
VB-LoRA: Extreme Parameter Efficient Fine-Tuning
with Vector Banks

Yang Li
Dept. of Computer Science

Georgia State University
Atlanta, GA 30303

yli93@student.gsu.edu

Shaobo Han
Optical Networking and Sensing

NEC Laboratories America
Princeton, NJ 08540

shaobo@nec-labs.com

Shihao Ji∗
School of Computing

University of Connecticut
Storrs, CT 06269

shihao.ji@uconn.edu

Abstract

As the adoption of large language models increases and the need for per-user or per-
task model customization grows, the parameter-efficient fine-tuning (PEFT) meth-
ods, such as low-rank adaptation (LoRA) and its variants, incur substantial storage
and transmission costs. To further reduce stored parameters, we introduce a "divide-
and-share" paradigm that breaks the barriers of low-rank decomposition across
matrix dimensions, modules, and layers by sharing parameters globally via a vector
bank. As an instantiation of the paradigm to LoRA, our proposed VB-LoRA com-
posites all the low-rank matrices of LoRA from a shared vector bank with a differ-
entiable top-k admixture module. VB-LoRA achieves extreme parameter efficiency
while maintaining comparable or better performance compared to state-of-the-art
PEFT methods. Extensive experiments demonstrate the effectiveness of VB-LoRA
on natural language understanding, natural language generation, instruction tuning,
and mathematical reasoning tasks. When fine-tuning the Llama2-13B model, VB-
LoRA only uses 0.4% of LoRA’s stored parameters, yet achieves superior results.
Our source code is available at https://github.com/leo-yangli/VB-LoRA.
This method has been merged into the Hugging Face PEFT package2.

1 Introduction

104 105 106

# of stored parameters

65

66

67

68

69

M
at

th
ew

s c
or

re
la

tio
n

VB-LoRA (Ours)
VeRA
Tied-LoRA
LoRA

Figure 1: Comparison of the PEFT
methods on RoBERTa-Large. Our
VB-LoRA achieves higher scores
with significantly smaller number
of stored parameters.

Parameter-efficient fine-tuning (PEFT) casts a new paradigm
that leverages strong prior knowledge built in foundation mod-
els and adapts them to a wide range of downstream tasks by
updating a small amount of trainable parameters [He et al.,
2021]. Compared to prefix/prompt tuning [Li and Liang, 2021,
Lester et al., 2021] or in-context learning [Brown et al., 2020],
fine-tuning a large-scale pre-trained model yields better domain
specialization dictated by high-quality datasets [Brown et al.,
2020, Liu et al., 2022, Zhao et al., 2023]. This process can be re-
peated to suit the needs of ever-changing deployment scenarios
and personalizations. However, the sheer volume of param-
eter space across a multitude of instantiations [Sheng et al.,
2023] poses challenges for storage, transmission, and computa-
tion, especially for low-resource hardware and consumer-grade
networks [Borzunov et al., 2024].

To mitigate these challenges, various PEFT methods have been proposed by adding or adapting a
small amount of trainable parameters per task without sacrificing performance [Houlsby et al., 2019,

∗Part of the work was done while the author was affiliated with Georgia State University.
2https://huggingface.co/docs/peft/en/package_reference/vblora

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/leo-yangli/VB-LoRA
https://huggingface.co/docs/peft/en/package_reference/vblora


sub-vector 
#2

Logits

Topk-softmax

Multi-Head 
Attention

Q K V

Feed-Forward

O

Add & Norm

Add & Norm

Wdown

Wup

Vector Bank
Logits
for sub-vector #1

Top-K Softmax

     + Wpretrained

LoRA

A B

⨂
⨂

sub-vector 
#1

⊕

Select

Tile

🔥

🔥

❄
...

💾

💾

sub-vector 
#8

💾

Select and pool

🔥 Trainable parameters

❄ Frozen parameters

💾 Stored parameters

Modules

Q K V O

WdownWup

Vector Bank

Layers
Layer 1

Layer 2

...

Pool

Sub-vectors
A B

Figure 2: Left: The model parameters can be represented as a composition of vectors from a vector
bank, which is shared across sub-vectors, modules and layers. Right: Architecture of VB-LoRA. We
use a top-k softmax function to select k vectors from the vector bank. The selected vectors are then
pooled into a sub-vector, which is arranged at a desired position, forming the parameters of LoRA.

Karimi Mahabadi et al., 2021, Ding et al., 2023]. These methods exploit the dependencies among
model parameters to reduce the redundancy. For example, Hu et al. [2021] propose the low-rank
adaptation (LoRA) to approximate the accumulated gradient update for self-attention modules, and
induces the intra-matrix parameter coupling. Renduchintala et al. [2024] further study the options
of allowing the inter-matrix parameter sharing via weight tying across all the layers. In both cases,
the number of trainable parameters is reduced significantly. These two methods stand at the two
extremes of spectrum in deciding the range of model components reuse (locally or across-layers) and
designating which low-rank matrices needs to be shared and updated. However, as the model size
increases and the demand for user-customized models across various services rises, the expense of
storing and transmitting the customizations for each combination escalates and emerges as a critical
issue. Hence, investigating PEFT methods with significantly smaller number of trainable parameters
has attracted a flurry of research interests [Kopiczko et al., 2024, Renduchintala et al., 2024].

This paper introduces VB-LoRA, extreme parameter-efficient fine-tuning with vector banks based on
a simple yet effective "divide-and-share" paradigm. We push the limits of LoRA parameter efficiency
by breaking the two barriers of low-rank decomposition: (1) locally within each module and each
layer, and (2) only across the two original matrix dimensions (without division; see Sec. 3.2 for
details). We argue that the parameters across different modules and layers can be shared, and thus the
redundancy in parameters can be further reduced. In addition, by partitioning rank-one component
vectors into sub-vectors, we introduce "virtual" dimensions such that deep structure in the parameter
space can be represented by a highly compressed matrix factorization.

VB-LoRA draws inspirations from previous line of work on quantized tensor networks [Oseledets,
2010, Cichocki, 2014] in breaking the constraint of physical dimension for extreme parameter
compression. Specifically, VB-LoRA reparameterizes LoRA’s low-rank adaptation by a rank-one
decomposition and then divides the resulting vectors into sub-vectors of the same size. A global
sharing mechanism is then learnt based on a sparse top-k admixture module. The same sized sub-
vectors allows parameters to be shared across modules and layers at the sub-vector level. Moreover,
compared to the post-hoc matrix compression methods [Oseledets, 2010, Khoromskij, 2011], VB-
LoRA is end-to-end differentiable, and therefore the fine-tuning process is aware of the compressed
form, enabling task-oriented compression. Figure 1 illustrates the parameter efficiency of VB-LoRA
as compared with state-of-the-art PEFT methods. Our contributions are summarized as follows:

1. We introduce a "divide-and-share" paradigm that breaks the barriers of low-rank decomposition
across matrix dimensions, modules, and layers by sharing parameters globally via a vector bank.

2. We reparameterize LoRA’s low-rank decomposition by a rank-one decomposition, and divide the
resulting vectors further into sub-vectors of the same size, enabling extreme parameter efficiency
at the sub-vector level.

2



3. We propose a sparse top-k module based on the admixture model to learn a global sharing
mechanism, making our framework end-to-end differentiable and compression-aware.

4. Our method achieves extreme parameter efficiency while maintaining comparable or better
empirical performance compared to the state-of-the-art PEFT methods on natural language
understanding, natural language generation, instruction tuning, and mathematical reasoning tasks.

2 Related Work

Exploit Global Redundancy for Enhanced Parameter Efficiency The parameters of deep neural
networks (DNNs) can be naturally divided by layers, heads, or types (MHA or FFN). While LoRA [Hu
et al., 2021] only exploits the intra-matrix dependency, Tied-LoRA [Renduchintala et al., 2024]
employs a simple weight tying scheme on the low-rank matrices A and B across layers to reduce the
inter-matrix redundancy. When A and B are randomly initialized, frozen, and shared across all layers,
Tied-LoRA degenerates to VeRA [Kopiczko et al., 2024], which only requires two scaling vectors to
be updated, leading to impressive parameter efficiency. A concurrent work, LoRA-XS [Bałazy et al.,
2024], further improves the parameter efficiency of LoRA by introducing small trainable matrices
between frozen LoRA projection matrices, which are initialized using Singular Value Decomposition
(SVD) of the pretrained module weights. Our VB-LoRA pushes the limits of LoRA parameter
efficiency by sharing parameters globally across modules and layers at the sub-vector level.

