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Abstract—Imitation learning (IL), particularly when leverag-
ing high-dimensional visual inputs for policy training, has proven
intuitive and effective in complex bimanual manipulation tasks.
Nonetheless, the generalization capability of visuomotor policies
remains limited, especially when small demonstration datasets are
available. Accumulated errors in visuomotor policies significantly
hinder their ability to complete long-horizon tasks. To address
these limitations, we propose SViP, a framework that seamlessly
integrates visuomotor policies into task and motion planning
(TAMP). SViP partitions human demonstrations into bimanual
and unimanual operations using a semantic scene graph monitor.
Continuous decision variables from the key scene graph are
employed to train a switching condition generator. This generator
produces parameterized scripted primitives that ensure reliable
performance even when encountering out-of-the-distribution ob-
servations. Using only 20 real-world demonstrations, we show
that SViP enables visuomotor policies to generalize across out-
of-distribution initial conditions without requiring object pose
estimators. For previously unseen tasks, SViP automatically dis-
covers effective solutions to achieve the goal, leveraging constraint
modeling in TAMP formulism. In real-world experiments, SViP
outperforms state-of-the-art generative IL methods, indicating
wider applicability for more complex tasks. Project website:
https://sites.google.com/view/svip-bimanual,

I. INTRODUCTION

Bimanual manipulation poses significant challenges in tasks
that involve multiple stages and require precise hand-hand
coordination [14} 25, 2l]. Traditional motion planning often
relies on accurate modeling of the objects being manipulated,
which may not be feasible in real-world applications. By con-
trast, Learning-from-Demonstration (LfD) circumvents these
limitations by enabling robots to learn actuation commands
directly from human demonstrations, thus eliminating the need
for intricate object modeling.

Recent developments in IL methods, designing the visuo-
motor policies as denoising diffusion probabilistic models
(DDPMs) [5) 113} [12} 126], have significantly enhanced their
modeling capabilities for long-horizon and multimodal ma-
nipulations. Nevertheless, these methods still exhibit a high
vulnerability to failures when faced with out-of-distribution
(OOD) observations. For instance, the gripper might fail
to pick up an object if the object is displaced by only a
few centimeters from its demonstrated position. Moreover,
even if the picking is successful, subsequent manipulation
can still fail due to an unseen grasp gesture. To learn a
more reliable policy in challenging scenarios, recent works
[1} 281 [16]] leverage large-scale datasets that encompass a wide
distribution. However, the substantial hardware requirements
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Fig. 1.  Provided with motion planning primitives and trained bimanual
visuomotor policies, SViP utilizes task and motion planning to compute a
plan skeleton that integrates both learned and planned operations. When en-
countering observations absent from the training data, SViP leverages planned
operations to transition into a state within the training distribution, enabling
the initiation of the learned bimanual visuomotor policy. Additionally, SViP
facilitates the completion of customized goals while adhering to specified
motion constraints.

(e.g., computational power and storage capacity) and the in-
tensive human effort (e.g., demonstration data collection) often
render these approaches impractical for real-world industrial
applications. Another issue is the constrained manipulability
of teleoperation hardware systems. These systems employing
direct joint mapping (e.g., ALOHA[27] and GELLO [23])
are widely used for collecting fine-grained manipulation data.
However, human experts using such systems often struggle to
reach a large portion of configurations within diverse tabletop
setups — configurations that robotic arms can readily access..

It is noteworthy that classical motion planning approaches
do not rely on demonstrations, and they avoid inherent limita-
tions like poor generalization or accumulated error. Therefore,
we aim to integrate the strengths of both learned visuomotor
policy and scripted motion planning. Specifically, we propose
Seqeuncing Visuomotor Policy (SViP) that utilizes task and


