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Figure 1: (a) Example of the multi-robot navigation problem considered in POGEMA: each robot
must reach its goal, denoted by a flag of the same color. (b) Observation tensor of the red agent.
(c) Results of the evaluation of several MARL, hybrid, and search-based solvers on the proposed
POGEMA benchmark.

Abstract

Multi-agent reinforcement learning (MARL) has recently excelled in solving chal-1

lenging cooperative and competitive multi-agent problems in various environments2

with, mostly, few agents and full observability. Moreover, a range of crucial3

robotics-related tasks, such as multi-robot navigation and obstacle avoidance, that4

have been conventionally approached with the classical non-learnable methods5

(e.g., heuristic search) is currently suggested to be solved by the learning-based or6

hybrid methods. Still, in this domain, it is hard, not to say impossible, to conduct7

a fair comparison between classical, learning-based, and hybrid approaches due8

to the lack of a unified framework that supports both learning and evaluation. To9

this end, we introduce POGEMA, a set of comprehensive tools that includes a10

fast environment for learning, a generator of problem instances, the collection11

of pre-defined ones, a visualization toolkit, and a benchmarking tool that allows12

automated evaluation. We introduce and specify an evaluation protocol defining a13

range of domain-related metrics computed on the basics of the primary evaluation14

indicators (such as success rate and path length), allowing a fair multi-fold compar-15

ison. The results of such a comparison, which involves a variety of state-of-the-art16

MARL, search-based, and hybrid methods, are presented.17

Submitted to the 38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets
and Benchmarks. Do not distribute.



1 Introduction18

Multi-agent reinforcement learning (MARL) has gained an increasing attention recently and signifi-19

cant progress in this field has been achieved [1, 2, 3]. MARL methods have been demonstrated to20

generate well-performing agents’ policies in strategic games [4, 5], sport simulators [6, 7], multi-21

component robot control [8], city traffic control [9], and autonomous driving [10]. Currently, several22

ways to formulate and solve MARL problems exist, based on what information is available to the23

agents and what type of communication is allowed in the environment [11]. Due to the increased24

interest in robotic applications, decentralized cooperative learning with minimizing communication25

between agents has recently attracted a specific attention [12, 13]. Decentralized learning naturally26

suits the partial observability of the environment in which the robots usually operate. Reducing the27

information transmitted through the communication channels between the agents increases their28

degree of autonomy.29

The main challenges in solving MARL problems are the non-stationarity of the multi-agent environ-30

ment, the need to explicitly predict the behavior of the other agents to implement cooperative behavior,31

high dimensionality of the action space, which grows exponentially with the number of agents, and the32

sample inefficiency of existing approaches. The existing MARL including model-based and hybrid33

learnable methods [14, 15] exhibit faster and more stable learning in SMAC-type environments [16]34

with vector observations and full observability. Currently, the best results are shown by the discrete35

explicit world models, that use Monte Carlo tree search for planning with various heuristics to reduce36

the search space [17, 15].37

However, in numerous practically inspired applications, like in mobile robot navigation, agents’38

observations are typically high-dimensional (e.g. stacked occupancy grid matrices or image-based39

observations as compared to 32-dim vectors in SMAC [16]) and only partially describe the state of the40

environment, including the other agents [18, 19]. This makes the problem specifically challenging,41

especially in the environments where a large number of agents are involved. For example, it is42

not uncommon in robotics to consider settings where up to hundreds of agents are acting (moving)43

simultaneously in the shared workspace as opposed to 2–10 agents in conventional MARL envi-44

ronments such as SMAC [16] or Google Research Football [20]. Learning to act in such crowded,45

observation-rich and partially-observable environments is a notable challenge to existing MARL46

methods.47

Conventionally, the problem of multi-robot cooperative navigation (which is very important due to48

its applications in modern automated warehouses and fulfillment centers [21]) is framed as a search49

problem over a discretized search space, composed of robots-locations tuples. All robots are assumed50

to be confined to a graph, typically – a 4-connected grid [22], and at each time step a robot can51

either move following a graph’s edge or stay at the current vertex. This problem setting is known52

as (Classical) Multi-agent Pathfinding problem [23]. Even in such simplified setting (discretized53

space, discretized time, uniform-duration actions etc.) obtaining a set of individual plans (one for54

