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ABSTRACT

Immunogenicity prediction is a central topic in reverse vaccinology for finding
candidate vaccines that can trigger protective immune responses. Existing ap-
proaches typically rely on highly compressed features and simple model architec-
tures, leading to limited prediction accuracy and poor generalizability. To address
these challenges, we introduce PROVACCINE, a novel deep learning solution with
a dual attention mechanism that integrates pre-trained latent vector representations
of protein sequences and structures. We also compile the most comprehensive im-
munogenicity dataset to date, encompassing over 9, 500 antigen sequences, struc-
tures, and immunogenicity labels from bacteria, viruses, and tumors. Extensive
experiments demonstrate that PROVACCINE outperforms existing methods across
a wide range of evaluation metrics. Furthermore, we establish a post-hoc valida-
tion protocol to assess the practical significance of deep learning models in tack-
ling vaccine design challenges. Our work provides an effective tool for vaccine
design and sets valuable benchmarks for future research.

1 INTRODUCTION

Immunogenicity prediction is a pivotal step in reverse vaccinology. It aims at identifying specific
proteins or peptide segments (protective antigens) that can produce humoral and/or cell-mediated
immune responses and lead to memory cells production in the host organism (Adu-Bobie et al.,
2003; Doneva et al., 2021). Protective antigens of pathogenic origin are potential vaccine candidates
(PVCs) (Arnon, 2011). Rapid and accurate prediction of protective antigens can reduce research and
development costs, minimize vaccine development risks, and provide safe and effective prevention
strategies against emerging and reemerging infectious diseases that pose ongoing threats (Pizza &
M., 2000; Bagnoli et al., 2011; Carvalho et al., 2021).

Current machine learning approaches commonly exploit the physicochemical properties of amino
acid residues, as characterized by E-descriptors (Venkatarajan & Braun, 2001) or Z-descriptors
(Hellberg et al., 1987), and transform these descriptors into a uniform vector representation us-
ing auto- and cross-covariance (ACC) method. This vectorized format serves as input for machine
learning models, which are then trained to predict whether antigens are protective or non-protective.
(Doytchinova et al., 2007; Rawal et al., 2022). Due to the limited quantity of labeled data and the
high complexity of the prediction problem, these methods excessively compress protein information
in order to fit a relatively simple model, making it difficult to capture the complex relationship be-
tween antigens and their immunogenicity. As a result, these models often exhibit limited prediction
accuracy and inadequate generalizability (e.g., in cross-species immunogenicity predictions).

This study proposes PROVACCINE, a deep learning method that interprets immunogenicity based
on the multimodal encoding of antigens, including their sequences, structures, and physicochem-
ical properties. To supplement the inherent amino acid (AA) sequence information, two levels of
structural tokens are employed to comprehensively capture antigen construction patterns, and the
physicochemical properties are hand-crafted based on Z-descriptor and E-descriptor. When allo-
cating protein representations from different modalities, we establish a dual-attention mechanism

(Figure 1) to facilitate communication between neighboring AAs at different scales. The use of
tokenized structures at the atomic level (Van Kempen et al., 2023) and peptide level (Hayes et al.,
2024) aligns with two biological intuitions: protein binding affinity primarily depends on atomic-
level interactions, and local protein structures determine their functionality. Subsequently, we apply
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Figure 1: Illustrative framework of PROVACCINE. The model encodes sequence and structural rep-
resentations using a dual-attention mechanism, followed by aggregation layers to incorporate global
physicochemical attributes and perform binary classification tasks of immunogenicity prediction.

attention pooling to AA-level hidden representations to integrate them into protein-level vector rep-
resentations, which incorporate the hand-crafted features that are commonly used to characterize the
immunogenicity of proteins to further enhance the model’s capacity for immunogenicity prediction.

The reliability of deep models requires thorough empirical validation, such as statistically signifi-
cant tests on high-quality, large-scale datasets and comparisons with similar baseline methods. Due
to the scarcity and noise of high-throughput labels, wet-lab experiments are considered the most
reliable validation, but the significant time and financial costs make it impractical for most research
works to conduct. To address this, we prepare data for both types of validation methods and establish
corresponding protocols. For the first type, we compile Immuno with over 9, 500 labeled antigens
from bacteria, viruses, and tumors. This benchmark not only enables large-scale validation of new
prediction methods but also provides valuable training data for developing new models. Meanwhile,
for the second type of assessment, we propose two post-hoc validation protocols, involving signifi-
cant subjects (Helicobacter pylori and SARS-CoV-2), comprehensive evaluation datasets, and clear,
biologically meaningful evaluation criteria.

We verify the effectiveness of PROVACCINE using the established two types of validation approaches
and provide extensive analysis. Based on Immuno, we designe corresponding variations of train-
ing and test datasets, and perform comprehensive comparisons with existing methods across various
evaluation metrics, focusing on prediction accuracy and generalizability of the trained model. The
results demonstrate significant superiority of the proposed PROVACCINE from different perspec-
tives. In post-hod validations, we emphasize the practical significance of PROVACCINE by demon-
strating that its assigned probability to protective antigens effectively helps users identify potential
vaccine candidates for vaccine design.

In summary, this study addresses the key challenges of immunogenicity prediction in vaccine de-
velopment by (i) introducing PROVACCINE, a deep learning supervised learning scheme with a
dual attention mechanism; (ii) presenting the most comprehensive dataset of labeled antigens from
different sources for training and testing immunogenicity prediction models; and (iii) constructing
assessment protocols for evaluating prediction performance using benchmark datasets and post-hoc
analyses. Empirically, we provide extensive evidence to validate that PROVACCINE meets the chal-
lenges of vaccine target selection by providing accurate and robust predictions. Moreover, the key
AAs identified by PROVACCINE correlate with antigenic epitopes, suggesting more potential of our
model to assist in vaccine development. Our work not only offers a reliable tool for advancing
vaccine design but also provides crucial resources and insights for further research.