https://sites.google.com/view/svip-bimanual

motion planning (TAMP) to stitch learned visuomotor policies
and object-centric motion primitives into a cohesive sequence
to accomplish tasks, as pictured in Fig. [T} Instead of learning a
fixed action sequence, SViP allows robots to perform complex
tasks that involve multiple branches and diverse operations.
This work is inspired by Mandlekar et al. [18], which enables
scripted motion, visuomotor policy, and human teleoperation
to work jointly in an interleaved fashion. However, it requires
a predefined and hardcoded switching mechanism between
scripted and learned operations. Its successor [9] combines
motion planning with demonstration to generate training data
under different environmental conditions. A common limita-
tion of Mandlekar et al. [18]] and Garrett et al. [9]] is their
reliance on 6-DoF object poses, which necessitates the use of
pose estimators. Unfortunately, these estimators require extra
tedious data collection and long training time, and their per-
formance is often suboptimal for objects exhibiting symmetry
22]]. In contrast to the aforementioned approaches
[18, O], SViP directly learns a mapping from point cloud
observations to switching conditions, ensuring that visuomotor
policies are initiated based on observations similar to those
encountered in demonstrations (Fig. |I| bottom). Furthurmore,
unlike prior methods such as NOD-TAMP [4]] and PSL [6]
that stitch fixed sequences of unimanual skills, SViP offers
broader applicability and greater composition flexibility.

The contributions of the proposed SViP are summarized as
follows:

o We propose a compositional system that can decompose
unimanual or bimanual skills from demonstrations and
reorganize them to achieve novel goals;

o We design switching condition generators and feasibility
validators for visuomotor policies, facilitating their seam-
less sequencing with motion primitives while complying
with motion constraints;

¢ We conduct comprehensive experiments in both simula-
tion and real world, demonstrating that SViP can com-
plete long-horizon manipulation in challenging setups.

II. PRELIMINARIES
A. Scene Graph

A scene graph can be defined as a graph G = {V, E, L},
where V' is the set of entities as nodes, £ C V x V is the
set of edges, and L : E — P is a function that maps an
edge to a predicate which represents a fixed transform or
a kinematic link between entities. We consider three types
of entities in a bimanual tabletop manipulation setting: robot
gripper nodes H, region nodes R, and object nodes O. An
edge e € E in a scene graph captures the contact mode in
manipulation, which can in turn be converted to a predicate.
For example, an edge e € {(h,0)|h € H,0 € O} corresponds
to AtGrasp(h, o, g), where g is the relative gripper pose to the
object frame; an edge e € {{(po,h)|h € H} corresponds to
AtConf(h, q), where py is the table and ¢ is the joint config-
urations; an edge e € {(p,0)|p € R,0 € O} corresponds to
AtRelativePose(p, 0, p), where p is the relative pose of o in
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(a) Start of contact-rich
segment

(c) End of contact-rich
segment

(b) Contact-rich segment

Fig. 2. (a) and (c) show the start and the end of the contact-rich part, while
(b) shows the contact-rich part of the Object Handoff operation. As marked
in the overhead camera images, py and po are the center points of robot
grippers and objects. The corresponding scene graphs Gpre, Gmid, Gesr are
sketched below, with continuous variables labeled on each edge. Here, p, h,
hy, o1 denote the table, the left robot, the right robot, and the manipulated
objects, respectively. The edges within each scene graph are labeled with
continuous decision variables.

the frame of p. In the following context, we use ¢ to denote
joint angles, and g, ;, to denote the contacting pose of gripper
h on object o. The subscripts [ or r are used to specify the
related arm, i.e., left or right arm. For ease of illustration, we
simplify AtRelativePose(pg, 0,p) to AtPose(o,p), since the
world frame is set to the table frame. Similarly, we abbreviate
Jo,h aS go, as each object is contacted by at most one gripper
in an object-centric unimanual operation. We denote 7, as the
object-centric trajectory when breaking or establishing contact
with the object o; the contacting pose g, is trivially obtained
from 7, when the gripper is closest to the object.

Let Gr(s;) be a mapping from system state s; to a scene
graph G. For a demonstration D containing 7' timesteps, an
event-driven scene graph sequence can be sketched according
to the contact mode changes:

G(D) = Gr(s0)Gr (81, )Gr (51, 41,) - Gr(ss2,)
where Y t; < T and Gr(se,) # Gr(s:

i+1 )
III. METHODOLOGY

A. Symbolic Descriptions for Bimannual Visuomotor Policies

We define an abstracted bimanual skill (referred to as skill
below) as a tuple a = (Gwid, Gpre, Geft, T, @, §), Where Guid
is the scene graph during the contact-rich segment of bimanual
manipulation, Gy, is the scene graph preceding Gimia, Gesr is
the scene graph immediately following Gpiq, 7 is the learned
visuomotor policy, ¢ is the switching condition generator,
and ¢ is the feasibility validator. The intuition behind scene-
graph representations derives from the observation that a
demonstrated skill can be decomposed into several sub-skills
according to contact modes between robot hands and manip-
ulated objects. The contact-rich segments pose challenges for
classical motion planning or reward function specification, yet
are tractable for a learned visuomotor policy 7. On the other
hand, the segments with lower behaviour complexity (e.g.,
pick, place, drop, transit, and transfer) are better addressed
by classical motion planning.



