
Under review as a conference paper at ICLR 2021

LEARNING CHESS BLINDFOLDED

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformer language models have made tremendous strides in natural language
understanding. However, the complexity of natural language makes it challenging
to ascertain how accurately these models are tracking the world state underlying
the text. Motivated by this issue, we consider the task of language modeling for
the game of chess. Unlike natural language, chess notations describe a simple,
constrained, and deterministic domain. Moreover, we observe that chess notation
itself allows for directly probing the world state, without requiring any additional
probing-related machinery. Additionally, we have access to a vast number of chess
games coupled with the exact state at every move, allowing us to measure the impact
of various ways of including grounding during language model training. Overall,
we find that with enough training data, transformer language models can learn to
track pieces and predict legal moves when trained solely from move sequences.
However, in adverse circumstances (small training sets or prediction following long
move histories), providing access to board state information during training can
yield consistent improvements.

1 INTRODUCTION

Recently, transformer-based language models such as GPT-3 have stretched notions of what is possible
with the simple self-supervised objective of language modeling, becoming a fixture in state of the
art language technologies (Vaswani et al., 2017; Devlin et al., 2019; Brown et al., 2020). However,
the black box nature of these models combined with the complexity of natural language makes it
challenging to measure how accurately these models represent the world state underlying the text.

Motivated by the above issues, we propose training transformer language models for the game of
chess. Chess provides a simple, constrained, and deterministic domain where the exact world state
is known. Also, chess games can be transcribed exactly and unambiguously using chess notations
(Section 2). In fact, the form of chess notations allows us to probe our language models for aspects of
the board state using simple prompts (Section 3).

Due to the simplicity and precision of chess, we can evaluate language model predictions at a more
fine-grained level than merely comparing it to the ground truth. For example, even if the next move
prediction doesn’t match the ground truth move, we can still evaluate whether the move is legal given
the board state, and if it is illegal, we can determine the reason why (Appendix D). Moreover, since
the state can be exactly modeled, we can evaluate models using counterfactual queries as well. The
proposed evaluation sets and metrics are described in Section 5.3.

A side benefit of working with chess is that we have access to nearly unlimited data that is coupled
with the exact board state at every turn. This board state is a form of grounding for the move sequence
and allows us to compare training on move sequences alone to training with access to varying amounts
of explicit state. Thus, modeling chess using language models may have implications for the debate
surrounding the ability of language models to capture meaning if only exposed to text (Bender &
Koller, 2020). To test the impact of chess board grounding on learnability and data efficiency, we can
train language models with varying degree of access to the board state (Section 4).

Finally, while chess represents a controlled domain, it is by no means trivial for a language model. To
illustrate the challenges of language modeling for chess, consider the left board shown in Figure 1b,
where white is next to move. In order to generate a valid next move, the language model needs to (a)
infer that it is white’s turn, (b) represent the locations of all pieces, both white and black, (c) select one
of the white pieces which can be legally moved, and finally (d) make a legal move with the selected

1



Under review as a conference paper at ICLR 2021

a b c d e f g h
1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8
a b c d e f g h

a1

a2

a3

a4

b1

b2

b3

b4

c1

c2

c3

c4

d1

d2

d3

d4

g5

(a) Square naming (b) Board state before (left) and after (right) the bishop at f1 is moved
to b5. UCI notation represents the move as f1b5.

Figure 1: Chess Notation

piece. Thus, a language model has to learn to track the board state, learn to generate moves according
to the rules of chess, and on top of that learn chess strategies to predict the actual move.

We find that when given enough training data, transformers can learn to both track piece locations
and predict legal moves at high levels of accuracy. However, when testing predictive ability for long
move histories or when only given small training sets or when the model has access to limited history
(Appendix C.1), predictive ability suffers. These challenging settings can provide an interesting
testbed for future development of language models, and moreover because of the probing properties,
errors can be diagnosed in great detail. In these more challenging settings, we show that providing
parts of the board state (during training time only) can lead to significant improvements in accuracy.

Our results also provide some key insights on transformer language models: (i) They are robust to
various ways of incorporating explicit supervision about the board state when given enough training
data. (ii) In particular, they are robust to changes in input distribution where additional tokens, related
to board state, are added to input sequence only during training (Section 4.1). In contrast to LSTMs,
transformers achieve this robustness even with smaller training sets (Appendix F). (iii) The model
performance strongly relies on access to the whole sequence history as the performance drops on
limiting this access to a fixed-size window of previous tokens (Appendix C.1).

To summarize, our contributions are to:
• Propose chess as a testbed for evaluating world state tracking capabilities of language models.
• Show that by selecting (and tweaking) the appropriate chess notation, we can probe language

model for aspects of the world state using simple prompts (Section 3).
• Propose a suite of probing tasks to evaluate language models for chess on world state tracking

(Section 5.3). These probing tasks go beyond simple exact match, and use a more fine-grained
evaluation, and allow for automated error analysis (Appendix D).
• Show that given enough training data, transformer language models can learn to track piece

locations and predict legal moves at high levels of accuracy.
• Evaluate the effect of grounding by training and evaluating a spectrum of transformer language

models with varying degrees of access to the world state. We find that grounding helps in
challenging settings of our proposed probing tasks.
• Provide insights on transformer language models such as their robustness to incorporating

the world state in various ways, their dependence on access to the whole history, etc.

2 BACKGROUND

Chess Preliminaries. Figure 1a1 shows how squares are indicated in chess notations via a combination
of lettered columns and numbered rows. Chess notations use this square naming convention to denote
the movement of pieces. As our notation, we choose Universal Chess Interface (UCI) notation, which
combines the starting square and the destination square to represent a move.2 The move in Figure 1b is

1Source https://en.wikipedia.org/wiki/File:SCD_algebraic_notation.svg
2For more details see https://en.wikipedia.org/wiki/Universal_Chess_Interface

2

https://en.wikipedia.org/wiki/File:SCD_algebraic_notation.svg
https://en.wikipedia.org/wiki/Universal_Chess_Interface


Under review as a conference paper at ICLR 2021

represented as f1b5 in UCI where f1 indicates the starting square and b5 denotes the ending square.
While another notation, SAN, is the standard choice for gameplay, we prefer UCI (see Appendix A for
our reasons for choosing UCI over SAN).

