
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Extrapolation by Association: Length Generalization Transfer in Transformers

Anonymous Authors1

Abstract

Transformer language models have demonstrated impressive generalization capabilities in natural language
domains, yet we lack a fine-grained understanding of how such generalization arises. In this paper, we investigate
length generalization—the ability to extrapolate from shorter to longer inputs—through the lens of task association.
We find that length generalization can be transferred across related tasks. That is, training a model with a longer
and related auxiliary task can lead it to generalize to unseen and longer inputs from some other target task. We
demonstrate this length generalization transfer across diverse algorithmic tasks, including arithmetic operations,
string transformations, and maze navigation. Our results show that transformer models can inherit generalization
capabilities from similar tasks when trained jointly. Moreover, we observe similar transfer effects in pretrained
language models, suggesting that pretraining equips models with reusable computational scaffolding that facilitates
extrapolation in downstream settings. Finally, we provide initial mechanistic evidence that length generalization
transfer correlates with the re-use of the same attention heads between the tasks. Together, our findings deepen
our understanding of how transformers generalize to out-of-distribution inputs and highlight the compositional
reuse of inductive structure across tasks.

1. Introduction
A central theme of transformer language models is their ability to generalize. By scaling up data and model size, large
language models develop emergent abilities that exceed expectations (Wei et al., 2022). They can also transfer knowledge
across domains and tasks (OpenAI, 2024; Brown et al., 2020; Sanh et al., 2022). While it is widely believed that language
models are not simply parroting or memorizing their training data, we still lack a fine-grained understanding of how language
models apply skills learned during training to potentially unseen problems.

The out-of-distribution (OOD) generalization capabilities of language models have garnered much attention in the lit-
erature (Anil et al., 2022; Zhang et al., 2024; Yang et al., 2024). In this work, we study a canonical example of OOD
generalization, length generalization, which is the ability to generalize from shorter to longer inputs (Zhou et al., 2023).
There is a long line of work focusing on improving length generalization of arithmetic tasks in transformers, which has
spurred innovations in positional encoding schemes and transformer architecture (Cho et al., 2024; McLeish et al., 2024).
Closely related is the concept of compositional generalization, where the model combines previously learned skills to solve
new problems (Yang et al., 2024; Xu et al., 2024).

A
c
c

Len

Aux

A
c
c

Len

Main A
c
c
u
r
a
c
y

Length

Main

Aux

Generalization Transfer

Trained Separately: Trained Together:

Figure 1: Trained separately, each task fails to generalize to
longer inputs. When trained jointly, the main task inherits the
generalization range of the auxiliary task.

In this work, we study a new mechanism underlying
length generalization: extrapolation by association. We
hypothesize that, when faced with a problem outside its
training distribution, language models can use related
skills to solve it. Specifically, we ask: Can generalization
to longer inputs in one task transfer to another task that
is only trained on short examples?

To showcase the length generalization transfer capabili-
ties in transformers, we choose three distinct groups of
synthetic tasks. The tasks in each group are related such
that they represent similar algorithmic procedures. Within
each group, we train multiple tasks together, and crucially,
we train an “auxiliary task” at a longer length and a “main
task” at a shorter length. Using this setup, we observe

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Extrapolation by Association: Length Generalization Transfer in Transformers

that the shorter main task generalizes to the length of the longer auxiliary task when trained together. See Section 2 for the
tasks and respective lengths used in each experiment.

Contributions

1. We present the phenomenon of length generalization transfer, in which transformer models trained on related tasks
exhibit extrapolation behavior not present when trained on the target task alone, providing new insights on the effect of
multitask training on length generalization.

2. We show that the same phenomenon exists in pretrained language models, and that natural language pretraining
transfers length generalization capabilities to synthetic downstream tasks.

2. Experimental Settings
Models. For from-scratch experiments, we use transformer models with 6 heads and 6 layers, following the Llama
architecture (AI@Meta, 2024), which uses Rotary Positional Embeddings (RoPE) (Su et al., 2023) for position encoding.
For experiments with pretrained models, we use SmolLM (Allal et al., 2024), which provides access to intermediate
checkpoints during pretraining, allowing us to investigate how length generalization transfer evolves over time.

Tasks. We evaluate length generalization transfer across three categories of algorithmic problems: arithmetic, string
manipulation, and maze solving. Our tasks include:

• Arithmetic Tasks

– reverse add – Compute the sum of two integers, with least significant digit first.

– no carry – Compute digit-wise sums modulo 10, without carry propagation.

– carry only – Output a binary mask indicating carry positions during addition.

– reverse subtract – Compute the digit-wise difference between two numbers, with least significant digit first.

– n× 3 CoT multiply – Multiply an n-digit number by 3, with chain-of-thought steps.

• String Manipulation Tasks

– copy – Return the input string unchanged.

– MQAR (Multi-Query Associative Recall) (Arora et al., 2023) – Given a repeated query substring, retrieve the next
character following each occurrence.

– flipcase – Flip the case of all alphabetic characters (lower ↔ upper).

– reverse – Reverse the character order of the input string.

– flipcase-reverse – Apply both reversal and case-flipping to the input string.

• Maze Tasks (Appendix A)

– DFS trace – Simulate a depth-first search from a start node to a goal node in a maze.

– shortest path – Return the optimal (shortest) path between a start and goal node.

Data sampling and Task Length. Since we train under a multi-task setting, at each iteration, a task is sampled uniformly
at random from a predefined task group. For the selected task, an individual training example is constructed based on a
single governing parameter: length, which determines the size or complexity of the problem instance. The length of each
example is sampled uniformly from a specified range for that task. All training data is generated on-the-fly during training.

Since the notion of length varies across task types, we define length for each task as:

• Addition Tasks: the maximum number of digits in both operands.

• String Tasks: the number of characters in the input string.

• Maze Tasks: the number of nodes in the input maze graph. See Appendix A for further details.

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Extrapolation by Association: Length Generalization Transfer in Transformers

Task Groups. We construct task groups by pairing a main task, trained on short sequence lengths, with one or more
auxiliary tasks, trained on longer sequences. The main goal is to evaluate whether training on a related auxiliary task
improves the main task’s ability to generalize to longer inputs, despite never seeing such lengths during training. The list of
task groups are:

Main Task (Train Length) Auxiliary Task(s) (Train Length)
reverse add (16) no carry & carry only (32)
reverse add (16) reverse subtract (32)
reverse add (8) n× 3 CoT multiply (16)
string copy (16) MQAR (32)
capitalize-reverse (16) capitalize (32), reverse (32)
DFS trace (32) shortest path (64)

Training and Evaluation. Each example consists of an input-output pair. We use a loss mask to train only on output
tokens (and for MQAR, only on answer characters). At test time, we evaluate using exact match accuracy on a fixed test set
of 1024 examples. For each configuration, we report results across 5 random initialization seeds but the dataset is kept the
same. Full experimental configurations and hyperparameter details are provided in Appendix E.

3. Length Generalization Transfer in Algorithmic Tasks
In this section, we demonstrate that while length generalization is often difficult for algorithmic tasks, it can emerge through
transfer when the model is co-trained on longer auxiliary tasks. We present results from arithmetic and maze navigation
tasks, with additional analyses of string manipulation tasks available in Appendix 3.2.