2 IMMUNOGENICITY PREDICTION AND PROTEIN LANGUAGE MODELS

Problem Formulation Reverse vaccinology is an extensively utilized methodology for identifying
prospective vaccine candidates by computationally screening the proteome of a pathogen (Dalsass
et al., 2019). This research is concerned with a binary classification task aimed at predicting the
immunogenicity of proteins from three pathogenic sources: bacteria, viruses, and tumors. The
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Figure 2: Data collection, redundancy processing, and dataset construction steps of Immuno.

primary goal is to develop a model proficient in discerning whether a protein or peptide segment is
a protective antigen or a non-protective antigen. Similar to most protein property prediction tasks,
immunogenicity prediction also suffers from the limitation of scarce labeled data, making it crucial
to develop a powerful and generalizable model. To achieve this goal, a feasible solution is to adopt
a two-step training approach, where pre-trained models are first used to extract protein embeddings,
followed by training the output module specifically for the prediction task.

Pre-trained Protein Language Model for AA-level Encoding Protein language models (PLMs)
have become the dominant method for learning representations of protein sequences. The two pri-
mary pre-training strategies are masked language model (Meier et al., 2021; Rao et al., 2021) and
autoregressive generation (Ferruz et al., 2022; Madani et al., 2023). The former involves predict-
ing masked tokens in the input sequence while capturing co-evolutionary relationships between AAs
within the same sequence. In contrast, the latter learns to iteratively generate the next token based on
previous tokens, which is particularly useful for tasks like sequence design. As we focus on property
prediction tasks, we adopt the first strategy. During training, random tokens in the input sequence
are masked, and the objective is to optimize the model’s parameters, denoted as ✓, to minimize the
error between the predicted and actual AAs at the masked positions, i.e.,

argmin
✓

Ex⇠XEM �
X

i2M

log P(xi|x/M ;✓). (1)

The conditional probability P(xi|x/M ) for the ith token xi in the sequence is determined by the
unmasked tokens x/M . The model learns to capture the interactions between AAs within the protein
sequence. It is notable that such a sequential representation extraction method is not only applicable
to AA sequence tokenization but can also be extended to capture protein structural features. A
straightforward approach to achieve this is by expanding the output tokens to include not only AA
types but also discretized structural tokens (Su et al., 2023; Heinzinger et al., 2023; Li et al., 2024).

3 IMMUNO: NEW BENCHMARK FOR TRAINING AND EVALUATION

We curate three datasets with immunogenic (positive) and non-immunogenic (negative) labels from
bacterial, viral, and human tumor sources. All positive samples and a part of negative samples
are compiled through an exhaustive literature search with manual validation. We check publicly
available sources including PubMed, UniProt, NCBI, Protegen, IEDB, and other publications up
to October 2023. The search is strictly limited to proteins proven to be immunogenic in humans.
For all three datasets, the preparation steps include collecting positive samples, collecting negative
samples, and filtering redundant and tail-region samples. An illustrative workflow is visualized in
Figure 2. In total, we have 913/1562 positive/negative instances in Immuno-Bacteria, 2078/1886
in Immuno-Virus, and 300/477 in Immuno-Tumor.

Positive Samples All positive samples are from the Protegen database and previous publications.
For Immuno-Bacteria, data are from Dimitrov et al. (2020); Edison et al. (2020); Rawal et al.
(2022). For Immuno-Virus, positive samples are gathered from Rawal et al. (2022); Doneva &
Dimitrov (2024). For Immuno-Tumor, data are sourced from Sotirov & Dimitrov (2024). Notably,
for Immuno-Tumor, both positive and negative samples are collected in this step. Protein or peptide
sequences are from NCBI (Wheeler et al., 2007) and UniProtKB (Consortium, 2019).

Negative Samples Due to the scarcity of data on non-immunogenic proteins in human studies, a
part of the negative sets are collected from IEDB which the protein were validated by more than two
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B cell assays and identified as negative antigen in Homo sapiens, and others are curated following
established methods reported in prior research (Dimitrov et al., 2020; Sotirov & Dimitrov, 2024;
Doneva & Dimitrov, 2024). For instance, when processing Immuno-Bacteria, we first download
the proteomes of all of the bacteria involved from the UniprotKB, then conduct a BLAST search
to identify sequences with less than 30% sequence identity to the protective antigens (positive sam-
ples). To further improve the possibility that the selected sequences are true-negative samples, we
scored these sequences with VAXIJEN and kept the sequence where it is predicted to be Probable
Non-Antigen. Finally, we exclude sequences shorter than 25 AAs or longer than 1024 AAs, and
the remaining sequences are the negative samples for Immuno-Bacteria. A similar preprocessing
approach is applied to the preparation of the negative dataset for Immuno-Virus. For Immuno-
Tumor, we only perform the redundancy removal step, as the negative instances have already been
provided by the literature and source database. Note that BLAST and VAXIJEN are used here to
ensure that these selected sequences are as true-negative as possible, but this approach cannot be
directly extrapolated to predict the immunogenicity of antigens, because it will predict the vast ma-
jority of sequences to be positive, which is a clear deviation from the empirical reality.