2.1 RELATED WORK

Simulated Worlds and Grounding. There have been several prior efforts in relating simulated
worlds to natural language. The bAbI framework simulates a world modeled via templates to generate
question-answering (QA) tasks (Weston et al., 2015a). The recent TextWorld framework facilitates
generating, training, and evaluating interactive text-based games (Côté et al., 2018). bAbI and
TextWorld are similar to our work in the sense that the true world state is, by construction, available.
The key difference with bAbI is that the it provides explicit world-state supervision in the form
of training data for QA. With TextWorld we differ in: (1) their objective (reward maximization vs.
maximizing the probability of the next observation), (2) how they are ultimately evaluated (final reward
vs. world state tracking), and (3) whether we can directly probe the model’s knowledge of the entire
state. The world models of Ha & Schmidhuber (2018) also maximize the probability of the next
observation, but differ along the other two dimensions. Similarly the work by Hermann et al. (2017)
and Hill et al. (2017) on developing and using 3D world simulations for learning grounded language
has only partial overlap with the objective function, and differ along the other two aspects.

Our work is related to work on grounding in that we are interested in comparing model performance
when it does not have access to grounding information to when it does (Bruni et al., 2014; Kiros et al.,
2014; Ororbia et al., 2019). However, unlike the work of Ororbia et al. (2019), for instance, the goal is
not to improve performance of language models using access to more of the world state, but to assess
how much of this state has been recovered by the model from just learning the LM task.

Cloze Tasks for Natural Language Models. There has been a plethora of prior work on developing
and using cloze tasks for evaluating natural language models (Hermann et al., 2015; Hill et al., 2016).
These cloze tasks can range from testing general text understanding (Paperno et al., 2016) to targeting
particular aspects of natural language, such as commonsense/pragmatics (Mostafazadeh et al., 2016;
Ettinger, 2020), narrative understanding (Mostafazadeh et al., 2017), factual knowledge (Petroni et al.,
2019), etc. Creating these tasks often requires human curation, 3 and the evaluation is typically limited
to exact match. In contrast, we propose cloze tasks/prompts targeting the world state, which can be
precisely automated for chess, and can be evaluated at a fine-grained level.

Probing. One of the goals of this work is to probe the language model’s board state tracking
capability. A typical solution used by prior work is to train a probing model on top of a pretrained
model (Ettinger et al., 2016; Alain & Bengio, 2017; Adi et al., 2017; Tenney et al., 2019; Hewitt
& Liang, 2019). This setup is time-consuming as it requires training probing models for all tasks.
Moreover, the complexity of the probing model can also affect the conclusions (Pimentel et al.,
2020). In our case, we show that by appropriate choice of notation, probing for board state can be
accomplished via simple prompts (Section 3).

Deep Learning for Chess. Deep networks have been used in prior work to predict/mimic the next
move given the true game state David et al. (2016); Oshri & Khandwala (2015). Using just self-play
and the rules of chess, AlphaZero achieves superhuman performance starting from random play (Silver
et al., 2018). The focus of these work is the quality of game play given the true board state while
we just use chess as a testbed for evaluating the tranformer LMs world state tracking capabilities.
Recently there have been several work focusing on transformer language models for chess (Presser &
Branwen, 2020; Cheng, 2020; Noever et al., 2020). These work are similar to ours in the sense that
input is limited to the move sequence and not the true board state, but the focus of these work is again
the quality of game play rather than how well is the model aware of the underlying board state.

3Automated cloze tasks without any human filtering can end up with instances which even humans can’t
answer (Hill et al., 2016)

3



Under review as a conference paper at ICLR 2021

Table 1: Token sequences corresponding to the move sequence e2e4 e7e5 g1f3 for different
notations during training and inference. Notice that regardless of the RAP probability used during
training, at inference time the token sequences have no piece types.

Notation Training Inference

UCI e2, e4, e7, e5, g1, f3 e2, e4, e7, e5, g1, f3
UCI + RAP 15 e2, e4, P, e7, e5, g1, f3 e2, e4, e7, e5, g1, f3
UCI + RAP 100 P, e2, e4, P, e7, e5, N, g1, f3 e2, e4, e7, e5, g1, f3

3 LANGUAGE MODEL PROMPTS AS BOARD STATE PROBES

Chess notations provide a simple alternate solution of using language model prompts as board state
probes. For example, the prompt “e2e4 e7e5 g1f3 b8c6 d2d4 h7h6 f1” (the underlined
move sequence leads to the left board state in Figure 1b) can be used for next-token prediction with a
language model trained on UCI notation. The generated token can be interpreted as the ending square
predicted for the bishop at f1. This prediction can then be used to determine the level of board state
awareness of the model. A prediction of g1 may indicate that the model does not recognize that the
piece type at f1 is a bishop, as such a move is not possible for a bishop. If the model predicts g2, it
may mean that the model is not aware that another piece is currently located at g2.

UCI notation is sufficient for assessing ending square prediction. However, it does not allow us to test
starting square prediction directly. That is, we would like to give a language model the prompt “e2e4
e7e5 g1f3 b8c6 d2d4 h7h6 N”, where N represents knight, and expect it to generate a valid
starting position for a knight of the correct color. To allow testing the model with such prompts, we
propose randomly including piece types in moves during training with some fixed probability p. We
refer to this strategy as “randomly annotated piece type” (RAP) and use the nomenclature “UCI +
RAP p” to indicate that with p% probability, piece type is part of the move notation during training.
Note that for p = 0, the notation reduces to UCI. When testing with these starting square prediction
prompts, we only include piece type for the prompt, not for any moves in the history. Thus, using RAP
during training allows us to probe, at test time, where the model thinks each piece is, given any game
history’s prefix; by simply providing the desired piece type (e.g., N) the model outputs the predicted
starting square for a piece of that type.

4 LANGUAGE MODELS AND VARIANTS

We use the GPT2-small architecture for our base language model (Vaswani et al., 2017; Radford et al.,
2019). GPT2-small is a 12-layer transformer model with 12 attention heads and an embedding size of
768 dimensions. The context size of the model is limited to 512, which is sufficient to cover the longest
game in our training set. Note that we only borrow the model architecture; the models themselves are
trained from scratch. We use a simple regular expression based tokenizer, which considers a board
square symbol such as b1 as a single token. This gives us a vocabulary of 77 tokens which includes
the 64 squares, piece type symbols, and some other special symbols (see Table 5 in the Appendix).4

We next discuss variants of the base language model that incorporate the board state in various ways.

4.1 RANDOMLY ANNOTATED PIECE TYPE (RAP)

One way of introducing an aspect of board state into move sequences is by randomly annotating piece
types (RAP) in training sequences, as introduced in Section 3. Table 1 illustrates how the use of RAP
changes the token sequence during training but not during inference. We hypothesize that adding piece
types during training can aid the model in learning to track the board state by providing additional
supervision. Similar ideas have been used when training memory networks for tasks involving entity
tracking in natural language (Weston et al., 2015b; Hill et al., 2016).

4In initial experiments we used a delimiter token to indicate move boundary. However, removing it did not
degrade performance, and made training much faster due to reduced sequence length.