We develop a perception pipeline that segments a demon-
stration into a sequence of scene graphs. These graphs repre-
sent subgoals that can be achieved by visuomotor policies or
object-centric motion primitives. Via a video segmentation tool
[19], the monitor obtains the positions of all objects po and the
positions of all robot end-effectors py (Fig. [2] top). An event-
driven scene graph sequence can thus be constructed as G(D),
as sketched in Fig. [J] bottom. Specifically, the scene graph
Gmiq represents the segment where there is contact between
objects or coordination between grippers. On the other hand,
scene graphs Gy, and Gy contains vital geometric infor-
mation before and after the contact-rich segment. They are
further parsed into PDDLStream[11] format, which provides
highly abstracted descriptions of skills for symbolic planning.

Consider a bimanual Object Handoff task in Fig. [2| as
an example, where an object o; is to be handed off from
the right gripper h, to the left gripper h;. Let Pr(QG)
G — P be a function that converts a scene graph into a
set of predicates with grounded symbolic variables. Thus,
the geometric information from Gy, is converted to the
predicates PreGeom(o1, hi, ey @iy Gry 9oy ) Pr(Gp.) =
AtGrasp(hy, 01, go, ) A AtConf(hy, q;) A AtConf(h,, g,). Sim-
ilarly, the contact-related predicates in eff(a) is ex-
tracted by comparing Pr(Ggs) to Pr(Gf,.), resulting in
EffGeom(o1, hy, hry G715 Q). 9o 5 9, ) = AtGrasp(hy, 01,9, ) A
—AtGrasp(h,., 01, go, ) NAtConf(hy, g;) ANAtConf(h,, g..). Other
than EffGeom, the effect contains semantic information about
the completion of the bimanual operation, i.e., DoneBiOp(a).
Thus, the description of the bimanual operation a is given as:

BiOperation(a, o1, Ay, b, i, Grs 41 @1 Gou s G, )
pre :PreGeom(o1, hy, ey Gi, Gry Goy )
eff :EffGeom (o1, hy, b, 415 Qs Goy > 9, )N
DoneBiOp(a)
con :SafeBiOp(a, hy, by, qi, qr)

This description can be easily generalized to other learned
policies with available geometric information Gpye, Geg. If the
demonstration ends with a contact-rich operation, geometric
predicates in Gog are not available, thus the effect should
only contain DoneBiOp as a sign of completion. Otherwise, if
geometric predicates are available in the effect, the termination
of the policy 7 can be reported by a sub-goal monitor.

B. Diffusion-based Parameter Generator

Encoding a learned policy into TAMP is non-trivial because
there is a significant gap between the formulation of visuo-
motor policy and the planning. Our idea is similar to that in
[18L 9], executing the learned policy and planned trajectories in
an interleaved way. The bottleneck of a hybrid learned-scripted
system is to develop a suitable switching mechanism. Unlike
prior works that only focus on unimanual operations 18, 9, 3],
we involve the sequencing of complex bimanual operations.
To stitch object-centric motion primitives to the initiation
and termination of a learned policy, we train networks to

predict the switching condition for unimanual and bimanual
operations separately.

For object-centric unimanual operations, we learn a tra-
jectory 7, in the contact-rich segment. On the other hand,
bimanual operations are modeled as black-box skills starting
and ending at certain configurations q. Let )V denote the
collection of learnable decision variables {q, 7o, ..., Toy }-
Assuming independent behavior for each atomic skill, we can
factorize the distribution of V as:

M
P(V‘OON"'?COM) = P(q) 'HP(TOi|COi) (1)
=1

where q = (Gpre, gesr) as the joint angle array concatenating
the starting and end joint angles, M is the number of object-
centric operations, C,, is the point cloud of the object o; being
contacted. Note that Equation[T]includes one bimanual skill for
simplicity, and it can be extended to demonstration sequences
containing multiple bimanual skills.