3.1. Arithmetic Tasks

Reverse addition has become a popular synthetic task for studying length generalization (Lee et al., 2023; Shen et al.,
2023; Zhou et al., 2023; 2024; Cho et al., 2024; McLeish et al., 2024; Lee et al., 2025) in Transformers. The task involves
calculating the sum of two randomly sampled integers, and length generalization in this task involves training on examples
up to some fixed length, and generalizing on test data beyond the training lengths. Here, we adopt the reverse add

format proposed by (Lee et al., 2023), where the operands and the sum are reversed for faster learning. For the auxiliary
tasks, we consider (1) reverse subtract , which computes the difference between two operands, (2) no carry ,
which computes the digit-wise sum mod 10, ignoring the carries, and (3) carry only , which computes the locations
where a carry happens in the addition.

As shown in Figure 2, models trained only on reverse add (Figure 2d) struggle to generalize beyond the training length.
However, when co-trained with longer auxiliary tasks (Figures 2a, 2b, 2c), the model successfully extrapolates, often
matching the auxiliary task’s generalization range. This provides empirical evidence that length generalization can transfer
across tasks. It is worth noting that the generalization behavior is not entirely robust: different random seeds yield noticeably
different outcomes, suggesting unstable training dynamics. We discuss this instability further in Appendix C.4.

3.2. String Manipulation Tasks

We observe transfer effects similar to arithmetic tasks on two string task groups. The tasks include: string copy , which
returns the input unchanged; MQAR (Multi-Query Associative Recall) (Arora et al., 2023), where the model retrieves the
next character given a random substring; reverse , which reverses character order; capitalize , which inverts letter
case; and capitalize-reverse , combining case inversion and reversal.

Figure 3 shows that when trained on main tasks alone (Figures 3b, 3d), the model does not generalize beyond the training
range. On the other hand, training with auxiliary tasks enables substantial extrapolation (as shown in Figures 3a and 3c).

3.3. Maze Tasks

We further present results on the maze task group Shortest Path and DFS Trace in Appendix A.

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Extrapolation by Association: Length Generalization Transfer in Transformers

10 20 30 40
Length

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

Reverse Add (main)
No Carry (aux)
Only Carry (aux)

(a) Aux: no carry & carry only

10 20 30 40
Length

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

Reverse Add (main)
Reverse Sub (aux)

(b) Aux: reverse subtract

5 10 15 20
Length

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

Reverse Add (main)
n × 3 COT Mult (aux)

(c) Aux: n× 3 CoT multiply

10 20 30 40
Length

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

Reverse Add (main)

(d) reverse add (No Aux Tasks)

Figure 2: Length generalization results for addition-related task groups. The main task is reverse add , with performance
shown when trained with different auxiliary tasks. Each model is trained with 5 random seeds; best-performing runs are
shown in bold. The dashed vertical line indicates the maximum training length for each task. When trained alone (d), the
model fails to generalize beyond training length. Co-training with related auxiliary tasks (a-c) enables extrapolation to
longer inputs.

10 20 30 40 50
Length

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

Copy String (main)
MQAR (aux)

(a) Main: string copy , Aux: MQAR

10 20 30 40 50
Length

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

Copy String (main)

(b) string copy (No Aux Tasks)

10 20 30 40 50
Length

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy Capitalize-Reverse (main)

Capitalize (aux)
Reverse (aux)

(c) Aux: capitalize & reverse

10 20 30 40 50
Length

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

Capitalize-Reverse (main)

(d) capitalize-reverse (No Aux Tasks)

Figure 3: Performance plots for string tasks. When trained alone (b, d), models fail to generalize beyond their training range.
Co-training with auxiliary tasks (a, c) enables substantial length extrapolation.

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Extrapolation by Association: Length Generalization Transfer in Transformers

References
Amirhesam Abedsoltan, Huaqing Zhang, Kaiyue Wen, Hongzhou Lin, Jingzhao Zhang, and Mikhail Belkin. Task

generalization with autoregressive compositional structure: Can learning from d tasks generalize to dt tasks? arXiv
preprint arXiv:2502.08991, 2025.

Kartik Ahuja and Amin Mansouri. On provable length and compositional generalization, 2024. URL https://arxiv.
org/abs/2402.04875.

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/llama3/blob/main/
MODEL_CARD.md.

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Leandro von Werra, and Thomas Wolf. Smollm - blazingly fast and
remarkably powerful, 2024.

Cem Anil, Yuhuai Wu, Anders Johan Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Venkatesh Ramasesh, Ambrose
Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length generalization in large language models.
In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information
Processing Systems, 2022. URL https://openreview.net/forum?id=zSkYVeX7bC4.

Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys Johnson, Michael Poli, James Zou, Atri Rudra, and Christopher Ré.
Zoology: Measuring and improving recall in efficient language models, 2023. URL https://arxiv.org/abs/
2312.04927.

Pranjal Awasthi and Anupam Gupta. Improving length-generalization in transformers via task hinting, 2023. URL
https://arxiv.org/abs/2310.00726.

Federico Barbero, Alex Vitvitskyi, Christos Perivolaropoulos, Razvan Pascanu, and Petar Velivckovi’c. Round and round
we go! what makes rotary positional encodings useful? ArXiv, abs/2410.06205, 2024.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL https://arxiv.org/abs/
2005.14165.

Nick Cammarata, Gabriel Goh, Shan Carter, Chelsea Voss, Ludwig Schubert, and Chris Olah. Curve circuits. Distill, 2021.
doi: 10.23915/distill.00024.006. https://distill.pub/2020/circuits/curve-circuits.

Hanseul Cho, Jaeyoung Cha, Pranjal Awasthi, Srinadh Bhojanapalli, Anupam Gupta, and Chulhee Yun. Position
coupling: Improving length generalization of arithmetic transformers using task structure. 2024. URL https:
//api.semanticscholar.org/CorpusID:273695226.

Yiran Ding, L. Zhang, Chengruidong Zhang, Yuanyuan Xu, Ning Shang, Jiahang Xu, Fan Yang, and Mao Yang. Longrope:
Extending llm context window beyond 2 million tokens. ArXiv, abs/2402.13753, 2024.

Shaoxiong Duan, Yining Shi, and Wei Xu. From interpolation to extrapolation: Complete length generalization for arithmetic
transformers. arXiv preprint arXiv:2310.11984, 2023.

Yann Dubois, Gautier Dagan, Dieuwke Hupkes, and Elia Bruni. Location attention for extrapolation to longer sequences.
arXiv preprint arXiv:1911.03872, 2019.

Ying Fan, Yilun Du, Kannan Ramchandran, and Kangwook Lee. Looped transformers for length generalization. arXiv
preprint arXiv:2409.15647, 2024.

Arian Hosseini, Alessandro Sordoni, Daniel Toyama, Aaron Courville, and Rishabh Agarwal. Not all llm reasoners are
created equal. arXiv preprint arXiv:2410.01748, 2024.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality decomposed: How do neural networks
generalise? Journal of Artificial Intelligence Research, 67:757–795, 2020.

5

https://arxiv.org/abs/2402.04875
https://arxiv.org/abs/2402.04875
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://openreview.net/forum?id=zSkYVeX7bC4
https://arxiv.org/abs/2312.04927
https://arxiv.org/abs/2312.04927
https://arxiv.org/abs/2310.00726
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://api.semanticscholar.org/CorpusID:273695226
https://api.semanticscholar.org/CorpusID:273695226

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Extrapolation by Association: Length Generalization Transfer in Transformers

Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Payel Das, and Siva Reddy. The impact of
positional encoding on length generalization in transformers. Advances in Neural Information Processing Systems, 36,
2024.