On the low-dimensional reparameterization, Aghajanyan et al. [2020] empirically show that there
exists a low-dimensional reparameterization that is as effective for fine-tuning as the full parameter
space. The actualization of the random projection is achieved through the Fastfood transform [Le
et al., 2013] for large-scale pre-trained language models. To make it structure-aware, a set of layer-
wise scaling parameters are included as part of the training parameters. Following this intuition, we
study the lightweight fine-tuning within LoRA based on the customized reparameterization that arises
from the rank-one matrix decomposition.

Moreover, tensor decomposition has been leveraged for PEFT in ViT models [Jie and Deng, 2023]
based on classical formats, such as tensor-train or Tucker [Kolda and Bader, 2009]. We find that
forcing multilinear decomposition across multiple modes results in a higher rank number, which
is detrimental to the objective of parameter compression. An indirect comparison of VB-LoRA
to Jie and Deng [2023] can be conducted by referring the compression rate to LoRA. From this
perspective, our VB-LoRA can be viewed as a customized tensor format endowed with a convex
geometry structure, which is enabled by the sparse top-k admixture model we proposed.

Compared to the deep fusion approach [Mazzawi et al., 2024] where LLM parameters are split
and initialized using pre-trained smaller networks under a designed network growth mechanism,
our parameter division operates on the rank-one component vectors. Sub-vector division allows
for similar extensions to leverage pre-trained vector bank initializations from smaller models and
distributed training using model parallelism.

Parameter Modeling based on Sparse Admixture Models Admixture models have been widely
used in population genetics [Pritchard et al., 2000], topic modeling [Reisinger et al., 2010, Inouye
et al., 2014], and hyperspectral unmixing [Li and Bioucas-Dias, 2008, Fu et al., 2015] to extract
archetypal (or endmember) components from observed data. The archetypal components can be
relaxed to have mixed sign [Ding et al., 2008] with identifiability guarantees [Lin et al., 2015].
Conventionally, parameters estimation are conducted based on linear programming [Chan et al.,
2009] or combinatorial algorithms [Arora et al., 2013]. However, an involved integer programming
problem arises when incorporating an extra top-k constraint into the mixing weights that is especially
challenging for the large-scale language models. In this work, we propose learning archetypal vector
banks not from observed data but from model parameters of LLMs. By modifying the sparse top-k
module [Shazeer et al., 2016] commonly used in Mixture-of-Expert models [Jiang et al., 2024],
the mixing weights and vector banks are optimized by back-propagation under the objective of
downstream fine-tuning tasks. The proposed top-k admixture model is model-agnostic in the sense
that it can be readily integrated into any neural network parameters or accumulated gradient updates.

3



3 Proposed Method

3.1 Preliminaries: Transformer Architecture and LoRA Adapters

The transformer architecture [Vaswani et al., 2017] consists of L layers, each containing two types
of blocks: Multi-Head Attention (MHA) and Feed-Forward Network (FFN). We denote the query,
key, value, and output matrices of MHA at layer ℓ as Wℓ

t = {W i
t }

Nh
i=1, t ∈ {q, k, v, o}, where

W i
t ∈ Rd×d, and Nh is the number of heads. Given FFN(x) = WdownReLU(Wupx) with x ∈ Rd,

viewing FFN as a multi-head operation, we further divide Wup ∈ Rcd×d and Wdown ∈ Rd×cd into c

matrices of size d× d, denoted by Wℓ
up = {W ℓ,i

up }ci=1 and Wℓ
down = {W ℓ,i

down}ci=1. c = 4.

Given a pre-trained matrix W0 ∈ Rm×n, LoRA [Hu et al., 2021] constrains the weight increments
∆W as a low-rank decomposition ∆W = BA, where B ∈ Rm×r, A ∈ Rr×n are trainable param-
eters, with r ≪ min(m,n). VeRA [Kopiczko et al., 2024] further limits the trainable parameters
to two scaling vectors b and d, which form the diagonal elements of two diagonal matrices Λb and
Λd. Hence, VeRA can be expressed as ∆W = ΛbBΛdA, where B and A are randomly initialized,
frozen and shared across layers.

Collectively, we denote the model parameters of transformer as Ω = {{Wℓ
q,W

ℓ
k,W

ℓ
v,W

ℓ
o} ∪

{Wℓ
up,W

ℓ
down}}Lℓ=1 ∈ R12L×d×d. In the sequel, we propose a global reparameterization on the

weight increments of W ∈ Ω based on the LoRA decomposition ∆W = BA. we will show how
extreme parameter efficiency can be achieved by (1) parameter sharing across matrix dimensions
of A and B based on a rank-one decomposition and sub-vector partitions (Sec. 3.2), and (2) across
modules and layers regardless of the index or matrix type (Sec. 3.3).

3.2 Divide-and-Share: a New Paradigm for Parameter Sharing

The low rank decomposition of LoRA can be equivalently expressed in a rank-one form as follows:

∆W = BA =
∑r

k=1
bk ⊗ ak =

∑r

k=1
⊗2

i=1 v
(i)
k , v

(1)
k = bk, v

(2)
k = ak, (3.1)

where ⊗ denotes the outer product operator and v
(i)
k is a vector of size di.

Divide Based on the rank-one decomposition above, we further represent each component vector
v
(i)
k as a concatenation of a set of sub-vectors,

v
(i)
k = concat(u(i)

k,1,u
(i)
k,2, . . . ,u

(i)
k,d′

i
), u

(i)
k,j ∈ Rb, j ∈ {1, . . . , d′i}, (3.2)

where {di}i=1,2 represents the size of the matrix dimension of ∆W . In general, {di}i=1,2 are not
equal across A and B, and we choose b as a common factor of di such that d′i = di/b and d′i ∈ Z.

Share To facilitate parameter sharing across model dimensions, we assume each sub-vector u(i)
k,j

as a top-k admixture of basic elements from vector bank B = {α1, . . . ,αh}, where αi ∈ Rb for
i ∈ {1, . . . , h}, and is defined as follows (with the subscripts omitted for clarity):

u =
∑h

s=1
ws(σ)αs, w(σ) = Softmax(TopK(σ, k)), (3.3)

where TopK (σ, k)i = σi if σi is among the top-k of σ and TopK (σ, k)i = −∞ otherwise. For
each sub-vector u, we introduce logits σ ∈ Rh as its learnable parameters. We call the model
expressed in Eq. 3.3 as the top-k admixture module (TKAM), which is differentiable. This design
enables the joint learning of vector bank B and logits σ in an end-to-end manner, which is amenable
for model fine-tuning to the downstream tasks.

The TKAM module promotes sparsity by selecting k vectors of the largest logits from the vector
bank. By setting k ≪ h, we restrict the sub-vector u to be sparse. That is, in each iteration, the
updates to the vector bank remain locally dominated – with at most k basis vectors α ∈ B affected
by the backpropagation through u – in the hope that the learnt vectors can be more specialized and
the knowledge encapsulated in the vector bank can be activated and updated sparsely.

4



Noise-free Top-k module The Noisy Top-k Gating module [Shazeer et al., 2016] has been widely
used to replace the fully connected layers with the Mixture of Experts (MoE) layers in large language
models [Jiang et al., 2024]. In contrast, we use Eq. 3.3 to learn the selective sharing scheme across
the rank-one component vectors without changing the original model. Due to the decomposition,
we find that the cumulative gradient parameter updates are more sensitive than the original model
parameters during the training process. This may be related to the training instability issues observed
in hypernetworks [Ortiz et al., 2024], where parameters are generated by another parameterized model
as well. Therefore, keeping zero noise in the gating function can help make the learning more efficient
and stable. An ablation study of different vector selection methods, including Gumbel-softmax, is
provided in Sec. 4.5.

3.3 Breaking Boundaries of LoRA for Global Parameter Sharing

While LoRA only applies the low rank decomposition to each individual weight increment, the
boundary can be broken by the divide-and-share scheme we proposed in Sec. 3.2. Our divide-
and-share approach can be interpreted as hierarchical and constrained tensor decomposition, which
facilitates efficient global parameter sharing that goes beyond LoRA’s low-rank representation of
matrices.

The divide operator was first introduced in Quantized Tensor Train (QTT) for super compression
of large-scale matrices [Oseledets, 2010, Cichocki, 2014]. For example, dyadic division reshapes
a vector of length L = 2p into a p-dimensional array which facilitates the efficient Tensor Train
decomposition to be used. Our divide operator instead applies to the rank-one component vectors
v
(i)
k , and the resulting hierarchical tensorial representation of ∆W can be viewed as a Canonical

Polyadic Decomposition (CPD) [Kolda and Bader, 2009] with component vectors v(i)
k folded into

2-dimensional arrays with sub-vectors u
(i)
k,j as columns. Each sub-vector ui is composed from a

globally shared vector bank B via TKAM, where i = [j,v] is a multi-index including physical indices
j, such as module, layer, head, and left/right decomposed matrix, and virtual indices v (created from
vector partition).