We formulate the switching condition generators as DDPM
due to its powerful distribution fitting capability. According
to Salimans and Ho [20], the connection of score function
and probability distribution can be established as (z, k) =
V. log(P(x)), where k be the diffusion step. Thus, Equation
[[l can be rewritten as a combination of score functions:

M
= 59((17 k) + 259(7—017]{‘001)

=1
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where €y is an approximate score function. Specifically, an un-
conditional score function for starting/termination joint poses
is sampled from a multi-layer perceptron (MLP), while a score
function for object-centric trajectory is sampled from an SE(3)
equivariant U-Net [24]. The SFE(3) equivariance is achieved
by the Vector Neuron Network (VNN) [7] architecture, en-
forcing equivalent distribution of the conditional probability
P(79|C,) and P(T7¢|TC,) under arbitrary homogeneous
transformation 7~ € SE(3). Accordingly, the point cloud fea-
ture is extracted by an SFE(3)-equivariant point cloud encoder
Enc(-), adopted from Lei et al. [15]. The noise prediction
function in the k*" denoising step can thus be written as
ea(Enc(C,), Vec(,) + &, k) = ¥, where Vec(-) extracts the
rotation part in an SE(3) pose following Zhou et al. [29].

With the generators of switching conditions wrapped in
stream functions, we use Adaptive algorithm [10] to solve the
TAMP problem, computing an action sequence composed of
visuomotor policies or learned trajectories.

C. Constraints in Bimanual Visuomotor Policies

With the building blocks introduced above, SViP leverages
focused TAMP solver [10] to search for a set of discrete
and continuous parameters that satisfy various constraints.
However, the calculated action sequence is not guaranteed
feasible, as constraints associated with the policy are not well-
defined. To ensure that the bimanual visuomotor policy can be
safely executed in an unseen scenario, we additionally include
two constraints:



o IsReachable(h,p), which is satisfied if a point p is
reachable for the robot gripper h.

o SafeBiOp(a, hy, by, qi, gr), which is satisfied if the bi-
manual skill a starting at the configuration (g;, ¢} is safe
from collision with any objects other than objects being
manipulated.

The implementation of IsReachable is straightforward, as
it can be scripted using distance-related metrics. However,
the SafeBiOp constraint for a learned reactive policy is not
compatible with scripted test functions. The reason is that the
trajectory 7, of a visuomotor policy 7w cannot be explicitly
computed, and the safety cannot be certified by a conventional
collision checking function.

To predict the likelihood of collision during performing
a coordinated skill a, we train a feasibility validator &,
eliminating the need for an explicit trajectory. Specifically,
an MLP predicts a collision probability conditioned on the
initiation conditions of the learned visuomotor policy. Let
the set of timestamps corresponding t0 Gpre; Gmid, Gegr be
Tore, Tmid, Tes, respectively. Specifically, we are interested in
predicting if a bimanual operation starts from ¢ € T}, is
collision-free during time Ty = Tpre N Tnia N Teg. Denoting
the unexpected obstacle with geometric feature v as being
located at p, we construct a collision-prediction dataset as

Ui]igl U U{(ai,p,v,6)}, where § is the closest distance
t€Tpre P
of the robot to the obstacle while performing skill a, and N

is the number of demonstrations. The predicate SafeBiOp is
certified when all objects on the table are free from collision.

IV. EXPERIMENTS AND RESULTS

In this section, we evaluate SViP in both simulated and
real-world tasks, to empirically answer following questions:

e Q1: Can SViP perform effectively in previously unseen
tabletop setups?

o Q2: Can SViP manage various constraints, such as reach-
ability and collision avoidance?

e Q3: Can SViP complete tasks with novel goals using
learned and scripted primitives?

A. Simulation Experiment

1) Setup of Simulated Environment: We adopt the peg-
in-hole simulation environment from ALOHA [28]] based on
MuJoCo [21] simulator. In this setup, two Interbotix vx300s
robot arms are placed on the table with their X -axes oriented
toward each other. A socket and a peg are placed on the
left and right sides of the table, respectively. When collecting
the training demonstrations, we employ the initial placement
method [28]] where the 2D position of each object is randomly
sampled within a 0.2m x 0.2m square, while their rotations
remain fixed. We generate 50 episodes of demonstrations using
a scripted motion planner, which is detailed in the open-
source repository provided by Zhao et al. [28]]. The simulation
experiments were computed on a workstation with Intel i7-
13700k CPU and NVIDIA RTX 3090 GPU.

