properly restricting their
initial prompt to the correct language. We can introduce
monolinguality filters for this, which are placed between
the constraint automaton and the subword-promotion trans-
ducer to filter out character sequences that do not match
the intended language (e.g., by using the language script
as a proxy). For example, we could use ASCII roughly as
a proxy for English or the Korean Hangul Precomposed
Syllable range for Korean, etc. One could even just use a
dictionary encoded as a trie to restrict to only known words
in a given language.

These automata are deterministic, individually small, tok-
enizer agnostic, can be precomputed, etc., meaning that they
can all be prepared ahead of time by the library maintainer
and used in a modular fashion (for example, by the user
specifying an acceptable scripts parameter).

4.3. Ambiguity Between Characters and Bytes

Modern tokenizers often have implicit byte-level fallbacks
in order to handle the wide variety of scripts that arise in a
multilingual setting. If a character (i.e., an atomic token, one
which is not formed by a merge in BPE) is not present in
the vocab but is seen in training, its Unicode byte represen-
tation is used and the character is modeled by a special byte
sequence. For example, in Korean, the common character
한 might be present in a multilingal tokenizer’s vocabulary,
but the rare궭 might not. During encoding these would be
encoded as [한] and [<0xEA>][<0xB6>][<0xAD>],
respectively (with the latter being three subword tokens).

The full set of 256 bytes is included in the subword tok-
enizer’s vocabulary, which adds an ambiguity between char-
acters (e.g., a, b, c) and ASCII bytes (e.g., <0x61>,
<0x62>, <0x63>). Not accounting for this ambiguity
means that during generation, the model could produce the
ASCII-byte representation of a character instead of the lit-

eral character, thereby polluting the modeling context and
harming the downstream performance of the model. We can
filter this out by adding an additional filter automaton to the
pipeline that disallows byte sequences (where applicable)
or disallows ASCII bytes (i.e., it allows non-ASCII UTF-8
sequences, but forces ASCII to use the character literals).

This ambiguity is present in OUTLINES, which allows gen-
eration of ASCII sequences through their byte values (or a
mix of byte and character literals).

4.4. Token Healing

One potential issue comes at the pattern-design level, espe-
cially where the prompt ends and the constraint begins. This
has been observed before in GUIDANCE, where it is referred
to as token healing.7 They recommend a simple procedure
where, given a prompt with a constraint at the end, they first
backtrack a single token and add the surface form of the
final token of the prompt to the pattern.

The backtracking technique is orthogonal to the rest of the
constrained generation system, so it can be integrated into
the system we describe in this paper. However, there is an
alternative way to implement it, with essentially no runtime
overhead, and while guaranteeing that token boundary issues
are eliminated, by using canonical filtering (Section 3.3).

Until this point, we have only considered constraint specifi-
cation, subword promotion, and filtering as something sepa-
rate from the prompt. We could instead integrate the prompt
into the constraint directly and treat it as a prefix to the regu-
lar language that actually encodes the constraints (that is, we
combine the prompt and the constraint via concatenation).
Then, we continue with the rest of the finite-state pipeline,
including canonical filtering.

As canonical tokenization is a one-to-one mapping with
the input text, the first part of the canonical promoted sub-
word automaton (corresponding to the static prompt) is en-
tirely deterministic. Using the efficient decoding method in
Section 3.3.1, we can simply skip decoding during this en-
tire section of the automaton before reaching the constraint
boundary. Since we have applied canonical subword filter-
ing, the boundary between the prompt and the constraint is
guaranteed to be well-formed, and we can begin decoding
without any explicit token-healing backtracking.

4.5. Isolated Spaces

One issue that arises from subword promotion is isolated
spaces. Due to the requirement of an open vocabulary, there
is an individual space character present in the vocabulary (in

7https://guidance.readthedocs.io/en/
latest/example_notebooks/tutorials/token_
healing.html

7

https://guidance.readthedocs.io/en/latest/example_notebooks/tutorials/token_healing.html
https://guidance.readthedocs.io/en/latest/example_notebooks/tutorials/token_healing.html
https://guidance.readthedocs.io/en/latest/example_notebooks/tutorials/token_healing.html

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Pitfalls, Subtleties, and Techniques in Automata-Based Subword-Level Constrained Generation

fact, there tends to be two: the byte-level ASCII character
<0x20> and the literal space character).

A problem can arise where subword sequences do not
fuse the leading space and eventual word prefix (for exam-
ple, [][America] vs [America]), leading to poor
downstream performance. Example ?? shows examples
where the non-fused space tokenization has much lower
probability, but was generated because sampling an isolated
[] had high probability. Eliminating non-fused tokeniza-
tions eliminates a source of error as well as a large search
space of subword sequences that match the constraint.