4



Under review as a conference paper at ICLR 2021

4.2 INCORPORATING BOARD STATE

One of the criticisms sometimes leveled against language models for natural language is that they can
never understand the “meaning” of language, particularly given that they do not use any extra-linguistic
information, such as visual grounding (Bender & Koller, 2020). The simple and deterministic dynamics
of chess means that chess offers nearly-unlimited data with perfect grounding. The ground truth board
state can be used to learn a grounded language model, and can also be used in oracle settings which
use this board state during both training and inference. We next describe details of the board state
representation followed by its incorporation in the base language model.

4.2.1 BOARD STATE REPRESENTATION

Following Oshri & Khandwala (2015), we represent a chess board state as an 8× 8 image with six
channels (see Figure 3 in the Appendix). The six channels correspond to the six unique piece types in
chess, namely, pawn, rook, bishop, queen, king, and knight. The channel for a given piece type has a
value of +1 at locations of its white instances, and -1 at locations of black instances, with 0 indicating
empty positions. Apart from the piece positions, we add a seventh channel to represent additional
information about the board state. In particular, we use one bit to indicate which player moves next,
one bit to indicate if the current player’s king is in check, and another four bits to represent castling
rights of the two players.56 These six bits are represented as another channel by padding with zeros to
make it an 8× 8 grid. Thus, we have a 7× 8× 8 tensor for the raw board representation.

The raw board representation is fed to a 2-layer convolutional neural network (CNN). Both CNN
layers have 128 filters of kernel size 2× 2 with ReLU activations. The output of the CNN is passed
through a linear layer which outputs a final 768-dimensional board state representation.

4.2.2 MULTI-VIEW TRAINING

We use the board state representation during training to learn a grounded language model. Let (hi
t)

12
i=0

represent the transformer language model’s hidden states at timestep t, where the h0
t are simply the

embeddings for the input symbols plus the position embeddings. Then, the language model’s state
representation lt is a learned convex combination of the transformer hidden states:

lt =

12∑

k=0

αkh
k
t α = softmax(w0, w1, · · · , w12)

where w ∈ R13 is a learned parameter vector.

Given a minibatch of tokenized chess games, let K be the total number of moves in this minibatch. Let
(li)

K
i=0 represent the language model state representations at the end of each move in the minibatch, and

let (si)Ki=0 represent the corresponding board state representations. We want the two representations
to be close to each other when they correspond to the same state, and far apart otherwise. To promote
this behavior, we use a “quadruplet” loss (Chen et al., 2017):

L(li, si) =max(0,m+ d(li, si)− d(li, s′i)) + max(0,m+ d(li, si)− d(l′i, si))
where m represents the margin by which we want the positive pairs to be closer than the negative
pairs, d(., .) represents the distance function (in our case, cosine distance), l′i is a language model
state which corresponds to a board state other than si, and s′i is a board state which corresponds to
a language model state other than li. For sampling a negative state given the other view’s state, we
randomly draw 10 states from the minibatch and pick the one closest to the other view’s state. For
margin, we use m = 0.6 as it gets the lowest validation perplexity among {0.2, 0.4, 0.6, 0.8}. Finally,
the quadruplet loss is simply added to the language modeling loss without any scaling.

4.2.3 ORACLE BASELINE

Just for comparative purposes, for our final baseline we assume that the language model has access to
both the piece type with which moves are made (e.g., Bf1b5 instead of f1b5) and the board state

5Details on castling rights: https://www.chessprogramming.org/Castling_Rights
6The board state used is incomplete. We skip details such as en passant, threefold repetition, fifty-move rule

counter, etc. as they come into play only in rare cases.

5

https://www.chessprogramming.org/Castling_Rights


Under review as a conference paper at ICLR 2021

Table 2: Examples of each probing task, as well as the corresponding exact move (ExM) and legal
move (LgM) correct answers, are shown below. All examples assume the language model was fed the
prefix e2e4 e7e5 g1f3 b8c6 d2d4 h7h6 (see Figure 1b), and that the actual next move was
f1b5. While there is only one valid prompt token for both End-Actual and Start-Actual tasks, there
are many valid prompt tokens for the other tasks, and we show just one possibility for each. Start-tasks
(bottom sub-table) assume the model was trained on games described in UCI+RAP notation.

Task Prompt Token Correct Answers (ExM) Correct Answers (LgM)

End-Actual f1 {b5} {e2, d3, c4, b5 ,a6 }
End-Other f3 N/A {d2, g1, h4, g5, e5}
Start-Actual B {f1} {f1, c1}
Start-Other N N/A {f3, b1}

at the end of every move during both training and inference. Access to piecetype can limit the set of
moves to consider, and the access to board state can relieve the language model from the burden of
board state tracking. To incorporate the board state, we simply sum the board state with the hidden state
of all the layers of the transformer at the end of each move.7 This baseline serves as an approximate
upper bound to all other model variants described above.

5 EXPERIMENTAL SETUP

5.1 DATA

We use the Millionbase dataset which is freely available and has close to 2.9 million quality chess
games.8 After filtering out duplicate games, games with fewer than 10 moves, and games with more
than 150 moves (for the complete game to fit into one transformer window), we are left with around
2.5 million games. From this filtered set we randomly select 100K games for training, 15K games
each for dev and test, and another 50K games to create prompt-based evaluation sets described in
Section 5.3. The dev and test set are used for calculating perplexities on them. The dev set perplexity
is used for choosing the hyperparameters for models which incorporate the board state. From the 100K
training set, we create subsets of size 15K and 30K which we refer to as “Train-S” and “Train-M”,
while the full training set is referred to as “Train-L”. For detailed statistics, see Table 9 in Appendix.
All the data processing steps requiring chess knowledge, including parsing chess databases, are carried
out using python-chess (Fiekas, 2012).

5.2 TRAINING DETAILS

Models are trained for 10 epochs with a batch size of 60. Validation is performed at the end of every
epoch and training is halted whenever the validation loss starts increasing. For optimization we use
Adam (Kingma & Ba, 2014) with learning rate of 5× 10−4 and L2 weight decay of 0.01. The learning
rate is warmed up linearly over the first 10% of training followed by a linear decay. To accelerate
training, we use mixed precision training (Micikevicius et al., 2018). All experiments are carried out
using the PyTorch Lightning framework which is built on top of PyTorch (Falcon, 2019; Paszke et al.,
2019). We use the GPT-2 implementation from the transformers library (Wolf et al., 2019).

For the UCI + RAP p models, we try p ∈ {0.01, 0.05, 0.15, 0.85, 1.00}, and find p = 0.05 and
p = 0.15 get the best perplexity on the dev set. Larger values of p may lead to greater mismatch
between training and inference, while small values like p = 0.01 likely do not provide enough training
signal.