TABLE I
SUCCESS RATES (%) OF SVIP IN THE SIMULATED Object Handoff TASK
WITH DIFFERENT INITIAL SETUPS.

Setup ACT [27] DP[3] | SViP
ID 44 54 100
XY-00D 38 42 100
XYH-00D 2 12 88
TABLE 1T

RESULTS OF SVIP’S ZERO-SHOT TRANSFER TO TASKS THAT INVOLVE
OPERATIONS UNSEEN IN THE DEMONSTRATION.

Setup Sequence Success Rate Computation
Len. Time (s)

ID (original) 7.0 100 7.55

unreachable 11.0 55 12.36

unsafe 11.6 70 27.39

2) SViP Evaluation with OOD Observations: In this part,
we evaluate the performance of SViP when it encounters
both in-distribution (ID) and out-of-distribution (OOD) obser-
vations during inference. To highlight the advancements in
robustness and generalization offered by SViP, we conduct a
comparative analysis with state-of-the-art (SOTA) generative
IL methods, i.e., ACT [27] and DP [5].

a) Design of Testing Scenario: We design three types of
randomized initialization functions to evaluate SViP’s perfor-
mance in unseen environments from a test distribution.

« ID follows the object position sampling function used in
demonstrations to generate in-distribution initial observa-
tions, ensuring alignment with the training dataset.

e XY-0OD randomly samples the 2D position of the object
within 0.25m x 0.25m square, which include the region
defined as ID. This serves to create OOD observations
limited to changes in the XY plane.

e XYH-OOD introduces variability by rotating the object’s
heading within the range ¢ € (—0.57,0.57), in addition
to the 2D position sampling in XY-0OD. This allows for a
broader range of OOD scenarios with orientation changes.

b) Comparative Results and Analysis: The task goal
of SViP is defined as n = DoneBiOp(a), indicating that
the goal is to complete the bimanual insertion operation as
demonstrated. The success rate is computed by averaging the
results of 50 rollouts. The results are presented in Table

In the ID setting, a comparison of the success rates reveals
that SViP surpasses both baseline methods. The baseline
performance is affected by the multi-stage nature of the
peg-in-hole task, where the failure during the object pick-
up phase can result in the failure of the entire task. In this
context, using an object-centric motion primitive for object
pickup proves to be more reliable than the IL policy, thereby
enhancing the overall success rate. In the XY—-0OD setting, it is
evident that ACT and DP experience significant performance
degradation in OOD scenarios, while SViP maintains 100%
success. In the XYH-0OD setting, the success rates of baselines
drop dramatically, in contrast, SViP achieves 88% success
rate. Therefore, SViP successfully executes bimanual multi-
stage tasks in unseen tabletop setups, indicating its superior
generalization to OOD initial scenarios (as in Q1).



(b) Unsafe Setup

Execution by SViP in the unreachable and the unsafe setup.

Fig. 3.

3) SViP Evaluation in Constraint Handling: To demon-
strate the compatibility of SViP with the classical TAMP
system, we evaluate SViP in two common environmental con-
straints: reachability constraints and collision-free constraints.

a) Design of Testing Scenario: We have presented two
important constraints, namely IsReachable and SafeBiOp in
Section [[II=C} to ensure the reliable execution of bimanual
operations. To this end, we design two distinct simulation
settings, named unreachable and unsafe, by updating
the simulation environment setups. Specifically, Fig. [3a]depicts
the unreachable scenario, where either the peg or the
socket is inaccessible, preventing the insertion operation. In
this case, both the socket and the peg are randomly placed on
the same half of the table, with a random rotational angle ¢ €
(—m, 7). This setup effectively tests the system’s adaptability
to positioning constraints associated with reachability. Fig. [3b|
presents the unsafe scenario, where a pole is placed on the
table, serving as a potential obstacle. Here, we assume that the
pole can be grasped and its base is not fixed. In this setting,
the placement of the socket and the peg adheres to the ID
configuration as described in Section [[V-AZa] This scenario
is designed to examine the system’s capacity to handle the
collision-free constraints effectively.