The share operator (TKAM module) can be viewed as a factor model with simplex constraints on
the mixing weight (e.g., k = 2, the sub-vector u lies on the edges of the simplex) and common
factors stored in B. Let u ∈ Rb and u =

∑h
s=1αsws, where αs is the s-th factor, and w is the

factor score for the sub-vector u. We consider the following options for w: (1) Admixture (convex
combination): w ∈ [0, 1]h and

∑h
s=1ws = 1, which is commonly used in various communities. (2)

Sparse Admixture (TKAM): w ∈ [0, 1]h and
∑h

s=1 ws = 1 with only k ≪ h non-zero elements
allowed. It’s worth mentioning that adding the multi-index information to the vector selection
mechanism can make the TKAM model structure-aware, potentially yielding additional benefits.
One possibility is to make the logits of vector selection conditional on the embeddings of the layer,
module, and matrix type, which can be implemented through a hypernetwork [Mahabadi et al., 2021].
However, we leave this for future work.

In summary, LoRA provides a local low-rank factorization for each d1×d2 matrix ∆W independently.
In contrast, our VB-LoRA introduces a global low-rank factorization on a b× |{i}| matrix composed
of partitioned rank-one vectors, where |{i}| denotes the cardinality of the index set including both
physical and virtual indices. As we will see below, this differentiation can better leverage the
redundancy in the cumulative gradients, leading to extreme parameter efficiency.

Figure 2 overviews our method. The left section demonstrates the high-level idea of VB-LoRA: the
vector bank is shared across sub-vectors, modules, and layers. The right section details its architecture.
To form each sub-vector, we use a top-k softmax function to select k vectors from the vector bank,
which are then pooled into a sub-vector. These sub-vectors are arranged in the desired positions,
forming the parameters for LoRA with negligible computational overhead. Algorithm 1 provides
the PyTorch-like pseudocode for VB-LoRA, which can be seamlessly integrated into the PyTorch
framework.

3.4 Parameter Count

In full fine-tuning, the number of trainable parameters is equal to the model size, i.e., LMd2, where
L is the number of layers, M is the number of fine-tuned modules, and d is hidden dimension.

5



Algorithm 1 Pseudocode of VB-LoRA in a PyTorch-like style
# d: hidden dimension; b: length of sub-vectors; r: rank; h: size of vector bank
# k: number of selected vectors used in the top-k admixture module
# logits: Each linear layer has two trainable parameters: logits_A and logits_B.
# Both parameters have a shape of (d/b)*r*h.
# vector_bank: The shared vector bank with a shape of h*b.
# x and W: input and the original weight.

def get_low_rank_matrix(logits, vector_bank, k):
topk_logits, topk_indices = logits.topk(k, dim=-1)
topk_weights = torch.softmax(topk_logits, dim=-1)
matrix = (topk_weights * vector_bank[topk_indices]).sum(-2)
return matrix

def VBLoRA_forward(x, vector_bank, logits_A, logits_B, k):
r = logits_A.shape[1]
A = get_low_rank_matrix(logits_A, vector_bank, k).transpose(0, 1).reshape(r, -1)
B = get_low_rank_matrix(logits_B, vector_bank, k).transpose(1, 2).reshape(-1, r)
# For memory efficiency, we avoid explictly computing \delta W = B @ A.
return x @ W + (x @ B) @ A

LoRA reduces this number to 2LMdr, while VeRA further reduces it to LM(d+ r). The trainable
parameters of LoRA and VeRA are the same as the parameters they need to store.

In VB-LoRA, the trainable parameters consist of two parts: the parameters of the vector bank B and
the parameters of logits σ. However, at the end of training, the logit parameters can be discarded
and only the k selected indices and the top-k admixture weights need to be stored. Therefore, the
stored parameters can be represented by a triplet Θ = {B, I,V}, where B ∈ Rh×b is a vector bank
containing h vectors of b-dimensional, I ∈ R2×L×M×r×(d/b)×k is the top-k indices of the vectors
in B for all sub-vectors, and V ∈ R2×L×M×r×(d/b)×(k−1) is the top-k admixture weights used to
composite the sub-vectors from the bank. It is worth noting that the top-k admixture weights have
only k − 1 degrees of freedom since they must be summed to 1. Additionally, depending on the
size of the vector bank h, the indices I can be efficiently stored as unsigned integers (e.g., uint8
when h ≤ 256), and hence, we count the number of parameters as the float32-equivalent size for
a fair comparison. When we use k = 2 and uint8 for indices, the number of stored parameters of
VB-LoRA is hb+ 3LMr(d/b). Unlike LoRA and VeRA, the number of parameters in VB-LoRA
does not increase linearly with the model size (determined by L and d) or the number of fine-tuned
modules, i.e., M . While the second term of VB-LoRA’s parameters is a linear function of LMd, the
coefficient is 3r/b, which is typically very small. For example, in our experiments, the typical values
are r = 4 and b = 256, leading to a coefficient of 0.04, whereas the coefficient is 2r for LoRA and 1
for VeRA. Most of the parameters in VB-LoRA reside within the shared vector bank, whose size
does not increase linearly with the model size or number of fine-tuned modules.

4 Experiments

In this section, we conduct a comprehensive evaluation of our method through a series of experiments.
We begin by comparing VB-LoRA to the state-of-the-art PEFT methods: LoRA, VeRA, and Tied-
LoRA on the GLUE benchmark. Next, we extend our analysis to natural language generation tasks
using GPT-2, instruction tuning tasks on the Llama2, as well as mathematical reasoning tasks on
Mistral and Gemma models. All our experiments were conducted on a server equipped with 8
NVIDIA A100 GPUs. For reproducibility, we provide detailed hyperparameters and specifications
of computing resources for each experiment in the appendix. The source code is available at
https://github.com/leo-yangli/VB-LoRA.

4.1 Natural Language Understanding

We adopt the General Language Understanding Evaluation (GLUE) benchmark3 [Wang et al., 2018]
to assess the performance of VB-LoRA across various natural language understanding tasks, including

3https://gluebenchmark.com/

6

https://github.com/leo-yangli/VB-LoRA
https://gluebenchmark.com/


Table 1: Results with RoBERTabase and RoBERTalarge on the GLUE benchmark. The best results in
each group are shown in bold. We report Matthew’s correlation for CoLA, Pearson correlation for
STS-B, and accuracy for all other datasets. Results for LoRAqv and VeRAqv are sourced from their
respective original papers, while the other results are based on our implementations. We report the
median performance from 5 runs using different random seeds.

Method # Params SST-2 MRPC CoLA QNLI RTE STS-B Avg.

FT 125M 94.8 90.2 63.6 92.8 78.7 91.2 85.2
LoRAqv 0.295M 95.1±0.2 89.7±0.7 63.4±1.2 93.3±0.3 86.6±0.7 91.5±0.2 86.6

VeRAqv 0.043M 94.6±0.1 89.5±0.5 65.6±0.8 91.8±0.2 78.7±0.7 90.7±0.2 85.2
Tied-LoRAqv 0.043M 94.4±0.5 88.5±1.0 61.9±1.6 92.0±0.1 76.2±1.0 89.8±0.3 83.8
VB-LoRAqv (Ours) 0.023M 94.4±0.2 89.5±0.5 63.3±0.7 92.2±0.2 82.3±1.3 90.8±0.1 85.4

VeRAall 0.157M 95.1±0.4 88.7±0.5 64.5±1.0 92.3±0.2 81.9±1.4 90.2±0.3 85.5
Tied-LoRAall 0.109M 94.7±0.2 88.5±0.8 64.7±0.8 92.4±0.1 76.5±1.3 90.3±0.1 84.5

B
A

S
E

VB-LoRAall (Ours) 0.027M 95.0±0.2 89.7±0.2 64.3±1.4 92.3±0.2 82.3±0.9 90.7±0.2 85.7

L
A

R
G

E

LoRAqv 0.786M 96.2±0.5 90.2±1.0 68.2±1.9 94.8±0.3 85.2±1.1 92.3±0.5 87.8

VeRAqv 0.061M 96.1±0.1 90.9±0.7 68.0±0.8 94.4±0.2 85.9±0.7 91.7±0.8 87.8
Tied-LoRAqv 0.066M 94.8±0.6 89.7±1.0 64.7±1.2 94.1±0.1 81.2 ±0.1 90.8 ±0.3 85.9
VB-LoRAqv (Ours) 0.024M 96.1±0.2 91.4±0.6 68.3±0.7 94.7±0.5 86.6±1.3 91.8±0.1 88.2

VeRAall 0.258M 96.6±0.5 90.9±0.8 68.5±1.4 94.4±0.4 85.9±1.2 92.2±0.2 88.1
Tied-LoRAall 0.239M 94.8±0.3 90.0±0.4 66.8±0.1 94.1±0.1 82.3±2.0 91.6±0.2 86.6
VB-LoRAall (Ours) 0.033M 96.3±0.2 91.9±0.9 69.3±1.5 94.4±0.2 87.4±0.7 91.8±0.2 88.5

similarity, paraphrase, and inference tasks. Following Kopiczko et al. [2024], we focus on six tasks
from GLUE: CoLA [Warstadt et al., 2019] (linguistic acceptability), SST-2 [Socher et al., 2013]
(sentiment analysis), MRPC [Dolan and Brockett, 2005] (paraphrase detection), STS-B [Cer et al.,
2017] (semantic textual similarity), QNLI [Rajpurkar et al., 2018] (inference), and RTE (inference).