5.3 BOARD STATE PROBING TASKS

In this section we describe how we probe the language model’s board state understanding. In each
probing task we feed the model a prefix of a game followed by a single prompt token, and the model is

7Other strategies for fusing the two views (Ororbia et al., 2019; Ziegler et al., 2019) are left for future work.
8Download link available at https://rebel13.nl/rebel13/rebel%2013.html

6

https://rebel13.nl/rebel13/rebel%2013.html


Under review as a conference paper at ICLR 2021

evaluated based on the highest probability next-token under the model given this context. We show an
example of each probing task in Table 2 (which we further describe below), assuming the model has
been fed the move sequence prefix e2e4 e7e5 g1f3 b8c6 d2d4 h7h6, which is visualized
as the left board in Figure 1b. The actual next move played in the game is f1b5, which takes the
white bishop at square f1 to square b5, as shown in the right board of Figure 1b.

To create these evaluation sets, we use the 50K unique games reserved for this task (Section 5.1).
We only consider prompts for non-pawn pieces since the dynamics of pawns are fairly limited. We
ensure that the game prefixes selected are never seen in the training data. To see the effect of game
prefix length l (measured in number of moves) on these predictions, we create two classes of this task:
(i) Short, where 5 ≤ l ≤ 50, and (ii) Long, where 51 ≤ l ≤ 100. For both classes we create evaluation
sets with 1000 instances. Next we describe the various probing tasks in detail.

5.3.1 ENDING SQUARE TASKS

In this set of tasks, the model is given a game prefix and prompted with the starting square of the next
move (f1 in the example of Table 2). The model’s next-token prediction represents its prediction for
the ending square of this move, which tests the model’s ability to track the board state and follow the
rules of chess, as well as strategic awareness.9 We consider two task variants:

1. End-Actual: Given a move sequence prefix, the model is prompted with the starting square
of the actual piece moved next in the game.

2. End-Other: Given a move sequence prefix, the model is prompted with the starting square
of any piece on the board that can be legally moved according to rules of chess.

We evaluate End-Actual predictions in terms of both exact move (ExM) accuracy (whether the model
predicted the true ending square, b5 in our running example) and legal move (LgM) accuracy (whether
the model predicted a legal ending square for the piece starting at the square in the prompt). ExM
accuracy evaluation is similar to the typical evaluation of language models on natural language data,
while LgM is less stringent and focuses on testing just the model’s understanding of chess rules and
the board state. Note that for End-Other, only LgM accuracy is available. See Table 2 for examples.

5.3.2 STARTING SQUARE TASKS

In this category of task, the model is again given a game prefix, but prompted with just the piece type
of the next move, such as B for bishop in the example in Table 2. The model’s next-token prediction
thus represents its prediction for where the prompted piece type currently is on the board. This task
tests the model’s ability to track pieces.10 Note that only models which have seen piece types during
training, i.e. “UCI + RAP” models, can actually be tested on this task. Also, no piece types are used in
the game prefix (except for the oracle baseline). We again have two variants of this task:

1. Start-Actual: Given a move sequence prefix, the model is prompted with the piece type of
the actual piece moved next in the game.

2. Start-Other: Given a move sequence prefix, the model is prompted with the piece type of
any piece on the board that can be legally moved according to rules of chess.

We again evaluate Start-Actual predictions both in terms of ExM accuracy (whether the model predicts
the starting square of the piece actually moved next in the game), as well as in terms of LgM accuracy
(whether the model predicts the starting square of a piece with the correct piece type). For Start-Other,
only LgM accuracy is available; see Table 2 for examples.

6 RESULTS

To save space, perplexity results are presented in Table 10 of Appendix. Table 3 shows results when
predicting starting squares and Table 4 shows results when predicting ending squares. We will divide
our discussion of the results into those that pertain to board state tracking and those that pertain to
modeling chess strategy.

9Strategic capabilities of a chess language model are strongly tied to the quality of training games.
10In certain cases, this task also tests understanding of chess rules. For example, in Figure 1b only the rook at

h1 can be moved.

7



Under review as a conference paper at ICLR 2021

Table 3: Accuracies (%) for predicting starting squares (“Start-Actual” and “Start-Other” tasks)

Training Set Model Starting Square (Short) Starting Square (Long)
Actual Other Actual Other

ExM LgM LgM ExM LgM LgM

Train-S
UCI + RAP 5 71.3 88.8 83.2 58.6 69.5 65.4
UCI + RAP 15 80.4 96.7 93.8 72.6 81.6 79.4
Oracle Baseline 86.3 99.1 97.2 89.3 99.0 98.5

Train-M
UCI + RAP 5 78.8 95.1 92.4 70.9 80.9 78.4
UCI + RAP 15 84.5 98.7 97.1 83.0 93.3 92.3
Oracle Baseline 87.1 99.7 98.1 90.2 99.6 99.4

Train-L
UCI + RAP 5 86.8 99.7 97.9 88.6 98.0 98.3
UCI + RAP 15 87.4 99.7 98.2 89.6 99.3 98.8
Oracle Baseline 90.2 99.9 98.9 91.7 99.6 99.5

6.1 BOARD STATE TRACKING

There are several observations to note. First, transformers can learn to identify where pieces are
located. This is shown by the “LgM” accuracies in Table 3. UCI + RAP 15 can predict a valid
starting position of a piece at 99.7% accuracy for short histories and 99.3% accuracy for long histories.
When asked to identify the location of a piece other than the one selected to be moved next, these
accuracies drop only slightly, to 98.2% and 98.8%, respectively. However, this capability requires the
large training set. For the medium training set and long histories, accuracy drops to 93.3%, and with
the small training set, it drops further to 81.6%.

RAP 5 reaches the same starting position accuracy as RAP 15 for short histories, but for long histories
there is a 1.3% gap. At smaller training sizes, the superiority of RAP 15 becomes much clearer,
showing the benefit of providing piece type information more frequently during training.

The difference between the location of the piece in the exact move (ExM) and the location of either
piece of the given type (LgM) is substantial, at more than 10% absolute. However, this difference
relates to chess strategy rather than board state tracking. When querying a piece type other than the
one moved, the accuracies are still high for RAP 15, at 98.2% for short histories and 98.8% for longer
histories, though slightly lower than when querying the actual piece type. This trend suggests that
piece location tracking is slightly better for the piece type that is actually moved.

Second, transformers can learn to predict legal moves. This is shown by the “LgM” accuracies in
Table 4, for which UCI + RAP 15 exceeds 99% for short histories. We do observe a drop to 95.1%
for long histories, which is likely because board state tracking becomes more difficult with longer
histories. When decreasing training data, the short history LgM accuracy drops by 2% in each case,
but the long history accuracy drops by 5%. It may be the case that training on an even larger training
set can improve long-history accuracy further.