In summary, the new benchmark dataset for immunogenicity prediction is distinguished by its rigor-
ous quality control, comprehensive data sourcing, and cross-species diversity. Immuno undergoes
a series of rigorous quality control measures, which include data cleaning and preprocessing steps.
It helps in minimizing missing information, erroneous entries, and inconsistencies in data structure,
which are critical for reducing noise and enhancing reliability. Meanwhile, Immuno provides the
largest and most comprehensive benchmark datasets in terms of size and species. This richness in
data enhances the benchmark’s applicability for developing and testing immunogenicity prediction
models across various contexts. Furthermore, the inclusion of data from bacteria, viruses, and hu-
mans positions our dataset as a unique resource for cross-species analysis, thus supporting potential
contributions to the robustness and generalizability of future models trained on them.

4 PROVACCINE: MODEL TRAINING AND INFERENCE

As shown in Figure 1, PROVACCINE consists of three main components, including extracting fea-
tures from protein sequences and structures, processing and integrating features from different
modalities based on a dual attention mechanism, and finally compressing and outputting AA-level
features to obtain epitope markers and immunogenicity predictions.

4.1 INPUT FEATURES

Sequence Embedding and Structure Tokenization We use a pre-trained PLM to extract embed-
dings for protein sequences and structures. The AA sequence embedding can be extracted from, an
encoder-only model (e.g., ESM2; Lin et al. (2023)) or an encoder-decoder model (e.g., ANKH; El-
naggar et al. (2023)). For instance, given a protein sequence of length L, ESM2-650M delivers an
L⇥1280 representation, with each AA being represented as a 1280-dimensional vector. For protein
structures, we use two tokenizers to encode the backbone predicted by ESMFOLD (Lin et al., 2023).
The first atomic structure tokenization uses FOLDSEEK (Van Kempen et al., 2023) to analyze the
spatial relationships between atoms of neighboring AAs at a finer scale and summarize them into 20-
dimensional tokens. The second peptide tokenization uses the ESM3 (Hayes et al., 2024) structure
tokenizer to map coarser-scale substructures to 4, 096-dimensional structure tokens.

Physicochemical Descriptors We incorporate five hand-crafted E-descriptors (Venkatarajan &
Braun, 2001) and three Z-descriptors (Hellberg et al., 1987) to quantitatively characterize protein
sequences. These descriptors provide an AA-level summary of physicochemical properties, such
as hydrophobicity and secondary structure. They have been validated to assist in immunogenicity
prediction (Doytchinova et al., 2007; Rawal et al., 2022). Detailed are in Appendix A.

4.2 DUAL ATTENTION

A protein’s properties are determined by its sequence and structure. For immunogenicity prediction,
focusing on local topological structures and molecular interactions may help identify exposed epi-
topes, thereby enhancing the extraction of critical information from the antigen. We combine hand-
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crafted features with intrinsic sequence and structural information derived from pre-trained models,
as described above. These different categories of protein features are integrated using a dual atten-
tion mechanism, which guides the model to focus on important local regions of the proteins. The
features are then passed through attention pooling and propagated to the prediction head to obtain
the predicted labels. The overall architecture of the model is shown in Figure 1. In the following
sections, we detail the propagation rules of the dual attention and attention pooling modules.

Finer-lever and Coarser-level Attention Module We construct the dual attention mechanism
with two components, including finer-level attention and coarser-level attention. Both components
construct a multi-head cross-attention framework to integrate keys and values from the sequence and
queries from the structure. Following Lin et al. (2023), we replace the relative positional encoding of
queries and keys with Rotary Position Embeddings (RoPE) (Su et al., 2024). For a protein sequence
of L AAs, i.e., x = {x1,x2, . . . ,xL}, we employ a pre-trained language model (e.g., ESM2)
to extract the sequence encoding Eseq 2 RL⇥d. Structural encodings are extracted by structure
tokenizers of different scales. We define the finer-level structural encoding from FOLDSEEK as
Efine 2 RL⇥d and the coarser-level structural encoding from ESM3 as Ecoarse 2 RL⇥d. Taking
the finer-level attention as an example, the module’s input is {Eseq,Efine}, and the output is Hfine.
The queries Q, keys K, and values V for the attention layers are defined as follows:

Q = EfineWQ, K = EseqWK , V = EseqWV , (2)

where WQ,WK ,WV 2 Rd⇥dk are learnable projection matrices, and dk is the hidden dimension
of queries and keys. Next, the positional information is attached to Q and K with RoPE, which
captures relative positional relationships by applying a rotation to the embeddings based on their
positions. The modified queries and keys are:

Q̃i = RoPE(Qi, i), K̃j = RoPE(Kj , j), (3)

where i and j denote the positions in the respective sequences, and RoPE(·) is the RoPE function.
Finally, the cross-attention Attn(·) is formulated as:

Attn(Eseq,Efine) = softmax

 
Q̃K̃

>
p
dk

!
V , (4)

where Q̃ 2 RL⇥dk and K̃ 2 RL⇥dk . The coarser-level attention applies the same construction. The
only difference is that the input queries are replaced with Ecoarser from ESM3.

Attention Pooling The processed AA-level features H = concat(Eseq,Hfine,Hcoarser,Eez)

are compressed using attention pooling and fed into the classifier for label prediction. Here, H for
a protein consists of four components: the original sequence embedding, the joint sequence and
structure representations processed by coarser-level and finer-level attention, and the handcrafted E
and Z descriptors. Consider a processed feature sequence H 2 RL⇥D, L is the sequence length,
and D is the dimension of concatenated features. The attention pooling on H is defined as:

AttnPool(H) =

LX

i=1

↵i ·Hi,

where ↵ = softmax(MaskedConv1D(H)).