Nayoung Lee, Kartik Sreenivasan, Jason D Lee, Kangwook Lee, and Dimitris Papailiopoulos. Teaching arithmetic to small
transformers. arXiv preprint arXiv:2307.03381, 2023.

Nayoung Lee, Ziyang Cai, Avi Schwarzschild, Kangwook Lee, and Dimitris Papailiopoulos. Self-improving transformers
overcome easy-to-hard and length generalization challenges, 2025. URL https://arxiv.org/abs/2502.01612.

Mingchen Li, Xuechen Zhang, Yixiao Huang, and Samet Oymak. On the power of convolution-augmented transformer. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pages 18393–18402, 2025.

Shanda Li, Chong You, Guru Guruganesh, Joshua Ainslie, Santiago Ontanon, Manzil Zaheer, Sumit Sanghai, Yiming
Yang, Sanjiv Kumar, and Srinadh Bhojanapalli. Functional interpolation for relative positions improves long context
transformers. arXiv preprint arXiv:2310.04418, 2023.

Sean McLeish, Arpit Bansal, Alex Stein, Neel Jain, John Kirchenbauer, Brian R Bartoldson, Bhavya Kailkhura, Abhinav
Bhatele, Jonas Geiping, Avi Schwarzschild, et al. Transformers can do arithmetic with the right embeddings. arXiv
preprint arXiv:2405.17399, 2024.

Benjamin Newman, John Hewitt, Percy Liang, and Christopher D Manning. The eos decision and length extrapolation.
arXiv preprint arXiv:2010.07174, 2020.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds, Danny Hernandez,
Scott Johnston, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark,
Jared Kaplan, Sam McCandlish, and Chris Olah. In-context learning and induction heads, 2022. URL https:
//arxiv.org/abs/2209.11895.

OpenAI. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context window extension of large
language models. ArXiv, abs/2309.00071, 2023.

Ofir Press, Noah A Smith, and Mike Lewis. Train short, test long: Attention with linear biases enables input length
extrapolation. arXiv preprint arXiv:2108.12409, 2021.

Philip Quirke and Fazl Barez. Understanding addition in transformers. arXiv preprint arXiv:2310.13121, 2023.

Philip Quirke, Clement Neo, and Fazl Barez. Arithmetic in transformers explained, 2025. URL https://arxiv.org/
abs/2402.02619.

Rahul Ramesh, Ekdeep Singh Lubana, Mikail Khona, Robert P Dick, and Hidenori Tanaka. Compositional capabilities of
autoregressive transformers: A study on synthetic, interpretable tasks. In Forty-first International Conference on Machine
Learning.

Anian Ruoss, Grégoire Delétang, Tim Genewein, Jordi Grau-Moya, Róbert Csordás, Mehdi Bennani, Shane Legg, and Joel
Veness. Randomized positional encodings boost length generalization of transformers. arXiv preprint arXiv:2305.16843,
2023.

Mahdi Sabbaghi, George Pappas, Hamed Hassani, and Surbhi Goel. Explicitly encoding structural symmetry is key to
length generalization in arithmetic tasks. arXiv preprint arXiv:2406.01895, 2024.

Victor Sanh, Albert Webson, Colin Raffel, Stephen Bach, Lintang Sutawika, Zaid Alyafeai, Antoine Chaffin, Arnaud Stiegler,
Arun Raja, Manan Dey, M Saiful Bari, Canwen Xu, Urmish Thakker, Shanya Sharma Sharma, Eliza Szczechla, Taewoon
Kim, Gunjan Chhablani, Nihal Nayak, Debajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica,
Sheng Shen, Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala Neeraj, Jos Rozen, Abheesht
Sharma, Andrea Santilli, Thibault Fevry, Jason Alan Fries, Ryan Teehan, Teven Le Scao, Stella Biderman, Leo Gao,
Thomas Wolf, and Alexander M Rush. Multitask prompted training enables zero-shot task generalization. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?id=9Vrb9D0WI4.

6

https://arxiv.org/abs/2502.01612
https://arxiv.org/abs/2209.11895
https://arxiv.org/abs/2209.11895
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2402.02619
https://arxiv.org/abs/2402.02619
https://openreview.net/forum?id=9Vrb9D0WI4

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Extrapolation by Association: Length Generalization Transfer in Transformers

Ruoqi Shen, Sébastien Bubeck, Ronen Eldan, Yin Tat Lee, Yuanzhi Li, and Yi Zhang. Positional description matters for
transformers arithmetic. arXiv preprint arXiv:2311.14737, 2023.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: Enhanced transformer with
rotary position embedding, 2023. URL https://arxiv.org/abs/2104.09864.

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Interpretability in the wild: a
circuit for indirect object identification in gpt-2 small, 2022. URL https://arxiv.org/abs/2211.00593.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama, Maarten Bosma,
Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, O. Vinyals, P. Liang, J. Dean, and W. Fedus. Emergent
abilities of large language models. ArXiv, abs/2206.07682, 2022.

David Bruce Wilson. Generating random spanning trees more quickly than the cover time. In Proceedings of the
Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’96, page 296–303, New York, NY, USA,
1996. Association for Computing Machinery. ISBN 0897917855. doi: 10.1145/237814.237880. URL https:
//doi.org/10.1145/237814.237880.

Zhuoyan Xu, Zhenmei Shi, and Yingyu Liang. Do large language models have compositional ability? an investigation into
limitations and scalability, 2024. URL https://arxiv.org/abs/2407.15720.

Haoran Yang, Hongyuan Lu, Wai Lam, and Deng Cai. Exploring compositional generalization of large language models. In
Yang (Trista) Cao, Isabel Papadimitriou, Anaelia Ovalle, Marcos Zampieri, Francis Ferraro, and Swabha Swayamdipta,
editors, Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (Volume 4: Student Research Workshop), pages 16–24, Mexico City,
Mexico, June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-srw.3. URL https:
//aclanthology.org/2024.naacl-srw.3/.

Gilad Yehudai, Ethan Fetaya, Eli Meirom, Gal Chechik, and Haggai Maron. From local structures to size generalization in
graph neural networks. In International Conference on Machine Learning, pages 11975–11986. PMLR, 2021.

Dingli Yu, Simran Kaur, Arushi Gupta, Jonah Brown-Cohen, Anirudh Goyal, and Sanjeev Arora. Skill-mix: a flexible and
expandable family of evaluations for ai models, 2023. URL https://arxiv.org/abs/2310.17567.

Xingxuan Zhang, Jiansheng Li, Wenjing Chu, Junjia Hai, Renzhe Xu, Yuqing Yang, Shikai Guan, Jiazheng Xu, and Peng
Cui. On the out-of-distribution generalization of multimodal large language models, 2024. URL https://arxiv.
org/abs/2402.06599.

Haoyu Zhao, Simran Kaur, Dingli Yu, Anirudh Goyal, and Sanjeev Arora. Can models learn skill composition from
examples?, 2025. URL https://arxiv.org/abs/2409.19808.

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Josh Susskind, Samy Bengio, and Preetum Nakkiran.
What algorithms can transformers learn? a study in length generalization. arXiv preprint arXiv:2310.16028, 2023.