Our experiments are performed with RoBERTabase and RoBERTalarge [Liu et al., 2019]. While LoRA
and VeRA only finetune the query and value modules, we explore two fine-tuning strategies: query
and value only (VB-LoRAqv), and all linear modules (VB-LoRAall), including Wq,Wk,Wv,Wo,
Wup, and Wdown. We create a vector bank of 90 vectors of a length of 256, initialized with a uniform
distribution U(−0.02, 0.02). The logits are initialized with a normal distribution N (0, 0.01). The
learning rates for the vector bank and logit parameters are set to 0.001 and 0.01, respectively. We set
the rank to 4 and k = 2 for all our experiments.

Table 1 reveals that VB-LoRA achieves competitive or superior performance compared to VeRA
and Tied-LoRA, while being more parameter efficient. For example, when fine-tuning the query and
value modules on the RoBERTalarge model, our method reduces the stored parameters to less than
40% of those required by VeRA or Tied-LoRA, while outperforming them across all tasks. These
results suggest that model performance depends not only on the quantity of trainable parameters but
also on how they are composed.

Moreover, the results consistently indicate that fine-tuning all modules, beyond just the query and
value modules, enhances performance for all the methods. However, LoRA, VeRA and Tied-LoRA
requires 2–4 times of the parameters in this case because their parameter counts increase linearly with
the number of fine-tuned modules. In contrast, our method uses only 37.5% additional parameters as
we maintain the same vector bank size but add additional parameters for indices and top-k weights.
Thus, with only 12.8% of the parameters compared to VeRAall (4% compared to LoRAqv), our
method achieves the best average performance.

4.2 Natural Language Generation

For natural language generation experiments, we fine-tune the GPT-2 Medium and Large mod-
els [Radford et al., 2019] on the E2E dataset4 [Novikova et al., 2017], which contains approximately
42,000 training examples, 4,600 validation examples, and 4,600 test examples from the restaurant
domain. We use a vector bank of size 256 for GPT-2 Medium and 350 for GPT-2 Large. The vector
length is set to 256 and the rank is set to 4 for both models. To achieve the best performance, we
fine-tune all attention layers and FFN layers. As shown in Table 2, our approach achieves competitive
performance compared to VeRA, while requiring about 20% less stored parameters for both models.

4Licensed under CC BY-SA 4.0. URL: https://github.com/tuetschek/e2e-dataset

7

https://github.com/tuetschek/e2e-dataset


Table 2: Results with GPT-2 Medium and GPT-2 Large on the E2E benchmark. The results for FT
and LoRA are taken from Hu et al. [2021], and the results for VeRA are taken from Kopiczko et al.
[2024]. We report the mean of 3 runs using different random seeds.

Method # Params BLEU NIST METEOR ROUGE-L CIDEr

M
E

D
IU

M FT 354.92M 68.2 8.62 46.2 71.0 2.47
LoRA 0.35M 68.9 8.69 46.4 71.3 2.51
VeRA 0.098M 70.1 8.81 46.6 71.5 2.50
VB-LoRA (Ours) 0.076M 70.0 8.81 46.6 71.5 2.52

L
A

R
G

E FT 774.03M 68.5 8.78 46.0 69.9 2.45
LoRA 0.77M 70.1 8.80 46.7 71.9 2.52
VeRA 0.17M 70.3 8.85 46.9 71.6 2.54
VB-LoRA (Ours) 0.13M 70.3 8.86 46.7 72.2 2.54

4.3 Instruction Tuning

Instruction tuning is a process of fine-tuning model with a set of instructions or prompts to enhance
its performance on specific instructions [Ouyang et al., 2022]. We first experiment on a general
instruction tuning dateset. We use the Cleaned Alpaca Dataset 5, which improves the data quality
of the original Alpaca dataset [Taori et al., 2023]. We evaluate the fine-tuned models on the MT-
Bench6 [Zheng et al., 2024], which contains 80 multi-turn questions.

Following Kopiczko et al. [2024], we fine-tune the Llama2 model [Touvron et al., 2023] within
the QLoRA [Dettmers et al., 2023] framework7, which aims to reduce memory usage when fine-
tuning large language models on a single GPU. We utilize the quantization strategy provided by
QLoRA, including 4-bit NormalFloat for storage data, BFloat16 for computation parameters, double
quantization and paged optimizers to train it on a single GPU. Our fine-tuned models generate
responses to these questions, and subsequently, GPT-4 is employed to review and evaluate the
generated answers, assigning a quantitative score on a scale of 10. Note that aligning with VeRA,
we report the score of the first turn of the conversation. Following Kopiczko et al. [2024], we
apply VB-LoRA to all linear layers except the top one. For Llama2 7B, we use a vector bank of
2,048 vectors, each with a length of 256, and the rank is set to 4, resulting in a total of 0.8M stored
parameters. For Llama2 13B, we use the same-sized vector bank but increase the rank to 6, leading
to 1.1M stored parameters. For all the experiments, we train for one epoch.

The results are reported in Table 3. Notably, we report two sets of LoRA results for each experi-
ment: one from our implementation and the other from Kopiczko et al. [2024], due to a noticeable
discrepancy between the scores. Since we closely follow the experimental settings of Kopiczko et al.
[2024], we speculate that the difference is due to changes in the GPT-4 model over time. However,
comparing the relative improvements of VeRA and VB-LoRA with their respective implementations
of LoRA remains fair. VB-LoRA achieves higher scores than LoRA while using only 0.5% (Llama2
7B) and 0.4% (Llama2 13B) of the stored parameters. While VeRA can reach similar scores with
their implementation of LoRA, it requires more than twice of parameters compared to VB-LoRA.

4.4 Mathematical Reasoning

To evaluate mathematical reasoning capabilities, we fine-tune the Mistral-7B-v0.1 and Gemma-7B
models on the MetaMathQA8 [Yu et al., 2023] dataset and test them on GSM8K9 [Cobbe et al., 2021]
and MATH10 [Hendrycks et al., 2021] datasets. We compare our results with the concurrent work
LoRA-XS [Bałazy et al., 2024], following its experimental configuration. The result is shown in
Table 4. Our method outperforms all baselines on GSM8K, with Mistral-7B utilizing only 0.4% of

5The original and cleaned Alpaca datasets are licensed under CC BY-NC 4.0. URLs:
https://huggingface.co/datasets/tatsu-lab/alpaca, https://huggingface.co/datasets/
yahma/alpaca-cleaned

6Licensed under CC BY 4.0. URL: https://huggingface.co/datasets/lmsys/mt_bench_human_
judgments

7https://github.com/artidoro/qlora
8Licensed under MIT. URL: https://huggingface.co/datasets/meta-math/MetaMathQA
9Licensed under MIT. URL: https://huggingface.co/datasets/openai/gsm8k

10Licensed under MIT. URL: https://github.com/hendrycks/math/

8

https://huggingface.co/datasets/tatsu-lab/alpaca
https://huggingface.co/datasets/yahma/alpaca-cleaned
https://huggingface.co/datasets/yahma/alpaca-cleaned
https://huggingface.co/datasets/lmsys/mt_bench_human_judgments
https://huggingface.co/datasets/lmsys/mt_bench_human_judgments
https://github.com/artidoro/qlora
https://huggingface.co/datasets/meta-math/MetaMathQA
https://huggingface.co/datasets/openai/gsm8k
https://github.com/hendrycks/math/


Table 3: Results with Llama2 on MT-Bench,
scored by GPT-4 out of 10. LoRA† and VeRA
are sourced from Kopiczko et al. [2024].
LoRA‡ and VB-LoRA are from our imple-
mentations. The discrepancy between LoRA†

and LoRA‡ may be due to changes in the GPT-
4 model over time.