We note that, depending on the tokenizer (and the size of
the vocabulary), token fusion is not always done. For exam-
ple, LLAMA2 tokenizes China to [China] but中國 to
[][中][國]. This can be accounted for by simply making
an automaton that rejects all sequences [][c] if [c] is
in the vocabulary and can be compiled automatically from
the tokenizer configuration.

Prompt Token 1 Token 2 Token 3 Sequence

The number
of states in
the US is

−6.1
[fifty]

−6.1
“fifty”

−0.6
[]

−14.3
[fif]

−0.1
[ty]

−15.0
“fifty”

−0.6
[]

−0.1
[5]

−0.1
[0]

−0.8
“50”

Table 3: Tokenizations and log probabilities of some con-
tinuations (using LLAMA2-7B). The high probability of an
isolated space means it is sampled often. However, if the
constraint is [A-Za-z] (i.e., no numbers are allowed), we
fall into a very low-probability subspace that tries to gen-
erate a poor tokenization of “fifty”. Fusing isolated spaces
resolves this issue.

5. Constraint Inference
Let A be some constraint. Equation 4 attempts to approxi-
mate the joint probability distribution p(t,A), where a se-
quence t is given probability 0 if it does not match the con-
straint. However, this distribution is malformed, and, in real-
ity, the partition function Z =

∑
t∈L(A) p(t) must be com-

puted in order to model the true distribution p(t,A) = p(t)
Z .

5.1. Constraint Marginalization

Let A be a character constraint and As be the subword-
promoted version of it. Computing the value of Z for As is
difficult as L(As) could be infinite (and even in the finite
case, Equation 5 shows that the size of the language could
be exponentially larger than L(A)).

Instead, we can use importance sampling to compute the
marginal probability by sampling from a simpler distribu-
tion8 (Geh et al., 2024). Let q be a proxy distribution for
which we can easily sample sequences that match As. Then,

p(L(As)) =
∑

t∈L(As)

p(t) = Et∼q

[
p(t)

q(t)

]
≈ 1

N

N∑
i=1

p(t(i))

q(t(i))
,

where t(i) is sampled from q. By using p′ as the proxy
distribution, we guarantee that we can sample from L(As),
since that is exactly the support of p′.

To our knowledge, all of the current constrained generation
libraries implement a variety of samplers (e.g., greedy, beam
search, speculative decoding, etc.), but none of them account
for the malformedness of the distribution induced by logit
masking as described in Equation 2 or provide constraint
marginalization as a feature. Our implementation exposes
the raw (un)constrained logits, and we implement constraint
marginalization on top of it. In some cases, especially when
using canonical filtering (Section 3.3), exact marginalization
is tractable, and our library supports that as well.

5.2. Other Inference Methods

Marginalization is slow using an enumerative method, and
importance sampling can take a long time to converge (Geh
et al., 2024). Other methods for sampling from complex dis-
tributions exist, such as sequential Monte Carlo or adaptive
rejection sampling (Lipkin et al., 2025). In addition to this,
the exact formulation of the marginalization plays a role
in correctness. In particular, Pimentel and Meister (2024)
discuss the nuance of marginalizing subword sequences
to compute the probability of a word when the tokenizer
uses beginning-of-word markings (e.g., [token][s])
compared to end-of-word markings (e.g., [token][s]).

6. Overview of Our Package
Our package is designed to be a lightweight foundation for
constrained generation research. We do not aim to compete
with popular packages, which are created for use in produc-
tion and offer many utilities and functions for downstream
tasks. We design our package for 1) simplicity, 2) control,
and 3) convenience. Briefly, we provide a simple, minimal
interface compatible with HuggingFace models; generation
of (constrained and unconstrained) probabilities; tokenizer
preprocessing, pattern filtering, and canonicalization; coa-
lescence; and constraint marginalization.