Yongchao Zhou, Uri Alon, Xinyun Chen, Xuezhi Wang, Rishabh Agarwal, and Denny Zhou. Transformers can achieve
length generalization but not robustly. arXiv preprint arXiv:2402.09371, 2024.

7

https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2211.00593
https://doi.org/10.1145/237814.237880
https://doi.org/10.1145/237814.237880
https://arxiv.org/abs/2407.15720
https://aclanthology.org/2024.naacl-srw.3/
https://aclanthology.org/2024.naacl-srw.3/
https://arxiv.org/abs/2310.17567
https://arxiv.org/abs/2402.06599
https://arxiv.org/abs/2402.06599
https://arxiv.org/abs/2409.19808

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Extrapolation by Association: Length Generalization Transfer in Transformers

A. Length Generalization Transfer in Maze Tasks
We examine maze-solving tasks as a testbed for length generalization transfer. In our maze experiments, we define a maze as
a spanning tree over a square grid, generated using Wilson’s algorithm (Wilson, 1996), which ensures uniform sampling via
loop-erased random walks. For each problem instance, we randomly sample a start and end node, and the model is tasked
with producing a path from start to end. Maze inputs are represented as adjacency lists, with each node and its neighbors
encoded as individual tokens (e.g., [1], [2], ..., [64]). The output solution path is encoded as a list of nodes in the same
format.

A key challenge in defining length generalization for maze solving is that increasing grid size would introduce unseen node
tokens at test time. To avoid this issue, we fix the underlying grid size and instead define length as the number of nodes
included in the maze graph. We generate partial mazes by running Wilson’s algorithm until the desired number of nodes is
connected, creating valid traversal problems that don’t cover the full grid. For example, to construct a 32-node maze on an
8× 8 grid, we stop the generation process once 32 nodes have been added to the spanning tree. Figure 4 illustrates such
partial mazes with 16, 32, and 64 nodes, and Figure 5 shows the detailed input/output formatting.

Figure 4: 8 × 8 mazes with number of nodes equal to 16, 32, and 64. We define length generalization as the ability to
generalize to mazes with a higher number of nodes.

We consider two maze tasks: (1) shortest path , where the model outputs the shortest path from start to end node, and
(2) DFS trace , where the model simulates a depth-first search traversal (including backtracking). Shortest path is harder
to learn perfectly, as it requires "lookahead" at branch points, while DFS trace allows exploration and backtracking.

A.1. Maze Results

Figure 6 shows that in the multi-task setting, the addition of shortest path helps DFS trace generalize to higher
lengths. The opposite is true as well: DFS trace helps shortest path generalize to higher lengths, as shown in
Section A.1.1.

A.1.1. TRANSFER WITH SWAPPED MAIN AND AUXILIARY TASKS

We consider another maze task group where we the main and auxiliary tasks are reversed relative to Section A. In this
case, the main task is shortest path , and the auxiliary task is DFS trace . As shown in Figure 7, co-training with
the auxiliary task again improves length generalization performance. While shortest path is more difficult than
DFS trace , the model benefits from learning a related traversal strategy.

B. Related Works
Length Generalization. Length generalization concerns extrapolating to longer sequence lengths than those seen during
training (Dubois et al., 2019; Hupkes et al., 2020; Newman et al., 2020; Anil et al., 2022). Previous approaches include
architectural modifications such as specialized positional embeddings (Press et al., 2021; Li et al., 2023; Ruoss et al., 2023;
Kazemnejad et al., 2024; Sabbaghi et al., 2024; Cho et al., 2024; Zhou et al., 2024; McLeish et al., 2024), looping (Fan
et al., 2024), novel attention mechanisms (Duan et al., 2023; Li et al., 2025), and input format augmentation (Zhou et al.,

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Extrapolation by Association: Length Generalization Transfer in Transformers

Figure 5: Detailed example of maze data format. Each node is a random number selected from n× n nodes in the grid.

2023; 2024). Beyond arithmetic, Yehudai et al. (2021) studies length generalization in graph tasks. In contrast, our work
examines a novel mechanism from which length generalization emerges: transfer from related tasks. Finally, closely related
to our work, "task hinting" (Awasthi and Gupta, 2023) trains sorting and increment-by-one tasks with simpler auxiliary
tasks, showing improvements in length generalization performance.

Compositional Capabilities. To explain emergent capabilities in language models, many works study compositional
generalization to understand whether transformers can gain abilities beyond those in the training set. Yu et al. (2023), Zhao
et al. (2025) and Hosseini et al. (2024) design benchmarks testing the ability to combine learned skills to solve compositional
math problems. Ahuja and Mansouri (2024) derive provable guarantees for length and compositional generalization
conditioned on training set diversity. Some works use synthetic tasks to probe compositional generalization. (Ramesh
et al.) show transformers achieve compositional generalization on unseen combinations using a series of bijections and
permutations applied to strings, while (Abedsoltan et al., 2025) show similar results on families of parity functions.

For the specific task of addition, works like Quirke and Barez (2023) and Quirke et al. (2025) identify computational
circuits responsible for compositional subtasks and show transferability of such circuits to the related task of subtraction.

C. Additional Results
C.1. Task Overview

See Figure 8

C.2. Control Tasks

To verify that length generalization transfer does not arise from merely seeing longer inputs, we further test arithmetic tasks
and string operations with control auxiliary tasks. For arithmetic, we use copy-first-op , which follows the addition
format but simply copies the first operand. For string operations, we pair copy with reverse . As expected, length
generalization transfer is not observed with unrelated task (Figure 9).

9

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Extrapolation by Association: Length Generalization Transfer in Transformers

20 30 40 50 60
Length

0.00

0.25

0.50

0.75

1.00
Ac

cu
ra

cy

DFS Trace (main)
Shortest Path (aux)

(a) Main: DFS trace , Aux: shortest path

20 30 40 50 60
Length

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

DFS Trace (main)

(b) DFS trace (No Aux Tasks)

Figure 6: Performance plots for maze tasks. Each model is trained with 5 random seeds; best-performing runs are shown
in bold lines. Co-training DFS trace with shortest path (a) enables generalization to longer lengths compared to
training on DFS trace alone (b).

20 30 40 50 60
Length

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

DFS Trace (main)
Shortest Path (aux)

(a) Main: shortest path , Aux: DFS trace

20 30 40 50 60
Length

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

Shortest Path (main)

(b) shortest path (No Aux Tasks)

Figure 7: Length generalization results for maze task group with reversed task roles. Each model is trained with 5
random seeds; best-performing runs are shown in bold lines. Co-training shortest path with DFS trace (a) leads to
improved generalization over training on shortest path alone (b).

C.3. Length Generalization Transfer from Pretraining

Remarkably, we find that natural language pretraining can serve as an effective form of implicit auxiliary task that enhances
length generalization in synthetic tasks. To explore this, we finetune various checkpoints of SmolLM-360M (Allal et al.,
2024) on addition and shortest path tasks. SmolLM is released by Huggingface and pretrained on a diverse corpus
containing natural language and programming data, which includes long-range structures and dependencies.

Before finetuning, we verify that the model does not already solve these tasks. For addition , a zero-shot evaluation using
prompt-based input results in near-zero accuracy, confirming that the model has not learned this task during pretraining. For
the maze task, all node tokens are newly introduced during finetuning, meaning the entire input format is unseen by the
pretrained model.