Model Method # Parameters Score

LLAMA2 7B

w/o FT - 4.79

LoRA† 159.9M 5.19
VeRA 1.6M 5.08

LoRA‡ 159.9M 5.63
VB-LoRA (Ours) 0.8M 5.71

LLAMA2 13B

w/o FT - 5.38

LoRA† 250.3M 5.77
VeRA 2.4M 5.93

LoRA‡ 250.3M 6.13
VB-LoRA (Ours) 1.1M 6.31

Table 4: Results with Mistral-7B and Gemma-7B
models on the GSM8K and MATH Benchmarks.
Specifically, in VB-LoRA, we use a vector bank size
of 2,048 with b = 256, set the rank to 4, and train
with a batch size of 128 for 2 epochs. The warm-up
ratio is 0.02, and training uses a cosine learning rate
scheduler, with an initial learning rate of 0.001 for
the vector bank and 0.01 for the logits. The baseline
results are taken from Bałazy et al. [2024].

Model Method # Parameters GSM8K MATH

MISTRAL-7B

Full-FT 7242M 67.02 18.60
LoRA 168M 67.70 19.68
LoRA-XS 0.92M 68.01 17.86
VB-LoRA (Ours) 0.65M 69.22 17.90

GEMMA-7B

Full-FT 8538M 71.34 22.74
LoRA 200M 74.90 31.28
LoRA-XS 0.80M 74.22 27.62
VB-LoRA (Ours) 0.67M 75.96 28.90

the parameters compared to LoRA, and Gemma-7B using just 0.3%. Compared with LoRA-XS, our
method outperforms on both evaluation datasets while using 70% (Mistral-7B) and 83% (Gemma-7B)
of LoRA-XS parameters.

4.5 Ablation Study

We conduct an ablation study to examine the impact of each individual component of VB-LoRA. The
experiments are performed on RoBERTa-large, fine-tuning only the query and value modules.

Vector Selection Methods Besides the top-k admixture module (abbreviated as Top-k below),
there exist several commonly used discrete optimization methods for vector selection, including Noisy
Top-k [Shazeer et al., 2016], Gumbel-Softmax (GS), and Straight-Through Gumbel-Softmax [Jang
et al., 2017, Maddison et al., 2016]. For Top-k and Noisy Top-k, we evaluate the impact of different
k to the performances on the CoLA dataset. For GS and Straight-Through GS, we set the temperature
τ = 1/3 during training and use Top-1 and Top-2 Softmax for inference. Additionally, we explore
"Select All", a special case of Top-k with k equals to the vector bank size h. As shown in Table 5,
Noisy Top-k, GS, and Straight-Through GS significantly underperform Top-k and "Select All". We
hypothesize that random noise injected by these methods likely disrupts the parameters of vector
bank, leading to instability in the learning process.

We further investigate the impact of k to the training dynamics and performance of VB-LoRA. As
discussed in Sec. 3.4, the choice of k affects not only the model’s performance but also the number of
parameters to be stored. Hence, a smaller k is generally preferred for improved parameter efficiency.
Table 5 shows that k = 2 yields the best result on CoLA, whereas k = 1 performs significantly worse.
To explain this, we delve into the training dynamics of VB-LoRA. As shown in Figure 3 (a), when
k = 1, the selected vectors remain largely unchanged during training. In contrast, when k > 1, the
model actively explore the vector bank as illustrated in Figure 3 (b) and (c), i.e., different vectors are
selected and updated actively during the training process. Additionally, we observed that this vector
exploration primarily occurs in the early stages of training, with updates becoming progressively
sparser in later stages, as shown in Figure 5 in the appendix. This suggests that the vectors become
increasingly specialized for specific sub-vectors as training progresses.

Sub-vector Length b VB-LoRA introduces a new virtual dimension that divides the original
dimensions of LoRA matrices into sub-vectors of length b. Note that b must be a common factor of
all hidden dimensions to ensure compatibility across the entire model. However, the optimal value of
b is task-specific and requires tuning as a hyperparameter. Theoretically, with a fixed vector bank
budget, a larger b reduces the number of vectors in the vector bank, potentially making each vector
less specialized. On the other hand, a smaller b increases the number of trainable parameters and
complicates the vector selection process. As shown in Table 6, a moderate b = 256 yields the best
performance on the CoLA task.

9



Table 5: Ablation study of different vector selec-
tion methods. S.: Softmax, GS: Gumbel-Softmax,
ST-GS: Straight Through Gumbel-Softmax.

Method Training Inference CoLA

Select All S. S. 67.5±1.2

Top-k

Top 1 S. Top 1 S. 66.9±0.5

Top 2 S. Top 2 S. 68.3±0.7

Top 3 S. Top 3 S. 68.1±1.3

Top 6 S. Top 6 S. 67.1±0.5

Noisy Top-k Noisy Top 1 S. Top 1 S. 45.3±2.2

Noisy Top 2 S. Top 2 S. 62.6±0.2

GS GS (τ=1/3) Top 1 S. 57.1±0.6

GS (τ=1/3) Top 2 S. 57.3±1.6

ST-GS ST-GS (τ=1/3) Top 1 S. 55.6±1.6

ST-GS (τ=1/3) Top 2 S. 54.7±1.2

Table 6: Ablation study of sub-vector length.
Length b Vector Bank Size CoLA

128 240 67.0±0.8

256 120 68.7±0.7

512 60 67.8±0.8

1024 30 67.3±1.1

0 20 40 60 80
Sub-vector #

0
10
20
30
40
50
60
70
80Ve

ct
or

 #
 in

 th
e 

ve
ct

or
 b

an
k

(a) When k = 1

0 20 40 60 80
Sub-vector #

0
10
20
30
40
50
60
70
80Ve

ct
or

 #
 in

 th
e 

ve
ct

or
 b

an
k

(b) When k = 2

0 20 40 60 80
Sub-vector #

0
10
20
30
40
50
60
70
80Ve

ct
or

 #
 in

 th
e 

ve
ct

or
 b

an
k

(c) When k = 3

0 20 40 60 80
Sub-vector #

0
10
20
30
40
50
60
70
80Ve

ct
or

 #
 in

 th
e 

ve
ct

or
 b

an
k

(d) Noisy Top-2
Figure 3: VB-LoRA’s vector selection foot-
prints during training. The x-axis represents
the 96 sub-vectors formed by the vectors from
a bank of 90 vectors, while the y-axis repre-
sents the indices of selected vectors from the
bank. The blue blocks indicate the selection
footprint during training.

5 Conclusion

This paper introduces a "divide-and-share" paradigm and a differentiable top-k admixture module
for extreme parameter-efficient fine-tuning with vector banks. Our proposed VB-LoRA achieves
the competitive or higher accuracy while using significantly smaller number of stored parameters
compared to the state-of-the-art PEFT methods, including LoRA, VeRA, and Tied-LoRA. In addition,
VB-LoRA is model-agnostic and applicable to other PEFT methods [Ding et al., 2023], including
inserted adapters [Karimi Mahabadi et al., 2021], prompt tuning [Qin et al., 2021], and BitFit [Ben Za-
ken et al., 2022]. Although VB-LoRA focuses on reducing the storage and transmission costs for
LLM fine-tuning, we believe the proposed scheme can be extended to memory-efficient fine-tuning
and parameter-efficient pre-training. We leave these for future exploration.

Fine-tuning a pre-trained model requires making design choices about which layers of the model
should be frozen or updated. Multitask fine-tuning adds extra complexity about which parameters
should be shared or task-specific. Along this line of work, Polytropon [Ponti et al., 2022] jointly
learns a small inventory of LoRA adapters and a routing function that selects a variable-sized subset of
adapters for few-shot adaptation. Caccia et al. [2023] emphasize the importance of routing granularity
and further propose a finer-grained mixing across multiple heads. Following these works, it would be
interesting to explore a finer-grained parameter transfer across tasks, heads, types, and layers at the
sub-vector level for multitask fine-tuning.

Limitations and broader impacts Our experiments are limited to monomodal (text-based), monolin-
gual (English), and LoRA-only settings. Additionally, our exploration of the vector bank is somewhat
limited, as we only examine a small range of configurations for bank size and vector length. In
terms of broader impacts, VB-LoRA reduces the storage and transmission costs of LLM adapters and
demonstrates improved memory-efficiency, making customized LLMs more accessible. We do not
foresee any negative societal impact beyond those generally associated with LLMs.