8We can sample from p directly, but if the probability of se-
quences that match s is small, we will mostly sample invalid
strings, so the convergence will be slow.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Pitfalls, Subtleties, and Techniques in Automata-Based Subword-Level Constrained Generation

Build pipeline from a HF causal model
pipeline = Pipeline(

"meta-llama/Llama-2-7b-hf", device="cuda"
)

Limit output to ASCII characters only
pipeline.restrict_characters_to("ascii")

Multiple-choice constraint (with canonicality)
cities = Constraint(

regex="Cologne|Berlin|Munich", canonical=True
)

prompt = "What is the capital of Germany?"

sampled = pipeline.generate(prompt, constraint=
cities)

Multiple-choice constraint (any tokenization)
cities = Constraint("Cologne|Berlin|Munich")

Constraint enforcing "Berlin" (any tokenization
)

berlin = Constraint("Berlin")

Compute probability mass of constraints
total_mass = pipeline.compute_probability_mass(

prompt, cities
)
berlin_mass = pipeline.compute_probability_mass(

prompt, berlin
)

Compute normalized, marginal log prob of Berlin
berlin_marginal = berlin_mass - total_mass

Figure 5: A basic example of our implementation’s interface. The user provides a model, prompt, and constraint, then selects
various modular filters and sampling strategies. Each of these compose together nicely using our finite-state framework, and
allow the user to perform efficient inference for constrained generation.

6.1. Ease-of-Implementation and Verification

Our goal with this project was to build a functional core for
constrained generation research, not a fully-featured guided
generation library. As such, our goals were rapid and confi-
dent iteration while retaining relatively high performance.9

As noted by Koo et al. (2024), using automata theory as
our base abstraction enables all of these properties, as au-
tomata are well-understood, capture the expressiveness of
the constraints that we want to implement, and have many
high-quality and performant libraries.

For our regular expression engine, we used INTEREGU-
LAR10 (which is also what OUTLINES uses). We used
PYNINI (Gorman, 2016), a Python library built on top of
OPENFST (Riley et al., 2009), a well-tested C++ library for
finite-state transducers, for implementing the various mod-
ular constraints. By offloading the underlying algorithmic
code to OPENFST, we effectively eliminate a large class of
implementation errors, allowing us to focus on more rele-
vant aspects of constrained generation. This is in contrast
to the current major constrained generation libraries, which
frequently deal with subtle parsing bugs.

Our inference engine is built on the basic TRANSFORMERS
interface (Wolf et al., 2020), where we simply intercept the
logits during generation to apply our masks.

In total, our implementation (including all modular con-
straint definitions, the process to build a canonical tokeniza-
tion automaton, the inference engine, etc.) is roughly 1k
lines of Python code. On the other hand, XGRAMMAR uses
12k lines of C++ (we note that they implement more fea-
tures, but the core of their code is their grammar parsing
and inference engine) (Dong et al., 2025, Section 4).

9These are also reasonable goals for production environments.
10https://github.com/MegaIng/interegular

6.2. Example Usage

Here, we provide example code snippets for the core in-
terface of our implementation. In Example 5, we detail a
basic constrained generation inference run, where a user can
define the relevant parameters (model, constraints, optional
filters, and decoding strategies) and show how to use it for
constraint marginalization, as described in Section 5.1.

The interface is deliberately simple, and is designed to give
users easy access to the internals of the system and return
(constrained or unconstrained, and optionally marginalized)
sequence probabilities under specific constraints, which
form the basis of all other language modeling applications.
Thus, this simple interface can be used as the core for more
feature-rich constrained generation libraries.

7. Conclusion
Constrained generation has proven to be a powerful tool for
large language models, but they are not without downsides.
The intersection between the model’s decoding algorithms
and user-defined constraints requires care to properly im-
plement, and not doing so can introduce difficult-to-detect
bugs. By using well-defined and verifiable constraints with
well-tested libraries, those implementing constrained gen-
eration are able to side-step many of these issues without
sacrificing performance.

Our work focused on common but subtle pitfalls that can
affect constrained generation systems. For each of these, we
showed how a well-grounded automata-theoretic framework
can handle them elegantly and efficiently. Many of these
pitfalls exist in popular constrained generation libraries and
can be easily overlooked. We prepared a small implementa-
tion of our ideas, which we hope aids future researchers in
implementing constrained generation.

9

https://github.com/MegaIng/interegular

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Pitfalls, Subtleties, and Techniques in Automata-Based Subword-Level Constrained Generation

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Limitations
Our work provides an example implementation based on the
LLAMA2 BPE tokenizer, which is a relatively small model
with a small vocabulary size compared to state-of-the-art
models but still fits our research needs succinctly.

As modeling performance of constrained generation on any
downstream task is highly model-dependent, we do not
include empirical evaluations that draw away from the focus
of the work on implementation.

Context-free grammars were not in the scope of our ongoing
work and, hence, our research needs, and is not included for
simplicity of presentation.

References
Berglund, M., Martens, W., and van der Merwe, B. Con-

structing a BPE Tokenization DFA, pp. 66–78. Springer
Nature Switzerland, 2024. ISBN 9783031711121. doi:
10.1007/978-3-031-71112-1 5.