We then finetune models from multiple publicly available checkpoints, taken throughout the pretraining process (from step
160K to 2.56M), and evaluate their length generalization performance on out-of-distribution inputs. As shown in Figure 10,
we observe a clear trend: generalization to longer inputs improves steadily with pretraining progress, for both arithmetic
and maze-solving tasks. This suggests that natural language pretraining instills reusable inductive biases that transfer to
novel tasks—even when those tasks have little structural resemblance to natural language. We speculate the extent of
generalization transfer from pretrained models may not be limited to length generalization, but could extend to other forms
of out-of-distribution generalization such as compositional reasoning, distributional shifts, and task complexity. Future work
could explore whether similar transfer effects exist for other generalization challenges.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Extrapolation by Association: Length Generalization Transfer in Transformers

Carry Only: 2050465+7829548=00000011

No Carry: 2050465+7829548=98799030

Reverse Subtract: 2050465+7829548=5878182-

Auxiliary Task

nx3 COT Multiply: 60844671*502=

 030422880+0000000000=

 (03042288)+00216982530=

 (0325817163)

Main Task

Reverse Add: 2050465+7829548=98799041

Arithmetic Tasks

Auxiliary Task

Multi-query AR: kYO4FL8T=O4FL;O4FL;FL8T

Main Task

Copy string: 0NFqtcebkY=0NFqtcebkY

Auxiliary Task

Reverse String: rYPay1IcVT=TVcI1yaPY

Capitalize String: 0kf1bHesDA=0KF1BhESd

Main Task

Capital & Reverse: Pay1IcVT0k=K0tvCi1YAp

String Tasks

Main Task

DFS Trace:

Auxiliary Task

Shortest

Path:

Maze Tasks

[5]:[30],

[13]:[8][58][45],[62]:[18]
[61][29],

...

[28]>[55]?

In: adjacency list Out: shortest path

[28][23][60][34][32][41][55]

[5]:[30],

[13]:[8][58][45],[62]:[18]
[61][29],

...

[28]>[55]?

[28][52][21];

[52][23][60][34][48];

[58][1];

[13][8];

[32][41][55]

In: adjacency list Out: All paths in DFS

Figure 8: Overview of the tasks used in our length generalization transfer experiments, spanning three domains: arithmetic,
string manipulation, and maze solving. Each group consists of a main task trained on shorter sequences and one or more
auxiliary tasks trained on longer ones. We study whether generalization to longer inputs can be transferred from the auxiliary
to the main task.

Additionally, we confirm that length generalization transfer is not limited to small models trained from scratch, but also
emerges in finetuned pretrained models. Additional results across other task groups are provided in Appendix C.6.

C.4. Unstable Training Dynamics in Length Generalization Transfer

As shown in Figures 2, 3, and 6, not all random seeds exhibit successful length generalization transfer. In our experiments
with 5 different seeds per task group, we observe considerable variability in length generalization transfer performance.
The variability is entirely due to different model initializations, since we keep the dataset the same between runs. To better
illustrate this instability, we visualize training dynamics in Figure 11.

The plots show training curves for the addition main task when co-trained with no carry and carry only auxiliary
tasks. During evaluation, we sweep over input lengths from 1 to 36, which is classified into three regimes:

• In-distribution (length 1–16): These inputs fall within the training range for the main task. Accuracy in this regime
improves quickly and remains stable.

• Expected transfer range (length 17–32): These inputs are unseen by the main task but seen by the auxiliary tasks.

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Extrapolation by Association: Length Generalization Transfer in Transformers

10 20 30 40 50
Length

0.00

0.25

0.50

0.75

1.00
Ac

cu
ra

cy

Copy First Op (main)
Reverse Add (aux)

(a) addition & copy-first-op

10 20 30 40 50
Length

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

Copy String (main)
Reverse String (aux)

(b) copy & reverse

Figure 9: Control tasks for (a) addition and (b) string operations. These unrelated task pairs fail to produce length
generalization transfer, confirming that task relatedness is crucial.

10 15 20 25 30
Length

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

step-0
step-160000
step-320000
step-640000
step-1280000
step-2560000

(a) addition task.

20 30 40 50 60
Length

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

step-0
step-160000
step-320000
step-640000
step-1280000
step-2560000

(b) shortest path task.

Figure 10: Finetuning at different SmolLM-360M checkpoints reveals that length generalization transfer improves with
more natural language pretraining.

Performance in this range is highly variable and sensitive to training dynamics.

• Fully OOD (length >32): These inputs are unseen by both the main and auxiliary tasks. As expected, accuracy in this
regime remains low.

C.5. Additional Results on Arithmetic and String Tasks

For task groups with two auxiliary tasks– addition with no carry and carry only , and flipcase-reverse

with flipcase and reverse –we additionally evaluate the effect of training with only one of the auxiliary tasks. As
shown in Figure 12, length generalization transfer performance consistently declines when only a single auxiliary task
is used, compared to co-training with both. Notably, the choice of auxiliary task matters: models trained with the more
relevant auxiliary (no carry or reverse) exhibit stronger generalization than those trained with less relevant ones
(carry only or flipcase). These results reinforce the importance of task alignment for successful transfer.

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Extrapolation by Association: Length Generalization Transfer in Transformers

5 10 15 20
Training Steps (×103)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

seed 45

In-Distribution (len 16)
Unseen len by main (16 < len 32)
Unseen len by both main & aux (len > 32)

5 10 15 20
Training Steps (×103)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

seed 46

In-Distribution (len 16)
Unseen len by main (16 < len 32)
Unseen len by both main & aux (len > 32)

5 10 15 20
Training Steps (×103)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

seed 47

In-Distribution (len 16)
Unseen len by main (16 < len 32)
Unseen len by both main & aux (len > 32)

Figure 11: Training curves for the addition when co-trained with no carry and carry only . Accuracy in the
transfer region (length 17–32) fluctuates significantly, illustrating unstable training dynamics in length generalization
transfer.

10 20 30 40
Length

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

Reverse Add (main)
No Carry (aux)
Only Carry (aux)

(a)

10 20 30 40
Length

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

Reverse Add (main)
No Carry (aux)

(b)

10 20 30 40
Length

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

Reverse Add (main)
Only Carry (aux)

(c)

Top row: A: addition , B: no carry , C: carry only

10 20 30 40 50
Length

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy Capitalize-Reverse (main)

Capitalize (aux)
Reverse (aux)

(d)

10 20 30 40 50
Length

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

Capitalize-Reverse (main)
Capitalize (aux)

(e)

10 20 30 40 50
Length

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

Capitalize-Reverse (main)
Reverse (aux)

(f)

Bottom row: A: flipcase-reverse , B: flipcase , C: reverse

Figure 12: Additional results for arithmetic and string (copy) task groups. Each row shows performance on the main task
(A) when co-trained with: both auxiliary tasks (left), only one of the auxiliary task (middle & right). Performance degrades
when training with only one auxiliary task, especially when the auxiliary is less structurally aligned with the main task.