each robot) that are mutually-conflict-free (i.e. no vertex or edge is occupied by disctinct agents at55

the same time step) and minimize a common objective such as, for example, the arrival time of the56

last agent (known as the makespan in the literature) is NP-Hard [24]. Moreover if the underlying57

graph is directed even obtaining a valid solution is HP-Hard as well [25].58

To this end the focus of the multi-agent pathfinding community is recently being shifted towards59

exploring of how state-of-the-art machine learning techniques, especially reinforcement learning60

and imitation learning, can be leveraged to increase the efficiency of traditional solvers. Methods61

like [26, 27, 28, 29, 30, 31, 32, 33, 34] are all hybrid solvers that rely on both widespread search-based62

techniques and learnable components as well. They all are developed using different frameworks,63

environments and datasets and are evaluated accordingly, i.e. in the absence of the unifying evaluation64

framework, consisting of the (automated) evaluation tool, protocol (that defines common performance65

indicators) and the dataset of the problem instances. Moreover, currently most of the pure MARL66

methods, i.e. the ones that do not involve search-based modules, such as QMIX [35], MAMBA [14],67
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MAPPO [36] etc., are mostly not included in comparison. The main reason is that to train MARL68

policies a fast environment is needed, which is suited to cooperative multi-agent navigation.69

To close the mentioned gaps we introduce POGEMA, a comprehensive set of tools that includes:70

• a fast and flexible environment for learning and planning supporting several variants of the71

multi-robot navigation problem,72

• a generator of problem instances for multi-task and generalization testing,73

• a visualization toolkit to create plots for debugging and performance information and to74

make high-quality animations,75

• a benchmarking tool that allows automated evaluation of both learnable, planning, and76

hybrid approaches.77

Moreover, we introduce and specify an evaluation protocol defining a range of domain-related metrics78

computed on the basics of the primary evaluation indicators (such as success rate and path length),79

allowing a fair multi-fold comparison of learnable and classical methods. The results of such a80

comparison, which involves a range of the state-of-the-art MARL, search-based, and hybrid methods,81

are presented.82

2 Related Work83

Currently a huge variety of MARL environments exists that are inspired by various practical applica-84

tions and encompass a broad spectrum of nuances in problem formulations. Notably, they include85

a diverse array of computer games [37, 16, 38, 39, 40, 41, 42, 43, 20]. Additionally, they address86

complex social dilemmas [44] including public goods games, resource allocation problems [45], and87

multi-agent coordination challenges. Some are practically inspired, showcasing tasks such as compet-88

itive object tracking [46], infrastructure management and planning [47], and automated scheduling89

of trains [48]. Beyond these, the environments simulate intricate, interactive systems such as traffic90

management and autonomous vehicle coordination [49], multi-agent control tasks [38, 50], and91

warehouse management [51]. Each scenario is designed to challenge and analyze the collaborative92

and competitive dynamics that emerge among agents in varied and complex contexts. We summarize93

the most wide-spread MARL environments in Table 1.94

As we aim to create a lightweight and easy-to-configure multi-agent environment for reinforcement95

learning and pathfinding tasks, we consider the following factors essential. First and foremost, our en-96

vironment is fully compatible with the native Python API: we target pure Python builds independent of97

hardware-specific software with a minimal number of external dependencies. Moreover, we underline98

the importance of constant extension and flexibility of the environment. Thus, we prioritize testing99

and continuous integration as cornerstones of the environment, as well as trouble-free modification of100

the transition dynamics. Secondly, we highlight that our environment targets generalization and may101

utilize procedural generation. Last but not least, we target high computational throughput (i.e., the102

number of environment steps per second) and robustness to an extremely large number of agents (i.e.,103

the environment remains performant under high loads).104

There are many environments inducing various types of multi-agent behaviors via different reward105

structures. Unfortunately, many of them require extensive Python support and rely on APIs of different106

programming languages (e.g., Lua, C++) for lower latency or depend on hardware-specific libraries107

such as XLA. Furthermore, many environments do not support generalization and lack procedural108

generation, especially in multi-agent cases. Additionally, customization of certain environments109

might be considered an issue without reverse engineering them. That’s why we emphasize the110

superiority of the proposed benchmark.111

Despite the diversity of available environments, most research papers tend to utilize only a selected112

few. Among these, the most popular are the StarCraft Multi-agent Challenge (SMAC), Multi-agent113