Beurer-Kellner, L., Fischer, M., and Vechev, M. Guiding
LLMs the right way: fast, non-invasive constrained gen-
eration. In Proceedings of the 41st International Confer-
ence on Machine Learning, ICML’24. Journal of Machine
Learning Research, 2024.

Cognetta, M. and Okazaki, N. Tokenization as finite-state
transduction, 2024. URL https://arxiv.org/
abs/2410.15696.

Dong, Y., Ruan, C. F., Cai, Y., Lai, R., Xu, Z., Zhao, Y., and
Chen, T. XGrammar: Flexible and Efficient Structured
Generation Engine for Large Language Models, 2025.
URL https://arxiv.org/abs/2411.15100.

Ebden, P. and Sproat, R. The kestrel TTS text normalization
system. Nat. Lang. Eng., 21(3):333–353, 2015. doi:
10.1017/S1351324914000175. URL https://doi.
org/10.1017/S1351324914000175.

Geh, R., Zhang, H., Ahmed, K., Wang, B., and Van
Den Broeck, G. Where is the signal in tokenization
space? In Al-Onaizan, Y., Bansal, M., and Chen, Y.-N.
(eds.), Proceedings of the 2024 Conference on Empiri-
cal Methods in Natural Language Processing, pp. 3966–
3979, Miami, Florida, USA, November 2024. Association
for Computational Linguistics. doi: 10.18653/v1/2024.

emnlp-main.230. URL https://aclanthology.
org/2024.emnlp-main.230/.

Gemma Team, Kamath, A., Ferret, J., Pathak, S., Vieil-
lard, N., Merhej, R., Perrin, S., Matejovicova, T., Ramé,
A., Rivière, M., Rouillard, L., Mesnard, T., Cideron, G.,
bastien Grill, J., Ramos, S., Yvinec, E., Casbon, M., Pot,
E., Penchev, I., Liu, G., Visin, F., Kenealy, K., Beyer,
L., Zhai, X., Tsitsulin, A., Busa-Fekete, R., Feng, A.,
Sachdeva, N., Coleman, B., Gao, Y., Mustafa, B., Barr, I.,
Parisotto, E., Tian, D., Eyal, M., Cherry, C., Peter, J.-T.,
Sinopalnikov, D., Bhupatiraju, S., Agarwal, R., Kazemi,
M., Malkin, D., Kumar, R., Vilar, D., Brusilovsky, I., Luo,
J., Steiner, A., Friesen, A., Sharma, A., Sharma, A., Gi-
lady, A. M., Goedeckemeyer, A., Saade, A., Feng, A.,
Kolesnikov, A., Bendebury, A., Abdagic, A., Vadi, A.,
György, A., Pinto, A. S., Das, A., Bapna, A., Miech, A.,
Yang, A., Paterson, A., Shenoy, A., Chakrabarti, A., Piot,
B., Wu, B., Shahriari, B., Petrini, B., Chen, C., Lan, C. L.,
Choquette-Choo, C. A., Carey, C., Brick, C., Deutsch,
D., Eisenbud, D., Cattle, D., Cheng, D., Paparas, D.,
Sreepathihalli, D. S., Reid, D., Tran, D., Zelle, D., Noland,
E., Huizenga, E., Kharitonov, E., Liu, F., Amirkhanyan,
G., Cameron, G., Hashemi, H., Klimczak-Plucińska, H.,
Singh, H., Mehta, H., Lehri, H. T., Hazimeh, H., Bal-
lantyne, I., Szpektor, I., Nardini, I., Pouget-Abadie, J.,
Chan, J., Stanton, J., Wieting, J., Lai, J., Orbay, J., Fer-
nandez, J., Newlan, J., yeong Ji, J., Singh, J., Black, K.,
Yu, K., Hui, K., Vodrahalli, K., Greff, K., Qiu, L., Valen-
tine, M., Coelho, M., Ritter, M., Hoffman, M., Watson,
M., Chaturvedi, M., Moynihan, M., Ma, M., Babar, N.,
Noy, N., Byrd, N., Roy, N., Momchev, N., Chauhan, N.,
Sachdeva, N., Bunyan, O., Botarda, P., Caron, P., Ruben-
stein, P. K., Culliton, P., Schmid, P., Sessa, P. G., Xu,
P., Stanczyk, P., Tafti, P., Shivanna, R., Wu, R., Pan, R.,
Rokni, R., Willoughby, R., Vallu, R., Mullins, R., Jerome,
S., Smoot, S., Girgin, S., Iqbal, S., Reddy, S., Sheth, S.,
Põder, S., Bhatnagar, S., Panyam, S. R., Eiger, S., Zhang,
S., Liu, T., Yacovone, T., Liechty, T., Kalra, U., Evci, U.,
Misra, V., Roseberry, V., Feinberg, V., Kolesnikov, V.,
Han, W., Kwon, W., Chen, X., Chow, Y., Zhu, Y., Wei,
Z., Egyed, Z., Cotruta, V., Giang, M., Kirk, P., Rao, A.,
Black, K., Babar, N., Lo, J., Moreira, E., Martins, L. G.,
Sanseviero, O., Gonzalez, L., Gleicher, Z., Warkentin, T.,
Mirrokni, V., Senter, E., Collins, E., Barral, J., Ghahra-
mani, Z., Hadsell, R., Matias, Y., Sculley, D., Petrov,
S., Fiedel, N., Shazeer, N., Vinyals, O., Dean, J., Hass-
abis, D., Kavukcuoglu, K., Farabet, C., Buchatskaya, E.,
Alayrac, J.-B., Anil, R., Dmitry, Lepikhin, Borgeaud, S.,
Bachem, O., Joulin, A., Andreev, A., Hardin, C., Dadashi,
R., and Hussenot, L. Gemma 3 technical report, 2025.
URL https://arxiv.org/abs/2503.19786.