b) Results and Analysis: We conducted 20 trials for
each task using SViP on a workstation with Intel i7-13700k
CPU and NVIDIA RTX 3090 GPU. Several key metrics are
recorded: the average number of actions (i.e., sequence length),
the success rate (%), and the average computation time (s). We
set a timeout threshold of 60 seconds, and any trial exceeding
this limit is deemed a failure It is important to note that
both baseline methods, ACT[27] and DP[3]], completely failed
in unreachable or unsafe scenarios. For the sake of
simplicity and clarity, their results have been excluded from
the table.

As indicated in Table [[T, SViP achieves success rates of 55%
and 70% in the unreachable and unsafe scenarios, respectively.
This performance is primarily attributed to the integration of
TAMP. TAMP can identify inadequacies in the demonstrated
sequence, thereby replanning a longer plan skeleton that
achieves the goal conditions without violating constraints. For
example, in the unreachable scenario, the robot can use
its left arm to grasp the socket that is initially out of reach,
and place it into the right arm’s reachable region. Similarly, in
the unsafe scenario, the robot may first relocate the pole to
ensure it does not obstruct further insertion operations. Despite

7 | these capabilities, Table [[I| indicates a reduction in the success

rate and an increase in computation time compared to the
results in the ID setup. Here, the primary cause of decreased
success rates is unexpected collisions, which stem from inac-
curate point cloud observations. Regarding the increased com-
putation time, especially in the unsafe case, this is due to
the exponential rise in computational complexity of TAMP as
the number of objects increases. Nevertheless, unlike IL poli-
cies, which cannot handle scenarios such as unreachable
and unsafe, SViP represents a significant advancement by
incorporating reachability and collision-avoidance constraints,
addressing the primary concern of Q2.

B. Real-world Experiment

1) Real-world Tasks and Robot Platform: This section
evaluates SViP in three real-world tasks: 1) Object Handoff,
as previously introduced in Section 2) Screwdriver
Packing, which requires fine-grained manipulation of a slen-
der object; and 3) Cup-sleeve Insertion, involving interaction
between two objects. Fig. #a] and Fig. b illustrate the demon-
strated manipulation for Screwdriver Packing and Cup-sleeve
Insertion tasks, respectively. For each task, we collected 20
demonstrations for training the visuomotor policy.

We conducted the experiments on ALOHA platform,
consisting of two master arms and two puppet arms, each
with 7-DoF. The master arms are only used for teleoperation,
and the puppet arms precisely mirror the joint positions of
the master arms. Notably, only the puppet arms are activated
during execution. The ALOHA system is equipped with four
cameras. One top camera and one front camera capture the
overall workstation, along with two cameras mounted on the
wrists to record the detailed visual information. Note that
we set the top camera as an Intel Realsense camera, which
provides depth measurements for 3D perception.

(b) Cup-sleeve Insertion

Fig. 4. Demonstrated manipulation in the Screwdriver Packing and the
Cup-sleeve Insertion task. The initial positions of the manipulated objects
are randomly sampled in the yellow regions.

2) SViP Evaluation in Real-World Tasks: We design the
experiments with three different setups: in-distribution (ID),
out-of-distribution (OOD), and Tilted. Notably, the Tilted
setup presents a more challenging scenario for the Object
Handoff and Screwdriver Packing tasks, as it involves spatial
rotations where the target object leans against a random object.
It is important to highlight that the objects involved in the
Object Handoff task and Cup-sleeve Insertion tasks exhibit
central symmetry, posing challenges for most object pose



TABLE III
SUCCESS RATE (%) OF SVIP IN REAL-WORLD TASKS WITH VARIOUS
INITIAL SETUPS, IN COMPARISON WITH DP.

Task Setup \ DP SViP
D \ 90 100
Object Handoff 00D ‘ 30 95
Tilted \ 60 100
D \ 55 80
Screwdriver Packing 00D ‘ 10 80
Tilted \ 0 65
D \ 75 80
Cup-sleeve Insertion 00D ‘ 35 75
Tilted \ 35 40

estimators [17, 22]] that fail to provide stable pose outputs.
Additionally, we choose DP as the sole baseline due to
its superior performance compared to ACT, as illustrated in
Section [[V-A).