Overall, when enough training data is available, randomly adding piece types (with RAP 15) is similar
to using the complete board state via multi-view training. With small training sets, the multi-view
model struggles to use board states effectively, but with the large training set, the results are slightly
better than RAP 15. Transformer language models are robust to various ways of incorporating explicit
supervision about the board state when given enough training data.

We find consistent gains in accuracy when randomly adding piece types during training. UCI + RAP
5 improves over UCI, which corresponds to RAP 0, and UCI + RAP 15 improves further in most
settings, with the largest improvements for Train-S. With Train-L, UCI is able to predict a legal ending
square in 98.6% of cases when using short histories. This strong result indicates that a transformer
without any form of board state supervision can still learn to track board state well enough to predict
ending squares if given enough data. A detailed error analysis of illegal moves for the Train-L setting
is presented in Appendix D.

Given the strong results with large training sets, future work can focus on challenging settings such as:
(a) low data regime, (b) long(er) game histories, (c) limited access to previous tokens in self-attention
(Appendix C.1), (d) predicting more board state variables simultaneously, etc.

8



Under review as a conference paper at ICLR 2021

Table 4: Accuracies (%) for predicting ending squares (“End-Actual” and “End-Other” tasks)

Training Set Model Ending Square (Short) Ending Square (Long)
Actual Other Actual Other

ExM LgM LgM ExM LgM LgM

Train-S

UCI 51.9 90.8 84.3 28.3 69.5 64.8
UCI + RAP 5 53.4 94.4 86.5 32.5 78.7 73.6
UCI + RAP 15 57.4 94.8 89.2 36.1 84.6 76.4
UCI + Multi-view Training 51.4 90.2 85.1 27.7 71.0 65.8
Oracle Baseline 59.0 95.7 89.9 39.4 89.4 84.3

Train-M

UCI 56.8 95.1 90.7 35.2 82.8 76.9
UCI + RAP 5 59.8 97.0 91.0 39.6 88.9 81.3
UCI + RAP 15 61.1 96.9 90.5 43.0 90.2 83.7
UCI + Multi-view Training 56.8 95.9 91.7 35.7 83.3 78.6
Oracle Baseline 62.1 97.8 93.1 46.0 92.4 87.4

Train-L

UCI 66.7 98.6 94.9 47.1 94.5 89.9
UCI + RAP 5 69.0 98.9 94.8 50.3 95.6 91.7
UCI + RAP 15 68.6 99.1 95.2 48.4 95.1 91.6
UCI + Multi-view Training 69.7 99.2 95.8 49.3 95.9 92.3
Oracle Baseline 69.1 99.1 95.9 53.8 97.4 94.0

Random Legal Move 26.2 - - 21.8 - -

6.2 CHESS STRATEGY MODELING

Overall, our results show that predicting the actual moves made by human players is much more
difficult than identifying valid piece positions and legal moves.
We can view the exact move accuracy in starting square prediction (Table 3) as the ability to determine
which piece to move next given the piece type. The Oracle Baseline ExM results show the difficulty of
this task even when the full board state is provided at inference time. With the large training set, we
see gaps of 2-4% between the RAP models and the Oracle Baseline, while in terms of LgM, which
does not involve strategy, the gaps are much smaller. In general, the gaps increase with less training
data and longer histories.
When predicting ending squares (Table 4), the relatively low ExM accuracies of the Oracle Baseline
show the difficulty of the task. The strongest models without board state during inference—-RAP 5,
RAP 15, and multi-view—-are able to match or exceed the Oracle Baseline when having access to the
large training set and for short histories. This result shows that our models are not limited by their
ability to track the board state over short histories, but rather by the inherent difficulty in predicting
the next move performed by a human player. However, for long histories, the Oracle Baseline is
consistently more accurate than our models.
7 CONCLUSION
We propose the task of language modeling for chess to evaluate how well language models can capture
the world state. We show that with appropriate choice of chess notation, a language model can be
probed for different aspects of the board state via simple prompts. The simple and precise dynamics of
chess allow for (a) training models with varying amount of explicit state, and (b) evaluating model
predictions at a fine-grained level. Results indicate that transformer language models are able to track
the board state when given enough data, but in adverse circumstances, providing access to board state
information during training can yield consistent improvement.
Wider Implications for Natural Language Processing. Our results shed light on the following
interesting properties of transformers: (a) they are robust to RAP-like changes in input distribution, and
(b) they require access to long context (Appendix C.1), and large training sets. Future work can use the
first finding to introduce the world state, or more specifically the output of linguistic analyzers such as
coreference, via RAP-like tokens during pre-training and fine-tuning of transformers. RAP-like tokens
can also be used for debugging/diagnosing the model’s understanding, similar to the starting square
prediction tasks. The second finding can be another motivation to search for new architectures that
are adept at understanding long text with access to limited history (Rae et al., 2020), and that require
small training sets. The proposed framework allows for probing and understanding new architectures
that address these challenges.

9



Under review as a conference paper at ICLR 2021

REFERENCES

Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer Lavi, and Yoav Goldberg. Fine-grained Analysis
of Sentence Embeddings Using Auxiliary Prediction Tasks. In ICLR, 2017.

G. Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier probes. In
ICLR Workshop, 2017.

Emily M. Bender and Alexander Koller. Climbing towards NLU: On Meaning, Form, and Understand-
ing in the Age of Data. In ACL, 2020.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-
Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey
Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language Models are Few-Shot Learners, 2020.

Elia Bruni, Nam Khanh Tran, and Marco Baroni. Multimodal Distributional Semantics. JAIR, 49(1),
2014.

Weihua Chen, Xiaotang Chen, Jianguo Zhang, and Kaiqi Huang. Beyond Triplet Loss: A Deep
Quadruplet Network for Person Re-identification. In CVPR, 2017.

Ricson Cheng. Transformers Play Chess, 2020. URL https://github.com/ricsonc/
transformers-play-chess.

Marc-Alexandre Côté, Ákos Kádár, Xingdi Yuan, Ben Kybartas, Tavian Barnes, Emery Fine, James
Moore, Ruo Yu Tao, Matthew Hausknecht, Layla El Asri, Mahmoud Adada, Wendy Tay, and Adam
Trischler. TextWorld: A Learning Environment for Text-based Games. CoRR, abs/1806.11532,
2018.

Eli David, Nathan S. Netanyahu, and Lior Wolf. DeepChess: End-to-End Deep Neural Network for
Automatic Learning in Chess. In International Conference on Artificial Neural Networks (ICANN),
2016.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. In NAACL, 2019.