Geng, S., Cooper, H., Moskal, M., Jenkins, S., Berman, J.,
Ranchin, N., West, R., Horvitz, E., and Nori, H. JSON-

10

https://arxiv.org/abs/2410.15696
https://arxiv.org/abs/2410.15696
https://arxiv.org/abs/2411.15100
https://doi.org/10.1017/S1351324914000175
https://doi.org/10.1017/S1351324914000175
https://aclanthology.org/2024.emnlp-main.230/
https://aclanthology.org/2024.emnlp-main.230/
https://arxiv.org/abs/2503.19786

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Pitfalls, Subtleties, and Techniques in Automata-Based Subword-Level Constrained Generation

SchemaBench: A Rigorous Benchmark of Structured
Outputs for Language Models, 2025. URL https:
//arxiv.org/abs/2501.10868.

Gerganov, G. and Community. Llama.cpp: A port of face-
book’s llama model in c++. https://github.com/
ggerganov/llama.cpp, 2023. [Online; accessed
16-Jan-2025].

Gorman, K. Pynini: A Python library for weighted finite-
state grammar compilation. In Proceedings of the
SIGFSM Workshop on Statistical NLP and Weighted Au-
tomata, pp. 75–80, Berlin, Germany, August 2016. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/
W16-2409. URL https://aclanthology.org/
W16-2409/.

Guidance AI. Guidance: A language model programming
framework, 2023. URL https://github.com/
guidance-ai/guidance. [Online; accessed 18-
Dec-2024].

Gutkin, A., Johny, C., Doctor, R., Wolf-Sonkin, L., and
Roark, B. Extensions to Brahmic script processing
within the Nisaba library: new scripts, languages and
utilities. In Proceedings of the Thirteenth Language Re-
sources and Evaluation Conference, pp. 6450–6460, Mar-
seille, France, June 2022. European Language Resources
Association. URL https://aclanthology.org/
2022.lrec-1.692/.

Höhrmann, B. Flexible and Economical UTF-8
Decoder. https://bjoern.hoehrmann.de/
utf-8/decoder/dfa/, 2010. [Online; accessed 30-
May-2025].

Johny, C., Wolf-Sonkin, L., Gutkin, A., and Roark, B. Finite-
state script normalization and processing utilities: The
Nisaba Brahmic library. In Gkatzia, D. and Seddah, D.
(eds.), Proceedings of the 16th Conference of the Eu-
ropean Chapter of the Association for Computational
Linguistics: System Demonstrations, pp. 14–23, Online,
April 2021. Association for Computational Linguistics.
doi: 10.18653/v1/2021.eacl-demos.3. URL https:
//aclanthology.org/2021.eacl-demos.3/.

Koo, T., Liu, F., and He, L. Automata-based constraints for
language model decoding. In First Conference on Lan-
guage Modeling, 2024. URL https://openreview.
net/forum?id=BDBdblmyzY.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J. E., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the ACM SIGOPS
29th Symposium on Operating Systems Principles, 2023.