(5)

To obtain the final representation for the sequence, the model first computes L ⇥ 1 attention scores
using a one-dimensional masked convolution with a kernel size of 1 (Yang et al., 2023), then applies
an input mask and passes it through a softmax function to obtain the attention weights ↵. These
attention weights not only guide the pooling process but also indicate the importance of each posi-
tion for the final prediction. In subsequent analysis, we extract these weights as epitope markers.
Relevant analysis can be found in the post-hoc analysis section of the Experiments.

Prediction Head The output of the attention pooling AttnPool(H) is sent directly to the final
prediction head to produce the classification logits. This process involves projecting the pooled
representation through a linear transformation, followed by a dropout layer, a ReLU activation layer,
and a final linear layer: Logits(H) = Linear(ReLU(DropOut(Linear(AttnPool(H))))).
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Table 1: Average performance of baseline methods in three immunogenicity prediction tasks from
10 random splits. The complete results with standard deviation can be found in Appendix.

Model Bacteria Virus Tumor
ACC T30 MCC F1 KS ACC T30 MCC F1 KS ACC T30 MCC F1 KS

Random Forest 81.1 77.7 57.1 69.7 0.60 88.3 98.7 76.7 88.5 0.80 66.8 63.5 27.0 46.4 0.42
Gradient Boosting 80.7 75.9 56.8 71.2 0.62 86.0 97.3 72.3 86.5 0.74 65.4 60.0 26.0 53.1 0.38

XGBoost 80.8 76.1 57.0 71.1 0.61 89.1 98.8 78.2 89.2 0.80 69.2 62.2 33.7 56.1 0.40
SGD 78.6 72.4 51.0 65.3 0.56 77.3 88.0 56.0 74.0 0.66 52.6 50.9 29.6 62.2 0.31

Logistic Regression 65.2 67.3 1.8 0.5 0.47 61.4 82.9 35.6 71.9 0.61 60.4 45.2 0.0 0.0 0.25
MLP 78.1 71.6 51.5 68.1 0.57 85.0 90.6 70.5 85.7 0.71 60.4 39.1 0.0 0.0 0.26
SVM 56.7 57.3 18.9 53.0 0.33 61.6 88.7 25.1 67.3 0.53 51.4 61.3 15.2 57.3 0.33
KNN 80.4 73.8 55.3 68.6 0.52 87.4 86.8 74.8 87.3 0.75 57.4 49.6 10.8 45.3 0.12

Vaxi-DL 68.1 55.5 41.7 66.9 0.42 65.3 62.2 33.4 72.9 0.29 54.9 41.3 8.5 47.7 0.10
VaxiJen2.0 75.7 62.2 54.6 72.1 0.57 82.0 74.8 66.6 84.2 0.64 - - - - -
VaxiJen3.0 83.3 58.7 63.2 75.1 0.63 68.1 62.5 42.3 75.4 0.35 39.0 35.7 0.0 55.9 0.00
VirusImmu - - - - - 58.8 59.5 18.1 63.6 0.17 - - - - -

ProVaccine-Ankh 82.3 78.5 60.3 73.3 0.64 92.2 99.7 84.3 92.3 0.85 76.9 73.5 55.0 73.5 0.61
ProVaccine-ESM2 80.6 77.0 57.0 71.7 0.66 90.3 99.5 80.6 90.6 0.82 74.0 61.7 46.1 68.2 0.58

ProVaccine-ProtBert 84.5 84.5 65.9 77.0 0.66 91.4 97.4 82.8 91.2 0.84 71.5 68.7 44.7 67.6 0.54

† The top three are highlighted by First, Second, Third.

Figure 3: Generalizability of PROVACCINE by the AUC and Recall of cross-test evaluations. For
instance, The top left figure reports the test performance on Immuno-Bacteria by different models
trained on Immuno-Virus (yellow) and Immuno-Tumor (orange).

5 EXPERIMENTS

5.1 EXPERIMENTAL PROTOCOL

Setup We built and trained the model according to the framework introduced in Section 4. For
the sequence embedding, we consider three pre-trained PLMs, including ESM2 (Lin et al., 2023),
Ankh-large (Elnaggar et al., 2023), and ProtBert (Elnaggar et al., 2021). The source are listed in
Appendix B. The model is optimized using ADAMW (Loshchilov et al., 2017) with a learning rate
of 0.0005 and a weight decay of 0.01. In the attention pooling layer, dropout was set to 0.1. To
ensure stable GPU memory usage during training, we limit the maximum number of tokens per
batch to 4000, with a gradient accumulation of 1. The maximum training epoch was set to 50, with
early stopping based on validation accuracy and patience of 5. All implementations were done using
PyTorch (version 1.7.0), and experiments were run on an NVIDIAr RTX 3090 GPU with 24GB
VRAM, mounted on a Linux server. The training process was tracked using WanDB. All source
data and the implementation to reproduce the results will be publicly available upon acceptance.

Baseline Methods The performance of the proposed PROVACCINE is compared with existing
machine learning methods and web server prediction tools. We select commonly used machine
learning methods from the literature, including Random Forest, Gradient Boosting, XGBoost, SGD,
Logistic Regression, MLP, SVM, and KNN, and follow the usual feature engineering approach by
using ACC-transformed datasets to classify proteins as protective antigens (positive class) or non-
protective antigens (negative class). We also include four popular web server methods specialized
in antigen and vaccine candidate prediction: VAXIJEN2.0 (Doytchinova et al., 2007), VAXIJEN3.0

6
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(Dimitrov et al., 2020), VAXI-DL (Rawal et al., 2022), and VIRUSIMMU (Li et al., 2023a). VAXI-
JEN2.0 employs an ACC transformation and PLS algorithm for antigen prediction. VAXIJEN3.0 ex-
tends it to include machine learning for broader biological entities. VAXI-DL utilizes deep learning
models tailored for different disease-causing agents, and VIRUSIMMU applies an ensemble machine
learning method with soft voting for viral immunogenicity prediction.