C.6. Additional Pretrained Model Results

We replicate our length generalization transfer experiments using a pretrained language model, SmolLM-360M, where
we observe similar patterns of length generalization transfer as in the from-scratch setting. Figure 13 presents results
across three arithmetic task groups and one string manipulation group. As with our earlier experiments, co-training with
structurally related auxiliary tasks facilitates generalization beyond the training length. Notably, we also confirm that
control task pairs–such as addition with copy-first-op –do not lead to successful transfer. Orthogonal to the length
generalization transfer, results show that SmolLM-360M exhibits strong inherent generalization in copying tasks (13c, 13d).

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Extrapolation by Association: Length Generalization Transfer in Transformers

10 20 30 40 50
Length

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy
A (3 seeds)
B (3 seeds)

(a) A: addition , B: subtraction

10 20 30 40 50
Length

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

A (3 seeds)
B (3 seeds)
C (3 seeds)

(b) A: addition , B: no carry , C: carry only

10 20 30 40 50
Length

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

A (3 seeds)
B (3 seeds)

(c) A: addition , B: copy-first-op

10 20 30 40 50 60
Length

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy A (3 seeds)

B (3 seeds)
C (3 seeds)

(d) A: flipcase-reverse , B: flipcase , C: reverse

Figure 13: Length generalization transfer with the pretrained model SmolLM-360M. (a–c): Arithmetic task groups. In (a)
and (b), we observe successful transfer from auxiliary to main tasks, mirroring results from from-scratch training. In (c), no
transfer occurs when using the control task copy-first-op , confirming the importance of task relevance. (d): String
manipulation task, showing transfer from flipcase and reverse to flipcase-reverse . Overall, the transfer effect
persists in the pretrained model.

D. Ablations
D.1. Varying Main and Auxiliary Task Lengths

In our previous experiments, we fixed the main task length to 16 and the auxiliary task length to 32. A natural question is:
does length generalization transfer persist across other main–auxiliary length configurations? To investigate this, we define
the generalization gap (Figure 14), a scalar between 0 and 1 that quantifies the discrepancy in performance between the
main and auxiliary tasks across a range of evaluation lengths. A smaller generalization gap indicates stronger transfer, with
a value of 0 implying perfect alignment between the main and auxiliary generalization curves.

First we fix the task group addition , no carry and carry only . Then, we systematically vary the training lengths
of both main and auxiliary tasks across the range {4, 8, 16, . . . , 256} and compute the average generalization gap over three
random seeds. As shown in Figure 14, we find that the transfer effect is most effective when the ratio between the auxiliary
and main lengths is between 0.5 and 2. The intuitive explanation is that, when the difference between task length is too high,
the model will overfit to the task length difference and therefore do not exhibit length transfer.

D.2. Rotary Position Encoding Encourages Length Generalization Transfer

In length generalization literature, NoPE (No Positional Encoding) has often been favored for its length generalization
performance on various tasks. However, in practice, many modern transformer models adopt RoPE (Rotary Positional
Encoding), motivated by its strong empirical performance in long-context settings (Peng et al., 2023; Ding et al., 2024) and
its ability to induce meaningful position-sensitive attention patterns (Barbero et al., 2024).

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Extrapolation by Association: Length Generalization Transfer in Transformers

A
c
c
u
r
a
c
y

Length

Generalization Gap

Sum the between

length vs. accuracy curves

difference

Main

Aux

4 8 16 32 64 128 256
auxiliary length

25
6

12
8

64
32

16
8

4
m

ai
n

le
ng

th

0.91 0.94 0.93 0.87 0.63 0.20 0.00

0.94 0.95 0.91 0.36 0.04 0.00 0.34

0.95 0.87 0.72 0.09 0.00 0.04 0.66

0.90 0.72 0.15 0.00 0.16 0.34 0.87

0.60 0.03 0.00 0.23 0.67 0.90 0.95

0.28 0.00 0.27 0.74 0.91 0.91 0.89

0.00 0.41 0.65 0.78 0.78 0.78 0.75
0.0

0.2

0.4

0.6

0.8

Ge
ne

ra
liz

at
io

n
Ga

p

Figure 14: (a) The generalization gap is defined as the average difference in accuracy between the main and auxiliary tasks
across evaluation lengths, normalized to the range [0, 1]. A lower value indicates better transfer. (b) Generalization gap
across different combinations of main (addition) and auxiliary (no carry & carry only) training lengths. The
transfer effect is strongest when the ratio between auxiliary and main lengths is between 0.5 and 2, as shown by the dark
diagonal band.

To compare the two encoding strategies in the context of length generalization transfer, we re-run our main experiments using
the same model architecture but remove the RoPE component. As shown in Figure 16, RoPE consistently outperforms NoPE
in enabling generalization transfer from auxiliary to main tasks. This finding is orthogonal to the previous result (Kazemnejad
et al., 2024) that NoPE is better suited for length generalization and potentially explains the superior performance of RoPE
in real-world models and tasks.

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Extrapolation by Association: Length Generalization Transfer in Transformers

5 10 15 20 25 30 35 40
Length

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

Reverse Add (main)
No Carry (aux)
Only Carry (aux)

(a) Main: addition , Aux: no carry & carry only

5 10 15 20 25 30 35 40
Length

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Reverse Add (main)
Reverse Sub (aux)

(b) Main: addition , Aux: subtraction

10 20 30 40 50
Length

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Capitalize-Reverse (main)
Capitalize (aux)
Reverse (aux)

(c) Main: flipcase-reverse , Aux: flipcase &

reverse

10 20 30 40 50
Length

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Copy String (main)
MQAR (aux)

(d) Main: copy , Aux: MQAR

Figure 15: Length generalization transfer results using NoPE model, under the same task settings. The transfer effect is
notably weaker in most tasks.

Reverse Add,
No Carry,
Only Carry

Reverse Add,
Reverse Sub

Capitalize-
Reverse

Copy,
MQAR

Task

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

G
en

er
al

iz
at

io
n

G
ap

RoPE Model
NoPE Model

Figure 16: Comparison of generalization gap across several task groups shows that NoPE leads to significantly weaker
transfer compared to RoPE.

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Extrapolation by Association: Length Generalization Transfer in Transformers

D.3. Evidence of Circuit Sharing Between Tasks

In Section C.2, we established that mere exposure to longer inputs is insufficient for length generalization transfer–structural
alignment between tasks is crucial. In this section, we present evidence that length generalization transfer coincides with the
sharing of internal mechanisms between tasks. Specifically, we study whether transformer models reuse similar attention
circuits across tasks when length generalization transfer occurs. We focus on two measures of similarity between task
mechanisms:

• Attention matrix difference: the sum of entry-wise absolute differences between the attention matrices at each head
between the two tasks.

• Attention head mean-ablation map difference: for each attention head, we measure the drop in task accuracy after
replacing its output with the mean activation across the batch. This yields a 6× 6 matrix (corresponding to 6 layers
and 6 heads of the model) per task, representing the importance of each head. We then compute the average absolute
difference between the two matrices to assess divergence in head importance.

The methodology used in our head ablation studies is known as activation patching. Prior works such as Wang et al. (2022);
Cammarata et al. (2021); Olsson et al. (2022) have developed this technique to uncover the underlying computational circuits
in language models.

Higher values for these metrics indicate more divergent computational mechanisms between tasks. We track how these
metrics evolve over training and compare with the generalization gap (defined in Figure 14). Across different checkpoints
that yield varying levels of generalization, we find that the attention similarity metrics correlate with the generalization
gap. This suggests that when generalization improves, the internal attention patterns become more aligned across tasks,
indicating increased sharing of computational mechanisms. The following analysis demonstrates this correlation across
different task types.