Allyson Ettinger. What BERT is Not: Lessons from a New Suite of Psycholinguistic Diagnostics for
Language Models. TACL, 8(0), 2020.

Allyson Ettinger, Ahmed Elgohary, and Philip Resnik. Probing for semantic evidence of composition by
means of simple classification tasks. In 1st Workshop on Evaluating Vector-Space Representations
for NLP, 2016.

WA Falcon. PyTorch Lightning, 2019. URL https://github.com/PyTorchLightning/
pytorch-lightning.

Niklas Fiekas. python-chess: a pure Python chess library, 2012. URL https://python-chess.
readthedocs.io/en/latest/index.html.

David Ha and Jürgen Schmidhuber. Recurrent World Models Facilitate Policy Evolution. In NeurIPS,
2018.

Karl Moritz Hermann, Tomáš Kočiský, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa
Suleyman, and Phil Blunsom. Teaching Machines to Read and Comprehend. In NeurIPS, 2015.

Karl Moritz Hermann, Felix Hill, Simon Green, Fumin Wang, Ryan Faulkner, Hubert Soyer, David
Szepesvari, Wojciech Marian Czarnecki, Max Jaderberg, Denis Teplyashin, Marcus Wainwright,
Chris Apps, Demis Hassabis, and Phil Blunsom. Grounded Language Learning in a Simulated 3D
World. CoRR, abs/1706.06551, 2017.

John Hewitt and Percy Liang. Designing and Interpreting Probes with Control Tasks. In EMNLP-
IJCNLP, 2019.

10

https://github.com/ricsonc/transformers-play-chess
https://github.com/ricsonc/transformers-play-chess
https://github.com/PyTorchLightning/pytorch-lightning
https://github.com/PyTorchLightning/pytorch-lightning
https://python-chess.readthedocs.io/en/latest/index.html
https://python-chess.readthedocs.io/en/latest/index.html


Under review as a conference paper at ICLR 2021

Felix Hill, Antoine Bordes, Sumit Chopra, and Jason Weston. The Goldilocks Principle: Reading
Children’s Books with Explicit Memory Representations. In ICLR, 2016.

Felix Hill, Karl Moritz Hermann, Phil Blunsom, and Stephen Clark. Understanding Grounded
Language Learning Agents. CoRR, abs/1710.09867, 2017. URL http://arxiv.org/abs/
1710.09867.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9, 1997.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling Laws for Neural Language Models,
2020.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2014.

Ryan Kiros, Ruslan Salakhutdinov, and Richard S. Zemel. Unifying Visual-Semantic Embeddings
with Multimodal Neural Language Models. CoRR, abs/1411.2539, 2014.

Tal Linzen, Emmanuel Dupoux, and Y. Goldberg. Assessing the Ability of LSTMs to Learn Syntax-
Sensitive Dependencies. TACL, 4, 2016.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia, Boris
Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu. Mixed Precision
Training. In ICLR, 2018.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv Batra, Lucy Vander-
wende, Pushmeet Kohli, and James Allen. A Corpus and Cloze Evaluation for Deeper Understanding
of Commonsense Stories. In NAACL, 2016.

Nasrin Mostafazadeh, Michael Roth, Annie Louis, Nathanael Chambers, and James Allen. LSDSem
2017 Shared Task: The Story Cloze Test. In 2nd Workshop on Linking Models of Lexical, Sentential
and Discourse-level Semantics, 2017.

David Noever, Matt Ciolino, and Josh Kalin. The chess transformer: Mastering play using generative
language models, 2020.

Hiroshi Noji and Hiroya Takamura. An Analysis of the Utility of Explicit Negative Examples to
Improve the Syntactic Abilities of Neural Language Models. In ACL, 2020.

Alexander Ororbia, Ankur Mali, Matthew Kelly, and David Reitter. Like a Baby: Visually Situated
Neural Language Acquisition. In ACL, 2019.

Barak Oshri and Nishith Khandwala. Predicting Moves in Chess using Convolutional Neural Networks.
2015.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Ngoc Quan Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The LAMBADA dataset:
Word prediction requiring a broad discourse context. In ACL, 2016.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Ed-
ward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. In NeurIPS, 2019.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. Language Models as Knowledge Bases? In EMNLP-IJCNLP, 2019.

Tiago Pimentel, Josef Valvoda, Rowan Hall Maudslay, Ran Zmigrod, Adina Williams, and Ryan
Cotterell. Information-Theoretic Probing for Linguistic Structure. In ACL, 2020.

Shawn Presser and Gwern Branwen. A Very Unlikely Chess Game, 2020. URL https:
//slatestarcodex.com/2020/01/06/a-very-unlikely-chess-game/.

11

http://arxiv.org/abs/1710.09867
http://arxiv.org/abs/1710.09867
https://slatestarcodex.com/2020/01/06/a-very-unlikely-chess-game/
https://slatestarcodex.com/2020/01/06/a-very-unlikely-chess-game/


Under review as a conference paper at ICLR 2021

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
Models are Unsupervised Multitask Learners. 2019.

Jack W. Rae, Anna Potapenko, Siddhant M. Jayakumar, Chloe Hillier, and Timothy P. Lillicrap.
Compressive Transformers for Long-Range Sequence Modelling. In ICLR, 2020.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Si-
monyan, and Demis Hassabis. A general reinforcement learning algorithm that masters chess, shogi,
and Go through self-play. Science, 362(6419), 2018.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang, Adam Poliak, R. Thomas McCoy, Najoung Kim,
Benjamin Van Durme, Samuel R. Bowman, Dipanjan Das, and Ellie Pavlick. What do you learn
from context? Probing for sentence structure in contextualized word representations. In ICLR, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is All you Need. In NeurIPS, 2017.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M. Rush, Bart van Merriënboer, Armand
Joulin, and Tomas Mikolov. Towards AI-Complete Question Answering: A Set of Prerequisite Toy
Tasks, 2015a.

Jason Weston, Sumit Chopra, and Antoine Bordes. Memory Networks. In ICLR, 2015b.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Huggingface’s transformers: State-of-the-art
natural language processing. ArXiv, abs/1910.03771, 2019.

Zachary M. Ziegler, Luke Melas-Kyriazi, Sebastian Gehrmann, and Alexander M. Rush. Encoder-
Agnostic Adaptation for Conditional Language Generation. CoRR, abs/1908.06938, 2019.

12



Under review as a conference paper at ICLR 2021

A SAN NOTATION

Standard Algebraic Notation (SAN) combines the piece type moved and the destination square
to denote a move.11 For example, the move in Figure 1b is represented as Bb5 in SAN where B
represents the piece type bishop and b5 represents the destination square.