5.2 RESULTS ANALYSIS ON IMMUNO

We evaluate the overall performance of the models on PROVACCINE. In light of the problems with
existing methods, we focus on the accuracy and generalization of each method’s predictive perfor-
mance. The performance of the models is assessed using a range of metrics for a comprehensive
evaluation, including AUC-ROC, accuracy, precision, recall, F1 score, MCC, Top K accuracy, cross-
entropy, and KS statistics. Details are provided in Appendix C.

5.2.1 ACCURACY

We first investigate the overall performance of each model on the three datasets in Immuno. For
each dataset, we randomly split the data in a 7 : 1 : 2 ratio and select the model with the highest
accuracy on the 10% validation set for evaluation. We repeat the assessment ten times for each test
set, randomly selecting 50% of the test data to calculate the scores for each metric, and report the
average scores in Table 1. See Tables 4-6 of the Appendix for additional details.

All machine learning and PLM methods we retrained ensured non-overlapping among the training,
validation, and test sets. However, the four web servers do not have open-source code available for
retraining on each task, which may introduce some unfair advantages to them. Additionally, during
data preparation, we follow the convention in the field by using VAXIJEN3.0 to check negative data
labels, giving this method a natural advantage in predicting true negative data. Furthermore, since
VAXI-DL is not available for predicting antigens from tumors, we did not test its performance on
the Immuno-tumor dataset. Similarly, VIRUSIMMU is intended only for testing viruses, so we did
not report its performance on Bacteria and Tumors for fairness consideration.

It is clearly demonstrated by the performance comparison of baseline methods across different met-
rics and datasets that PROVACCINE has a significant advantage in prediction accuracy (indicated
by top ACC). It achieves high accuracy for both positive and negative samples (indicated by high
MCC and F1 scores) and effectively distinguishes the distribution differences between positive and
negative samples (indicated by high KS scores). Notably, we specifically report the positive rate
of top predictions (T30), i.e., the ratio of the top 30 samples with the highest predicted positive
probabilities that are true positives. This metric is crucial in predictive tasks involving biological
experiments, since in real-world scenarios the samples are often highly imbalanced, and researchers
usually conduct experimental validations on the samples with the highest model prediction confi-
dence. Therefore, it is desirable for a model to provide high confidence for true positive samples.
However, it is also important to note that if a model has a high T30 but considerably low accuracy,
it may indicate that it occasionally predicts positive samples as negative, risking the omission of
pivotal vaccine candidates. To avoid biased evaluations, we advocate assessing models based on
their overall performance across multiple metrics rather than overly focusing on a single measure.

We also investigate the influence of protein structure quality on model prediction with an ablation
study comparing structures predicted by AlphaFold22 and ESMFold (see Table 7 in Appendix). The
performance metrics, detailed in the appendix, conclusively show that AlphaFold2’s predicted struc-
tures lead to superior model performance, underscoring the importance of structural accuracy. While
ESMFold’s rapid prediction capability is noteworthy, AlphaFold2’s higher precision in structure pre-
diction significantly boosts model performance. This implies that, when time is not a critical factor,
it is advisable to opt for the more accurate structures provided by AlphaFold2. Unfortunately, the
scarcity of available crystal structures limits our ability to contrast their performance with predicted
ones, highlighting a need for more high-quality structural data in future studies.

5.2.2 GENERALIZABILITY

We next conduct cross-testing and compare the generalizability of different models (Figure 3). Here,
the training and test sets are from different sources. The four web server-based methods are removed
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Figure 4: KDE of predicted immunogenicity scores on Helicobacter pylori candidates. The 11 exper-
imentally determined immunogen are highlighted by red dots. Only PROVACCINE simultaneously
identifies all positive samples while providing a reasonable overall distribution.

as we could not re-train them to avoid data leakage. We focus on AUC and recall to assess the
model’s overall learning ability and its capacity to predict true positives. Generally, models trained
on the Virus dataset demonstrate higher generalizability compared to those trained on the Bacteria
dataset, and those trained on Tumor performed the worst. This may be related to the dataset size, as
the number of antigens in Virus is larger than in Bacteria, and both are larger than Tumor.

Moreover, excluding models with prediction issues (e.g., logistic regression, where a 100% recall
and a relatively small AUC suggests it trivially predicts all samples as negative), PROVACCINE con-
sistently achieved top performance across the six test sets for both metrics. Additionally, the vari-
ation in PROVACCINE’s performance on the same test set when trained on different datasets was
relatively small, which further suggests the model’s robustness in learning intrinsic patterns instead
of overfitting to local variations in the data, thereby demonstrating stronger generalizabilities.

5.3 POST-HOC ANALYSIS

This section demonstrates the practical significance of PROVACCINE in addressing vaccine design
challenges, as a supplementary of the quantitative comparisons on well-established datasets and
standard measurements. Two significant research subjects are selected to design corresponding ad-
hoc analyses, including Helicobacter pylori and SARS-CoV-2. Specifically, in the first case, we
examine whether the potential vaccine candidates identified by PROVACCINE effectively cover im-

munogens, which is frequently assessed by the enrichment of the model’s predictions. In the second
case study, we evaluate whether the ‘likely-effective’ sequences identified by PROVACCINE are con-

sistent with experimental evidence, i.e., if the model assigns the top confidence to the experimentally
validated vaccine development sequences.