Acknowledgments

We would like to thank the anonymous reviewers for their comments and suggestions, which helped
improve the quality of this paper.

10



References

Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. arXiv preprint arXiv:2012.13255, 2020.

Sanjeev Arora, Rong Ge, Yonatan Halpern, David Mimno, Ankur Moitra, David Sontag, Yichen
Wu, and Michael Zhu. A practical algorithm for topic modeling with provable guarantees. In
International Conference on Machine Learning, pages 280–288. PMLR, 2013.

Klaudia Bałazy, Mohammadreza Banaei, Karl Aberer, and Jacek Tabor. LoRA-XS: Low-rank
adaptation with extremely small number of parameters. arXiv preprint arXiv:2405.17604, 2024.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. BitFit: Simple parameter-efficient fine-
tuning for transformer-based masked language-models. In Smaranda Muresan, Preslav Nakov,
and Aline Villavicencio, editors, Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pages 1–9, Dublin, Ireland, May 2022.

Alexander Borzunov, Max Ryabinin, Artem Chumachenko, Dmitry Baranchuk, Tim Dettmers,
Younes Belkada, Pavel Samygin, and Colin A Raffel. Distributed inference and fine-tuning of large
language models over the internet. Advances in Neural Information Processing Systems, 36, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems, 33:1877–1901, 2020.

Lucas Caccia, Edoardo Ponti, Zhan Su, Matheus Pereira, Nicolas Le Roux, and Alessandro Sordoni.
Multi-head adapter routing for cross-task generalization. In Advances in Neural Information
Processing Systems, 2023.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia Specia. SemEval-2017 task 1:
Semantic textual similarity multilingual and crosslingual focused evaluation. In Steven Bethard,
Marine Carpuat, Marianna Apidianaki, Saif M. Mohammad, Daniel Cer, and David Jurgens,
editors, Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017),
pages 1–14, Vancouver, Canada, August 2017.

Tsung-Han Chan, Chong-Yung Chi, Yu-Min Huang, and Wing-Kin Ma. A convex analysis-based
minimum-volume enclosing simplex algorithm for hyperspectral unmixing. IEEE Transactions on
Signal Processing, 57(11):4418–4432, 2009.

Andrzej Cichocki. Era of big data processing: A new approach via tensor networks and tensor
decompositions. arXiv preprint arXiv:1403.2048, 2014.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. QLoRA: Efficient finetuning
of quantized LLMs. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine,
editors, Advances in Neural Information Processing Systems, volume 36, pages 10088–10115,
2023.

Chris HQ Ding, Tao Li, and Michael I Jordan. Convex and semi-nonnegative matrix factorizations.
IEEE transactions on pattern analysis and machine intelligence, 32(1):45–55, 2008.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. Parameter-efficient fine-tuning of large-scale pre-trained
language models. Nature Machine Intelligence, 5(3):220–235, 2023.

William B. Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop on Paraphrasing (IWP2005), 2005.

11



Xiao Fu, Wing-Kin Ma, Kejun Huang, and Nicholas D Sidiropoulos. Blind separation of quasi-
stationary sources: Exploiting convex geometry in covariance domain. IEEE Transactions on
Signal Processing, 63(9):2306–2320, 2015.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards
a unified view of parameter-efficient transfer learning. In International Conference on Learning
Representations, 2021.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
NLP. In International Conference on Machine Learning, pages 2790–2799. PMLR, 2019.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. LoRA: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2021.

David Inouye, Pradeep Ravikumar, and Inderjit Dhillon. Admixture of Poisson MRFs: A topic
model with word dependencies. In International Conference on Machine Learning, pages 683–691.
PMLR, 2014.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparametrization with Gumble-softmax. In
International Conference on Learning Representations, 2017.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Shibo Jie and Zhi-Hong Deng. Fact: Factor-tuning for lightweight adaptation on vision transformer.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pages 1060–1068,
2023.

Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient low-rank
hypercomplex adapter layers. Advances in Neural Information Processing Systems, 34:1022–1035,
2021.

Boris N Khoromskij. O (d log n)-quantics approximation of n-d tensors in high-dimensional numerical
modeling. Constructive Approximation, 34:257–280, 2011.

Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review, 51(3):
455–500, 2009.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M Asano. VeRA: Vector-based random matrix
adaptation. In International Conference on Learning Representations, 2024.

Quoc Le, Tamás Sarlós, Alex Smola, et al. Fastfood-approximating kernel expansions in loglinear
time. In International Conference on Machine Learning, volume 85, 2013.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 2021.

Jun Li and José M Bioucas-Dias. Minimum volume simplex analysis: A fast algorithm to unmix
hyperspectral data. In IGARSS 2008-2008 IEEE International Geoscience and Remote Sensing
Symposium, volume 3, pages III–250. IEEE, 2008.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pages 4582–4597, 2021.

12



Chia-Hsiang Lin, Wing-Kin Ma, Wei-Chiang Li, Chong-Yung Chi, and ArulMurugan Ambikapathi.
Identifiability of the simplex volume minimization criterion for blind hyperspectral unmixing: The
no-pure-pixel case. IEEE Transactions on Geoscience and Remote Sensing, 53(10):5530–5546,
2015.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. Advances in Neural Information Processing Systems, 35:1950–1965, 2022.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. In International Conference on Learning Representations,
2016.

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa Dehghani, and James Henderson. Parameter-
efficient multi-task fine-tuning for transformers via shared hypernetworks. In Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 565–576, 2021.

Hanna Mazzawi, Javier Gonzalvo, Michael Wunder, Sammy Jerome, and Benoit Dherin. Deep fusion:
Efficient network training via pre-trained initializations. In Forty-first International Conference on
Machine Learning, 2024.

Jekaterina Novikova, Ondřej Dušek, and Verena Rieser. The E2E dataset: New challenges for end-to-
end generation. In Kristiina Jokinen, Manfred Stede, David DeVault, and Annie Louis, editors,
Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue, pages 201–206,
Saarbrücken, Germany, August 2017.

Jose Javier Gonzalez Ortiz, John Guttag, and Adrian V Dalca. Magnitude invariant parametriza-
tions improve hypernetwork learning. In The Twelfth International Conference on Learning
Representations, 2024.

Ivan V Oseledets. Approximation of 2d× 2d matrices using tensor decomposition. SIAM Journal on
Matrix Analysis and Applications, 31(4):2130–2145, 2010.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

Edoardo M Ponti, Alessandro Sordoni, Yoshua Bengio, and Siva Reddy. Combining modular skills
in multitask learning. arXiv preprint arXiv:2202.13914, 2022.

Jonathan K Pritchard, Matthew Stephens, and Peter Donnelly. Inference of population structure using
multilocus genotype data. Genetics, 155(2):945–959, 2000.

Yujia Qin, Xiaozhi Wang, Yusheng Su, Yankai Lin, Ning Ding, Jing Yi, Weize Chen, Zhiyuan Liu,
Juanzi Li, Lei Hou, et al. Exploring universal intrinsic task subspace via prompt tuning. arXiv
preprint arXiv:2110.07867, 2021.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions
for SQuAD. In Iryna Gurevych and Yusuke Miyao, editors, Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 784–
789, Melbourne, Australia, July 2018.

Joseph Reisinger, Austin Waters, Bryan Silverthorn, and Raymond J Mooney. Spherical topic models.
In International Conference on Machine Learning, pages 903–910. Citeseer, 2010.

13



Adithya Renduchintala, Tugrul Konuk, and Oleksii Kuchaiev. Tied-LoRA: Enhancing parameter
efficiency of LoRA with weight tying. In Proceedings of the 2024 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 8686–8697, 2024.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In
International Conference on Learning Representations, 2016.

Ying Sheng, Shiyi Cao, Dacheng Li, Coleman Hooper, Nicholas Lee, Shuo Yang, Christopher Chou,
Banghua Zhu, Lianmin Zheng, Kurt Keutzer, et al. S-LoRA: Serving thousands of concurrent
LoRA adapters. arXiv preprint arXiv:2311.03285, 2023.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In David Yarowsky, Timothy Baldwin, Anna Korhonen, Karen Livescu, and Steven
Bethard, editors, Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pages 1631–1642, Seattle, Washington, USA, October 2013.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of Machine
Learning Research, 9(86):2579–2605, 2008.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information Processing
Systems, 30, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE:
A multi-task benchmark and analysis platform for natural language understanding. In Tal Linzen,
Grzegorz Chrupała, and Afra Alishahi, editors, Proceedings of the 2018 EMNLP Workshop
BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 353–355, Brussels,
Belgium, November 2018.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. Neural network acceptability judgments.
Transactions of the Association for Computational Linguistics, 7:625–641, 2019.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
large language models. arXiv preprint arXiv:2309.12284, 2023.