MuJoCo (MAMuJoCo), and Google Research Football (GRF), with SMAC being the most prevalent114
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Table 1: Comparison of different multi-agent reinforcement learning environments
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Flatland [48] link ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓ Coop
GoBigger [52] link ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ Mixed/Coop
Google Research Football [20] link ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ Mixed
Griddly [53] link ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓ Mixed
Hide-and-Seek [43] link ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ Comp
IMP-MARL [47] link ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✓ Coop
Jumanji (XLA) [42] link ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✗ Mixed
LBF [45] link ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ Coop
MAMuJoCo [50] link ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ Coop
MATE [46] link ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ Coop
MeltingPot [44] link ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗ Mixed/Coop
Minecraft MALMO [41] link ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✓ Mixed
MPE [54] link ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ Mixed
MPE (XLA) [38] link ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✗ Mixed
Multi-agent Brax (XLA) [38] link ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✗ Coop
Multi-Car Racing [55] link ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ Comp
Neural MMO [40] link ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ Comp
Nocturne [49] link ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ Mixed
Overcooked [39] link ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ Coop
Overcooked (XLA) [38] link ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓ Coop
RWARE [45] link ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✗ Coop
SISL [51] link ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✗ Coop
SMAC [37] link ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ Mixed/Coop
SMAC v2 [16] link ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ Mixed/Coop
SMAX (XLA) [38] link ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓ Mixed/Coop
POGEMA (ours) link ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Mixed

in top conference papers. The popularity of these environments is likely due to their effective115

contextualization of algorithms. For instance, to demonstrate the advantages of a method, it is crucial116

to test it within a well-known environment.117

The evaluation protocols in these environments typically feature learning curves that highlight the118

performance of each algorithm under specific scenarios. For SMAC, these scenarios involve games119

against predefined bots with specific units on both sides. In MAMuJoCo, the standard tasks involve120

agents controlling different sets of joints, while in GRF, the scenarios are games against predefined121

policies from Football Academy scenarios. Proper evaluation of MARL approaches is a serious122

concern. For SMAC, it’s highlighted in the paper [56], which proposes a unified evaluation protocol123

for this benchmark. This protocol includes default evaluation parameters, performance metrics,124

uncertainty quantification, and a results reporting scheme.125

The variability of results across different studies underscores the importance of a well-defined126

evaluation protocol, which should be developed alongside the presentation of the environment. In our127

study, we provide not only the environment but also the evaluation protocol, popular MARL baselines,128

and modern learnable MAPF approaches to better position our benchmark within the context.129

3 POGEMA130

POGEMA, which comes from Partially-Observable Grid Environment for Multible Agents, is an131

umbrella name for a collection of versatile and flexible tools aimed at developing, debugging and132

evaluating different methods and policies tailored to solve several types of multi-agent navigation133

tasks.134
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3.1 POGEMA Environment135

POGEMA1 environment is a core of POGEMA suite. It implements the basic mechanics of agents’136

interaction with the world. The environment can be installed using the Python Package Index (PyPI).137

The environemnt is open-sourced and available at github2 under MIT license. POGEMA provides138

integration with existing RL frameworks: PettingZoo [57], PyMARL [58], and Gymnasium [59].139

Basic mechanics The workspace where the agents navigate is represented as a grid composed of140

blocked and free cells. Only the free cells are available for navigation. At each timestep each agent141

individually and independently (in accordance with a policy) picks an action and then these actions142

are performed simultaneously. POGEMA implements collision shielding mechanism, i.e. if an agent143

picks an action that leads to an obstacle (or out-of-the-map) than it stays put, the same applies for144

two or more agents that wish to occupy the same cell. POGEMA also has an option when one of145

the agents deciding to move to the common cell does it, while the others stay where they were. The146

episode ends when the predefined timestep, episode length, is reached. The episode can also end147

before this timestep if certain conditions are met, i.e. all agents reach their goal locations if MAPF148

problem (see below) is considered.149

Problem settings POGEMA supports two generic types of multi-agent navigation problems. In150

the first variant, dubbed MAPF (from Multi-agent Pathfinding), each agent is provided with the151

unique goal location and has to reach it avoiding collisions with the other agents and static obstacles.152