Lipkin, B., LeBrun, B., Vigly, J. H., Loula, J., MacIver,
D. R., Du, L., Eisner, J., Cotterell, R., Mansinghka,
V., O’Donnell, T. J., Lew, A. K., and Vieira, T. Fast
controlled generation from language models with adap-
tive weighted rejection sampling, 2025. URL https:
//arxiv.org/abs/2504.05410.

Mohri, M., Pereira, F., and Riley, M. Speech Recogni-
tion with Weighted Finite-State Transducers, pp. 559–
584. Springer Berlin Heidelberg, Berlin, Heidelberg,
2008. ISBN 978-3-540-49127-9. doi: 10.1007/
978-3-540-49127-9 28. URL https://doi.org/
10.1007/978-3-540-49127-9_28.

Pimentel, T. and Meister, C. How to Compute the
Probability of a Word. In Al-Onaizan, Y., Bansal,
M., and Chen, Y.-N. (eds.), Proceedings of the 2024
Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 18358–18375, Miami, Florida,
USA, November 2024. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2024.emnlp-main.
1020. URL https://aclanthology.org/2024.
emnlp-main.1020/.

Riley, M., Allauzen, C., and Jansche, M. OpenFst: An
Open-Source, Weighted Finite-State Transducer Library
and its Applications to Speech and Language. In Proceed-
ings of Human Language Technologies: The 2009 Annual
Conference of the North American Chapter of the Associ-
ation for Computational Linguistics, Companion Volume:
Tutorial Abstracts, pp. 9–10, Boulder, Colorado, May
2009. Association for Computational Linguistics. URL
https://aclanthology.org/N09-4005/.

Sipser, M. Introduction to the Theory of Computation.
Course Technology, Boston, MA, third edition, 2013.
ISBN 113318779X.

Song, X., Salcianu, A., Song, Y., Dopson, D., and Zhou, D.
Fast WordPiece tokenization. In Moens, M.-F., Huang,
X., Specia, L., and Yih, S. W.-t. (eds.), Proceedings of
the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 2089–2103, Online and Punta
Cana, Dominican Republic, November 2021. Association
for Computational Linguistics. doi: 10.18653/v1/2021.
emnlp-main.160. URL https://aclanthology.
org/2021.emnlp-main.160/.

Tran-Thien, V. Fast, high-fidelity llm decoding
with regex constraints, 2024. URL https:
//vivien000.github.io/blog/journal/
llm-decoding-with-regex-constraints.
html. [Online; accessed 30-May-2025].

Wikipedia contributors. Stars and bars (combi-
natorics) — Wikipedia, the free encyclopedia.
https://en.wikipedia.org/w/index.php?

11

https://arxiv.org/abs/2501.10868
https://arxiv.org/abs/2501.10868
https://github.com/ggerganov/llama.cpp
https://github.com/ggerganov/llama.cpp
https://aclanthology.org/W16-2409/
https://aclanthology.org/W16-2409/
https://github.com/guidance-ai/guidance
https://github.com/guidance-ai/guidance
https://aclanthology.org/2022.lrec-1.692/
https://aclanthology.org/2022.lrec-1.692/
https://bjoern.hoehrmann.de/utf-8/decoder/dfa/
https://bjoern.hoehrmann.de/utf-8/decoder/dfa/
https://aclanthology.org/2021.eacl-demos.3/
https://aclanthology.org/2021.eacl-demos.3/
https://openreview.net/forum?id=BDBdblmyzY
https://openreview.net/forum?id=BDBdblmyzY
https://arxiv.org/abs/2504.05410
https://arxiv.org/abs/2504.05410
https://doi.org/10.1007/978-3-540-49127-9_28
https://doi.org/10.1007/978-3-540-49127-9_28
https://aclanthology.org/2024.emnlp-main.1020/
https://aclanthology.org/2024.emnlp-main.1020/
https://aclanthology.org/N09-4005/
https://aclanthology.org/2021.emnlp-main.160/
https://aclanthology.org/2021.emnlp-main.160/
https://vivien000.github.io/blog/journal/llm-decoding-with-regex-constraints.html
https://vivien000.github.io/blog/journal/llm-decoding-with-regex-constraints.html
https://vivien000.github.io/blog/journal/llm-decoding-with-regex-constraints.html
https://vivien000.github.io/blog/journal/llm-decoding-with-regex-constraints.html
https://en.wikipedia.org/w/index.php?title=Stars_and_bars_(combinatorics)
https://en.wikipedia.org/w/index.php?title=Stars_and_bars_(combinatorics)
https://en.wikipedia.org/w/index.php?title=Stars_and_bars_(combinatorics)

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Pitfalls, Subtleties, and Techniques in Automata-Based Subword-Level Constrained Generation

title=Stars_and_bars_(combinatorics),
2025. [Online; accessed 30-May-2025].