D.3.1. EXAMPLE ATTENTION HEAD ABLATION MAPS

We first visualize the attention-head mean-ablation maps for a pair of related tasks— addition and
subtraction —across four training checkpoints (Figure 17). Each 6 × 6 matrix represents the importance of each

attention head: the value at position (i, j) indicates the drop in accuracy when head i in layer j is replaced with the mean
activation across the batch. These matrices reflect the reliance of each task on specific attention heads. If two tasks reuse the
same attention circuitry, their ablation maps should be similar. The scalar quantity used in subsequent comparisons is the
average absolute difference between two such matrices.

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Extrapolation by Association: Length Generalization Transfer in Transformers

0 1 2 3 4 5

0
1

2
3

4
5

-0.29 -0.29 -0.29 -0.25 -0.19 -0.25

-0.27 -0.10 -0.29 -0.25 -0.02 -0.17

-0.07 -0.05 -0.06 -0.19 -0.11 -0.07

-0.19 -0.09 -0.06 -0.06 -0.11 -0.02

-0.04 -0.04 -0.07 -0.29 -0.29 -0.16

-0.02 -0.02 -0.02 -0.09 -0.04 -0.01
0.25

0.20

0.15

0.10

0.05

(a) Task A, Ckpt 2000

0 1 2 3 4 5

0
1

2
3

4
5

-0.09 -0.27 -0.27 -0.27 -0.16 -0.24

0.00 -0.04 -0.27 -0.02 0.03 0.01

0.01 -0.13 0.00 0.03 0.01 -0.02

-0.04 -0.05 -0.05 -0.09 -0.05 -0.01

-0.08 -0.05 -0.04 -0.27 -0.25 -0.01

0.01 0.00 0.00 -0.15 -0.02 0.01 0.25

0.20

0.15

0.10

0.05

0.00

(b) Task A, Ckpt 8000

0 1 2 3 4 5

0
1

2
3

4
5

-0.07 -0.89 -0.89 -0.89 -0.06 -0.83

0.03 -0.84 -0.89 -0.10 -0.23 -0.22

0.01 -0.22 -0.02 -0.02 -0.33 -0.07

-0.16 -0.28 0.02 -0.19 0.00 0.00

-0.79 0.01 0.01 -0.89 -0.85 -0.60

-0.04 0.00 0.00 -0.87 -0.02 -0.01 0.8

0.6

0.4

0.2

0.0

(c) Task A, Ckpt 16000

0 1 2 3 4 5

0
1

2
3

4
5

0.00 -0.98 -0.98 -0.98 0.00 -0.82

0.00 -0.95 -0.98 0.00 0.00 -0.09

0.01 -0.04 0.00 0.01 -0.45 0.01

0.00 -0.51 0.00 -0.09 0.00 0.01

-0.86 -0.02 -0.02 -0.98 -0.79 -0.34

-0.02 0.00 0.00 -0.90 0.00 0.00
0.8

0.6

0.4

0.2

0.0

(d) Task A, Ckpt 20000

0 1 2 3 4 5

0
1

2
3

4
5

-0.28 -0.50 -0.50 -0.45 -0.39 -0.48

-0.02 -0.07 -0.50 -0.29 -0.06 -0.35

-0.01 0.01 -0.04 -0.24 -0.02 -0.02

-0.08 -0.14 0.07 -0.05 -0.06 -0.01

-0.01 0.01 0.00 -0.50 -0.50 -0.06

-0.15 -0.02 0.00 -0.34 -0.10 0.04
0.5

0.4

0.3

0.2

0.1

0.0

(e) Task B, Ckpt 2000

0 1 2 3 4 5

0
1

2
3

4
5

-0.12 -0.61 -0.61 -0.61 -0.03 -0.59

-0.09 -0.12 -0.61 -0.09 -0.19 -0.02

-0.06 -0.22 -0.02 -0.02 -0.12 -0.01

-0.06 -0.11 0.03 -0.08 -0.03 -0.05

-0.10 0.02 -0.02 -0.61 -0.56 -0.14

-0.08 0.08 0.01 -0.42 -0.05 -0.08
0.6

0.5

0.4

0.3

0.2

0.1

0.0

(f) Task B, Ckpt 8000

0 1 2 3 4 5

0
1

2
3

4
5

-0.04 -0.93 -0.93 -0.93 0.00 -0.90

-0.03 -0.92 -0.93 -0.03 -0.28 -0.13

-0.04 -0.71 -0.01 0.01 -0.23 -0.05

-0.26 -0.29 0.00 -0.14 -0.02 -0.05

-0.90 -0.02 -0.28 -0.93 -0.88 -0.81

-0.38 -0.06 -0.01 -0.92 -0.06 -0.56
0.8

0.6

0.4

0.2

0.0

(g) Task B, Ckpt 16000

0 1 2 3 4 5

0
1

2
3

4
5

0.00 -1.00 -1.00 -1.00 0.00 -0.75

-0.01 -0.96 -1.00 0.00 0.00 -0.01

0.00 -0.05 0.00 -0.01 -0.32 -0.01

-0.03 -0.41 0.00 -0.12 -0.02 0.00

-0.73 0.00 -0.15 -1.00 -0.78 -0.31

-0.03 -0.01 0.00 -0.62 0.00 -0.58
1.0

0.8

0.6

0.4

0.2

0.0

(h) Task B, Ckpt 20000

Figure 17: Mean-ablation maps for addition and subtraction across training checkpoints. Each (i, j) entry indicates
the accuracy drop after mean-ablating head i in layer j. Similar ablation maps suggest that both tasks rely on overlapping
computational circuits.

D.3.2. CORRELATION ANALYSIS ACROSS TASK TYPES

We now compare how two metrics (attention matrix difference and ablation map difference) track with the generalization
gap across training checkpoints for different task categories.

String Tasks. As shown in Figure 18, the attention matrix difference does not correlate well with generalization in string
task groups. However, the ablation map difference shows a clearer trend: as generalization improves, ablation similarity
increases. This suggests that shared head usage, rather than raw attention weights, better reflects functional similarity across
tasks.

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Extrapolation by Association: Length Generalization Transfer in Transformers

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

0.012

0.014

0.016

0.018 Attention difference

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

0.000

0.025

0.050

0.075
Head ablation map difference

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

Checkpoint

0.00

0.25

0.50

0.75

1.00
Generalization Gap

(a) A: flipcase-reverse , B: flipcase , C: reverse

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

0.0125

0.0150

0.0175

0.0200
Attention difference

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

0.02

0.03

0.04 Head ablation map difference

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

Checkpoint

0.00

0.25

0.50

0.75

1.00
Generalization Gap

(b) A: copy , B: MQAR

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

0.013

0.014

0.015

0.016
Attention difference

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

0.05

0.10

0.15 Head ablation map difference

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

Checkpoint

0.00

0.25

0.50

0.75

1.00
Generalization Gap

(c) A: copy , B: reverse

Figure 18: Circuit sharing results for string task pairs. The attention matrix difference does not correlate with generalization
gap, while the head ablation map difference does, highlighting the relevance of shared attention head usage.

Arithmetic Tasks. In contrast, for arithmetic task pairs, both metrics strongly correlate with the generalization gap
(Figure 19). This suggests that arithmetic tasks not only share similar head usage but also similar attention patterns at the
matrix level.