For MAPF problem setting POGEMA supports both stay-at-target behavior (when the episode153

successfully ends only if all the agents are at their targets) and disappear-at-target (when the agent is154

removed from the environment after it first reaches its goal). The second variant is a lifelong version155

of multi-agent navigation and is dubbed accordingly – LMAPF. Here each agent upon reaching a156

goal is immediately assigned another one (not known to the agent beforehand). Thus the agents are157

constantly moving trough in the environment until episode ends.158

Observation At each timestep each agent in POGEMA receives an individual ego-centric observa-159

tion represented as a tensor – see Fig. 1. The latter is composed of the following (2R+1)× (2R+1)160

binary matrices, where R is the observation radius set by the user:161

1. Static Obstacles – 0 means the free cell, 1 – static obstacle162

2. Other Agents – 0 means no agent in the cell, 1 – the other agent occupies the cell163

3. Targets – projection of the (current) goal location of the agent to the boundary of its field-of-164

view165

The suggested observation, which is, indeed, minimalist and simplistic, can be modified by the user166

using wrapper mechanisms. For example, it is not uncommon in the MAPF literature to augment the167

observation with additional matrices encoding the agent’s path-to-goal (constructed by some global168

pathfinding routine) [27] or other variants of global guidance [29].169

Reward POGEMA features the most intuitive and basic reward structure for learning. I.e. an agent170

is rewarded with +1 if it reaches the goal and receives 0 otherwise. For MARL policies that leverage171

centralized training a shared reward is supported, i.e. rt = goals/agents where goals is the number172

of goals reached by the agents at timestep t and agents is the number of agents. Indeed, the user can173

specify its own reward using wrappers.174

Performance indicators The following performance indicators are considered basic and are tracked175

in each episode. For MAPF they are: Sum-of-costs (SoC) and makespan. The former is the sum of176

time steps (across all agents) consumed by the agents to reach their respective goals, the latter is the177

maximum over those times. The lower those indicators are the more effectively the agents are solving178

1https://pypi.org/project/pogema
2https://github.com/AIRI-Institute/pogema
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MAPF tasks. For LMAPF the primary tracked indicator is the throughput which is the ratio of the179

number of the accomplished goals (by all agents) to the episode length. The higher – the better.180

3.2 POGEMA Toolbox181

The POGEMA Toolbox is a comprehensive framework designed to facilitate the testing of learning-182

based approaches within the POGEMA environment. This toolbox offers a unified interface that183

enables the seamless execution of any learnable MAPF algorithm in POGEMA. Firstly, the toolbox184

provides robust management tools for custom maps, allowing users to register and utilize these185

maps effectively within POGEMA. Secondly, it enables the concurrent execution of multiple testing186

instances across various algorithms in a distributed manner, leveraging Dask3 for scalable processing.187

The results from these instances are then aggregated for analysis. Lastly, the toolbox includes188

visualization capabilities, offering a convenient method to graphically represent aggregated results189

through detailed plots. This functionality enhances the interpretability of outcomes, facilitating a190

deeper understanding of algorithm performance.191

POGEMA Toolbox offers a dedicated tool for map generation, allowing the creation of three distinct192

types of maps: random, mazes and warehouse maps. All generators facilitates map creation using193

adjustable parameters such as width, height, and obstacle density. Additionally, maze generator194

includes specific parameters for mazes such as the number of wall components and the length of195

walls. The maze generator was implemented based on the generator provided in [34]. POGEMA196

Toolbox4 can be installed using PyPI, and licenced under Apache License 2.0.197

3.3 Baselines198

POGEMA integrates a variety of MARL, hybrid and planning-based algorithms with the environment.199

These algorithms, recently presented, demonstrate state-of-the-art performance in their respective200

fields. Table 2 highlights the differences between these approaches. Some, such as LaCAM and201

RHCR, are centralized search-based planners. Other approaches, such as SCRIMP and DCC,202

while decentralized, still require communication between agents to resolve potential collisions.203

The following modern MARL algorithms are included as baselines: MAMBA [14], QPLEX [60],204