Willard, B. T. and Louf, R. Efficient guided generation for
large language models, 2023. URL https://arxiv.
org/abs/2307.09702.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue,
C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz,
M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jer-
nite, Y., Plu, J., Xu, C., Scao, T. L., Gugger, S., Drame,
M., Lhoest, Q., and Rush, A. M. Transformers: State-
of-the-art natural language processing. In Proceedings
of the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations, pp.
38–45, Online, October 2020. Association for Compu-
tational Linguistics. URL https://www.aclweb.
org/anthology/2020.emnlp-demos.6.

Zheng, L., Yin, L., Xie, Z., Sun, C., Huang, J., Yu, C. H.,
Cao, S., Kozyrakis, C., Stoica, I., Gonzalez, J. E., Bar-
rett, C., and Sheng, Y. Sglang: Efficient execution
of structured language model programs, 2024. URL
https://arxiv.org/abs/2312.07104.

12

https://en.wikipedia.org/w/index.php?title=Stars_and_bars_(combinatorics)
https://en.wikipedia.org/w/index.php?title=Stars_and_bars_(combinatorics)
https://arxiv.org/abs/2307.09702
https://arxiv.org/abs/2307.09702
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://arxiv.org/abs/2312.07104

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Pitfalls, Subtleties, and Techniques in Automata-Based Subword-Level Constrained Generation

A. More About Our Package
A.1. Pipeline

All features are available through the Pipeline class, which encapsulates a model and a tokenizer from the
TRANSFORMERS library.

from constrain import Pipeline

pipeline = Pipeline("meta-llama/Llama-2-7b-hf")

A.2. Constraint

Constraints are represented by the Constraint class, which is instantiated from either a regular expression or a finite-state
machine. Enforcing canonicality is as simple as enabling the canonical option.

from constrain import Constraint

"What is the capital of Germany?"

Enforce one of the given options and canonicality
constraint = Constraint(regex="Cologne|Berlin|Bonn|Munich", canonical=True)

More complex cases may be hard to express in the form of a regular expression and transforming an automaton to regex
is costly. Therefore, the Constraint accepts an automaton directly. By default, our package supports interegular
automata, but the engine can be swapped out by subclassing the FSMAdapter.

from interegular import parse_pattern

"What was the capital of Germany before 1990?"

berlin = parse_pattern(".*Berlin.*").to_fsm()
anything = parse_pattern(".*").to_fsm()

ban_berlin = anything - berlin

constraint = Constraint(fsm=ban_berlin)

A.3. Functions

The generate function expects a prompt or a list of prompts and supports the common sampling parameters do sample,
top k, top p, temperature, max new tokens.

pipeline.generate(
"What is the capital of Germany?",
do_sample=True,
temperature=0.8

)

For instruction-tuned models, we should follow the model-specific pattern, which is provided as a convenient function in the
TRANSFORMERS library with apply chat template . One issue with leaving the chat templating to the user is that
different templates behave differently, and some automatically add special tokens. If we expect the prompts to be strings,
checking whether special tokens are already part of the string is complicated. Therefore, all functions accept message
dictionaries, to which the template is internally applied.

messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "What is the capital of Germany?"},
{"role": "assistant", "content": "Answer:"}

]

pipeline.generate(messages)

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Pitfalls, Subtleties, and Techniques in Automata-Based Subword-Level Constrained Generation

By passing a Constraint object, the prompt or prompts are constrained.

cities = Constraint(
regex="Berlin|Frankfurt"

)

pipeline.generate(
"What is the capital of Germany?",
constraint=cities

)

To analyze alternative continuations, i.e., “how would the model proceed if the first sampled tokens were t1t2 . . . tk”, we
can pass the response prefix parameter.

tokens = ["_", "B"]
OR
tokens = [29871, 29933]

pipeline.generate(
"What is the capital of Germany?",
response_prefix=tokens

)

As a core principle, all functions return log-probabilities. That means, for the above generation, we are not just provided
with the decoded output, but also with step-wise and cumulative log probabilities both for the unconstrained and constrained
scenario. Returning the probabilities is not only helpful for a researcher analyzing hand-selected scenarios, but also serves as
a starting point for computing the marginal probability of a string. The compute probability mass function returns
the total mass of a constraint for a given prompt.