5.3.1 IDENTIFICATION OF POTENTIAL VACCINE CANDIDATES FOR HELICOBACTER PYLORI

In the first challenge, we use PROVACCINE to predict immunogens within the Helicobacter py-

lori proteome. Helicobacter pylori is a Group I carcinogen that can persist in the gastric mucosa,
causing various gastrointestinal diseases (Malfertheiner et al., 2023). Identifying effective vaccine
targets and developing corresponding vaccines can prevent Helicobacter pylori infections, thus sig-
nificantly reducing the incidence of gastric diseases and lowering the rate of gastric cancer (Dos
Santos Viana et al., 2021). To this end, we extract the proteome data from the UniProtKB database
(ver 2024 04) (Consortium, 2019). A total number of 1, 858 sequences are extracted after redun-
dancy removal. Although the majority of these 1, 858 sequences lack immunogenicity ground truth
labels, we referr to the work of Dalsass et al. (2019), which record 11 of these sequences as pro-
tective antigens. We use the model trained on Immuno-Bacteria for inference, since Helicobacter
pylori is a bacterium. Note that there is no overlap between the training and prediction datasets.

When evaluate the prediction performance, two measurements are considered. (1) Recall ((9) in
Appendix C) measures the fraction of true protective antigens identified within the set of PVCs
predicted by PROVACCINE. It is a critical indicator of the model’s ability to accurately retrieve
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known protective antigens from a larger set of candidates. (2) Fold-Enrichment (Dalsass et al.,
2019) ((15) in Appendix C) measures the ratio of the true positive rate to the overall prevalence of
the condition, characterizing the model’s ability to enrich for positive samples.

To evaluate the performance of the model, we compare the results of PROVACCINE with other ma-
chine learning approaches. Table 14 compares the recall and enrichment of baseline methods, and
Figure 6 visualizes the predicted kernel density estimation (KDE) of immunogenic probabilities for
candidates of varying sequence lengths, with the 11 immunogens highlighted in red dots. We ex-
clude the VaxiJen series as they only provide web servers, in which case we could not confirm the
absence of data leakage issues in the training data. Among the 1, 858 candidates, PROVACCINE iden-
tifies 123 PVCs. Notably, all the 11 true protective antigens are included within these 123 PVCs.
A recall rate of 100% demonstrates PROVACCINE’s exceptional ability to extract known protective
antigens from the proteome data. In comparison, Random Forest, Gradient Boosting, and XGBoost
also achieve a 100% recall rate, while other baseline models do not perform as well. Furthermore,
PROVACCINE’s fold-enrichment is 15.11, while the highest fold-enrichment among Random For-
est, Gradient Boosting, and XGBoost is only 8.81. This indicates that PROVACCINE has a stronger
predictive ability to enrich for positive samples, which is particularly beneficial when experimental
testing is limited to a finite number of samples.

In addition, from this result in Figure 6, three observations could be concluded: (1) The methods
in the second row have trouble correctly labeling all the protective antigens. (2) The overall proba-
bility distribution found by PROVACCINE aligns more closely with reality with most samples clus-
tering around probabilities close to 0, implying the majority of candidates are non-immunogenic.
(3) PROVACCINE retains fewer PVCs from the candidates than baseline methods, allowing for the
identification of the 11 protective antigens with fewer experimental efforts. The superior perfor-
mance of PROVACCINE could be attributed to its effective integration of multimodal features by
the dual-attention mechanism, which captures the complex interplay between sequence, structure,
and physicochemical information. In summary, our model exhibits strong robustness and consider-
able potential to enhance the discovery of immunogenic vaccine targets in addressing the challenges
posed by Helicobacter pylori.

5.3.2 UNRAVELING SARS-COV-2 PROTEOME FOR VACCINE TARGET DISCOVERY AND
EXPLANATION

Figure 5: Epitope marker on the surface gly-
coprotein (NCBI ID: YP 009724390.1) by
the attention score identifies vaccine targets.

In the second challenge, we aim to investigate if
our PROVACCINE could effectively identify clini-
cally validated vaccine targets from the SARS-CoV-
2 proteome. The candidate test set consists of 38

sequences from SARS-CoV-2 Data Hub (Wheeler
et al., 2007). For the ground truth vaccine targets,
we refer to the nine vaccines approved by the World
Health Organization (Saravanan et al., 2024), five of
which use the surface glycoprotein (spike protein) of
the novel coronavirus as the vaccine target, while the
other four use the whole virus, which also includes
the spike protein. The overall prediction perfor-
mance is in Table 15 in Appendix, where PROVAC-
CINE ranks the most important protein (spike pro-
tein) as the top among the 38 proteins. The model
also identifies some new potential vaccine targets,
e.g., non-structural protein 9 (Nsp9).

To further validate and understand our predictions, we visualize the prediction results. Figure 5
maps the model’s attention scores to the antigenic epitopes of the sequences and comparing them
with experimentally obtained epitopes (Shrock et al., 2020; Polyiam et al., 2021; Braun et al., 2024).
It shows clearly that the model not only demonstrates excellent predictive performance but also
possesses promising interpretability. For clear presentation, we display the chain trace of the spike
protein and colored the amino acids based on the attention scores from the attention pooling layer,
with darker positions indicating higher attention scores. Overall, the model shows higher attention
scores around position 400, and the spike protein contains three immunodominant linear B cell
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epitopes from position 319 to 541. Additionally, there are three regions with deeper colors that
overlap with the SARS-CoV-2 spike receptor-binding domain (RBD), including positions 150-164,
291-320, and 439-478. This visualization provides a deeper understanding of the model’s prediction
process and enhances the credibility of our approach in identifying potential vaccine targets.