IQL [61], VDN [62], and QMIX [35]. For environment preprocessing, we used the preprocessing205

scheme provided in the Follower approach, enhancing it with the anonymous targets of other agents’206

local observations. We utilized the official implementation of MAMBA, as provided by its authors5,207

and employed PyMARL2 framework6 for establishing MARL baselines.208

4 Evaluation Protocol209

4.1 Dataset210

We include the maps of the following types in our evaluation dataset (with the intuition that different211

maps topologies are necessary for proper assessment):212

• Mazes – maps that encouter prolonged corridors with 1-cell width that require high level213

of cooperation between the agent to accomplish the mission. These maps are proceduraly214

generated.215

• Random – one of the most commonly used type of maps, as they are easy to generate216

and allow to avoid overfitting to some special structure of the map. POGEMA ontains an217

integrated random maps generator, that allows to control the density of the obstacles.218

• Warehouses – this type of maps are usually used in the papers related to LifeLong MAPF.219

While there is no narrow passages, high density of the agents might significantly reduce the220

3https://github.com/dask/dask
4https://pypi.org/project/pogema-toolbox
5https://github.com/jbr-ai-labs/mamba
6https://github.com/hijkzzz/pymarl2
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Table 2: This table provides an overview of various baseline approaches supported by POGEMA and
their features in the context of decentralized multi-agent pathfinding.
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MAMBA [14] ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓
QPLEX [60] ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓
IQL [61] ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓
VDN [62] ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓
QMIX [35] ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓
Follower [27] ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✓
MATS-LP [28] ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓
Switcher [26] ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓
SCRIMP [30] ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗
DCC [29] ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗
LaCAM [63] ✗ ✗ ✗ ✓ ✗ ✗ - - - - -
RHCR [64] ✗ ✗ ✗ ✗ ✓ ✗ - - - - -

overall throughput, especially when agents are badly distributed along the map. These maps221

are also can be proceduraly generated.222

• MovingAI – a set of maps from the existing benchmark widely used in MAPF community.223

The contained maps have different sizes and structures. It can be used to show how the224

approach deals with single-agent pathfinding and also deals with the maps that have out-of-225

distribution structure.226

• MovingAI-tiles – a modified MovingAI set of maps. Due to the large size of the original227

maps, it’s hard to get high density of the agents on them. To get more crowded maps, we228

slice the original maps on 16 pieces with 64× 64 size.229

• Puzzles – a set of small hand-crafted maps that contains some difficult patterns that230

mandate the cooperation between that agents.231

(a) maze (b) random (c) warehouse

Figure 2: Examples of maps presented in POGEMA.

Start and goal locations are generated via random generators. They are generated with fixed seeds,232

thus can be reproduced. It’s guaranteed, that each agent has its own goal location and the path to it233

from its start location exists.234

4.2 Metrics235

The existing works related to solving MAPF problems evaluates the performance by two major criteria236

– success rate and the primary performance indicators mentioned above: sum-of-costs, makespan,237

throughput. These are directly obtainable from POGEMA. While these metrics allow to evaluate the238

algorithms at some particular instance, it’s might be difficult to get a high-level conclusion about the239
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performance of the algorithms. Thus, we want to introduce several high-level metrics that covers240

multiple different aspects:241

Performance – how well the algorithm works compared to other approaches. To compute this metric242

we run the approaches on a set of maps similar to the ones, used during training, and compare the243

obtained results with the best ones.244

PerformanceMAPF =

{
SoCbest/SoC

0 if not solved
(1)

PerformanceLMAPF = throughput/throughputbest (2)

Out-of-Distribution – how well the algorithm works on out-of-distribution maps. This metric245

is computed in the same way as Performance, with the only difference that the approaches are246

evaluated on a set of maps, that were not used during training phase and have different structure of247

obstacles. For this purpose we utilize maps from MovingAI-tiles set of maps.248

Out_of_DistributionMAPF =

{
SoCbest/SoC

0 if not solved
(3)

Out_of_DistributionnLMAPF = throughput/throughputbest (4)

Scalability – how well the algorithm scales to large number of agents. To evaluate how well the249

algorithm scales to large number of agents, we run it on a large warehouse map with increasing250

number of agents and compute the ratio between runtimes with various number of agents.251

Scalability =
runtime(agents1)/runtime(agents2)

|agents1|/|agents2|
(5)

Cooperation – how well the algorithm is able to resolve complex situations. To evaluate this metric252

we run the algorithm on Puzzles set of maps and compare the obtained results with best solutions253

that were obtained by classical MAPF/LMAPF solvers.254

CooperationMAPF =

{
SoCbest/SoC

0 if not solved
(6)