{
"strings": ["Berlin"],
"tokens": {

"ids": [[2292, 1915]],
"strs": [["_Ber", "lin"]],

},
"log_probs": {

"unconstrained": {
"per_token": [[-1.2, -0.2]],
"cumulative": [-1.4],

},
"constrained": {

"per_token": [[-0.6, -0.1]],
"cumulative": [-0.7],

}
}

}

By passing token sequences to compute probability, we obtain the probabilities of each sequence, constrained and
unconstrained. This is used internally for marginalizing over canonical constraints, as they are enumerable and do not require
costly sampling.

pipeline.compute_probability(
prompt, tokens=[["_Col", "ogne"]]

)

output
{

"unconstrained": {
"per_token": ...,
"cumulative": ...,

},
"constrained": {

"per_token": ...,
"cumulative": ...,

},
}

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Pitfalls, Subtleties, and Techniques in Automata-Based Subword-Level Constrained Generation

A.4. Character Restriction

As described in Sections 3.3 and 4.2, it can be useful to restrict the characters to a certain subset in order to concentrate
probability mass in the desired output tokens and speed up automaton traversal and decoding. The allowed characters can be
globally restricted to a custom set of characters, which propagates through tokenization and transduction.

pipeline.restrict_characters_to("hangul")
OR
pipeline.restrict_characters_to(

chars=["a...zäöüß"]
)

B. Example Issues in Existing Works

Package Issue Title (Linked) Summary Relevant Section

OUTLINES
Constrained generation does not ac-
count for tokenizers prepending spe-
cial symbols

The constrained generation mecha-
nism in OUTLINES fails to produce
canonical tokenizations when using
tokenizers that prepend special sym-
bols (e.g., SENTENCEPIECE-based
tokenizers like LLAMA and PHI).

3.1; This is an issue with tokenizer
preprocessing.

GUIDANCE
Regex in guidance.gen fails to handle
non-ASCII characters like German
umlauts

Regex rules in guidance.gen fail
to handle non-ASCII characters (e.g.,
German umlauts such as ä, ö, ü, ß).
Even when explicitly included in the
regex pattern, the generated text sys-
tematically omits these characters.

4.1; This is a rough edge between
the tokenizer and parser implementa-
tions.

XGRAMMAR
MaxLength not respected The maxLength constraint speci-

fied in the JSON schema is not en-
forced.

3.2; This is made trivial in our frame-
work by adding a modular constraint
of Γk.

Unable to match unicode chars Unicode characters are not cor-
rectly handled, and attempts to
define grammar rules that ac-
cept a wide Unicode range (e.g.,
[a-zA-Zà-ÿÀ-Ö0-9]) fail to
match expected inputs, even with
wildcard patterns.

4.1. This is a rough edge between
the tokenizer and parser implementa-
tions.

Table 4: A small list of representative errors that are caused by the difficulties of properly implementing parsers, tokenizers,
and complicated schema (for the users). Many of these are trivially fixed by modular finite-state constraints but are not easily
integrated into the custom parsers that do not use an automata theory foundation.

15

https://github.com/dottxt-ai/outlines-core/issues/188
https://github.com/dottxt-ai/outlines-core/issues/188
https://github.com/dottxt-ai/outlines-core/issues/188
https://github.com/guidance-ai/guidance/issues/1091
https://github.com/guidance-ai/guidance/issues/1091
https://github.com/guidance-ai/guidance/issues/1091
https://github.com/mlc-ai/xgrammar/issues/131
https://github.com/mlc-ai/xgrammar/issues/138

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Pitfalls, Subtleties, and Techniques in Automata-Based Subword-Level Constrained Generation

C. Example JSON Schema
We use the following JSON schema to measure the effect of canonicality and skipping decoding during generation for Table
2.

{
"alias": "[a-z]{1,5}",
"description": "[A-Z][a-z][0-9][\w\s,.!?]{1,3}",
"type": "(Bug|Dark|Dragon|Electric|Fairy|Fighting|Fire|Flying|Ghost|Grass|Ground|Ice|Normal|Poison|Psychic|Rock|

Steel|Stellar|Water)",
"height_m": [0-9]{1,2}\.[0-9]{1},
"weight_kg": [0-9]{1,3}\.[0-9]{1},
"evolution_stage": "(Basic|Stage 1|Stage 2)",
"legendary": "(true|false)",
"abilities": [

"(Overgrow|Blaze|Torrent|Shield Dust|Intimidate|Levitate|Pressure|Static)"(, "(Overgrow|Blaze|Torrent|Shield
Dust|Intimidate|Levitate|Pressure|Static)"){0,6}

]
}

16