Control Tasks. As a sanity check, we analyze a task pair with no expected transfer (addition and copy-first-op).
As expected, neither metric correlates with generalization performance, reinforcing that our observed patterns are not
incidental.

E. Experiment Details
E.1. Model

For all experiments, we use decoder-only transformer models following the Llama architecture. Unless otherwise specified,
we use Rotary Positional Embeddings (RoPE) for positional encoding; exceptions are noted in the ablation studies in
Section D.2.

For pretrained model experiments, we use SmolLM-360M (Allal et al., 2024), a compact transformer trained on natural
language and code. Table 1 summarizes the model configurations used in our experiments.

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Extrapolation by Association: Length Generalization Transfer in Transformers

20
00

40
00

60
00

80
00

10
00

0
12

00
0
14

00
0
16

00
0
18

00
0
20

00
0

0.010

0.011

Attention difference

20
00

40
00

60
00

80
00

10
00

0
12

00
0
14

00
0
16

00
0
18

00
0
20

00
0

0.02

0.04

0.06 Head ablation map difference

20
00

40
00

60
00

80
00

10
00

0
12

00
0
14

00
0
16

00
0
18

00
0
20

00
0

Checkpoint

0.00

0.25

0.50

0.75

1.00
Generalization Gap

(a) A: addition , B: copy-first-op

20
00

40
00

60
00

80
00

10
00

0
12

00
0
14

00
0
16

00
0
18

00
0
20

00
0

0.0022

0.0024

0.0026

0.0028 Attention difference

20
00

40
00

60
00

80
00

10
00

0
12

00
0
14

00
0
16

00
0
18

00
0
20

00
0

0.00

0.05

0.10

0.15

0.20 Head ablation map difference

20
00

40
00

60
00

80
00

10
00

0
12

00
0
14

00
0
16

00
0
18

00
0
20

00
0

Checkpoint

0.00

0.25

0.50

0.75

1.00
Generalization Gap

(b) A: addition , B: no carry

20
00

40
00

60
00

80
00

10
00

0
12

00
0
14

00
0
16

00
0
18

00
0
20

00
0

0.0035

0.0040

0.0045
Attention difference

20
00

40
00

60
00

80
00

10
00

0
12

00
0
14

00
0
16

00
0
18

00
0
20

00
0

0.00

0.05

0.10

0.15

0.20 Head ablation map difference

20
00

40
00

60
00

80
00

10
00

0
12

00
0
14

00
0
16

00
0
18

00
0
20

00
0

Checkpoint

0.00

0.25

0.50

0.75

1.00
Generalization Gap

(c) A: addition , B: subtraction

Figure 19: Circuit sharing results for arithmetic tasks. Both attention matrix and head ablation map differences correlate
with generalization gap in related task pairs (b, c), but not in unrelated control task pairs (a).

Table 1: Model configurations used in our experiments.

Model Self-Attn Layers Num Heads Embedding Dim
From-Scratch 6 6 384

SmolLM 32 15 2560

E.2. Data Formats and Data Sampling

We provide examples of each task in Table 2. For all arithmetic tasks, both the inputs and outputs are written in reverse digit
order. For the n× 3 CoT multiply task, the output includes intermediate steps where the first operand is multiplied by
each digit of the second operand.

For maze-based tasks, we serialize graphs using an adjacency list format with unique node tokens, followed by a query
specifying the start and end node. A detailed example is shown in Figure 5.

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Extrapolation by Association: Length Generalization Transfer in Transformers

Table 2: Examples of algorithmic tasks used in our experiments.

Task Name Input Output
only carry 82050465+23782955= 010010111
no carry 82050465+23782955= 057323100
addition 82050465+23782955= 067333211
subtraction 82050465+23782955= 692674000
n× 3 CoT multiply 60844671*502= 030422880+0000000000=

03042288+00216982530= 0325817163
copy fVOBA1fR= fVOBA1fR
Multi-Query

Associative Recall fVOBA1fR= fVOB;OBA1;
reverse fVOBA1fR= Rf1ABOVf
flipcase fVOBA1fR= Fvoba1Fr
flipcase-reverse fVOBA1fR= rF1abovF
Shortest Path [0]:[10], [15]:[4][5], [11]:[1][3][5], [3]:[11],

[4]:[2][15], [14]:[9][5], [10]:[0][9][13], [2]:[4],
[1]:[11], [7]:[5], [13]:[8][10], [5]:[11][7][14][15],
[12]:[8][6], [9]:[10][14], [8]:[12][13], [6]:[12]
?[12]>[2]?

[12][8][13] [10][9][14] [5][15][4][2]

DFS trace [0]:[10], [15]:[4][5], [11]:[1][3][5], [3]:[11],
[4]:[2][15], [14]:[9][5], [10]:[0][9][13], [2]:[4],
[1]:[11], [7]:[5], [13]:[8][10], [5]:[11][7][14][15],
[12]:[8][6], [9]:[10][14], [8]:[12][13], [6]:[12]
?[12]>[2]?

[12][6]; [12][8][13][10][9][14][5][11][1]; [11][3];
[5][15][4][2]

E.3. Experimental Settings

E.3.1. HYPERPARAMETER CONFIGURATIONS

Table 3 lists the hyperparameters used for training across different task domains and model types. From-scratch models
are trained with a higher learning rate and larger batch sizes, while pretrained models (SmolLM-360M) use lower learning
rates and shorter training schedules. All models are optimized using AdamW with a learning rate schedule that includes a
warm-up phase, a constant phase, and a cosine decay phase.

Table 3: Hyperparameters for training

Task Batch Size LR Iterations Warmup Iter Decay Iter
Arithmetic Tasks 1024 1e-3 20000 2000 5000

String Tasks 1024 1e-3 5000 500 1000
Maze Tasks 256 1e-3 20000 2000 5000

Arithmetic Tasks (SmolLM) 128 5e-5 2500 250 500
String Tasks (SmolLM) 128 5e-5 1000 100 500
Maze Tasks (SmolLM) 256 5e-5 2500 250 500

E.3.2. COMPUTATIONAL RESOURCES

For all experiments in the paper, we run on a single machine with two NVIDIA GeForce RTX 3090 graphics cards. For all
experiment settings, each individual training run is at most 2 hours. The total estimate of compute used, in terms of hours on
the 2-GPU machine, is around 300 hours.

21

	Introduction
	Experimental Settings
	Length Generalization Transfer in Algorithmic Tasks
	Arithmetic Tasks
	String Manipulation Tasks
	Maze Tasks

	Length Generalization Transfer in Maze Tasks
	Maze Results
	Transfer with Swapped Main and Auxiliary Tasks

	Related Works
	Additional Results
	Task Overview
	Control Tasks
	Length Generalization Transfer from Pretraining
	Unstable Training Dynamics in Length Generalization Transfer
	Additional Results on Arithmetic and String Tasks
	Additional Pretrained Model Results

	Ablations
	Varying Main and Auxiliary Task Lengths
	Rotary Position Encoding Encourages Length Generalization Transfer
	Evidence of Circuit Sharing Between Tasks
	Example Attention Head Ablation Maps
	Correlation Analysis Across Task Types

	Experiment Details
	Model
	Data Formats and Data Sampling
	Experimental Settings
	Hyperparameter Configurations
	Computational Resources