Xujiang Zhao, Jiaying Lu, Chengyuan Deng, Can Zheng, Junxiang Wang, Tanmoy Chowdhury,
Li Yun, Hejie Cui, Zhang Xuchao, Tianjiao Zhao, et al. Domain specialization as the key to make
large language models disruptive: A comprehensive survey. arXiv preprint arXiv:2305.18703,
2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging LLM-as-a-judge with MT-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36, 2024.

14

https://github.com/tatsu-lab/stanford_alpaca


A Appendix

A.1 Hyperparameters and Computing Resources

The hyperparameters used for the natural language understanding, natural language generation and
instruction tuning are provided in Table 7, 8 and 9. All experiments were conducted on a server
equipped with 8 NVIDIA A100 80GB GPUs.

Computation overhead The proposed factorization in VB-LoRA is simple to implement in modern
deep learning frameworks such as PyTorch, allowing us to fully leverage GPU acceleration. However,
the use of subvector decomposition does introduce some computational overhead. This additional
overhead is limited to the training phase and does not affect inference, as both LoRA and VB-LoRA
merge their parameters back into the original model parameters during this stage.

Memory efficiency Despite the training time overhead, the reduced number of trainable parameters
in VB-LoRA results in lower memory consumption. During LoRA fine-tuning, the forward pass
is z = Ax, H = Bz, without the need to materialize ∆W . This memory-saving technique can be
seamlessly incorporated in VB-LoRA and has been implemented in our source code. Table 9 shows
that VB-LoRA requires approximately 15%-20% more training time than LoRA, while it consumes
less memory than LoRA in both the LLaMA2 7B model and LLaMA2 13B models.

Table 7: Hyperparameters and computing resources for natural language understanding experiments
on the GLUE benchmark. Training time and GPU memory are reported as "query and value only" /
"all linear modules". h: hour, m: minute.

Model Hyperparameter SST-2 MRPC CoLA QNLI RTE STS-B

Optimizer AdamW
Warmup Ratio 0.06
LR Schedule Linear
Init. of the Vector Bank U(−0.02, 0.02)
Init. of the Logits N (0, 0.01)

B
A

S
E

# GPUs 1
Epochs 60 30 80 25 160 80
Learning Rate (Head) 4E-3 4E-3 2E-2 1E-2 2E-2 2E-2
Learning Rate (Logits) 1E-2
Learning Rate (Vector Bank) 1E-3
Vector Bank Size 90
Vector Length 256
Rank 4
Max Seq. Len. 512
Batch Size Per GPU 32
Training Time 8h / 10h 27m / 40m 80m / 100m 5h / 6.5h 50m / 1h 1h / 80m
GPU Memory 24,552 MiB / 28,120 MiB

L
A

R
G

E

# GPUs 1
Epochs 20 40 40 20 40 40
Learning Rate (Head) 3E-3 3E-3 3E-3 2E-3 2E-3 6E-3
Learning Rate (Logits) 1E-2
Learning Rate (Vector Bank) 1E-3
Vector Bank Size 90
Vector Length 256
Rank 4
Max Seq. Len. 128
Batch Size Per GPU 32
Training Time 2h / 3h 12m / 20m 30m / 45m 3h / 4.5h 10m / 15m 20m / 30m
GPU Memory 9,804 MiB / 12,170 MiB

A.2 Visualization of the Vector Selection

For visualization, we conducted experiments on the CoLA dataset using a 24-layer RoBERTa-large
model with a vector bank of 30 vectors. We fine-tuned the query and value modules, setting the rank
to 2 and the vector length to 1024, resulting in 192 sub-vectors.

15



Table 8: Hyperparameters and computing resources on natural language generation experiments on
the E2E dataset. Training time and GPU memory are reported as "query and value only" / "all linear
modules". h: hour, m: minute.

Hyperparameter Medium Large

# GPUs 1
Optimizer AdamW
Learning Rate Schedule Linear
Weight Decay 0.01
Batch Size 8
Epochs 5
Warmup Steps 500
Label Smooth 0.1
Rank 4
Vector Length 256
Vector Bank Size 256 350
Learning Rate (Vector Bank) 1E-3 1E-3
Learning Rate (Logits) 1E-2 1E-2
Training Time 3h 3h
GPU Memory 29,061 MiB 29,282 MiB

Table 9: Hyperparameters and computing resources on instruction tuning on the Cleaned Alpaca
Dataset. h: hour. 7B: llama2 7B, 13B: llama2 13B.

Hyperparameter LoRA, 7B LoRA, 13B VB-LoRA, 7B VB-LoRA, 13B

# GPUs 1
Optimizer AdamW
Warmup Ratio 0.1
Batch Size 4
Accumulation Steps 4
Epochs 1
LR Schedule Linear
Vector Length N/A N/A 256 256
Rank 64 64 4 6
Vector Bank Size N/A N/A 2048 2048
Learning Rate (Vector bank) N/A N/A 1E-3 1E-3
Learning Rate (Logits) N/A N/A 1E-2 1E-2
Learning Rate (LoRA) 4e-4 4e-4 N/A N/A
Training Time 2h 2.6h 2.5h 3h
GPU Memory 8,467 MiB 11,624 MiB 6,872 MiB 11,486 MiB

Figure 4 displays the vectors selected by sub-vectors at the initialization (red) and at the end of
training (blue), respectively. As we can see, most of the final selections differ from the initial
selections, demonstrating the training dynamics of the vector selection process.

In Figure 5, we plot the footprint at different training periods. This visualization demonstrates that
vector exploration predominantly occurs in the early stages of training, and the updates become
progressively sparser in the later stages of training.

Figure 6 illustrates the sum of the top-k weights for each vector, grouped by the first, middle, and last
8 layers. It shows that certain vectors are favored by deeper layers, such as vectors #1 and #29, while
some are favored by shallower layers, such as vectors #20 and #26.

We then group the same data with respect to query and value modules, as well as matrices A and B,
shown in Figure 7. As we can see, some vectors are predominantly utilized by specific module or
matrix types. For instance, vector #23 is heavily utilized in the formation of matrix A, while vector
#29 is predominantly used in the formation of Query modules.

Load balancing To demonstrate that the vector selection is free from load balancing issue, we
present the vector usage in a Gemma-7B model trained on the MetaMathQA dataset, as shown in

16



0 25 50 75 100 125 150 175
Sub-vector #

0
5

10
15
20
25

Ve
ct

or
 #

 in
 th

e 
Ve

ct
or

 B
an

k

Initially selected
Finally selected
Overlapped

Figure 4: The x-axis represents the 192 sub-vectors formed by the vectors in the vector bank, while the
y-axis represents the 30 vectors in the vector bank. The vectors initially selected by each sub-vector
are shown in red, the vectors finally selected are shown in blue, and the overlapping vectors are shown
in green.

0 25 50 75
Sub-vector #

0

20

40

60

80

Ve
ct

or
 #

 in
 th

e 
ve

ct
or

 b
an

k

(a) Epoch 0-4

0 25 50 75
Sub-vector #

0

20

40

60

80

Ve
ct

or
 #

 in
 th

e 
ve

ct
or

 b
an

k

(b) Epoch 5-9

0 25 50 75
Sub-vector #

0

20

40

60

80

Ve
ct

or
 #

 in
 th

e 
ve

ct
or

 b
an

k

(c) Epoch 10-14

0 25 50 75
Sub-vector #

0

20

40

60

80

Ve
ct

or
 #

 in
 th

e 
ve

ct
or

 b
an

k

(d) Epoch 15-19

0 25 50 75
Sub-vector #

0

20

40

60

80

Ve
ct

or
 #

 in
 th

e 
ve

ct
or

 b
an

k

(e) Epoch 20-24

0 25 50 75
Sub-vector #

0

20

40

60

80

Ve
ct

or
 #

 in
 th

e 
ve

ct
or

 b
an

k

(f) Epoch 25-29

Figure 5: VB-LoRA’s vector selection footprints during training. The x-axis represents the 96
sub-vectors formed by the vectors from a bank of 90 vectors, while the y-axis represents the indices
of selected vectors from the bank. The blue blocks indicate the selection footprint during training.

Figure 8. The vector bank contains 2048 vectors. The distribution of vector usage follows a roughly
normal distribution, with most vectors being selected between 40 to 55 times.