CooperationLMAPF = throughput/throughputbest (7)

Congestion – how well the algorithm distributes the agents along the map and reduces redundant255

waits, collisions, etc. To evaluate this metric we compute the average density of the agents presented256

in the observations of each agent and compare it to the overall density of the agents on the map.257

Congestion =

∑
i∈agents agents_density(obsi)/agents_density(map)

|agents|
(8)

Pathfinding – how well the algorithm works in case of presence of a single agent on a large map.258

This metric is tailored to determine the ability of the approach to effectively lead agents to their goal259

locations. For this purpose we run the approaches on large city maps from MovingAI benchmark260

sets. The obtained solution cost (in fact - length of the path) should be optimal.261

Pathfinding =

{
1 if path is optimal
0 otherwise

(9)

4.3 Experimental Results262

We have evaluated a bunch of the algorithms on both MAPF and LMAPF setups on all 6 datasets.263

The results of this evaluation are presented in Fig.3. The details about number of maps, number of264

agents, seeds, etc. are given in the supplementary material (as well as details on how these results can265

be reproduced).266

In both setups, i.e. MAPF and LMAPF, the best results in terms of cooperation, out-of-distribution267

and performance metrics were obtained by centralized planners, i.e. LaCAM and RHCR respectively.268
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Figure 3: Evaluation of baselines available in POGEMA on (a) MAPF (b) LMAPF instances.

For MAPF tasks, LaCAM outperformed all other approaches on all metrics except congestion. It is269

hypothesized that in this approach, the even distribution of agents across the environment is not crucial270

due to its centralized nature, which efficiently resolves complex conflicts. Specialized learnable271

MAPF approaches, i.e., DCC and SCRIMP, take second place, showing close performance but with272

different specifics. DCC shows better results on out-of-distribution tasks and pathfinding tasks than273

SCRIMP, which is better at managing congestion. Surprisingly, the results of SCRIMP are inferior on274

pathfinding tasks, suggesting a problem with this approach in single-agent tasks that do not require275

communication, which can be an out-of-distribution setup for this algorithm. MARL algorithms276

such as QPLEX, VDN, and QMIX underperform in comparison with other approaches, exhibiting a277

significant gap in the results, which can be attributed to the absence of additional techniques used in278

hybrid approaches, despite incorporating preprocessing techniques from the Follower approach. This279

could suggest that the MARL community lacks large-scale approaches and benchmarks for them.280

Predictably, IQL shows the poorest performance, highlighting the importance of centralized training281

for multi-agent pathfinding (MAPF) tasks that require high levels of cooperation.282

For LMAPF, the situation changes dramatically. The centralized approach, RHCR, dominates in283

cooperation, out-of-distribution tasks, and overall performance. However, it significantly lags behind284

Follower in terms of congestion and scalability metrics. The superior performance of Follower285

can be attributed to a dedicated technique tailored to avoid congestion. The most crucial metric286

here is performance, where Follower outperforms RHCR by a considerable margin, while not287

underperforming significantly in cooperation, out-of-distribution tasks, and pathfinding metrics. This288

showcases how applying learnable methods can substantially enhance the applicability of these289

approaches. Additionally, the high performance of Follower can be linked to large-scale training290

setups, including billions of training steps. Again, MARL approaches underperform in these scenarios,291

with QMIX and QPLEX showing comparable results. QMIX performs better in cooperation and292

out-of-distribution metrics, while QPLEX excels in performance.293

5 Conclusion and Limitations294

This paper presents POGEMA – a powerful suite of tools tailored for creating, assessing, and295

comparing methods and policies in multi-agent navigation problems. POGEMA encompasses a fast296

learning environment and a comprehensive evaluation toolbox suitable for pure MARL, hybrid, and297

search-based solvers. It includes a wide array of methods as baselines. The evaluation protocol298

described, along with a rich set of metrics, assists in assessing the generalization and scalability of all299

approaches. Visualization tools enable qualitative examination of algorithm performance. Integration300

with the well-known MARL API and map sets facilitates the benchmark’s expansion. Existing301

limitations are two-fold. First, a conceptual limitation is that communication between the agents is302

not currently disentangled in POGEMA environment. Second, the technical limitations include the303

lack of Jax support and integration with other well-known GPU parallelization tools.304
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