Standard Algebraic Notation (SAN) Ambiguity SAN notation doesn’t use the starting square of
the piece in its move representation. This limits the ability to prompt a SAN-based language model
with specific piece type instances. For example, given the prompt “e4 e5 Nf3 Nc6 d4 h6 B”
(the underlined move sequence leads to the left board state in Figure 1b), it’s not clear whether the
token B refers to the bishop at f1 or c1. Due to this limitation on the specificity of probing queries,
we do not use SAN for our experiments.

B MODEL VOCABULARY

Table 5: Model Vocabulary

Type Examples Count

Square names e4, d1 64
Piece type P, K, Q, R, B, N 6
Promoted Pawn Piece type q, r, b, n 4
Special symbols BOS, EOS, PAD 3

Total 77

Table 5 shows the vocabulary used in our experiments. We don’t use any delimiter token to denote
the move boundary. Tokens of promoted pawn piece type are used when a pawn gets promoted. For
example, e7e8q denotes the move where a pawn from e7 moves to e8 and becomes a queen.

C OTHER MODEL CONFIGURATIONS

In this section, we explore the effect of varying the transformer architecture along two dimensions: (a)
limiting the attention window, and (b) increasing the model size. These experiments are designed to
help ascertain what challenges remain in tracking the state of a chess game with a language model.

C.1 LIMITED HISTORY

Chess is Markovian, and the exact board state can be represented in less than 1000 bits.12 Thus, the
high-dimensional multi-layered transformer state representation can in theory represent the board
state in the hidden state of even a single timestep. However, the transformer LM has no chess domain
knowledge, and thus will likely learn a very different state representation. In this ablation, we want to
inspect how much is any particular time step’s representation important to representing the game’s
state. Specifically, is it important for the model to attend to all the previous tokens or the model can
learn a compressed state representation if forced to do so. To this end, we consider the case where
the model can only attend to the current token and the previous w tokens. Note that the baseline model
has access to the entire history.

Table 6 presents results comparing the baseline model with models which have access to only the
past 10 or 50 hidden states. In comparison to the baseline, UCI (w = 10) suffers a significant drop
in almost all evaluations except for accuracy over short histories with the Train-L training set. UCI
(w = 50) fares better in comparison to UCI (w = 10) and matches the baseline on LgM accuracies
for short histories given enough training data. However, the same is not true for evaluations over long
histories, where the gap betwen UCI and UCI (w = 50) seems to widen with an increase in training

11For more details see https://en.wikipedia.org/wiki/Algebraic_notation_(chess)
12https://en.wikipedia.org/wiki/Forsyth%E2%80%93Edwards_Notation

13

https://en.wikipedia.org/wiki/Algebraic_notation_(chess)
https://en.wikipedia.org/wiki/Forsyth%E2%80%93Edwards_Notation


Under review as a conference paper at ICLR 2021

Table 6: Accuracies (%) for predicting ending squares (“End-Actual” and “End-Other” tasks) with
varying attention window sizes.

Training Set Model Ending Square (Short) Ending Square (Long)
Actual Other Actual Other

ExM LgM LgM ExM LgM LgM

Train-S
UCI 51.9 90.8 84.3 28.3 69.5 64.8
UCI (w = 50) 49.0 88.5 81.7 25.7 68.1 61.7
UCI (w = 10) 43.5 79.7 69.9 22.4 62.9 50.6

Train-M
UCI 56.8 95.1 90.7 35.2 82.8 76.9
UCI (w = 50) 53.6 94.6 88.6 32.9 79.7 74.4
UCI (w = 10) 50.9 86.1 77.3 27.7 68.9 57.6

Train-L
UCI 66.7 98.6 94.9 47.1 94.5 89.9
UCI (w = 50) 64.4 98.7 94.4 42.1 89.9 85.7
UCI (w = 10) 60.0 95.5 87.9 36.5 81.0 73.1

data. These results clearly demonstrate the dependence of the transformer LM’s performance on access
to unrestricted history, which is qualitatively different from an ideal state representation for chess.

C.2 LARGER MODELS

Table 7: Accuracies (%) for predicting ending squares for different model sizes. GPT2-small = {12
layers, 12 heads, 768 embedding size}; GPT2-intermediate = {16 layers, 12 heads, 768 embedding
size}; and GPT2-medium = {24 layers, 16 heads, 1024 embedding size}.

Training Set Model Ending Square (Short) Ending Square (Long)
Actual Other Actual Other

ExM LgM LgM ExM LgM LgM

Train-S
GPT2-small 51.9 90.8 84.3 28.3 69.5 64.8
GPT2-intermediate 50.8 90.0 85.3 26.4 68.2 65.3
GPT2-medium 50.6 88.6 83.9 24.1 65.8 60.7

Train-M
GPT2-small 56.8 95.1 90.7 35.2 82.8 76.9
GPT2-intermediate 60.2 96.1 90.6 35.1 82.5 77.3
GPT2-medium 57.7 94.6 89.4 34.3 79.7 73.5

Train-L
GPT2-small 66.7 98.6 94.9 47.1 94.5 89.9
GPT2-intermediate 67.5 98.8 95.2 48.3 95.8 91.7
GPT2-medium 67.0 98.6 94.7 49.0 95.6 91.0

Table 7 presents results with transformer models of sizes varying from GPT2-small to GPT2-medium.
We also introduce a new configuration, referred to as GPT2-intermediate, which serves as an interme-
diate between GPT2-small and GPT2-medium. For Train-S, GPT2-small outperforms GPT2-medium
on all evaluations, and outperforms GPT2-intermediate on all but LgM accuracies for the “Other”
category. With increase in the training set size, GPT2-intermediate and GPT2-medium are able to
match/outperform GPT2-small on most evaluations. In particular for Train-L, GPT2-intermediate
outperforms GPT2-small on all evaluations.

These results are along the expected lines of larger training sets alleviating the overfitting problem with
larger models (Kaplan et al., 2020). Based on prior work and extrapolating from the current results,
we expect GPT2-medium to outperform GPT2-intermediate for training sets sufficiently bigger than
Train-L. Note that we stick with the default GPT2 configuration for all our experiments. Tuning the
regularization hyperparameters such as dropout, can improve results for bigger models.

14



Under review as a conference paper at ICLR 2021

D ILLEGAL MOVE ANALYSIS

(a) Syntax: Predicted move is not
possible for a queen.

(b) Path Obstruction: The pawn at
c6 is blocking the bishop.

(c) Pseudo Legal: The black king
remains in check.

Figure 2: Visualization of the three categories of illegal moves.

Table 8: Error Analysis of Illegal Moves for models trained on Train-L

Model Ending Square (Long)
Actual Other

Syntax Path Obst. Pseudo Leg. Syntax Path Obst. Pseudo Leg.