For each task, we conducted 20 rollouts and calculated
the success rate for each setup. As shown in Table [ITI}
SViP consistently outperforms DP across all task scenarios.
Similar to the simulation results, SViP demonstrates superior
performance in ID scenarios, even with only 20 real-world
demonstrations, highlighting its data efficiency and reliability.
Notably, in the fine-grained, multi-stage manipulation task
Screwdriver Packing, even minor OOD observations cause DP
to fail the entire task. In contrast, SViP maintains high success
rates across all settings. Despite its overall effectiveness, the
accuracy of switching condition generators is affected by
OOD point cloud observations, particularly in the Tilted
setting of the Cup-sleeve Insertion task. We attribute this issue
to the reliance on single-view depth measurements, which
inherently produce noisy and incomplete point clouds, leading
to discrepancies between training and inference observations.

3) SViP Evaluation in Novel Tasks with Specified Goal:
The experiments in this section are designed to demonstrate
that the learned bimanual visuomotor policy is capable of
executing long-horizon tasks that align with a human-specified
goal. It is important to know that if the task goal contains
predicates regarding the state of interested objects, the effect of
the bimanual operation should be well-defined. For illustration,
we design two specific tasks as follows:

o Table-to-Bin Clearance: Based on the Object Handoff
scenario, we additionally place a bin at the top-left
corner of the table. The task goal is defined as n =

() In(bin, 0;), indicating that all objects on the table
0, €0
must be within the bin.

o Cup-sleeve Insertion and Reconfiguration: Based on the
Cup-sleeve Insertion scenario, we add two virtual pads,
namely leftPad and rightPad, on the table. An addi-
tional goal condition is defined as On(sleeve, leftPad)) A
On(cup, rightPad), requiring the robot to place the cup
and sleeve to the table at arbitrary positions. The geomet-
ric parameters remain consistent with those in Cup-sleeve

(a) Table-to-Bin Clearance

(b) Multiple Instructions

Fig. 5. The screenshots of rollouts in (a) Table-to-Bin Clearance task and
(b) Multiple Instructions task.

Insertion (OOD) scenario.

e Multiple Instructions: The goal is given as 7 =

(1  DoneBiOp(a;) A (] On(o;,table), where ag

a;€{agp,a1} 0,€0
and a; are the screwdriver-packing and the cup-cleaning
actions, respectively. Apart from ag and aq, another
skill, handing off the cup, is incorporated as as for task
completion.

The execution histories of Table-to-Bin Clearance task and
Multiple Instructions task can be viewed in Fig. [5a and
Fig. [5b] respectively. Particularly, in Multiple Instructions
task, SViP sequences multiple learned bimanual visuomotor
policies to complete a long-horizon manipulation containing
19 discrete steps. The robot first hands off the cup from right
to left, then grabs a sponge to wipe the cup, and finally puts
down objects and packs the screwdriver. For the Cup-sleeve
Insertion and Reconfiguration task, the bimanual insertion and
object placement are conducted in a repetitive manner, thereby
saving time for manual reconfiguration of the tabletop. The
results demonstrate that SViP effectively tackles novel tasks
by leveraging compositionally learned skills, addressing the
concerns in Q3.

V. CONCLUSION

We proposed SViP, a data-efficient system that leverages the
advantages of both visuomotor policies and long-horizon plan-
ning for generalized robot tasks. SViP identifies the contact-
rich segments in a bimanual manipulation as a black-box
operation, and extracts contact modes as symbolic skill de-
scriptions. With the help of the proposed switching condition
generator, object-centric unimanual operations are smoothly
stitched with the learned visuomotor policy. SViP demon-
strates its ability to handle out-of-distribution initial obser-
vations, accomplish tasks unattainable through teleoperation
alone, and achieve novel goals by automatically composing
learned skills.

Nevertheless, we admit certain limitations in this work.
First, TAMP requires manual PDDL definitions, although the
effort is reduced by the automatic predicate parsing from scene
graphs. Second, the partial point cloud observation from a
single-view depth measurement limits the SViP’s performance.
In the future, we plan to equip SViP with online reconstruction
capability for more accurate 3D perception.
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