A.3 Visualization of the Vector Bank and the Sub-vectors

Figure 9 illustrates the positioning of the sub-vectors along the edge of the simplex spanned by the
vector bank. The vector bank is projected into a 2-D space using T-SNE [van der Maaten and Hinton,
2008] for visualization.

17



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Vector #

0

1

2

3

4

5

6

7

Su
m

 o
f t

he
 to

p-
k 

we
ig

ht
s

First 8 layers
Middle 8 layers
Last 8 layers

Figure 6: The sum of the top-k weights for each vector, grouped by the first, middle, and last 8 layers.
The vectors in B are sorted by their norms.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Vector #

0

2

4

6

8

Su
m

 o
f t

he
 to

p-
k 

we
ig

ht
s

VA

VB

QA

QB

Figure 7: The sum of the top-k weights for each vector, grouped by query (Q) and value (V) modules,
and matrices A and B. The vectors in B are sorted by their norms.

18



30 40 50 60 70
Frequency of vector usage

0

20

40

60

80

100

120

Nu
m

be
r o

f v
ec

to
rs

Figure 8: Histogram of vector usage frequency. The frequency ranges from 29 to 70, with most vectors
being selected between 40 and 55 times. The distribution of vector usage follows an approximately
normal pattern.

19



0 1

2

3

4

5

6 7

8
9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

2526

27

28

29

Vector Bank
Sub-vectors

Figure 9: Visualization of the learned vector bank and sub-vectors.

20



A.4 Instruction-tuning Examples

Tables 10 and 11 provide examples of the responses generated by the finetuned Llama2 13B model
with LoRA and VB-LoRA.

Table 10: Example #1 of the responses generated by the finetuned Llama2 13B model with LoRA
and VB-LoRA.

LoRA VB-LoRA

Draft a professional email seeking your supervisor’s feedback on the ’Quarterly Financial Report’
you prepared. Ask specifically about the data analysis, presentation style, and the clarity of
conclusions drawn. Keep the email short and to the point.

A
N

S
W

E
R Dear [Supervisor’s Name],

I am writing to request your feedback on the
quarterly financial report I prepared. I would
appreciate your input on the data analysis, pre-
sentation style, and the clarity of the conclusions
drawn.
I have attached the report for your review. Please
let me know if you require any additional infor-
mation.
Thank you for taking the time to review my work.
I am eager to receive your feedback and learn
from your insights.

Dear Supervisor,
I am writing to request your feedback on the
’Quarterly Financial Report’ I prepared. Specifi-
cally, I would like to know your thoughts on the
data analysis, presentation style, and the clarity
of conclusions drawn.
As a reminder, I used the most recent data avail-
able to analyze the company’s financial perfor-
mance and provide insights into its overall health.
I used charts and graphs to present the data in an
easy-to-understand manner. Finally, I summa-
rized the key findings and provided recommen-
dations for future action.
I look forward to your feedback and appreciate
your time and consideration.
Thank you.
Your Name

R
E

V
IE

W The assistant’s response is very professional,
concise, and to the point. It clearly communi-
cates the user’s request for feedback on specific
aspects of the report, namely the data analysis,
presentation style, and clarity of conclusions.
The assistant also shows respect for the supervi-
sor’s time and expresses a willingness to learn
from their feedback. The response is relevant,
accurate, and detailed enough for the context.
However, it lacks a bit of creativity, but given
the professional context, this is not a major is-
sue.

The assistant’s response is highly relevant, accu-
rate, and helpful. It provides a professional and
concise email draft that meets the user’s require-
ments. The assistant has included all the neces-
sary elements such as the specific areas where
feedback is needed (data analysis, presentation
style, and clarity of conclusions), a brief descrip-
tion of the work done, and a polite request for the
supervisor’s time and feedback. The response
is also creative and detailed, providing a clear
context for the supervisor. Therefore, I would
rate it highly.

S
C

O
R

E

9 10

21



Table 11: Example #2 of the responses generated by the finetuned Llama2 13B model with LoRA
and VB-LoRA. Parts of answers are omitted due to their length.

LoRA VB-LoRA

Compose an engaging travel blog post about a recent trip to Hawaii, highlighting cultural
experiences and must-see attractions.

A
N

S
W

E
R Sure! Here is a travel blog post about a recent

trip to Hawaii:
Hawaii is a paradise on earth, with its beautiful
beaches, lush green landscapes, and warm trop-
ical weather. My recent trip to the islands was
filled with unforgettable experiences and breath-
taking sights. The first stop on my itinerary was
the city of Honolulu, the capital of Hawaii. I ex-
plored the historic landmarks, stunning beaches,
and world-renowned cuisine. The Pearl Harbor
Memorial was a must-visit, as it commemorates
the tragic attack that occurred on December 7,
1941. The USS Arizona Memorial is located
above the sunken battleship and is a solemn re-
minder of the sacrifices made during the war.
From Honolulu, I ventured to the island of Oahu,
where I spent a few days relaxing on the beauti-
ful Waikiki Beach. The beach is lined with palm
trees and crystal-clear waters, and is the per-
fect spot for swimming, sunbathing, and snorke-
ling.After exploring the island, I ventured to
Maui, known as the "Valley Isle." Maui is home
to some of the most beautiful beaches in Hawaii,
including the world-famous Ka’anapali Beach.
I spent the day soaking up the sun and enjoying
the warm, turquoise waters.
In conclusion, my trip to Hawaii was filled
with unforgettable experiences and breathtak-
ing sights. The islands are a paradise on earth,
with something for everyone. Whether you’re
looking for history, culture, or natural beauty,
Hawaii has it all. I can’t wait to return and ex-
plore more of these beautiful islands.

Dear reader, I recently had the opportunity to
travel to the beautiful island of Hawaii, and I am
thrilled to share my experience with you. This
trip was full of cultural immersion, adventure,
and breathtaking scenery. Here is a glimpse of
my journey:
On the first day, I landed in Honolulu, the cap-
ital city of Hawaii. I was immediately struck
by the lush greenery and tropical weather. I
spent the day exploring the city, visiting famous
landmarks such as Pearl Harbor and the USS
Arizona Memorial. The USS Arizona Memorial
is a somber yet powerful tribute to the brave sol-
diers who lost their lives in the attack on Pearl
Harbor.
I spent the next few days relaxing on the beau-
tiful beaches of Maui. I went snorkeling in the
crystal-clear waters, and saw tropical fish, tur-
tles, and even a few sharks. The snorkeling was
truly an unforgettable experience.
One of the highlights of my trip was a visit to
the Polynesian Cultural Center. This is an inter-
active museum that showcases the culture and
traditions of Polynesian islands. I got to try tra-
ditional dances, make fire, and even learn how
to play the ukulele.
In conclusion, my trip to Hawaii was truly un-
forgettable. I experienced cultural immersion,
adventure, and breathtaking scenery. If you’re
looking for a trip of a lifetime, I highly recom-
mend visiting this beautiful island paradise.

R
E

V
IE

W The assistant’s response is a well-written and
engaging travel blog post about a recent trip to
Hawaii. It provides a detailed itinerary of the
trip, highlighting the cultural experiences and
must-see attractions in each location. The as-
sistant also does a good job of describing the
natural beauty and unique features of each is-
land, which adds depth and interest to the post.
The assistant’s response is relevant, accurate,
and creative, making it a high-quality response
to the user’s request. However, it could have in-
cluded more about the cultural experiences, such
as local food, music, or traditions.

The assistant’s response is highly detailed, en-
gaging, and relevant to the user’s request. It
provides a comprehensive overview of a trip to
Hawaii, highlighting cultural experiences and
must-see attractions. The assistant’s use of de-
scriptive language helps to paint a vivid picture
of the experiences, making the blog post more
engaging for readers. The assistant also pro-
vides a personal touch by sharing their own ex-
periences and impressions, which adds depth to
the response. The assistant’s response is accu-
rate, as it mentions real places and experiences
in Hawaii. Overall, the assistant’s response is
highly creative and provides a high level of de-
tail, making it an excellent travel blog post.

S
C

O
R

E

8.5 10

22


	Introduction
	Related Work
	Proposed Method
	Preliminaries: Transformer Architecture and LoRA Adapters
	Divide-and-Share: a New Paradigm for Parameter Sharing
	Breaking Boundaries of LoRA for Global Parameter Sharing
	Parameter Count

	Experiments
	Natural Language Understanding
	Natural Language Generation
	Instruction Tuning
	Mathematical Reasoning
	Ablation Study

	Conclusion
	Appendix
	Hyperparameters and Computing Resources
	Visualization of the Vector Selection
	Visualization of the Vector Bank and the Sub-vectors
	Instruction-tuning Examples