UCI 3 21 31 8 34 59
UCI + RAP 5 1 18 25 6 26 51
UCI + RAP 15 2 23 24 7 31 46
UCI + Multi-view Training 0 14 27 5 17 55
Oracle Baseline 0 15 11 2 31 27

Illegal moves can be exhaustively categorized into three types:

• Syntax: The predicted move can’t be made by the piece type present at the starting square
regardless of the board state. This error indicates that the model either fails at tracking the
piece type present at the starting square or it lacks the spatial understanding of the board or
both. These errors are rare; figure 2a presents one such case. In this particular case, many of
the previous moves involved the b6 square, which might have led to this error.
• Path Obstruction: The move can’t be executed because there are other pieces present in the

path. This error indicates the model’s failure at tracking the board state. In figure 2b, the
pawn at c6 blocks the bishop’s move from e4 to b7.
• Pseudo Legal: This is a fairly tricky category where the move is illegal because the king

ends up in check or remains in check if the predicted move is executed. We hypothesize
that training explicitly on negative examples might be helpful/required in preventing these
errors (Linzen et al., 2016; Noji & Takamura, 2020).

Table 8 presents results on analysis of illegal moves predicted by the model trained on the full training
set Train-L for the ending square task for long histories. We observe that most of the gains for the
oracle baseline are coming from the pseudo legal error category. The oracle baseline benefits from the
input representation explicitly encoding the information that the king is in check. While the models are
pretty closely matched on the syntax error category, in the path obstruction category the clear winner
is the multi-view training setting, which suggests that the multi-view approach is better at modeling
the spatial arrangement of the pieces.

15



Under review as a conference paper at ICLR 2021

E MISCELLANY

0 0 0 0 0 0 0 0

−1 −1 −1 −1 0 −1 −1 0

0 0 0 0 0 0 0 −1

0 0 0 0 −1 0 0 0

0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0

1 1 1 0 0 1 1 1

0 0 0 0 0 0 0 0







0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0







6 channels

Figure 3: Part of the raw board representation used as input to the board state model.

Table 9: Statistics of language modeling data

Split # of games (in 103) Total # of moves (in 106) Avg. # of moves per game

Train-S 15 1.1 73.6
Train-M 30 2.2 73.5
Train-L 100 7.3 73.5
Dev 15 1.2 78.5
Test 15 1.2 79.2

Table 10: Canonical Dev and Test perplexity. By canonical we mean that one move, say f1b5, counts
as one token.

Training Set Model Dev set Test set

Train-S

UCI 3.21 3.20
UCI + RAP 5 3.07 3.07
UCI + RAP 15 3.07 3.08
UCI + Multi-view Training 3.22 3.22
Oracle Baseline 2.71 2.71

Train-M

UCI 2.83 2.83
UCI + RAP 5 2.76 2.75
UCI + RAP 15 2.79 2.79
UCI + Multi-view Training 2.80 2.80
Oracle Baseline 2.46 2.46

Train-L

UCI 2.24 2.24
UCI + RAP 5 2.76 2.75
UCI + RAP 15 2.44 2.44
UCI + Multi-view Training 2.29 2.29
Oracle Baseline 2.13 2.13

16



Under review as a conference paper at ICLR 2021

F RESULTS FOR LSTM LANGUAGE MODELS

Table 11: Accuracies (%) for predicting ending squares for LSTM language models

Training Set Model Ending Square (Short) Ending Square (Long)
Actual Other Actual Other

LSTM-LM ExM LgM LgM ExM LgM LgM

Train-S
+ UCI 43.1 77.7 68.1 23.8 60.0 52.5
+ UCI + RAP 5 42.0 77.1 67.1 23.5 59.8 53.2
+ UCI + RAP 15 42.7 77.0 69.0 22.9 59.3 52.2

Train-M
+ UCI 48.5 82.7 76.9 29.7 65.0 58.7
+ UCI + RAP 5 50.1 83.8 77.3 27.5 64.0 59.0
+ UCI + RAP 15 51.1 84.0 77.3 28.8 66.2 60.8

Train-L
+ UCI 59.9 94.2 88.5 36.1 81.6 74.8
+ UCI + RAP 5 59.4 93.5 87.7 38.1 83.3 75.7
+ UCI + RAP 15 61.5 94.3 87.7 39.5 84.7 78.4

In this section we present results for LSTM language models (Hochreiter & Schmidhuber, 1997). In
particular we use a LSTM model with 3 layers, 1024-dimensional hidden units, 768-dimensional input
embedding size, and dropout of 0.1 applied to the output of the embedding layer and intermediate
LSTM layers.13 The motivation behind these experiments is to compare LSTMs and transformers in
their ability to utilize the board state signal available via RAP during training. We focus on the RAP
setting because with RAP there’s a distribution shift between training and inference, and we want to
compare how the two model classes handle this shift.

Table 11 presents results for LSTM language models, the corresponding numbers for transformers are
presented in Table 4 in the main text. For Train-S, the vanilla UCI model outperforms both the RAP
settings on all but a couple of Other LgM evaluations. For Train-M, the addition of RAP improves
performance in all evaluations, except ExM accuracies for long histories. And finally for Train-L,
both UCI + RAP 15 and UCI + RAP 5 outperform UCI over long histories. For short histories, UCI
outperforms or matches both UCI + RAP 5 and UCI + RAP 15 on LgM evaluations, and only UCI +
RAP 15 has an edge over UCI in ExM accuracy.

These results are in sharp contrast to the significant performance gains reported earlier for transformers
with the addition of RAP, especially for smaller training sets. Thus transformers are better at utilizing
RAP than LSTMs, and that transformers are more robust than LSTMs to RAP-like changes in input
distribution. Our reasoning is that unlike LSTMs/RNNs, transformers have only a weak dependence
on positions via position embeddings, and thus can better handle RAP-like changes where tokens can
be randomly inserted/deleted throughout the length of the input sequence.

13Hyperparameters were chosen via grid search with dev perplexity as the evaluation metric

17


	Introduction
	Background
	Related Work

	Language Model Prompts as Board State Probes
	Language Models and Variants
	Randomly Annotated Piece type (RAP)
	Incorporating Board State
	Board State Representation
	Multi-view Training
	Oracle Baseline


	Experimental Setup
	Data
	Training Details
	Board State Probing Tasks
	Ending Square Tasks
	Starting Square Tasks


	Results
	Board State Tracking
	Chess Strategy Modeling

	Conclusion
	SAN Notation
	Model Vocabulary
	Other Model Configurations
	Limited History
	Larger Models

	Illegal Move Analysis
	Miscellany
	Results for LSTM Language Models