6 RELATED WORK

Developing machine learning models has become a popular approach for many predictive problems
in vaccine design. One of the most widely used web servers for identifying potential vaccine can-
didates is VAXIJEN (Doytchinova et al., 2007), which employs an alignment-free method based on
auto cross-covariance (ACC) transformation to identify antigens without relying on sequence align-
ment. Subsequent methods have introduced additional input features (He et al., 2010) or improved
prediction models (Edison et al., 2020; Zhang et al., 2023; Rawal et al., 2022). Compared to other
reverse vaccinology tools, these advanced techniques demonstrate superior performance in predict-
ing bacterial protective antigens. Recently, Dimitrov et al. explored the immunogenicity of antigens
from other sources, such as viruses (Doneva & Dimitrov, 2024) and tumors (Sotirov & Dimitrov,
2024), and evaluated various popular machine learning methods.

These machine learning approaches for predicting immunogenicity have often relied on limited
datasets, typically confined to a specific type of pathogen, such as bacteria or viruses, and have been
relatively small in scale. For instance, (Doytchinova et al., 2007) trained and validated their models
using only a few hundred samples. The scarcity of data not only impedes the development of robust
predictive models but also restricts the ability to capture the complex immunological responses
elicited by diverse antigens. To date, few studies have managed to amalgamate a comprehensive
dataset that encompasses antigens from multiple pathogen classes, which is essential for training
models capable of predicting immunogenicity with high fidelity across varied biological contexts.

Despite the rapid development of deep learning, the advancement of methodologies for protein prop-
erty prediction, including immunogenicity prediction, has been relatively slow due to the limited
amount of labeled data. Recently, BERT-style PLMs (Lin et al., 2023; Li et al., 2024) have gained
increasing attention with an increasing number of prediction tasks fine-tuning models to better fit
the specific targets (Schmirler et al., 2023; Li et al., 2023b; Zhou et al., 2024; 2023), or attaching
additional propagators to process sequence embeddings, such as geometric encoders (Yang et al.,
2023; Tan et al., 2023) or cross-modality aggregators (Tan et al., 2024a;b).

7 CONCLUSION AND DISCUSSION

Despite the rapid advancement of deep learning in providing novel solutions to numerous problems
in scientific fields such as protein engineering, the application of advanced models remains largely
limited to well-defined engineering problems with relatively mature and abundant data. However,
many other issues with significant scientific and practical value have not received sufficient attention,
and the methods used for these problems are considerably outdated. In addition to the oversight of
important problems due to a lack of interdisciplinary cross-talk between research fields, another ma-
jor reason is the absence of high-quality datasets and adequate evaluation methods for many specific
issues. Preparing and processing datasets for model training and evaluation requires significant ef-
fort and domain knowledge, and validating the developed methods also requires feasible evaluation
protocols that fit practical requirements. Ideally, these protocols should neither be as disconnected
from practical needs as current computational metrics (e.g., perplexity for sequence generation) nor
as resource-intensive as wet lab validation processes in terms of time, money, and technical barriers.

As an exploratory work, this study takes immunogenicity prediction in vaccine development as an
entry point to investigate how to prepare data, build models, and design evaluation strategies for a
scientific problem that seeks powerful deep learning solutions. Although protein representation can
be encoded by many pre-trained models, and immunogenicity prediction is inherently one super-
vised learning task, we emphasize that utilizing deep learning to solve scientific problems should
not only focus on algorithm design but also on dataset construction and the practicality of evalua-
tion methods. Here we demonstrate the overall performance of the model using standard datasets
and conventional quantitative evaluation methods, and analyze the model’s realiability in specific
applications using post-hoc analysis without conducting entirely new wet lab experiments.
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Noelia Ferruz, Steffen Schmidt, and Birte Höcker. ProtGPT2 is a deep unsupervised language model
for protein design. Nature Communications, 13(1):4348, 2022.

Tomas Hayes, Roshan Rao, Halil Akin, Nicholas J Sofroniew, Deniz Oktay, Zeming Lin, Robert
Verkuil, Vincent Q Tran, Jonathan Deaton, Marius Wiggert, et al. Simulating 500 million years
of evolution with a language model. bioRxiv, pp. 2024–07, 2024.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yongqun He, Zuoshuang Xiang, and Harry L T Mobley. Vaxign: The first web-based vaccine design
program for reverse vaccinology and applications for vaccine development. Biomed Research

International, 2010(1110-7243):297505, 2010.

Michael Heinzinger, Konstantin Weissenow, Joaquin Gomez Sanchez, Adrian Henkel, Martin
Steinegger, and Burkhard Rost. ProstT5: Bilingual language model for protein sequence and
structure. bioRxiv, pp. 2023–07, 2023.

Sven Hellberg, Michael Sjoestroem, Bert Skagerberg, and Svante Wold. Peptide quantitative
structure-activity relationships, a multivariate approach. Journal of Medicinal Chemistry, 30(7):
1126–1135, 1987.

Jing Li, Zhongpeng Zhao, Chengzheng Tai, Ting Sun, Lingyun Tan, Xinyu Li, Wei He, Hongjun
Li, and Jing Zhang. Virusimmu: a novel ensemble machine learning approach for viral immuno-
genicity prediction. bioRxiv, pp. 2023–11, 2023a.

Mingchen Li, Liqi Kang, Yi Xiong, Yu Guang Wang, Guisheng Fan, Pan Tan, and Liang Hong.
Sesnet: sequence-structure feature-integrated deep learning method for data-efficient protein en-
gineering. Journal of Cheminformatics, 15(1):12, 2023b.

Mingchen Li, Yang Tan, Xinzhu Ma, Bozitao Zhong, Huiqun Yu, Ziyi Zhou, Wanli Ouyang, Bingxin
Zhou, Liang Hong, and Pan Tan. Prosst: Protein language modeling with quantized structure and
disentangled attention. bioRxiv, pp. 2024–04, 2024.

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
Robert Verkuil, Ori Kabeli, Yaniv Shmueli, et al. Evolutionary-scale prediction of atomic-level
protein structure with a language model. Science, 379(6637):1123–1130, 2023.

Ilya Loshchilov, Frank Hutter, et al. Fixing weight decay regularization in adam. arXiv preprint

arXiv:1711.05101, 5, 2017.

Ali Madani, Ben Krause, Eric R Greene, Subu Subramanian, Benjamin P Mohr, James M Holton,
Jose Luis Olmos, Caiming Xiong, Zachary Z Sun, Richard Socher, et al. Large language models
generate functional protein sequences across diverse families. Nature Biotechnology, 41(8):1099–
1106, 2023.

Peter Malfertheiner, M Constanza Camargo, Emad El-Omar, Jyh-Ming Liou, Richard Peek, Chris-
tian Schulz, Stella I Smith, and Sebastian Suerbaum. Helicobacter pylori infection. Nature reviews

Disease primers, 9(1):19, 2023.

Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu, and Alex Rives. Language
models enable zero-shot prediction of the effects of mutations on protein function. Advances in

neural information processing systems, 34:29287–29303, 2021.

Pizza and M. Identification of vaccine candidates against serogroup b meningococcus by whole-
genome sequencing. Science, 287(5459):1816–20, 2000.

Kanokporn Polyiam, Waranyoo Phoolcharoen, Namphueng Butkhot, Chanya Srisaowakarn, Arunee
Thitithanyanont, Prasert Auewarakul, Tawatchai Hoonsuwan, Marasri Ruengjitchatchawalya,
Phenjun Mekvichitsaeng, and Yaowaluck Maprang Roshorm. Immunodominant linear b cell
epitopes in the spike and membrane proteins of sars-cov-2 identified by immunoinformatics pre-
diction and immunoassay. Scientific reports, 11(1):20383, 2021.

Roshan M Rao, Jason Liu, Robert Verkuil, Joshua Meier, John Canny, Pieter Abbeel, Tom Sercu,
and Alexander Rives. MSA transformer. In International Conference on Machine Learning, pp.
8844–8856. PMLR, 2021.

Kamal Rawal, Robin Sinha, Swarsat Kaushik Nath, P Preeti, Priya Kumari, Srijanee Gupta, Trapti
Sharma, Ulrich Strych, Peter Hotez, and Maria Elena Bottazzi. Vaxi-dl: A web-based deep
learning server to identify potential vaccine candidates. Computers in Biology and Medicine,
145:105401, 2022.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Venkatesan Saravanan, Bharath Kumar Chagaleti, and Pavithra Lakshmi NarayananVijay Babu
AnandanHaritha ManoharanG.V. AnjanaRamalingam PeramanS. Karthik Raja NamasivayamM.
KavisriJesu ArockiarajKathiravan MuthuKumaradossMeivelu Moovendhan. Discovery and de-
velopment of covid-19 vaccine from laboratory to clinic. Chemical biology and drug design, 103
(1), 2024.

Robert Schmirler, Michael Heinzinger, and Burkhard Rost. Fine-tuning protein language models
boosts predictions across diverse tasks. bioRxiv, pp. 2023–12, 2023.

Ellen Shrock, Eric Fujimura, Tomasz Kula, Richard T. Timms, and Stephen J. Elledge. Viral epitope
profiling of covid-19 patients reveals cross-reactivity and correlates of severity. Science, 2020.

Stanislav Sotirov and Ivan Dimitrov. Application of machine learning algorithms for prediction of
tumor t-cell immunogens. Applied Sciences, 14(10), 2024.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Jin Su, Chenchen Han, Yuyang Zhou, Junjie Shan, Xibin Zhou, and Fajie Yuan. Saprot: protein
language modeling with structure-aware vocabulary. In The Twelfth International Conference on

Learning Representations, 2023.

Yang Tan, Bingxin Zhou, Lirong Zheng, Guisheng Fan, and Liang Hong. Semantical and topological
protein encoding toward enhanced bioactivity and thermostability. bioRxiv, pp. 2023–12, 2023.

Yang Tan, Mingchen Li, Bingxin Zhou, Bozitao Zhong, Lirong Zheng, Pan Tan, Ziyi Zhou, Huiqun
Yu, Guisheng Fan, and Liang Hong. Simple, efficient, and scalable structure-aware adapter boosts
protein language models. Journal of Chemical Information and Modeling, 2024a.

Yang Tan, Jia Zheng, Liang Hong, and Bingxin Zhou. Protsolm: Protein solubility prediction with
multi-modal features. arXiv:2406.19744, 2024b.

Michel Van Kempen, Stephanie S Kim, Charlotte Tumescheit, Milot Mirdita, Jeongjae Lee,
Cameron LM Gilchrist, Johannes Söding, and Martin Steinegger. Fast and accurate protein struc-
ture search with foldseek. Nature Biotechnology, pp. 1–4, 2023.

Mathura S. Venkatarajan and Werner Braun. New quantitative descriptors of amino acids based on
multidimensional scaling of a large number of physical–chemical properties. Molecular modeling

annual, 7(12):445–453, 2001.

David L Wheeler, Tanya Barrett, Dennis A Benson, Stephen H Bryant, Kathi Canese, Vyacheslav
Chetvernin, Deanna M Church, Michael Dicuccio, Ron Edgar, and Scott Federhen. Wheeler, d.l.
et al. database resources of the national center for biotechnology information. nucleic acids res.
33 database issue: D39-d45. Nucleic Acids Research, 35(Database issue):D5–12, 2007.
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